1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26/*
27 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
28 * double x[],y[]; int e0,nx,prec; int ipio2[];
29 *
30 * __kernel_rem_pio2 return the last three digits of N with
31 * y = x - N*pi/2
32 * so that |y| < pi/2.
33 *
34 * The method is to compute the integer (mod 8) and fraction parts of
35 * (2/pi)*x without doing the full multiplication. In general we
36 * skip the part of the product that are known to be a huge integer (
37 * more accurately, = 0 mod 8 ). Thus the number of operations are
38 * independent of the exponent of the input.
39 *
40 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
41 *
42 * Input parameters:
43 * x[] The input value (must be positive) is broken into nx
44 * pieces of 24-bit integers in double precision format.
45 * x[i] will be the i-th 24 bit of x. The scaled exponent
46 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
47 * match x's up to 24 bits.
48 *
49 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
50 * e0 = ilogb(z)-23
51 * z = scalbn(z,-e0)
52 * for i = 0,1,2
53 * x[i] = floor(z)
54 * z = (z-x[i])*2**24
55 *
56 *
57 * y[] output result in an array of double precision numbers.
58 * The dimension of y[] is:
59 * 24-bit precision 1
60 * 53-bit precision 2
61 * 64-bit precision 2
62 * 113-bit precision 3
63 * The actual value is the sum of them. Thus for 113-bit
64 * precison, one may have to do something like:
65 *
66 * long double t,w,r_head, r_tail;
67 * t = (long double)y[2] + (long double)y[1];
68 * w = (long double)y[0];
69 * r_head = t+w;
70 * r_tail = w - (r_head - t);
71 *
72 * e0 The exponent of x[0]
73 *
74 * nx dimension of x[]
75 *
76 * prec an integer indicating the precision:
77 * 0 24 bits (single)
78 * 1 53 bits (double)
79 * 2 64 bits (extended)
80 * 3 113 bits (quad)
81 *
82 * ipio2[]
83 * integer array, contains the (24*i)-th to (24*i+23)-th
84 * bit of 2/pi after binary point. The corresponding
85 * floating value is
86 *
87 * ipio2[i] * 2^(-24(i+1)).
88 *
89 * External function:
90 * double scalbn(), floor();
91 *
92 *
93 * Here is the description of some local variables:
94 *
95 * jk jk+1 is the initial number of terms of ipio2[] needed
96 * in the computation. The recommended value is 2,3,4,
97 * 6 for single, double, extended,and quad.
98 *
99 * jz local integer variable indicating the number of
100 * terms of ipio2[] used.
101 *
102 * jx nx - 1
103 *
104 * jv index for pointing to the suitable ipio2[] for the
105 * computation. In general, we want
106 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
107 * is an integer. Thus
108 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
109 * Hence jv = max(0,(e0-3)/24).
110 *
111 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
112 *
113 * q[] double array with integral value, representing the
114 * 24-bits chunk of the product of x and 2/pi.
115 *
116 * q0 the corresponding exponent of q[0]. Note that the
117 * exponent for q[i] would be q0-24*i.
118 *
119 * PIo2[] double precision array, obtained by cutting pi/2
120 * into 24 bits chunks.
121 *
122 * f[] ipio2[] in floating point
123 *
124 * iq[] integer array by breaking up q[] in 24-bits chunk.
125 *
126 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
127 *
128 * ih integer. If >0 it indicates q[] is >= 0.5, hence
129 * it also indicates the *sign* of the result.
130 *
131 */
132
133
134/*
135 * Constants:
136 * The hexadecimal values are the intended ones for the following
137 * constants. The decimal values may be used, provided that the
138 * compiler will convert from decimal to binary accurately enough
139 * to produce the hexadecimal values shown.
140 */
141
142#include "fdlibm.h"
143
144#ifdef __STDC__
145static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
146#else
147static int init_jk[] = {2,3,4,6};
148#endif
149
150#ifdef __STDC__
151static const double PIo2[] = {
152#else
153static double PIo2[] = {
154#endif
155 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
156 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
157 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
158 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
159 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
160 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
161 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
162 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
163};
164
165#ifdef __STDC__
166static const double
167#else
168static double
169#endif
170zero = 0.0,
171one = 1.0,
172two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
173twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
174
175#ifdef __STDC__
176 int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
177#else
178 int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
179 double x[], y[]; int e0,nx,prec; int ipio2[];
180#endif
181{
182 int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
183 double z,fw,f[20],fq[20],q[20];
184
185 /* initialize jk*/
186 jk = init_jk[prec];
187 jp = jk;
188
189 /* determine jx,jv,q0, note that 3>q0 */
190 jx = nx-1;
191 jv = (e0-3)/24; if(jv<0) jv=0;
192 q0 = e0-24*(jv+1);
193
194 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
195 j = jv-jx; m = jx+jk;
196 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
197
198 /* compute q[0],q[1],...q[jk] */
199 for (i=0;i<=jk;i++) {
200 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
201 }
202
203 jz = jk;
204recompute:
205 /* distill q[] into iq[] reversingly */
206 for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
207 fw = (double)((int)(twon24* z));
208 iq[i] = (int)(z-two24*fw);
209 z = q[j-1]+fw;
210 }
211
212 /* compute n */
213 z = scalbn(z,q0); /* actual value of z */
214 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
215 n = (int) z;
216 z -= (double)n;
217 ih = 0;
218 if(q0>0) { /* need iq[jz-1] to determine n */
219 i = (iq[jz-1]>>(24-q0)); n += i;
220 iq[jz-1] -= i<<(24-q0);
221 ih = iq[jz-1]>>(23-q0);
222 }
223 else if(q0==0) ih = iq[jz-1]>>23;
224 else if(z>=0.5) ih=2;
225
226 if(ih>0) { /* q > 0.5 */
227 n += 1; carry = 0;
228 for(i=0;i<jz ;i++) { /* compute 1-q */
229 j = iq[i];
230 if(carry==0) {
231 if(j!=0) {
232 carry = 1; iq[i] = 0x1000000- j;
233 }
234 } else iq[i] = 0xffffff - j;
235 }
236 if(q0>0) { /* rare case: chance is 1 in 12 */
237 switch(q0) {
238 case 1:
239 iq[jz-1] &= 0x7fffff; break;
240 case 2:
241 iq[jz-1] &= 0x3fffff; break;
242 }
243 }
244 if(ih==2) {
245 z = one - z;
246 if(carry!=0) z -= scalbn(one,q0);
247 }
248 }
249
250 /* check if recomputation is needed */
251 if(z==zero) {
252 j = 0;
253 for (i=jz-1;i>=jk;i--) j |= iq[i];
254 if(j==0) { /* need recomputation */
255 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
256
257 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
258 f[jx+i] = (double) ipio2[jv+i];
259 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
260 q[i] = fw;
261 }
262 jz += k;
263 goto recompute;
264 }
265 }
266
267 /* chop off zero terms */
268 if(z==0.0) {
269 jz -= 1; q0 -= 24;
270 while(iq[jz]==0) { jz--; q0-=24;}
271 } else { /* break z into 24-bit if necessary */
272 z = scalbn(z,-q0);
273 if(z>=two24) {
274 fw = (double)((int)(twon24*z));
275 iq[jz] = (int)(z-two24*fw);
276 jz += 1; q0 += 24;
277 iq[jz] = (int) fw;
278 } else iq[jz] = (int) z ;
279 }
280
281 /* convert integer "bit" chunk to floating-point value */
282 fw = scalbn(one,q0);
283 for(i=jz;i>=0;i--) {
284 q[i] = fw*(double)iq[i]; fw*=twon24;
285 }
286
287 /* compute PIo2[0,...,jp]*q[jz,...,0] */
288 for(i=jz;i>=0;i--) {
289 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
290 fq[jz-i] = fw;
291 }
292
293 /* compress fq[] into y[] */
294 switch(prec) {
295 case 0:
296 fw = 0.0;
297 for (i=jz;i>=0;i--) fw += fq[i];
298 y[0] = (ih==0)? fw: -fw;
299 break;
300 case 1:
301 case 2:
302 fw = 0.0;
303 for (i=jz;i>=0;i--) fw += fq[i];
304 y[0] = (ih==0)? fw: -fw;
305 fw = fq[0]-fw;
306 for (i=1;i<=jz;i++) fw += fq[i];
307 y[1] = (ih==0)? fw: -fw;
308 break;
309 case 3: /* painful */
310 for (i=jz;i>0;i--) {
311 fw = fq[i-1]+fq[i];
312 fq[i] += fq[i-1]-fw;
313 fq[i-1] = fw;
314 }
315 for (i=jz;i>1;i--) {
316 fw = fq[i-1]+fq[i];
317 fq[i] += fq[i-1]-fw;
318 fq[i-1] = fw;
319 }
320 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
321 if(ih==0) {
322 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
323 } else {
324 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
325 }
326 }
327 return n&7;
328}
329