| 1 | /* | 
|---|
| 2 | * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved. | 
|---|
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|---|
| 4 | * | 
|---|
| 5 | * This code is free software; you can redistribute it and/or modify it | 
|---|
| 6 | * under the terms of the GNU General Public License version 2 only, as | 
|---|
| 7 | * published by the Free Software Foundation.  Oracle designates this | 
|---|
| 8 | * particular file as subject to the "Classpath" exception as provided | 
|---|
| 9 | * by Oracle in the LICENSE file that accompanied this code. | 
|---|
| 10 | * | 
|---|
| 11 | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|---|
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|---|
| 13 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|---|
| 14 | * version 2 for more details (a copy is included in the LICENSE file that | 
|---|
| 15 | * accompanied this code). | 
|---|
| 16 | * | 
|---|
| 17 | * You should have received a copy of the GNU General Public License version | 
|---|
| 18 | * 2 along with this work; if not, write to the Free Software Foundation, | 
|---|
| 19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|---|
| 20 | * | 
|---|
| 21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|---|
| 22 | * or visit www.oracle.com if you need additional information or have any | 
|---|
| 23 | * questions. | 
|---|
| 24 | */ | 
|---|
| 25 |  | 
|---|
| 26 | /* __kernel_tan( x, y, k ) | 
|---|
| 27 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 | 
|---|
| 28 | * Input x is assumed to be bounded by ~pi/4 in magnitude. | 
|---|
| 29 | * Input y is the tail of x. | 
|---|
| 30 | * Input k indicates whether tan (if k=1) or | 
|---|
| 31 | * -1/tan (if k= -1) is returned. | 
|---|
| 32 | * | 
|---|
| 33 | * Algorithm | 
|---|
| 34 | *      1. Since tan(-x) = -tan(x), we need only to consider positive x. | 
|---|
| 35 | *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. | 
|---|
| 36 | *      3. tan(x) is approximated by a odd polynomial of degree 27 on | 
|---|
| 37 | *         [0,0.67434] | 
|---|
| 38 | *                               3             27 | 
|---|
| 39 | *              tan(x) ~ x + T1*x + ... + T13*x | 
|---|
| 40 | *         where | 
|---|
| 41 | * | 
|---|
| 42 | *              |tan(x)         2     4            26   |     -59.2 | 
|---|
| 43 | *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2 | 
|---|
| 44 | *              |  x                                    | | 
|---|
| 45 | * | 
|---|
| 46 | *         Note: tan(x+y) = tan(x) + tan'(x)*y | 
|---|
| 47 | *                        ~ tan(x) + (1+x*x)*y | 
|---|
| 48 | *         Therefore, for better accuracy in computing tan(x+y), let | 
|---|
| 49 | *                   3      2      2       2       2 | 
|---|
| 50 | *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) | 
|---|
| 51 | *         then | 
|---|
| 52 | *                                  3    2 | 
|---|
| 53 | *              tan(x+y) = x + (T1*x + (x *(r+y)+y)) | 
|---|
| 54 | * | 
|---|
| 55 | *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then | 
|---|
| 56 | *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) | 
|---|
| 57 | *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) | 
|---|
| 58 | */ | 
|---|
| 59 |  | 
|---|
| 60 | #include "fdlibm.h" | 
|---|
| 61 | #ifdef __STDC__ | 
|---|
| 62 | static const double | 
|---|
| 63 | #else | 
|---|
| 64 | static double | 
|---|
| 65 | #endif | 
|---|
| 66 | one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ | 
|---|
| 67 | pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ | 
|---|
| 68 | pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ | 
|---|
| 69 | T[] =  { | 
|---|
| 70 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ | 
|---|
| 71 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ | 
|---|
| 72 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ | 
|---|
| 73 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ | 
|---|
| 74 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ | 
|---|
| 75 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ | 
|---|
| 76 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ | 
|---|
| 77 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ | 
|---|
| 78 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ | 
|---|
| 79 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ | 
|---|
| 80 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ | 
|---|
| 81 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ | 
|---|
| 82 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | #ifdef __STDC__ | 
|---|
| 86 | double __kernel_tan(double x, double y, int iy) | 
|---|
| 87 | #else | 
|---|
| 88 | double __kernel_tan(x, y, iy) | 
|---|
| 89 | double x,y; int iy; | 
|---|
| 90 | #endif | 
|---|
| 91 | { | 
|---|
| 92 | double z,r,v,w,s; | 
|---|
| 93 | int ix,hx; | 
|---|
| 94 | hx = __HI(x);   /* high word of x */ | 
|---|
| 95 | ix = hx&0x7fffffff;     /* high word of |x| */ | 
|---|
| 96 | if(ix<0x3e300000) {                     /* x < 2**-28 */ | 
|---|
| 97 | if((int)x==0) {                       /* generate inexact */ | 
|---|
| 98 | if (((ix | __LO(x)) | (iy + 1)) == 0) | 
|---|
| 99 | return one / fabs(x); | 
|---|
| 100 | else { | 
|---|
| 101 | if (iy == 1) | 
|---|
| 102 | return x; | 
|---|
| 103 | else {    /* compute -1 / (x+y) carefully */ | 
|---|
| 104 | double a, t; | 
|---|
| 105 |  | 
|---|
| 106 | z = w = x + y; | 
|---|
| 107 | __LO(z) = 0; | 
|---|
| 108 | v = y - (z - x); | 
|---|
| 109 | t = a = -one / w; | 
|---|
| 110 | __LO(t) = 0; | 
|---|
| 111 | s = one + t * z; | 
|---|
| 112 | return t + a * (s + t * v); | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 | } | 
|---|
| 116 | } | 
|---|
| 117 | if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */ | 
|---|
| 118 | if(hx<0) {x = -x; y = -y;} | 
|---|
| 119 | z = pio4-x; | 
|---|
| 120 | w = pio4lo-y; | 
|---|
| 121 | x = z+w; y = 0.0; | 
|---|
| 122 | } | 
|---|
| 123 | z       =  x*x; | 
|---|
| 124 | w       =  z*z; | 
|---|
| 125 | /* Break x^5*(T[1]+x^2*T[2]+...) into | 
|---|
| 126 | *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + | 
|---|
| 127 | *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) | 
|---|
| 128 | */ | 
|---|
| 129 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); | 
|---|
| 130 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); | 
|---|
| 131 | s = z*x; | 
|---|
| 132 | r = y + z*(s*(r+v)+y); | 
|---|
| 133 | r += T[0]*s; | 
|---|
| 134 | w = x+r; | 
|---|
| 135 | if(ix>=0x3FE59428) { | 
|---|
| 136 | v = (double)iy; | 
|---|
| 137 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); | 
|---|
| 138 | } | 
|---|
| 139 | if(iy==1) return w; | 
|---|
| 140 | else {          /* if allow error up to 2 ulp, | 
|---|
| 141 | simply return -1.0/(x+r) here */ | 
|---|
| 142 | /*  compute -1.0/(x+r) accurately */ | 
|---|
| 143 | double a,t; | 
|---|
| 144 | z  = w; | 
|---|
| 145 | __LO(z) = 0; | 
|---|
| 146 | v  = r-(z - x);     /* z+v = r+x */ | 
|---|
| 147 | t = a  = -1.0/w;    /* a = -1.0/w */ | 
|---|
| 148 | __LO(t) = 0; | 
|---|
| 149 | s  = 1.0+t*z; | 
|---|
| 150 | return t+a*(s+t*v); | 
|---|
| 151 | } | 
|---|
| 152 | } | 
|---|
| 153 |  | 
|---|