1 | /* |
2 | * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* __kernel_tan( x, y, k ) |
27 | * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
28 | * Input x is assumed to be bounded by ~pi/4 in magnitude. |
29 | * Input y is the tail of x. |
30 | * Input k indicates whether tan (if k=1) or |
31 | * -1/tan (if k= -1) is returned. |
32 | * |
33 | * Algorithm |
34 | * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
35 | * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
36 | * 3. tan(x) is approximated by a odd polynomial of degree 27 on |
37 | * [0,0.67434] |
38 | * 3 27 |
39 | * tan(x) ~ x + T1*x + ... + T13*x |
40 | * where |
41 | * |
42 | * |tan(x) 2 4 26 | -59.2 |
43 | * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
44 | * | x | |
45 | * |
46 | * Note: tan(x+y) = tan(x) + tan'(x)*y |
47 | * ~ tan(x) + (1+x*x)*y |
48 | * Therefore, for better accuracy in computing tan(x+y), let |
49 | * 3 2 2 2 2 |
50 | * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
51 | * then |
52 | * 3 2 |
53 | * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
54 | * |
55 | * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
56 | * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
57 | * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
58 | */ |
59 | |
60 | #include "fdlibm.h" |
61 | #ifdef __STDC__ |
62 | static const double |
63 | #else |
64 | static double |
65 | #endif |
66 | one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ |
67 | pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ |
68 | pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ |
69 | T[] = { |
70 | 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ |
71 | 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ |
72 | 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ |
73 | 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ |
74 | 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ |
75 | 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ |
76 | 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ |
77 | 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ |
78 | 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ |
79 | 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ |
80 | 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ |
81 | -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ |
82 | 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ |
83 | }; |
84 | |
85 | #ifdef __STDC__ |
86 | double __kernel_tan(double x, double y, int iy) |
87 | #else |
88 | double __kernel_tan(x, y, iy) |
89 | double x,y; int iy; |
90 | #endif |
91 | { |
92 | double z,r,v,w,s; |
93 | int ix,hx; |
94 | hx = __HI(x); /* high word of x */ |
95 | ix = hx&0x7fffffff; /* high word of |x| */ |
96 | if(ix<0x3e300000) { /* x < 2**-28 */ |
97 | if((int)x==0) { /* generate inexact */ |
98 | if (((ix | __LO(x)) | (iy + 1)) == 0) |
99 | return one / fabs(x); |
100 | else { |
101 | if (iy == 1) |
102 | return x; |
103 | else { /* compute -1 / (x+y) carefully */ |
104 | double a, t; |
105 | |
106 | z = w = x + y; |
107 | __LO(z) = 0; |
108 | v = y - (z - x); |
109 | t = a = -one / w; |
110 | __LO(t) = 0; |
111 | s = one + t * z; |
112 | return t + a * (s + t * v); |
113 | } |
114 | } |
115 | } |
116 | } |
117 | if(ix>=0x3FE59428) { /* |x|>=0.6744 */ |
118 | if(hx<0) {x = -x; y = -y;} |
119 | z = pio4-x; |
120 | w = pio4lo-y; |
121 | x = z+w; y = 0.0; |
122 | } |
123 | z = x*x; |
124 | w = z*z; |
125 | /* Break x^5*(T[1]+x^2*T[2]+...) into |
126 | * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
127 | * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
128 | */ |
129 | r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); |
130 | v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); |
131 | s = z*x; |
132 | r = y + z*(s*(r+v)+y); |
133 | r += T[0]*s; |
134 | w = x+r; |
135 | if(ix>=0x3FE59428) { |
136 | v = (double)iy; |
137 | return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); |
138 | } |
139 | if(iy==1) return w; |
140 | else { /* if allow error up to 2 ulp, |
141 | simply return -1.0/(x+r) here */ |
142 | /* compute -1.0/(x+r) accurately */ |
143 | double a,t; |
144 | z = w; |
145 | __LO(z) = 0; |
146 | v = r-(z - x); /* z+v = r+x */ |
147 | t = a = -1.0/w; /* a = -1.0/w */ |
148 | __LO(t) = 0; |
149 | s = 1.0+t*z; |
150 | return t+a*(s+t*v); |
151 | } |
152 | } |
153 | |