1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* atan(x) |
27 | * Method |
28 | * 1. Reduce x to positive by atan(x) = -atan(-x). |
29 | * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
30 | * is further reduced to one of the following intervals and the |
31 | * arctangent of t is evaluated by the corresponding formula: |
32 | * |
33 | * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
34 | * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
35 | * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
36 | * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
37 | * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
38 | * |
39 | * Constants: |
40 | * The hexadecimal values are the intended ones for the following |
41 | * constants. The decimal values may be used, provided that the |
42 | * compiler will convert from decimal to binary accurately enough |
43 | * to produce the hexadecimal values shown. |
44 | */ |
45 | |
46 | #include "fdlibm.h" |
47 | |
48 | #ifdef __STDC__ |
49 | static const double atanhi[] = { |
50 | #else |
51 | static double atanhi[] = { |
52 | #endif |
53 | 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
54 | 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
55 | 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
56 | 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
57 | }; |
58 | |
59 | #ifdef __STDC__ |
60 | static const double atanlo[] = { |
61 | #else |
62 | static double atanlo[] = { |
63 | #endif |
64 | 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
65 | 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
66 | 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
67 | 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
68 | }; |
69 | |
70 | #ifdef __STDC__ |
71 | static const double aT[] = { |
72 | #else |
73 | static double aT[] = { |
74 | #endif |
75 | 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
76 | -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
77 | 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
78 | -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
79 | 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
80 | -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
81 | 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
82 | -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
83 | 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
84 | -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
85 | 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
86 | }; |
87 | |
88 | #ifdef __STDC__ |
89 | static const double |
90 | #else |
91 | static double |
92 | #endif |
93 | one = 1.0, |
94 | huge = 1.0e300; |
95 | |
96 | #ifdef __STDC__ |
97 | double atan(double x) |
98 | #else |
99 | double atan(x) |
100 | double x; |
101 | #endif |
102 | { |
103 | double w,s1,s2,z; |
104 | int ix,hx,id; |
105 | |
106 | hx = __HI(x); |
107 | ix = hx&0x7fffffff; |
108 | if(ix>=0x44100000) { /* if |x| >= 2^66 */ |
109 | if(ix>0x7ff00000|| |
110 | (ix==0x7ff00000&&(__LO(x)!=0))) |
111 | return x+x; /* NaN */ |
112 | if(hx>0) return atanhi[3]+atanlo[3]; |
113 | else return -atanhi[3]-atanlo[3]; |
114 | } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
115 | if (ix < 0x3e200000) { /* |x| < 2^-29 */ |
116 | if(huge+x>one) return x; /* raise inexact */ |
117 | } |
118 | id = -1; |
119 | } else { |
120 | x = fabs(x); |
121 | if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
122 | if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ |
123 | id = 0; x = (2.0*x-one)/(2.0+x); |
124 | } else { /* 11/16<=|x|< 19/16 */ |
125 | id = 1; x = (x-one)/(x+one); |
126 | } |
127 | } else { |
128 | if (ix < 0x40038000) { /* |x| < 2.4375 */ |
129 | id = 2; x = (x-1.5)/(one+1.5*x); |
130 | } else { /* 2.4375 <= |x| < 2^66 */ |
131 | id = 3; x = -1.0/x; |
132 | } |
133 | }} |
134 | /* end of argument reduction */ |
135 | z = x*x; |
136 | w = z*z; |
137 | /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
138 | s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
139 | s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
140 | if (id<0) return x - x*(s1+s2); |
141 | else { |
142 | z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
143 | return (hx<0)? -z:z; |
144 | } |
145 | } |
146 | |