1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* cos(x) |
27 | * Return cosine function of x. |
28 | * |
29 | * kernel function: |
30 | * __kernel_sin ... sine function on [-pi/4,pi/4] |
31 | * __kernel_cos ... cosine function on [-pi/4,pi/4] |
32 | * __ieee754_rem_pio2 ... argument reduction routine |
33 | * |
34 | * Method. |
35 | * Let S,C and T denote the sin, cos and tan respectively on |
36 | * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 |
37 | * in [-pi/4 , +pi/4], and let n = k mod 4. |
38 | * We have |
39 | * |
40 | * n sin(x) cos(x) tan(x) |
41 | * ---------------------------------------------------------- |
42 | * 0 S C T |
43 | * 1 C -S -1/T |
44 | * 2 -S -C T |
45 | * 3 -C S -1/T |
46 | * ---------------------------------------------------------- |
47 | * |
48 | * Special cases: |
49 | * Let trig be any of sin, cos, or tan. |
50 | * trig(+-INF) is NaN, with signals; |
51 | * trig(NaN) is that NaN; |
52 | * |
53 | * Accuracy: |
54 | * TRIG(x) returns trig(x) nearly rounded |
55 | */ |
56 | |
57 | #include "fdlibm.h" |
58 | |
59 | #ifdef __STDC__ |
60 | double cos(double x) |
61 | #else |
62 | double cos(x) |
63 | double x; |
64 | #endif |
65 | { |
66 | double y[2],z=0.0; |
67 | int n, ix; |
68 | |
69 | /* High word of x. */ |
70 | ix = __HI(x); |
71 | |
72 | /* |x| ~< pi/4 */ |
73 | ix &= 0x7fffffff; |
74 | if(ix <= 0x3fe921fb) return __kernel_cos(x,z); |
75 | |
76 | /* cos(Inf or NaN) is NaN */ |
77 | else if (ix>=0x7ff00000) return x-x; |
78 | |
79 | /* argument reduction needed */ |
80 | else { |
81 | n = __ieee754_rem_pio2(x,y); |
82 | switch(n&3) { |
83 | case 0: return __kernel_cos(y[0],y[1]); |
84 | case 1: return -__kernel_sin(y[0],y[1],1); |
85 | case 2: return -__kernel_cos(y[0],y[1]); |
86 | default: |
87 | return __kernel_sin(y[0],y[1],1); |
88 | } |
89 | } |
90 | } |
91 | |