1 | /* |
2 | * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | /* expm1(x) |
27 | * Returns exp(x)-1, the exponential of x minus 1. |
28 | * |
29 | * Method |
30 | * 1. Argument reduction: |
31 | * Given x, find r and integer k such that |
32 | * |
33 | * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 |
34 | * |
35 | * Here a correction term c will be computed to compensate |
36 | * the error in r when rounded to a floating-point number. |
37 | * |
38 | * 2. Approximating expm1(r) by a special rational function on |
39 | * the interval [0,0.34658]: |
40 | * Since |
41 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... |
42 | * we define R1(r*r) by |
43 | * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) |
44 | * That is, |
45 | * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) |
46 | * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) |
47 | * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... |
48 | * We use a special Reme algorithm on [0,0.347] to generate |
49 | * a polynomial of degree 5 in r*r to approximate R1. The |
50 | * maximum error of this polynomial approximation is bounded |
51 | * by 2**-61. In other words, |
52 | * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 |
53 | * where Q1 = -1.6666666666666567384E-2, |
54 | * Q2 = 3.9682539681370365873E-4, |
55 | * Q3 = -9.9206344733435987357E-6, |
56 | * Q4 = 2.5051361420808517002E-7, |
57 | * Q5 = -6.2843505682382617102E-9; |
58 | * (where z=r*r, and the values of Q1 to Q5 are listed below) |
59 | * with error bounded by |
60 | * | 5 | -61 |
61 | * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 |
62 | * | | |
63 | * |
64 | * expm1(r) = exp(r)-1 is then computed by the following |
65 | * specific way which minimize the accumulation rounding error: |
66 | * 2 3 |
67 | * r r [ 3 - (R1 + R1*r/2) ] |
68 | * expm1(r) = r + --- + --- * [--------------------] |
69 | * 2 2 [ 6 - r*(3 - R1*r/2) ] |
70 | * |
71 | * To compensate the error in the argument reduction, we use |
72 | * expm1(r+c) = expm1(r) + c + expm1(r)*c |
73 | * ~ expm1(r) + c + r*c |
74 | * Thus c+r*c will be added in as the correction terms for |
75 | * expm1(r+c). Now rearrange the term to avoid optimization |
76 | * screw up: |
77 | * ( 2 2 ) |
78 | * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) |
79 | * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) |
80 | * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) |
81 | * ( ) |
82 | * |
83 | * = r - E |
84 | * 3. Scale back to obtain expm1(x): |
85 | * From step 1, we have |
86 | * expm1(x) = either 2^k*[expm1(r)+1] - 1 |
87 | * = or 2^k*[expm1(r) + (1-2^-k)] |
88 | * 4. Implementation notes: |
89 | * (A). To save one multiplication, we scale the coefficient Qi |
90 | * to Qi*2^i, and replace z by (x^2)/2. |
91 | * (B). To achieve maximum accuracy, we compute expm1(x) by |
92 | * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) |
93 | * (ii) if k=0, return r-E |
94 | * (iii) if k=-1, return 0.5*(r-E)-0.5 |
95 | * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) |
96 | * else return 1.0+2.0*(r-E); |
97 | * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) |
98 | * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else |
99 | * (vii) return 2^k(1-((E+2^-k)-r)) |
100 | * |
101 | * Special cases: |
102 | * expm1(INF) is INF, expm1(NaN) is NaN; |
103 | * expm1(-INF) is -1, and |
104 | * for finite argument, only expm1(0)=0 is exact. |
105 | * |
106 | * Accuracy: |
107 | * according to an error analysis, the error is always less than |
108 | * 1 ulp (unit in the last place). |
109 | * |
110 | * Misc. info. |
111 | * For IEEE double |
112 | * if x > 7.09782712893383973096e+02 then expm1(x) overflow |
113 | * |
114 | * Constants: |
115 | * The hexadecimal values are the intended ones for the following |
116 | * constants. The decimal values may be used, provided that the |
117 | * compiler will convert from decimal to binary accurately enough |
118 | * to produce the hexadecimal values shown. |
119 | */ |
120 | |
121 | #include "fdlibm.h" |
122 | |
123 | #ifdef __STDC__ |
124 | static const double |
125 | #else |
126 | static double |
127 | #endif |
128 | one = 1.0, |
129 | huge = 1.0e+300, |
130 | tiny = 1.0e-300, |
131 | o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ |
132 | ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ |
133 | ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ |
134 | invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ |
135 | /* scaled coefficients related to expm1 */ |
136 | Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ |
137 | Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ |
138 | Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ |
139 | Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ |
140 | Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
141 | |
142 | #ifdef __STDC__ |
143 | double expm1(double x) |
144 | #else |
145 | double expm1(x) |
146 | double x; |
147 | #endif |
148 | { |
149 | double y,hi,lo,c=0,t,e,hxs,hfx,r1; |
150 | int k,xsb; |
151 | unsigned hx; |
152 | |
153 | hx = __HI(x); /* high word of x */ |
154 | xsb = hx&0x80000000; /* sign bit of x */ |
155 | if(xsb==0) y=x; else y= -x; /* y = |x| */ |
156 | hx &= 0x7fffffff; /* high word of |x| */ |
157 | |
158 | /* filter out huge and non-finite argument */ |
159 | if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ |
160 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
161 | if(hx>=0x7ff00000) { |
162 | if(((hx&0xfffff)|__LO(x))!=0) |
163 | return x+x; /* NaN */ |
164 | else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ |
165 | } |
166 | if(x > o_threshold) return huge*huge; /* overflow */ |
167 | } |
168 | if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ |
169 | if(x+tiny<0.0) /* raise inexact */ |
170 | return tiny-one; /* return -1 */ |
171 | } |
172 | } |
173 | |
174 | /* argument reduction */ |
175 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
176 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
177 | if(xsb==0) |
178 | {hi = x - ln2_hi; lo = ln2_lo; k = 1;} |
179 | else |
180 | {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} |
181 | } else { |
182 | k = invln2*x+((xsb==0)?0.5:-0.5); |
183 | t = k; |
184 | hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ |
185 | lo = t*ln2_lo; |
186 | } |
187 | x = hi - lo; |
188 | c = (hi-x)-lo; |
189 | } |
190 | else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ |
191 | t = huge+x; /* return x with inexact flags when x!=0 */ |
192 | return x - (t-(huge+x)); |
193 | } |
194 | else k = 0; |
195 | |
196 | /* x is now in primary range */ |
197 | hfx = 0.5*x; |
198 | hxs = x*hfx; |
199 | r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); |
200 | t = 3.0-r1*hfx; |
201 | e = hxs*((r1-t)/(6.0 - x*t)); |
202 | if(k==0) return x - (x*e-hxs); /* c is 0 */ |
203 | else { |
204 | e = (x*(e-c)-c); |
205 | e -= hxs; |
206 | if(k== -1) return 0.5*(x-e)-0.5; |
207 | if(k==1) { |
208 | if(x < -0.25) return -2.0*(e-(x+0.5)); |
209 | else return one+2.0*(x-e); |
210 | } |
211 | if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ |
212 | y = one-(e-x); |
213 | __HI(y) += (k<<20); /* add k to y's exponent */ |
214 | return y-one; |
215 | } |
216 | t = one; |
217 | if(k<20) { |
218 | __HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */ |
219 | y = t-(e-x); |
220 | __HI(y) += (k<<20); /* add k to y's exponent */ |
221 | } else { |
222 | __HI(t) = ((0x3ff-k)<<20); /* 2^-k */ |
223 | y = x-(e+t); |
224 | y += one; |
225 | __HI(y) += (k<<20); /* add k to y's exponent */ |
226 | } |
227 | } |
228 | return y; |
229 | } |
230 | |