1 | /* |
2 | * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | #ifndef HEADLESS |
27 | |
28 | #include <stdlib.h> |
29 | #include <math.h> |
30 | #include <jlong.h> |
31 | |
32 | #include "sun_java2d_opengl_OGLTextRenderer.h" |
33 | |
34 | #include "SurfaceData.h" |
35 | #include "OGLContext.h" |
36 | #include "OGLSurfaceData.h" |
37 | #include "OGLRenderQueue.h" |
38 | #include "OGLTextRenderer.h" |
39 | #include "OGLVertexCache.h" |
40 | #include "AccelGlyphCache.h" |
41 | #include "fontscalerdefs.h" |
42 | |
43 | /** |
44 | * The following constants define the inner and outer bounds of the |
45 | * accelerated glyph cache. |
46 | */ |
47 | #define OGLTR_CACHE_WIDTH 512 |
48 | #define OGLTR_CACHE_HEIGHT 512 |
49 | #define OGLTR_CACHE_CELL_WIDTH 32 |
50 | #define OGLTR_CACHE_CELL_HEIGHT 32 |
51 | |
52 | /** |
53 | * The current "glyph mode" state. This variable is used to track the |
54 | * codepath used to render a particular glyph. This variable is reset to |
55 | * MODE_NOT_INITED at the beginning of every call to OGLTR_DrawGlyphList(). |
56 | * As each glyph is rendered, the glyphMode variable is updated to reflect |
57 | * the current mode, so if the current mode is the same as the mode used |
58 | * to render the previous glyph, we can avoid doing costly setup operations |
59 | * each time. |
60 | */ |
61 | typedef enum { |
62 | MODE_NOT_INITED, |
63 | MODE_USE_CACHE_GRAY, |
64 | MODE_USE_CACHE_LCD, |
65 | MODE_NO_CACHE_GRAY, |
66 | MODE_NO_CACHE_LCD |
67 | } GlyphMode; |
68 | static GlyphMode glyphMode = MODE_NOT_INITED; |
69 | |
70 | /** |
71 | * There are two separate glyph caches: for AA and for LCD. |
72 | * Once one of them is initialized as either GRAY or LCD, it |
73 | * stays in that mode for the duration of the application. It should |
74 | * be safe to use this one glyph cache for all screens in a multimon |
75 | * environment, since the glyph cache texture is shared between all contexts, |
76 | * and (in theory) OpenGL drivers should be smart enough to manage that |
77 | * texture across all screens. |
78 | */ |
79 | |
80 | static GlyphCacheInfo *glyphCacheLCD = NULL; |
81 | static GlyphCacheInfo *glyphCacheAA = NULL; |
82 | |
83 | /** |
84 | * The handle to the LCD text fragment program object. |
85 | */ |
86 | static GLhandleARB lcdTextProgram = 0; |
87 | |
88 | /** |
89 | * This value tracks the previous LCD contrast setting, so if the contrast |
90 | * value hasn't changed since the last time the gamma uniforms were |
91 | * updated (not very common), then we can skip updating the unforms. |
92 | */ |
93 | static jint lastLCDContrast = -1; |
94 | |
95 | /** |
96 | * This value tracks the previous LCD rgbOrder setting, so if the rgbOrder |
97 | * value has changed since the last time, it indicates that we need to |
98 | * invalidate the cache, which may already store glyph images in the reverse |
99 | * order. Note that in most real world applications this value will not |
100 | * change over the course of the application, but tests like Font2DTest |
101 | * allow for changing the ordering at runtime, so we need to handle that case. |
102 | */ |
103 | static jboolean lastRGBOrder = JNI_TRUE; |
104 | |
105 | /** |
106 | * This constant defines the size of the tile to use in the |
107 | * OGLTR_DrawLCDGlyphNoCache() method. See below for more on why we |
108 | * restrict this value to a particular size. |
109 | */ |
110 | #define OGLTR_NOCACHE_TILE_SIZE 32 |
111 | |
112 | /** |
113 | * These constants define the size of the "cached destination" texture. |
114 | * This texture is only used when rendering LCD-optimized text, as that |
115 | * codepath needs direct access to the destination. There is no way to |
116 | * access the framebuffer directly from an OpenGL shader, so we need to first |
117 | * copy the destination region corresponding to a particular glyph into |
118 | * this cached texture, and then that texture will be accessed inside the |
119 | * shader. Copying the destination into this cached texture can be a very |
120 | * expensive operation (accounting for about half the rendering time for |
121 | * LCD text), so to mitigate this cost we try to bulk read a horizontal |
122 | * region of the destination at a time. (These values are empirically |
123 | * derived for the common case where text runs horizontally.) |
124 | * |
125 | * Note: It is assumed in various calculations below that: |
126 | * (OGLTR_CACHED_DEST_WIDTH >= OGLTR_CACHE_CELL_WIDTH) && |
127 | * (OGLTR_CACHED_DEST_WIDTH >= OGLTR_NOCACHE_TILE_SIZE) && |
128 | * (OGLTR_CACHED_DEST_HEIGHT >= OGLTR_CACHE_CELL_HEIGHT) && |
129 | * (OGLTR_CACHED_DEST_HEIGHT >= OGLTR_NOCACHE_TILE_SIZE) |
130 | */ |
131 | #define OGLTR_CACHED_DEST_WIDTH 512 |
132 | #define OGLTR_CACHED_DEST_HEIGHT (OGLTR_CACHE_CELL_HEIGHT * 2) |
133 | |
134 | /** |
135 | * The handle to the "cached destination" texture object. |
136 | */ |
137 | static GLuint cachedDestTextureID = 0; |
138 | |
139 | /** |
140 | * The current bounds of the "cached destination" texture, in destination |
141 | * coordinate space. The width/height of these bounds will not exceed the |
142 | * OGLTR_CACHED_DEST_WIDTH/HEIGHT values defined above. These bounds are |
143 | * only considered valid when the isCachedDestValid flag is JNI_TRUE. |
144 | */ |
145 | static SurfaceDataBounds cachedDestBounds; |
146 | |
147 | /** |
148 | * This flag indicates whether the "cached destination" texture contains |
149 | * valid data. This flag is reset to JNI_FALSE at the beginning of every |
150 | * call to OGLTR_DrawGlyphList(). Once we copy valid destination data |
151 | * into the cached texture, this flag is set to JNI_TRUE. This way, we can |
152 | * limit the number of times we need to copy destination data, which is a |
153 | * very costly operation. |
154 | */ |
155 | static jboolean isCachedDestValid = JNI_FALSE; |
156 | |
157 | /** |
158 | * The bounds of the previously rendered LCD glyph, in destination |
159 | * coordinate space. We use these bounds to determine whether the glyph |
160 | * currently being rendered overlaps the previously rendered glyph (i.e. |
161 | * its bounding box intersects that of the previously rendered glyph). If |
162 | * so, we need to re-read the destination area associated with that previous |
163 | * glyph so that we can correctly blend with the actual destination data. |
164 | */ |
165 | static SurfaceDataBounds previousGlyphBounds; |
166 | |
167 | /** |
168 | * Initializes the one glyph cache (texture and data structure). |
169 | * If lcdCache is JNI_TRUE, the texture will contain RGB data, |
170 | * otherwise we will simply store the grayscale/monochrome glyph images |
171 | * as intensity values (which work well with the GL_MODULATE function). |
172 | */ |
173 | static jboolean |
174 | OGLTR_InitGlyphCache(jboolean lcdCache) |
175 | { |
176 | GlyphCacheInfo *gcinfo; |
177 | GLclampf priority = 1.0f; |
178 | GLenum internalFormat = lcdCache ? GL_RGB8 : GL_INTENSITY8; |
179 | GLenum pixelFormat = lcdCache ? GL_RGB : GL_LUMINANCE; |
180 | |
181 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_InitGlyphCache" ); |
182 | |
183 | // init glyph cache data structure |
184 | gcinfo = AccelGlyphCache_Init(OGLTR_CACHE_WIDTH, |
185 | OGLTR_CACHE_HEIGHT, |
186 | OGLTR_CACHE_CELL_WIDTH, |
187 | OGLTR_CACHE_CELL_HEIGHT, |
188 | OGLVertexCache_FlushVertexCache); |
189 | if (gcinfo == NULL) { |
190 | J2dRlsTraceLn(J2D_TRACE_ERROR, |
191 | "OGLTR_InitGlyphCache: could not init OGL glyph cache" ); |
192 | return JNI_FALSE; |
193 | } |
194 | |
195 | // init cache texture object |
196 | j2d_glGenTextures(1, &gcinfo->cacheID); |
197 | j2d_glBindTexture(GL_TEXTURE_2D, gcinfo->cacheID); |
198 | j2d_glPrioritizeTextures(1, &gcinfo->cacheID, &priority); |
199 | j2d_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); |
200 | j2d_glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); |
201 | |
202 | j2d_glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, |
203 | OGLTR_CACHE_WIDTH, OGLTR_CACHE_HEIGHT, 0, |
204 | pixelFormat, GL_UNSIGNED_BYTE, NULL); |
205 | |
206 | if (lcdCache) { |
207 | glyphCacheLCD = gcinfo; |
208 | } else { |
209 | glyphCacheAA = gcinfo; |
210 | } |
211 | |
212 | return JNI_TRUE; |
213 | } |
214 | |
215 | /** |
216 | * Adds the given glyph to the glyph cache (texture and data structure) |
217 | * associated with the given OGLContext. |
218 | */ |
219 | static void |
220 | OGLTR_AddToGlyphCache(GlyphInfo *glyph, GLenum pixelFormat) |
221 | { |
222 | CacheCellInfo *ccinfo; |
223 | GlyphCacheInfo *gcinfo; |
224 | |
225 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_AddToGlyphCache" ); |
226 | |
227 | if (pixelFormat == GL_LUMINANCE) { |
228 | gcinfo = glyphCacheAA; |
229 | } else { |
230 | gcinfo = glyphCacheLCD; |
231 | } |
232 | |
233 | if ((gcinfo == NULL) || (glyph->image == NULL)) { |
234 | return; |
235 | } |
236 | |
237 | AccelGlyphCache_AddGlyph(gcinfo, glyph); |
238 | ccinfo = (CacheCellInfo *) glyph->cellInfo; |
239 | |
240 | if (ccinfo != NULL) { |
241 | // store glyph image in texture cell |
242 | j2d_glTexSubImage2D(GL_TEXTURE_2D, 0, |
243 | ccinfo->x, ccinfo->y, |
244 | glyph->width, glyph->height, |
245 | pixelFormat, GL_UNSIGNED_BYTE, glyph->image); |
246 | } |
247 | } |
248 | |
249 | /** |
250 | * This is the GLSL fragment shader source code for rendering LCD-optimized |
251 | * text. Do not be frightened; it is much easier to understand than the |
252 | * equivalent ASM-like fragment program! |
253 | * |
254 | * The "uniform" variables at the top are initialized once the program is |
255 | * linked, and are updated at runtime as needed (e.g. when the source color |
256 | * changes, we will modify the "src_adj" value in OGLTR_UpdateLCDTextColor()). |
257 | * |
258 | * The "main" function is executed for each "fragment" (or pixel) in the |
259 | * glyph image. The pow() routine operates on vectors, gives precise results, |
260 | * and provides acceptable level of performance, so we use it to perform |
261 | * the gamma adjustment. |
262 | * |
263 | * The variables involved in the equation can be expressed as follows: |
264 | * |
265 | * Cs = Color component of the source (foreground color) [0.0, 1.0] |
266 | * Cd = Color component of the destination (background color) [0.0, 1.0] |
267 | * Cr = Color component to be written to the destination [0.0, 1.0] |
268 | * Ag = Glyph alpha (aka intensity or coverage) [0.0, 1.0] |
269 | * Ga = Gamma adjustment in the range [1.0, 2.5] |
270 | * (^ means raised to the power) |
271 | * |
272 | * And here is the theoretical equation approximated by this shader: |
273 | * |
274 | * Cr = (Ag*(Cs^Ga) + (1-Ag)*(Cd^Ga)) ^ (1/Ga) |
275 | */ |
276 | static const char *lcdTextShaderSource = |
277 | "uniform vec3 src_adj;" |
278 | "uniform sampler2D glyph_tex;" |
279 | "uniform sampler2D dst_tex;" |
280 | "uniform vec3 gamma;" |
281 | "uniform vec3 invgamma;" |
282 | "" |
283 | "void main(void)" |
284 | "{" |
285 | // load the RGB value from the glyph image at the current texcoord |
286 | " vec3 glyph_clr = vec3(texture2D(glyph_tex, gl_TexCoord[0].st));" |
287 | " if (glyph_clr == vec3(0.0)) {" |
288 | // zero coverage, so skip this fragment |
289 | " discard;" |
290 | " }" |
291 | // load the RGB value from the corresponding destination pixel |
292 | " vec3 dst_clr = vec3(texture2D(dst_tex, gl_TexCoord[1].st));" |
293 | // gamma adjust the dest color |
294 | " vec3 dst_adj = pow(dst_clr.rgb, gamma);" |
295 | // linearly interpolate the three color values |
296 | " vec3 result = mix(dst_adj, src_adj, glyph_clr);" |
297 | // gamma re-adjust the resulting color (alpha is always set to 1.0) |
298 | " gl_FragColor = vec4(pow(result.rgb, invgamma), 1.0);" |
299 | "}" ; |
300 | |
301 | /** |
302 | * Compiles and links the LCD text shader program. If successful, this |
303 | * function returns a handle to the newly created shader program; otherwise |
304 | * returns 0. |
305 | */ |
306 | static GLhandleARB |
307 | OGLTR_CreateLCDTextProgram() |
308 | { |
309 | GLhandleARB lcdTextProgram; |
310 | GLint loc; |
311 | |
312 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_CreateLCDTextProgram" ); |
313 | |
314 | lcdTextProgram = OGLContext_CreateFragmentProgram(lcdTextShaderSource); |
315 | if (lcdTextProgram == 0) { |
316 | J2dRlsTraceLn(J2D_TRACE_ERROR, |
317 | "OGLTR_CreateLCDTextProgram: error creating program" ); |
318 | return 0; |
319 | } |
320 | |
321 | // "use" the program object temporarily so that we can set the uniforms |
322 | j2d_glUseProgramObjectARB(lcdTextProgram); |
323 | |
324 | // set the "uniform" values |
325 | loc = j2d_glGetUniformLocationARB(lcdTextProgram, "glyph_tex" ); |
326 | j2d_glUniform1iARB(loc, 0); // texture unit 0 |
327 | loc = j2d_glGetUniformLocationARB(lcdTextProgram, "dst_tex" ); |
328 | j2d_glUniform1iARB(loc, 1); // texture unit 1 |
329 | |
330 | // "unuse" the program object; it will be re-bound later as needed |
331 | j2d_glUseProgramObjectARB(0); |
332 | |
333 | return lcdTextProgram; |
334 | } |
335 | |
336 | /** |
337 | * (Re)Initializes the gamma related uniforms. |
338 | * |
339 | * The given contrast value is an int in the range [100, 250] which we will |
340 | * then scale to fit in the range [1.0, 2.5]. |
341 | */ |
342 | static jboolean |
343 | OGLTR_UpdateLCDTextContrast(jint contrast) |
344 | { |
345 | double g = ((double)contrast) / 100.0; |
346 | double ig = 1.0 / g; |
347 | GLint loc; |
348 | |
349 | J2dTraceLn1(J2D_TRACE_INFO, |
350 | "OGLTR_UpdateLCDTextContrast: contrast=%d" , contrast); |
351 | |
352 | loc = j2d_glGetUniformLocationARB(lcdTextProgram, "gamma" ); |
353 | j2d_glUniform3fARB(loc, g, g, g); |
354 | |
355 | loc = j2d_glGetUniformLocationARB(lcdTextProgram, "invgamma" ); |
356 | j2d_glUniform3fARB(loc, ig, ig, ig); |
357 | |
358 | return JNI_TRUE; |
359 | } |
360 | |
361 | /** |
362 | * Updates the current gamma-adjusted source color ("src_adj") of the LCD |
363 | * text shader program. Note that we could calculate this value in the |
364 | * shader (e.g. just as we do for "dst_adj"), but would be unnecessary work |
365 | * (and a measurable performance hit, maybe around 5%) since this value is |
366 | * constant over the entire glyph list. So instead we just calculate the |
367 | * gamma-adjusted value once and update the uniform parameter of the LCD |
368 | * shader as needed. |
369 | */ |
370 | static jboolean |
371 | OGLTR_UpdateLCDTextColor(jint contrast) |
372 | { |
373 | double gamma = ((double)contrast) / 100.0; |
374 | GLfloat radj, gadj, badj; |
375 | GLfloat clr[4]; |
376 | GLint loc; |
377 | |
378 | J2dTraceLn1(J2D_TRACE_INFO, |
379 | "OGLTR_UpdateLCDTextColor: contrast=%d" , contrast); |
380 | |
381 | /* |
382 | * Note: Ideally we would update the "src_adj" uniform parameter only |
383 | * when there is a change in the source color. Fortunately, the cost |
384 | * of querying the current OpenGL color state and updating the uniform |
385 | * value is quite small, and in the common case we only need to do this |
386 | * once per GlyphList, so we gain little from trying to optimize too |
387 | * eagerly here. |
388 | */ |
389 | |
390 | // get the current OpenGL primary color state |
391 | j2d_glGetFloatv(GL_CURRENT_COLOR, clr); |
392 | |
393 | // gamma adjust the primary color |
394 | radj = (GLfloat)pow(clr[0], gamma); |
395 | gadj = (GLfloat)pow(clr[1], gamma); |
396 | badj = (GLfloat)pow(clr[2], gamma); |
397 | |
398 | // update the "src_adj" parameter of the shader program with this value |
399 | loc = j2d_glGetUniformLocationARB(lcdTextProgram, "src_adj" ); |
400 | j2d_glUniform3fARB(loc, radj, gadj, badj); |
401 | |
402 | return JNI_TRUE; |
403 | } |
404 | |
405 | /** |
406 | * Enables the LCD text shader and updates any related state, such as the |
407 | * gamma lookup table textures. |
408 | */ |
409 | static jboolean |
410 | OGLTR_EnableLCDGlyphModeState(GLuint glyphTextureID, |
411 | GLuint dstTextureID, |
412 | jint contrast) |
413 | { |
414 | // bind the texture containing glyph data to texture unit 0 |
415 | j2d_glActiveTextureARB(GL_TEXTURE0_ARB); |
416 | j2d_glBindTexture(GL_TEXTURE_2D, glyphTextureID); |
417 | j2d_glEnable(GL_TEXTURE_2D); |
418 | |
419 | // bind the texture tile containing destination data to texture unit 1 |
420 | j2d_glActiveTextureARB(GL_TEXTURE1_ARB); |
421 | if (dstTextureID != 0) { |
422 | j2d_glBindTexture(GL_TEXTURE_2D, dstTextureID); |
423 | } else { |
424 | if (cachedDestTextureID == 0) { |
425 | cachedDestTextureID = |
426 | OGLContext_CreateBlitTexture(GL_RGB8, GL_RGB, |
427 | OGLTR_CACHED_DEST_WIDTH, |
428 | OGLTR_CACHED_DEST_HEIGHT); |
429 | if (cachedDestTextureID == 0) { |
430 | return JNI_FALSE; |
431 | } |
432 | } |
433 | j2d_glBindTexture(GL_TEXTURE_2D, cachedDestTextureID); |
434 | } |
435 | |
436 | // note that GL_TEXTURE_2D was already enabled for texture unit 0, |
437 | // but we need to explicitly enable it for texture unit 1 |
438 | j2d_glEnable(GL_TEXTURE_2D); |
439 | |
440 | // create the LCD text shader, if necessary |
441 | if (lcdTextProgram == 0) { |
442 | lcdTextProgram = OGLTR_CreateLCDTextProgram(); |
443 | if (lcdTextProgram == 0) { |
444 | return JNI_FALSE; |
445 | } |
446 | } |
447 | |
448 | // enable the LCD text shader |
449 | j2d_glUseProgramObjectARB(lcdTextProgram); |
450 | |
451 | // update the current contrast settings, if necessary |
452 | if (lastLCDContrast != contrast) { |
453 | if (!OGLTR_UpdateLCDTextContrast(contrast)) { |
454 | return JNI_FALSE; |
455 | } |
456 | lastLCDContrast = contrast; |
457 | } |
458 | |
459 | // update the current color settings |
460 | if (!OGLTR_UpdateLCDTextColor(contrast)) { |
461 | return JNI_FALSE; |
462 | } |
463 | |
464 | return JNI_TRUE; |
465 | } |
466 | |
467 | void |
468 | OGLTR_EnableGlyphVertexCache(OGLContext *oglc) |
469 | { |
470 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_EnableGlyphVertexCache" ); |
471 | |
472 | if (!OGLVertexCache_InitVertexCache(oglc)) { |
473 | return; |
474 | } |
475 | |
476 | if (glyphCacheAA == NULL) { |
477 | if (!OGLTR_InitGlyphCache(JNI_FALSE)) { |
478 | return; |
479 | } |
480 | } |
481 | |
482 | j2d_glEnable(GL_TEXTURE_2D); |
483 | j2d_glBindTexture(GL_TEXTURE_2D, glyphCacheAA->cacheID); |
484 | j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1); |
485 | |
486 | // for grayscale/monochrome text, the current OpenGL source color |
487 | // is modulated with the glyph image as part of the texture |
488 | // application stage, so we use GL_MODULATE here |
489 | OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE); |
490 | } |
491 | |
492 | void |
493 | OGLTR_DisableGlyphVertexCache(OGLContext *oglc) |
494 | { |
495 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_DisableGlyphVertexCache" ); |
496 | |
497 | OGLVertexCache_FlushVertexCache(); |
498 | OGLVertexCache_RestoreColorState(oglc); |
499 | |
500 | j2d_glDisable(GL_TEXTURE_2D); |
501 | j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 4); |
502 | j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); |
503 | j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); |
504 | j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); |
505 | } |
506 | |
507 | /** |
508 | * Disables any pending state associated with the current "glyph mode". |
509 | */ |
510 | static void |
511 | OGLTR_DisableGlyphModeState() |
512 | { |
513 | switch (glyphMode) { |
514 | case MODE_NO_CACHE_LCD: |
515 | j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0); |
516 | j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, 0); |
517 | /* FALLTHROUGH */ |
518 | |
519 | case MODE_USE_CACHE_LCD: |
520 | j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); |
521 | j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 4); |
522 | j2d_glUseProgramObjectARB(0); |
523 | j2d_glActiveTextureARB(GL_TEXTURE1_ARB); |
524 | j2d_glDisable(GL_TEXTURE_2D); |
525 | j2d_glActiveTextureARB(GL_TEXTURE0_ARB); |
526 | j2d_glDisable(GL_TEXTURE_2D); |
527 | break; |
528 | |
529 | case MODE_NO_CACHE_GRAY: |
530 | case MODE_USE_CACHE_GRAY: |
531 | case MODE_NOT_INITED: |
532 | default: |
533 | break; |
534 | } |
535 | } |
536 | |
537 | static jboolean |
538 | OGLTR_DrawGrayscaleGlyphViaCache(OGLContext *oglc, |
539 | GlyphInfo *ginfo, jint x, jint y) |
540 | { |
541 | CacheCellInfo *cell; |
542 | jfloat x1, y1, x2, y2; |
543 | |
544 | if (glyphMode != MODE_USE_CACHE_GRAY) { |
545 | OGLTR_DisableGlyphModeState(); |
546 | CHECK_PREVIOUS_OP(OGL_STATE_GLYPH_OP); |
547 | glyphMode = MODE_USE_CACHE_GRAY; |
548 | } |
549 | |
550 | if (ginfo->cellInfo == NULL) { |
551 | // attempt to add glyph to accelerated glyph cache |
552 | OGLTR_AddToGlyphCache(ginfo, GL_LUMINANCE); |
553 | |
554 | if (ginfo->cellInfo == NULL) { |
555 | // we'll just no-op in the rare case that the cell is NULL |
556 | return JNI_TRUE; |
557 | } |
558 | } |
559 | |
560 | cell = (CacheCellInfo *) (ginfo->cellInfo); |
561 | cell->timesRendered++; |
562 | |
563 | x1 = (jfloat)x; |
564 | y1 = (jfloat)y; |
565 | x2 = x1 + ginfo->width; |
566 | y2 = y1 + ginfo->height; |
567 | |
568 | OGLVertexCache_AddGlyphQuad(oglc, |
569 | cell->tx1, cell->ty1, |
570 | cell->tx2, cell->ty2, |
571 | x1, y1, x2, y2); |
572 | |
573 | return JNI_TRUE; |
574 | } |
575 | |
576 | /** |
577 | * Evaluates to true if the rectangle defined by gx1/gy1/gx2/gy2 is |
578 | * inside outerBounds. |
579 | */ |
580 | #define INSIDE(gx1, gy1, gx2, gy2, outerBounds) \ |
581 | (((gx1) >= outerBounds.x1) && ((gy1) >= outerBounds.y1) && \ |
582 | ((gx2) <= outerBounds.x2) && ((gy2) <= outerBounds.y2)) |
583 | |
584 | /** |
585 | * Evaluates to true if the rectangle defined by gx1/gy1/gx2/gy2 intersects |
586 | * the rectangle defined by bounds. |
587 | */ |
588 | #define INTERSECTS(gx1, gy1, gx2, gy2, bounds) \ |
589 | ((bounds.x2 > (gx1)) && (bounds.y2 > (gy1)) && \ |
590 | (bounds.x1 < (gx2)) && (bounds.y1 < (gy2))) |
591 | |
592 | /** |
593 | * This method checks to see if the given LCD glyph bounds fall within the |
594 | * cached destination texture bounds. If so, this method can return |
595 | * immediately. If not, this method will copy a chunk of framebuffer data |
596 | * into the cached destination texture and then update the current cached |
597 | * destination bounds before returning. |
598 | */ |
599 | static void |
600 | OGLTR_UpdateCachedDestination(OGLSDOps *dstOps, GlyphInfo *ginfo, |
601 | jint gx1, jint gy1, jint gx2, jint gy2, |
602 | jint glyphIndex, jint totalGlyphs) |
603 | { |
604 | jint dx1, dy1, dx2, dy2; |
605 | jint dx1adj, dy1adj; |
606 | |
607 | if (isCachedDestValid && INSIDE(gx1, gy1, gx2, gy2, cachedDestBounds)) { |
608 | // glyph is already within the cached destination bounds; no need |
609 | // to read back the entire destination region again, but we do |
610 | // need to see if the current glyph overlaps the previous glyph... |
611 | |
612 | if (INTERSECTS(gx1, gy1, gx2, gy2, previousGlyphBounds)) { |
613 | // the current glyph overlaps the destination region touched |
614 | // by the previous glyph, so now we need to read back the part |
615 | // of the destination corresponding to the previous glyph |
616 | dx1 = previousGlyphBounds.x1; |
617 | dy1 = previousGlyphBounds.y1; |
618 | dx2 = previousGlyphBounds.x2; |
619 | dy2 = previousGlyphBounds.y2; |
620 | |
621 | // this accounts for lower-left origin of the destination region |
622 | dx1adj = dstOps->xOffset + dx1; |
623 | dy1adj = dstOps->yOffset + dstOps->height - dy2; |
624 | |
625 | // copy destination into subregion of cached texture tile: |
626 | // dx1-cachedDestBounds.x1 == +xoffset from left side of texture |
627 | // cachedDestBounds.y2-dy2 == +yoffset from bottom of texture |
628 | j2d_glActiveTextureARB(GL_TEXTURE1_ARB); |
629 | j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0, |
630 | dx1 - cachedDestBounds.x1, |
631 | cachedDestBounds.y2 - dy2, |
632 | dx1adj, dy1adj, |
633 | dx2-dx1, dy2-dy1); |
634 | } |
635 | } else { |
636 | jint remainingWidth; |
637 | |
638 | // destination region is not valid, so we need to read back a |
639 | // chunk of the destination into our cached texture |
640 | |
641 | // position the upper-left corner of the destination region on the |
642 | // "top" line of glyph list |
643 | // REMIND: this isn't ideal; it would be better if we had some idea |
644 | // of the bounding box of the whole glyph list (this is |
645 | // do-able, but would require iterating through the whole |
646 | // list up front, which may present its own problems) |
647 | dx1 = gx1; |
648 | dy1 = gy1; |
649 | |
650 | if (ginfo->advanceX > 0) { |
651 | // estimate the width based on our current position in the glyph |
652 | // list and using the x advance of the current glyph (this is just |
653 | // a quick and dirty heuristic; if this is a "thin" glyph image, |
654 | // then we're likely to underestimate, and if it's "thick" then we |
655 | // may end up reading back more than we need to) |
656 | remainingWidth = |
657 | (jint)(ginfo->advanceX * (totalGlyphs - glyphIndex)); |
658 | if (remainingWidth > OGLTR_CACHED_DEST_WIDTH) { |
659 | remainingWidth = OGLTR_CACHED_DEST_WIDTH; |
660 | } else if (remainingWidth < ginfo->width) { |
661 | // in some cases, the x-advance may be slightly smaller |
662 | // than the actual width of the glyph; if so, adjust our |
663 | // estimate so that we can accommodate the entire glyph |
664 | remainingWidth = ginfo->width; |
665 | } |
666 | } else { |
667 | // a negative advance is possible when rendering rotated text, |
668 | // in which case it is difficult to estimate an appropriate |
669 | // region for readback, so we will pick a region that |
670 | // encompasses just the current glyph |
671 | remainingWidth = ginfo->width; |
672 | } |
673 | dx2 = dx1 + remainingWidth; |
674 | |
675 | // estimate the height (this is another sloppy heuristic; we'll |
676 | // make the cached destination region tall enough to encompass most |
677 | // glyphs that are small enough to fit in the glyph cache, and then |
678 | // we add a little something extra to account for descenders |
679 | dy2 = dy1 + OGLTR_CACHE_CELL_HEIGHT + 2; |
680 | |
681 | // this accounts for lower-left origin of the destination region |
682 | dx1adj = dstOps->xOffset + dx1; |
683 | dy1adj = dstOps->yOffset + dstOps->height - dy2; |
684 | |
685 | // copy destination into cached texture tile (the lower-left corner |
686 | // of the destination region will be positioned at the lower-left |
687 | // corner (0,0) of the texture) |
688 | j2d_glActiveTextureARB(GL_TEXTURE1_ARB); |
689 | j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0, |
690 | 0, 0, dx1adj, dy1adj, |
691 | dx2-dx1, dy2-dy1); |
692 | |
693 | // update the cached bounds and mark it valid |
694 | cachedDestBounds.x1 = dx1; |
695 | cachedDestBounds.y1 = dy1; |
696 | cachedDestBounds.x2 = dx2; |
697 | cachedDestBounds.y2 = dy2; |
698 | isCachedDestValid = JNI_TRUE; |
699 | } |
700 | |
701 | // always update the previous glyph bounds |
702 | previousGlyphBounds.x1 = gx1; |
703 | previousGlyphBounds.y1 = gy1; |
704 | previousGlyphBounds.x2 = gx2; |
705 | previousGlyphBounds.y2 = gy2; |
706 | } |
707 | |
708 | static jboolean |
709 | OGLTR_DrawLCDGlyphViaCache(OGLContext *oglc, OGLSDOps *dstOps, |
710 | GlyphInfo *ginfo, jint x, jint y, |
711 | jint glyphIndex, jint totalGlyphs, |
712 | jboolean rgbOrder, jint contrast, |
713 | GLuint dstTextureID) |
714 | { |
715 | CacheCellInfo *cell; |
716 | jint dx1, dy1, dx2, dy2; |
717 | jfloat dtx1, dty1, dtx2, dty2; |
718 | |
719 | if (glyphMode != MODE_USE_CACHE_LCD) { |
720 | OGLTR_DisableGlyphModeState(); |
721 | CHECK_PREVIOUS_OP(GL_TEXTURE_2D); |
722 | j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1); |
723 | |
724 | if (glyphCacheLCD == NULL) { |
725 | if (!OGLTR_InitGlyphCache(JNI_TRUE)) { |
726 | return JNI_FALSE; |
727 | } |
728 | } |
729 | |
730 | if (rgbOrder != lastRGBOrder) { |
731 | // need to invalidate the cache in this case; see comments |
732 | // for lastRGBOrder above |
733 | AccelGlyphCache_Invalidate(glyphCacheLCD); |
734 | lastRGBOrder = rgbOrder; |
735 | } |
736 | |
737 | if (!OGLTR_EnableLCDGlyphModeState(glyphCacheLCD->cacheID, |
738 | dstTextureID, contrast)) |
739 | { |
740 | return JNI_FALSE; |
741 | } |
742 | |
743 | // when a fragment shader is enabled, the texture function state is |
744 | // ignored, so the following line is not needed... |
745 | // OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE); |
746 | |
747 | glyphMode = MODE_USE_CACHE_LCD; |
748 | } |
749 | |
750 | if (ginfo->cellInfo == NULL) { |
751 | // rowBytes will always be a multiple of 3, so the following is safe |
752 | j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, ginfo->rowBytes / 3); |
753 | |
754 | // make sure the glyph cache texture is bound to texture unit 0 |
755 | j2d_glActiveTextureARB(GL_TEXTURE0_ARB); |
756 | |
757 | // attempt to add glyph to accelerated glyph cache |
758 | OGLTR_AddToGlyphCache(ginfo, rgbOrder ? GL_RGB : GL_BGR); |
759 | |
760 | if (ginfo->cellInfo == NULL) { |
761 | // we'll just no-op in the rare case that the cell is NULL |
762 | return JNI_TRUE; |
763 | } |
764 | } |
765 | |
766 | cell = (CacheCellInfo *) (ginfo->cellInfo); |
767 | cell->timesRendered++; |
768 | |
769 | // location of the glyph in the destination's coordinate space |
770 | dx1 = x; |
771 | dy1 = y; |
772 | dx2 = dx1 + ginfo->width; |
773 | dy2 = dy1 + ginfo->height; |
774 | |
775 | if (dstTextureID == 0) { |
776 | // copy destination into second cached texture, if necessary |
777 | OGLTR_UpdateCachedDestination(dstOps, ginfo, |
778 | dx1, dy1, dx2, dy2, |
779 | glyphIndex, totalGlyphs); |
780 | |
781 | // texture coordinates of the destination tile |
782 | dtx1 = ((jfloat)(dx1 - cachedDestBounds.x1)) / OGLTR_CACHED_DEST_WIDTH; |
783 | dty1 = ((jfloat)(cachedDestBounds.y2 - dy1)) / OGLTR_CACHED_DEST_HEIGHT; |
784 | dtx2 = ((jfloat)(dx2 - cachedDestBounds.x1)) / OGLTR_CACHED_DEST_WIDTH; |
785 | dty2 = ((jfloat)(cachedDestBounds.y2 - dy2)) / OGLTR_CACHED_DEST_HEIGHT; |
786 | } else { |
787 | jint gw = ginfo->width; |
788 | jint gh = ginfo->height; |
789 | |
790 | // this accounts for lower-left origin of the destination region |
791 | jint dxadj = dstOps->xOffset + x; |
792 | jint dyadj = dstOps->yOffset + dstOps->height - (y + gh); |
793 | |
794 | // update the remaining destination texture coordinates |
795 | dtx1 =((GLfloat)dxadj) / dstOps->textureWidth; |
796 | dtx2 = ((GLfloat)dxadj + gw) / dstOps->textureWidth; |
797 | |
798 | dty1 = ((GLfloat)dyadj + gh) / dstOps->textureHeight; |
799 | dty2 = ((GLfloat)dyadj) / dstOps->textureHeight; |
800 | |
801 | j2d_glTextureBarrierNV(); |
802 | } |
803 | |
804 | // render composed texture to the destination surface |
805 | j2d_glBegin(GL_QUADS); |
806 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx1, cell->ty1); |
807 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty1); |
808 | j2d_glVertex2i(dx1, dy1); |
809 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx2, cell->ty1); |
810 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty1); |
811 | j2d_glVertex2i(dx2, dy1); |
812 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx2, cell->ty2); |
813 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty2); |
814 | j2d_glVertex2i(dx2, dy2); |
815 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, cell->tx1, cell->ty2); |
816 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty2); |
817 | j2d_glVertex2i(dx1, dy2); |
818 | j2d_glEnd(); |
819 | |
820 | return JNI_TRUE; |
821 | } |
822 | |
823 | static jboolean |
824 | OGLTR_DrawGrayscaleGlyphNoCache(OGLContext *oglc, |
825 | GlyphInfo *ginfo, jint x, jint y) |
826 | { |
827 | jint tw, th; |
828 | jint sx, sy, sw, sh; |
829 | jint x0; |
830 | jint w = ginfo->width; |
831 | jint h = ginfo->height; |
832 | |
833 | if (glyphMode != MODE_NO_CACHE_GRAY) { |
834 | OGLTR_DisableGlyphModeState(); |
835 | CHECK_PREVIOUS_OP(OGL_STATE_MASK_OP); |
836 | glyphMode = MODE_NO_CACHE_GRAY; |
837 | } |
838 | |
839 | x0 = x; |
840 | tw = OGLVC_MASK_CACHE_TILE_WIDTH; |
841 | th = OGLVC_MASK_CACHE_TILE_HEIGHT; |
842 | |
843 | for (sy = 0; sy < h; sy += th, y += th) { |
844 | x = x0; |
845 | sh = ((sy + th) > h) ? (h - sy) : th; |
846 | |
847 | for (sx = 0; sx < w; sx += tw, x += tw) { |
848 | sw = ((sx + tw) > w) ? (w - sx) : tw; |
849 | |
850 | OGLVertexCache_AddMaskQuad(oglc, |
851 | sx, sy, x, y, sw, sh, |
852 | w, ginfo->image); |
853 | } |
854 | } |
855 | |
856 | return JNI_TRUE; |
857 | } |
858 | |
859 | static jboolean |
860 | OGLTR_DrawLCDGlyphNoCache(OGLContext *oglc, OGLSDOps *dstOps, |
861 | GlyphInfo *ginfo, jint x, jint y, |
862 | jint rowBytesOffset, |
863 | jboolean rgbOrder, jint contrast, |
864 | GLuint dstTextureID) |
865 | { |
866 | GLfloat tx1, ty1, tx2, ty2; |
867 | GLfloat dtx1, dty1, dtx2, dty2; |
868 | jint tw, th; |
869 | jint sx, sy, sw, sh, dxadj, dyadj; |
870 | jint x0; |
871 | jint w = ginfo->width; |
872 | jint h = ginfo->height; |
873 | GLenum pixelFormat = rgbOrder ? GL_RGB : GL_BGR; |
874 | |
875 | if (glyphMode != MODE_NO_CACHE_LCD) { |
876 | OGLTR_DisableGlyphModeState(); |
877 | CHECK_PREVIOUS_OP(GL_TEXTURE_2D); |
878 | j2d_glPixelStorei(GL_UNPACK_ALIGNMENT, 1); |
879 | |
880 | if (oglc->blitTextureID == 0) { |
881 | if (!OGLContext_InitBlitTileTexture(oglc)) { |
882 | return JNI_FALSE; |
883 | } |
884 | } |
885 | |
886 | if (!OGLTR_EnableLCDGlyphModeState(oglc->blitTextureID, |
887 | dstTextureID, contrast)) |
888 | { |
889 | return JNI_FALSE; |
890 | } |
891 | |
892 | // when a fragment shader is enabled, the texture function state is |
893 | // ignored, so the following line is not needed... |
894 | // OGLC_UPDATE_TEXTURE_FUNCTION(oglc, GL_MODULATE); |
895 | |
896 | glyphMode = MODE_NO_CACHE_LCD; |
897 | } |
898 | |
899 | // rowBytes will always be a multiple of 3, so the following is safe |
900 | j2d_glPixelStorei(GL_UNPACK_ROW_LENGTH, ginfo->rowBytes / 3); |
901 | |
902 | x0 = x; |
903 | tx1 = 0.0f; |
904 | ty1 = 0.0f; |
905 | dtx1 = 0.0f; |
906 | dty2 = 0.0f; |
907 | tw = OGLTR_NOCACHE_TILE_SIZE; |
908 | th = OGLTR_NOCACHE_TILE_SIZE; |
909 | |
910 | for (sy = 0; sy < h; sy += th, y += th) { |
911 | x = x0; |
912 | sh = ((sy + th) > h) ? (h - sy) : th; |
913 | |
914 | for (sx = 0; sx < w; sx += tw, x += tw) { |
915 | sw = ((sx + tw) > w) ? (w - sx) : tw; |
916 | |
917 | // update the source pointer offsets |
918 | j2d_glPixelStorei(GL_UNPACK_SKIP_PIXELS, sx); |
919 | j2d_glPixelStorei(GL_UNPACK_SKIP_ROWS, sy); |
920 | |
921 | // copy LCD mask into glyph texture tile |
922 | j2d_glActiveTextureARB(GL_TEXTURE0_ARB); |
923 | j2d_glTexSubImage2D(GL_TEXTURE_2D, 0, |
924 | 0, 0, sw, sh, |
925 | pixelFormat, GL_UNSIGNED_BYTE, |
926 | ginfo->image + rowBytesOffset); |
927 | |
928 | // update the lower-right glyph texture coordinates |
929 | tx2 = ((GLfloat)sw) / OGLC_BLIT_TILE_SIZE; |
930 | ty2 = ((GLfloat)sh) / OGLC_BLIT_TILE_SIZE; |
931 | |
932 | // this accounts for lower-left origin of the destination region |
933 | dxadj = dstOps->xOffset + x; |
934 | dyadj = dstOps->yOffset + dstOps->height - (y + sh); |
935 | |
936 | if (dstTextureID == 0) { |
937 | // copy destination into cached texture tile (the lower-left |
938 | // corner of the destination region will be positioned at the |
939 | // lower-left corner (0,0) of the texture) |
940 | j2d_glActiveTextureARB(GL_TEXTURE1_ARB); |
941 | j2d_glCopyTexSubImage2D(GL_TEXTURE_2D, 0, |
942 | 0, 0, |
943 | dxadj, dyadj, |
944 | sw, sh); |
945 | // update the remaining destination texture coordinates |
946 | dtx2 = ((GLfloat)sw) / OGLTR_CACHED_DEST_WIDTH; |
947 | dty1 = ((GLfloat)sh) / OGLTR_CACHED_DEST_HEIGHT; |
948 | } else { |
949 | // use the destination texture directly |
950 | // update the remaining destination texture coordinates |
951 | dtx1 =((GLfloat)dxadj) / dstOps->textureWidth; |
952 | dtx2 = ((GLfloat)dxadj + sw) / dstOps->textureWidth; |
953 | |
954 | dty1 = ((GLfloat)dyadj + sh) / dstOps->textureHeight; |
955 | dty2 = ((GLfloat)dyadj) / dstOps->textureHeight; |
956 | |
957 | j2d_glTextureBarrierNV(); |
958 | } |
959 | |
960 | // render composed texture to the destination surface |
961 | j2d_glBegin(GL_QUADS); |
962 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx1, ty1); |
963 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty1); |
964 | j2d_glVertex2i(x, y); |
965 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx2, ty1); |
966 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty1); |
967 | j2d_glVertex2i(x + sw, y); |
968 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx2, ty2); |
969 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx2, dty2); |
970 | j2d_glVertex2i(x + sw, y + sh); |
971 | j2d_glMultiTexCoord2fARB(GL_TEXTURE0_ARB, tx1, ty2); |
972 | j2d_glMultiTexCoord2fARB(GL_TEXTURE1_ARB, dtx1, dty2); |
973 | j2d_glVertex2i(x, y + sh); |
974 | j2d_glEnd(); |
975 | } |
976 | } |
977 | |
978 | return JNI_TRUE; |
979 | } |
980 | |
981 | // see DrawGlyphList.c for more on this macro... |
982 | #define FLOOR_ASSIGN(l, r) \ |
983 | if ((r)<0) (l) = ((int)floor(r)); else (l) = ((int)(r)) |
984 | |
985 | void |
986 | OGLTR_DrawGlyphList(JNIEnv *env, OGLContext *oglc, OGLSDOps *dstOps, |
987 | jint totalGlyphs, jboolean usePositions, |
988 | jboolean subPixPos, jboolean rgbOrder, jint lcdContrast, |
989 | jfloat glyphListOrigX, jfloat glyphListOrigY, |
990 | unsigned char *images, unsigned char *positions) |
991 | { |
992 | int glyphCounter; |
993 | GLuint dstTextureID = 0; |
994 | |
995 | J2dTraceLn(J2D_TRACE_INFO, "OGLTR_DrawGlyphList" ); |
996 | |
997 | RETURN_IF_NULL(oglc); |
998 | RETURN_IF_NULL(dstOps); |
999 | RETURN_IF_NULL(images); |
1000 | if (usePositions) { |
1001 | RETURN_IF_NULL(positions); |
1002 | } |
1003 | |
1004 | glyphMode = MODE_NOT_INITED; |
1005 | isCachedDestValid = JNI_FALSE; |
1006 | |
1007 | // We have to obtain an information about destination content |
1008 | // in order to render lcd glyphs. It could be done by copying |
1009 | // a part of desitination buffer into an intermediate texture |
1010 | // using glCopyTexSubImage2D(). However, on macosx this path is |
1011 | // slow, and it dramatically reduces the overall speed of lcd |
1012 | // text rendering. |
1013 | // |
1014 | // In some cases, we can use a texture from the destination |
1015 | // surface data in oredr to avoid this slow reading routine. |
1016 | // It requires: |
1017 | // * An appropriate textureTarget for the destination SD. |
1018 | // In particular, we need GL_TEXTURE_2D |
1019 | // * Means to prevent read-after-write problem. |
1020 | // At the moment, a GL_NV_texture_barrier extension is used |
1021 | // to achieve this. |
1022 | if (OGLC_IS_CAP_PRESENT(oglc, CAPS_EXT_TEXBARRIER) && |
1023 | dstOps->textureTarget == GL_TEXTURE_2D) |
1024 | { |
1025 | dstTextureID = dstOps->textureID; |
1026 | } |
1027 | |
1028 | for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) { |
1029 | jint x, y; |
1030 | jfloat glyphx, glyphy; |
1031 | jboolean grayscale, ok; |
1032 | GlyphInfo *ginfo = (GlyphInfo *)jlong_to_ptr(NEXT_LONG(images)); |
1033 | |
1034 | if (ginfo == NULL) { |
1035 | // this shouldn't happen, but if it does we'll just break out... |
1036 | J2dRlsTraceLn(J2D_TRACE_ERROR, |
1037 | "OGLTR_DrawGlyphList: glyph info is null" ); |
1038 | break; |
1039 | } |
1040 | |
1041 | grayscale = (ginfo->rowBytes == ginfo->width); |
1042 | |
1043 | if (usePositions) { |
1044 | jfloat posx = NEXT_FLOAT(positions); |
1045 | jfloat posy = NEXT_FLOAT(positions); |
1046 | glyphx = glyphListOrigX + posx + ginfo->topLeftX; |
1047 | glyphy = glyphListOrigY + posy + ginfo->topLeftY; |
1048 | FLOOR_ASSIGN(x, glyphx); |
1049 | FLOOR_ASSIGN(y, glyphy); |
1050 | } else { |
1051 | glyphx = glyphListOrigX + ginfo->topLeftX; |
1052 | glyphy = glyphListOrigY + ginfo->topLeftY; |
1053 | FLOOR_ASSIGN(x, glyphx); |
1054 | FLOOR_ASSIGN(y, glyphy); |
1055 | glyphListOrigX += ginfo->advanceX; |
1056 | glyphListOrigY += ginfo->advanceY; |
1057 | } |
1058 | |
1059 | if (ginfo->image == NULL) { |
1060 | continue; |
1061 | } |
1062 | |
1063 | if (grayscale) { |
1064 | // grayscale or monochrome glyph data |
1065 | if (ginfo->width <= OGLTR_CACHE_CELL_WIDTH && |
1066 | ginfo->height <= OGLTR_CACHE_CELL_HEIGHT) |
1067 | { |
1068 | ok = OGLTR_DrawGrayscaleGlyphViaCache(oglc, ginfo, x, y); |
1069 | } else { |
1070 | ok = OGLTR_DrawGrayscaleGlyphNoCache(oglc, ginfo, x, y); |
1071 | } |
1072 | } else { |
1073 | // LCD-optimized glyph data |
1074 | jint rowBytesOffset = 0; |
1075 | |
1076 | if (subPixPos) { |
1077 | jint frac = (jint)((glyphx - x) * 3); |
1078 | if (frac != 0) { |
1079 | rowBytesOffset = 3 - frac; |
1080 | x += 1; |
1081 | } |
1082 | } |
1083 | |
1084 | if (rowBytesOffset == 0 && |
1085 | ginfo->width <= OGLTR_CACHE_CELL_WIDTH && |
1086 | ginfo->height <= OGLTR_CACHE_CELL_HEIGHT) |
1087 | { |
1088 | ok = OGLTR_DrawLCDGlyphViaCache(oglc, dstOps, |
1089 | ginfo, x, y, |
1090 | glyphCounter, totalGlyphs, |
1091 | rgbOrder, lcdContrast, |
1092 | dstTextureID); |
1093 | } else { |
1094 | ok = OGLTR_DrawLCDGlyphNoCache(oglc, dstOps, |
1095 | ginfo, x, y, |
1096 | rowBytesOffset, |
1097 | rgbOrder, lcdContrast, |
1098 | dstTextureID); |
1099 | } |
1100 | } |
1101 | |
1102 | if (!ok) { |
1103 | break; |
1104 | } |
1105 | } |
1106 | |
1107 | OGLTR_DisableGlyphModeState(); |
1108 | } |
1109 | |
1110 | JNIEXPORT void JNICALL |
1111 | Java_sun_java2d_opengl_OGLTextRenderer_drawGlyphList |
1112 | (JNIEnv *env, jobject self, |
1113 | jint numGlyphs, jboolean usePositions, |
1114 | jboolean subPixPos, jboolean rgbOrder, jint lcdContrast, |
1115 | jfloat glyphListOrigX, jfloat glyphListOrigY, |
1116 | jlongArray imgArray, jfloatArray posArray) |
1117 | { |
1118 | unsigned char *images; |
1119 | |
1120 | J2dTraceLn(J2D_TRACE_INFO, "OGLTextRenderer_drawGlyphList" ); |
1121 | |
1122 | images = (unsigned char *) |
1123 | (*env)->GetPrimitiveArrayCritical(env, imgArray, NULL); |
1124 | if (images != NULL) { |
1125 | OGLContext *oglc = OGLRenderQueue_GetCurrentContext(); |
1126 | OGLSDOps *dstOps = OGLRenderQueue_GetCurrentDestination(); |
1127 | |
1128 | if (usePositions) { |
1129 | unsigned char *positions = (unsigned char *) |
1130 | (*env)->GetPrimitiveArrayCritical(env, posArray, NULL); |
1131 | if (positions != NULL) { |
1132 | OGLTR_DrawGlyphList(env, oglc, dstOps, |
1133 | numGlyphs, usePositions, |
1134 | subPixPos, rgbOrder, lcdContrast, |
1135 | glyphListOrigX, glyphListOrigY, |
1136 | images, positions); |
1137 | (*env)->ReleasePrimitiveArrayCritical(env, posArray, |
1138 | positions, JNI_ABORT); |
1139 | } |
1140 | } else { |
1141 | OGLTR_DrawGlyphList(env, oglc, dstOps, |
1142 | numGlyphs, usePositions, |
1143 | subPixPos, rgbOrder, lcdContrast, |
1144 | glyphListOrigX, glyphListOrigY, |
1145 | images, NULL); |
1146 | } |
1147 | |
1148 | // 6358147: reset current state, and ensure rendering is |
1149 | // flushed to dest |
1150 | if (oglc != NULL) { |
1151 | RESET_PREVIOUS_OP(); |
1152 | j2d_glFlush(); |
1153 | } |
1154 | |
1155 | (*env)->ReleasePrimitiveArrayCritical(env, imgArray, |
1156 | images, JNI_ABORT); |
1157 | } |
1158 | } |
1159 | |
1160 | #endif /* !HEADLESS */ |
1161 | |