1 | /* |
2 | * Copyright (c) 2000, 2001, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | #include "GraphicsPrimitiveMgr.h" |
27 | |
28 | #include "LineUtils.h" |
29 | |
30 | #include "sun_java2d_loops_DrawLine.h" |
31 | |
32 | #define OUTCODE_TOP 1 |
33 | #define OUTCODE_BOTTOM 2 |
34 | #define OUTCODE_LEFT 4 |
35 | #define OUTCODE_RIGHT 8 |
36 | |
37 | static void |
38 | RefineBounds(SurfaceDataBounds *bounds, jint x1, jint y1, jint x2, jint y2) |
39 | { |
40 | jint min, max; |
41 | if (x1 < x2) { |
42 | min = x1; |
43 | max = x2; |
44 | } else { |
45 | min = x2; |
46 | max = x1; |
47 | } |
48 | max++; |
49 | if (max <= min) { |
50 | /* integer overflow */ |
51 | max--; |
52 | } |
53 | if (bounds->x1 < min) bounds->x1 = min; |
54 | if (bounds->x2 > max) bounds->x2 = max; |
55 | if (y1 < y2) { |
56 | min = y1; |
57 | max = y2; |
58 | } else { |
59 | min = y2; |
60 | max = y1; |
61 | } |
62 | max++; |
63 | if (max <= min) { |
64 | /* integer overflow */ |
65 | max--; |
66 | } |
67 | if (bounds->y1 < min) bounds->y1 = min; |
68 | if (bounds->y2 > max) bounds->y2 = max; |
69 | } |
70 | |
71 | #define _out(v, vmin, vmax, cmin, cmax) \ |
72 | ((v < vmin) ? cmin : ((v > vmax) ? cmax : 0)) |
73 | |
74 | #define outcode(x, y, xmin, ymin, xmax, ymax) \ |
75 | (_out(y, ymin, ymax, OUTCODE_TOP, OUTCODE_BOTTOM) | \ |
76 | _out(x, xmin, xmax, OUTCODE_LEFT, OUTCODE_RIGHT)) |
77 | |
78 | /* |
79 | * "Small" math here will be done if the coordinates are less |
80 | * than 15 bits in range (-16384 => 16383). This could be |
81 | * expanded to 16 bits if we rearrange some of the math in |
82 | * the normal version of SetupBresenham. |
83 | * "Big" math here will be done with coordinates with 30 bits |
84 | * of total range - 2 bits less than a jint holds. |
85 | * Intermediate calculations for "Big" coordinates will be |
86 | * done using jlong variables. |
87 | */ |
88 | #define OverflowsSmall(v) ((v) != (((v) << 17) >> 17)) |
89 | #define OverflowsBig(v) ((v) != (((v) << 2) >> 2)) |
90 | #define BIG_MAX ((1 << 29) - 1) |
91 | #define BIG_MIN (-(1 << 29)) |
92 | |
93 | #define SETUP_BRESENHAM(CALC_TYPE, ORIGX1, ORIGY1, ORIGX2, ORIGY2, SHORTEN) \ |
94 | do { \ |
95 | jint X1 = ORIGX1, Y1 = ORIGY1, X2 = ORIGX2, Y2 = ORIGY2; \ |
96 | jint dx, dy, ax, ay; \ |
97 | jint cxmin, cymin, cxmax, cymax; \ |
98 | jint outcode1, outcode2; \ |
99 | jboolean xmajor; \ |
100 | jint errminor, errmajor; \ |
101 | jint error; \ |
102 | jint steps; \ |
103 | \ |
104 | dx = X2 - X1; \ |
105 | dy = Y2 - Y1; \ |
106 | ax = (dx < 0) ? -dx : dx; \ |
107 | ay = (dy < 0) ? -dy : dy; \ |
108 | \ |
109 | cxmin = pBounds->x1; \ |
110 | cymin = pBounds->y1; \ |
111 | cxmax = pBounds->x2 - 1; \ |
112 | cymax = pBounds->y2 - 1; \ |
113 | xmajor = (ax >= ay); \ |
114 | \ |
115 | outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \ |
116 | outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \ |
117 | while ((outcode1 | outcode2) != 0) { \ |
118 | CALC_TYPE xsteps, ysteps; \ |
119 | if ((outcode1 & outcode2) != 0) { \ |
120 | return JNI_FALSE; \ |
121 | } \ |
122 | if (outcode1 != 0) { \ |
123 | if (outcode1 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \ |
124 | if (outcode1 & OUTCODE_TOP) { \ |
125 | Y1 = cymin; \ |
126 | } else { \ |
127 | Y1 = cymax; \ |
128 | } \ |
129 | ysteps = Y1 - ORIGY1; \ |
130 | if (ysteps < 0) { \ |
131 | ysteps = -ysteps; \ |
132 | } \ |
133 | xsteps = 2 * ysteps * ax + ay; \ |
134 | if (xmajor) { \ |
135 | xsteps += ay - ax - 1; \ |
136 | } \ |
137 | xsteps = xsteps / (2 * ay); \ |
138 | if (dx < 0) { \ |
139 | xsteps = -xsteps; \ |
140 | } \ |
141 | X1 = ORIGX1 + (jint) xsteps; \ |
142 | } else if (outcode1 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \ |
143 | if (outcode1 & OUTCODE_LEFT) { \ |
144 | X1 = cxmin; \ |
145 | } else { \ |
146 | X1 = cxmax; \ |
147 | } \ |
148 | xsteps = X1 - ORIGX1; \ |
149 | if (xsteps < 0) { \ |
150 | xsteps = -xsteps; \ |
151 | } \ |
152 | ysteps = 2 * xsteps * ay + ax; \ |
153 | if (!xmajor) { \ |
154 | ysteps += ax - ay - 1; \ |
155 | } \ |
156 | ysteps = ysteps / (2 * ax); \ |
157 | if (dy < 0) { \ |
158 | ysteps = -ysteps; \ |
159 | } \ |
160 | Y1 = ORIGY1 + (jint) ysteps; \ |
161 | } \ |
162 | outcode1 = outcode(X1, Y1, cxmin, cymin, cxmax, cymax); \ |
163 | } else { \ |
164 | if (outcode2 & (OUTCODE_TOP | OUTCODE_BOTTOM)) { \ |
165 | if (outcode2 & OUTCODE_TOP) { \ |
166 | Y2 = cymin; \ |
167 | } else { \ |
168 | Y2 = cymax; \ |
169 | } \ |
170 | ysteps = Y2 - ORIGY2; \ |
171 | if (ysteps < 0) { \ |
172 | ysteps = -ysteps; \ |
173 | } \ |
174 | xsteps = 2 * ysteps * ax + ay; \ |
175 | if (xmajor) { \ |
176 | xsteps += ay - ax; \ |
177 | } else { \ |
178 | xsteps -= 1; \ |
179 | } \ |
180 | xsteps = xsteps / (2 * ay); \ |
181 | if (dx > 0) { \ |
182 | xsteps = -xsteps; \ |
183 | } \ |
184 | X2 = ORIGX2 + (jint) xsteps; \ |
185 | } else if (outcode2 & (OUTCODE_LEFT | OUTCODE_RIGHT)) { \ |
186 | if (outcode2 & OUTCODE_LEFT) { \ |
187 | X2 = cxmin; \ |
188 | } else { \ |
189 | X2 = cxmax; \ |
190 | } \ |
191 | xsteps = X2 - ORIGX2; \ |
192 | if (xsteps < 0) { \ |
193 | xsteps = -xsteps; \ |
194 | } \ |
195 | ysteps = 2 * xsteps * ay + ax; \ |
196 | if (xmajor) { \ |
197 | ysteps -= 1; \ |
198 | } else { \ |
199 | ysteps += ax - ay; \ |
200 | } \ |
201 | ysteps = ysteps / (2 * ax); \ |
202 | if (dy > 0) { \ |
203 | ysteps = -ysteps; \ |
204 | } \ |
205 | Y2 = ORIGY2 + (jint) ysteps; \ |
206 | } \ |
207 | outcode2 = outcode(X2, Y2, cxmin, cymin, cxmax, cymax); \ |
208 | } \ |
209 | } \ |
210 | *pStartX = X1; \ |
211 | *pStartY = Y1; \ |
212 | \ |
213 | if (xmajor) { \ |
214 | errmajor = ay * 2; \ |
215 | errminor = ax * 2; \ |
216 | *pBumpMajorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \ |
217 | *pBumpMinorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \ |
218 | ax = -ax; /* For clipping adjustment below */ \ |
219 | steps = X2 - X1; \ |
220 | if (X2 != ORIGX2) { \ |
221 | SHORTEN = 0; \ |
222 | } \ |
223 | } else { \ |
224 | errmajor = ax * 2; \ |
225 | errminor = ay * 2; \ |
226 | *pBumpMajorMask = (dy < 0) ? BUMP_NEG_SCAN : BUMP_POS_SCAN; \ |
227 | *pBumpMinorMask = (dx < 0) ? BUMP_NEG_PIXEL : BUMP_POS_PIXEL; \ |
228 | ay = -ay; /* For clipping adjustment below */ \ |
229 | steps = Y2 - Y1; \ |
230 | if (Y2 != ORIGY2) { \ |
231 | SHORTEN = 0; \ |
232 | } \ |
233 | } \ |
234 | if ((steps = ((steps >= 0) ? steps : -steps) + 1 - SHORTEN) == 0) { \ |
235 | return JNI_FALSE; \ |
236 | } \ |
237 | error = - (errminor / 2); \ |
238 | if (Y1 != ORIGY1) { \ |
239 | jint ysteps = Y1 - ORIGY1; \ |
240 | if (ysteps < 0) { \ |
241 | ysteps = -ysteps; \ |
242 | } \ |
243 | error += ysteps * ax * 2; \ |
244 | } \ |
245 | if (X1 != ORIGX1) { \ |
246 | jint xsteps = X1 - ORIGX1; \ |
247 | if (xsteps < 0) { \ |
248 | xsteps = -xsteps; \ |
249 | } \ |
250 | error += xsteps * ay * 2; \ |
251 | } \ |
252 | error += errmajor; \ |
253 | errminor -= errmajor; \ |
254 | \ |
255 | *pSteps = steps; \ |
256 | *pError = error; \ |
257 | *pErrMajor = errmajor; \ |
258 | *pErrMinor = errminor; \ |
259 | } while (0) |
260 | |
261 | static jboolean |
262 | LineUtils_SetupBresenhamBig(jint _x1, jint _y1, jint _x2, jint _y2, |
263 | jint shorten, |
264 | SurfaceDataBounds *pBounds, |
265 | jint *pStartX, jint *pStartY, |
266 | jint *pSteps, jint *pError, |
267 | jint *pErrMajor, jint *pBumpMajorMask, |
268 | jint *pErrMinor, jint *pBumpMinorMask) |
269 | { |
270 | /* |
271 | * Part of calculating the Bresenham parameters for line stepping |
272 | * involves being able to store numbers that are twice the magnitude |
273 | * of the biggest absolute difference in coordinates. Since we |
274 | * want the stepping parameters to be stored in jints, we then need |
275 | * to avoid any absolute differences more than 30 bits. Thus, we |
276 | * need to preprocess the coordinates to reduce their range to 30 |
277 | * bits regardless of clipping. We need to cut their range back |
278 | * before we do the clipping because the Bresenham stepping values |
279 | * need to be calculated based on the "unclipped" coordinates. |
280 | * |
281 | * Thus, first we perform a "pre-clipping" stage to bring the |
282 | * coordinates within the 30-bit range and then we proceed to the |
283 | * regular clipping procedure, pretending that these were the |
284 | * original coordinates all along. Since this operation occurs |
285 | * based on a constant "pre-clip" rectangle of +/- 30 bits without |
286 | * any consideration for the final clip, the rounding errors that |
287 | * occur here will depend only on the line coordinates and be |
288 | * invariant with respect to the particular device/user clip |
289 | * rectangles in effect at the time. Thus, rendering a given |
290 | * large-range line will be consistent under a variety of |
291 | * clipping conditions. |
292 | */ |
293 | if (OverflowsBig(_x1) || OverflowsBig(_y1) || |
294 | OverflowsBig(_x2) || OverflowsBig(_y2)) |
295 | { |
296 | /* |
297 | * Use doubles to get us into range for "Big" arithmetic. |
298 | * |
299 | * The math of adjusting an endpoint for clipping can involve |
300 | * an intermediate result with twice the number of bits as the |
301 | * original coordinate range. Since we want to maintain as |
302 | * much as 30 bits of precision in the resulting coordinates, |
303 | * we will get roundoff here even using IEEE double-precision |
304 | * arithmetic which cannot carry 60 bits of mantissa. Since |
305 | * the rounding errors will be consistent for a given set |
306 | * of input coordinates the potential roundoff error should |
307 | * not affect the consistency of our rendering. |
308 | */ |
309 | double X1d = _x1; |
310 | double Y1d = _y1; |
311 | double X2d = _x2; |
312 | double Y2d = _y2; |
313 | double DXd = X2d - X1d; |
314 | double DYd = Y2d - Y1d; |
315 | if (_x1 < BIG_MIN) { |
316 | Y1d = _y1 + (BIG_MIN - _x1) * DYd / DXd; |
317 | X1d = BIG_MIN; |
318 | } else if (_x1 > BIG_MAX) { |
319 | Y1d = _y1 - (_x1 - BIG_MAX) * DYd / DXd; |
320 | X1d = BIG_MAX; |
321 | } |
322 | /* Use Y1d instead of _y1 for testing now as we may have modified it */ |
323 | if (Y1d < BIG_MIN) { |
324 | X1d = _x1 + (BIG_MIN - _y1) * DXd / DYd; |
325 | Y1d = BIG_MIN; |
326 | } else if (Y1d > BIG_MAX) { |
327 | X1d = _x1 - (_y1 - BIG_MAX) * DXd / DYd; |
328 | Y1d = BIG_MAX; |
329 | } |
330 | if (_x2 < BIG_MIN) { |
331 | Y2d = _y2 + (BIG_MIN - _x2) * DYd / DXd; |
332 | X2d = BIG_MIN; |
333 | } else if (_x2 > BIG_MAX) { |
334 | Y2d = _y2 - (_x2 - BIG_MAX) * DYd / DXd; |
335 | X2d = BIG_MAX; |
336 | } |
337 | /* Use Y2d instead of _y2 for testing now as we may have modified it */ |
338 | if (Y2d < BIG_MIN) { |
339 | X2d = _x2 + (BIG_MIN - _y2) * DXd / DYd; |
340 | Y2d = BIG_MIN; |
341 | } else if (Y2d > BIG_MAX) { |
342 | X2d = _x2 - (_y2 - BIG_MAX) * DXd / DYd; |
343 | Y2d = BIG_MAX; |
344 | } |
345 | _x1 = (int) X1d; |
346 | _y1 = (int) Y1d; |
347 | _x2 = (int) X2d; |
348 | _y2 = (int) Y2d; |
349 | } |
350 | |
351 | SETUP_BRESENHAM(jlong, _x1, _y1, _x2, _y2, shorten); |
352 | |
353 | return JNI_TRUE; |
354 | } |
355 | |
356 | jboolean |
357 | LineUtils_SetupBresenham(jint _x1, jint _y1, jint _x2, jint _y2, |
358 | jint shorten, |
359 | SurfaceDataBounds *pBounds, |
360 | jint *pStartX, jint *pStartY, |
361 | jint *pSteps, jint *pError, |
362 | jint *pErrMajor, jint *pBumpMajorMask, |
363 | jint *pErrMinor, jint *pBumpMinorMask) |
364 | { |
365 | if (OverflowsSmall(_x1) || OverflowsSmall(_y1) || |
366 | OverflowsSmall(_x2) || OverflowsSmall(_y2)) |
367 | { |
368 | return LineUtils_SetupBresenhamBig(_x1, _y1, _x2, _y2, shorten, |
369 | pBounds, |
370 | pStartX, pStartY, |
371 | pSteps, pError, |
372 | pErrMajor, pBumpMajorMask, |
373 | pErrMinor, pBumpMinorMask); |
374 | } |
375 | |
376 | SETUP_BRESENHAM(jint, _x1, _y1, _x2, _y2, shorten); |
377 | |
378 | return JNI_TRUE; |
379 | } |
380 | |
381 | /* |
382 | * Class: sun_java2d_loops_DrawLine |
383 | * Method: DrawLine |
384 | * Signature: (Lsun/java2d/SunGraphics2D;Lsun/java2d/SurfaceData;IIII)V |
385 | */ |
386 | JNIEXPORT void JNICALL |
387 | Java_sun_java2d_loops_DrawLine_DrawLine |
388 | (JNIEnv *env, jobject self, |
389 | jobject sg2d, jobject sData, |
390 | jint x1, jint y1, jint x2, jint y2) |
391 | { |
392 | SurfaceDataOps *sdOps; |
393 | SurfaceDataRasInfo rasInfo; |
394 | NativePrimitive *pPrim; |
395 | CompositeInfo compInfo; |
396 | jint pixel = GrPrim_Sg2dGetPixel(env, sg2d); |
397 | |
398 | pPrim = GetNativePrim(env, self); |
399 | if (pPrim == NULL) { |
400 | return; |
401 | } |
402 | if (pPrim->pCompType->getCompInfo != NULL) { |
403 | GrPrim_Sg2dGetCompInfo(env, sg2d, pPrim, &compInfo); |
404 | } |
405 | |
406 | sdOps = SurfaceData_GetOps(env, sData); |
407 | if (sdOps == 0) { |
408 | return; |
409 | } |
410 | |
411 | GrPrim_Sg2dGetClip(env, sg2d, &rasInfo.bounds); |
412 | |
413 | RefineBounds(&rasInfo.bounds, x1, y1, x2, y2); |
414 | |
415 | if (sdOps->Lock(env, sdOps, &rasInfo, pPrim->dstflags) != SD_SUCCESS) { |
416 | return; |
417 | } |
418 | |
419 | if (rasInfo.bounds.x2 > rasInfo.bounds.x1 && |
420 | rasInfo.bounds.y2 > rasInfo.bounds.y1) |
421 | { |
422 | sdOps->GetRasInfo(env, sdOps, &rasInfo); |
423 | if (rasInfo.rasBase) { |
424 | LineUtils_ProcessLine(&rasInfo, pixel, |
425 | pPrim->funcs.drawline, pPrim, &compInfo, |
426 | x1, y1, x2, y2, 0); |
427 | } |
428 | SurfaceData_InvokeRelease(env, sdOps, &rasInfo); |
429 | } |
430 | SurfaceData_InvokeUnlock(env, sdOps, &rasInfo); |
431 | } |
432 | |