| 1 | /* |
| 2 | * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. Oracle designates this |
| 8 | * particular file as subject to the "Classpath" exception as provided |
| 9 | * by Oracle in the LICENSE file that accompanied this code. |
| 10 | * |
| 11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | * version 2 for more details (a copy is included in the LICENSE file that |
| 15 | * accompanied this code). |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License version |
| 18 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 20 | * |
| 21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 22 | * or visit www.oracle.com if you need additional information or have any |
| 23 | * questions. |
| 24 | */ |
| 25 | |
| 26 | #ifndef LoopMacros_h_Included |
| 27 | #define LoopMacros_h_Included |
| 28 | |
| 29 | #include "j2d_md.h" |
| 30 | |
| 31 | #include "LineUtils.h" |
| 32 | |
| 33 | /* |
| 34 | * This file contains macros to aid in defining native graphics |
| 35 | * primitive functions. |
| 36 | * |
| 37 | * A number of useful building block macros are defined, but the |
| 38 | * vast majority of primitives are defined completely by a single |
| 39 | * macro expansion which uses macro names in the argument list to |
| 40 | * choose not only from a small number of strategies but also to |
| 41 | * choose macro packages specific to the source and destination |
| 42 | * pixel formats - greatly simplifying all aspects of creating |
| 43 | * a new loop. |
| 44 | * |
| 45 | * See the following macros which define entire functions with |
| 46 | * just one or two surface names and sometimes a strategy name: |
| 47 | * DEFINE_ISOCOPY_BLIT(ANYTYPE) |
| 48 | * DEFINE_ISOXOR_BLIT(ANYTYPE) |
| 49 | * DEFINE_CONVERT_BLIT(SRC, DST, CONV_METHOD) |
| 50 | * DEFINE_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 51 | * DEFINE_XPAR_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 52 | * DEFINE_XPAR_BLITBG_LUT(SRC, DST, LUT_STRATEGY) |
| 53 | * DEFINE_SOLID_FILLRECT(DST) |
| 54 | * DEFINE_SOLID_FILLSPANS(DST) |
| 55 | * DEFINE_SOLID_DRAWLINE(DST) |
| 56 | * |
| 57 | * Many of these loop macros take the name of a SurfaceType as |
| 58 | * an argument and use the ANSI CPP token concatenation operator |
| 59 | * "##" to reference macro and type definitions that are specific |
| 60 | * to that type of surface. |
| 61 | * |
| 62 | * A description of the various surface specific macro utilities |
| 63 | * that are used by these loop macros appears at the end of the |
| 64 | * file. The definitions of these surface-specific macros will |
| 65 | * usually appear in a header file named after the SurfaceType |
| 66 | * name (i.e. IntArgb.h, ByteGray.h, etc.). |
| 67 | */ |
| 68 | |
| 69 | /* |
| 70 | * This loop is the standard "while (--height > 0)" loop used by |
| 71 | * some of the blits below. |
| 72 | */ |
| 73 | #define BlitLoopHeight(SRCTYPE, SRCPTR, SRCBASE, SRCINFO, \ |
| 74 | DSTTYPE, DSTPTR, DSTBASE, DSTINFO, DSTPREFIX, \ |
| 75 | HEIGHT, BODY) \ |
| 76 | do { \ |
| 77 | SRCTYPE ## DataType *SRCPTR = (SRCTYPE ## DataType *) (SRCBASE); \ |
| 78 | DSTTYPE ## DataType *DSTPTR = (DSTTYPE ## DataType *) (DSTBASE); \ |
| 79 | jint srcScan = (SRCINFO)->scanStride; \ |
| 80 | jint dstScan = (DSTINFO)->scanStride; \ |
| 81 | Init ## DSTTYPE ## StoreVarsY(DSTPREFIX, DSTINFO); \ |
| 82 | do { \ |
| 83 | BODY; \ |
| 84 | SRCPTR = PtrAddBytes(SRCPTR, srcScan); \ |
| 85 | DSTPTR = PtrAddBytes(DSTPTR, dstScan); \ |
| 86 | Next ## DSTTYPE ## StoreVarsY(DSTPREFIX); \ |
| 87 | } while (--HEIGHT > 0); \ |
| 88 | } while (0) |
| 89 | |
| 90 | /* |
| 91 | * This loop is the standard nested "while (--width/height > 0)" loop |
| 92 | * used by most of the basic blits below. |
| 93 | */ |
| 94 | #define BlitLoopWidthHeight(SRCTYPE, SRCPTR, SRCBASE, SRCINFO, \ |
| 95 | DSTTYPE, DSTPTR, DSTBASE, DSTINFO, DSTPREFIX, \ |
| 96 | WIDTH, HEIGHT, BODY) \ |
| 97 | do { \ |
| 98 | SRCTYPE ## DataType *SRCPTR = (SRCTYPE ## DataType *) (SRCBASE); \ |
| 99 | DSTTYPE ## DataType *DSTPTR = (DSTTYPE ## DataType *) (DSTBASE); \ |
| 100 | jint srcScan = (SRCINFO)->scanStride; \ |
| 101 | jint dstScan = (DSTINFO)->scanStride; \ |
| 102 | Init ## DSTTYPE ## StoreVarsY(DSTPREFIX, DSTINFO); \ |
| 103 | srcScan -= (WIDTH) * SRCTYPE ## PixelStride; \ |
| 104 | dstScan -= (WIDTH) * DSTTYPE ## PixelStride; \ |
| 105 | do { \ |
| 106 | juint w = WIDTH; \ |
| 107 | Init ## DSTTYPE ## StoreVarsX(DSTPREFIX, DSTINFO); \ |
| 108 | do { \ |
| 109 | BODY; \ |
| 110 | SRCPTR = PtrAddBytes(SRCPTR, SRCTYPE ## PixelStride); \ |
| 111 | DSTPTR = PtrAddBytes(DSTPTR, DSTTYPE ## PixelStride); \ |
| 112 | Next ## DSTTYPE ## StoreVarsX(DSTPREFIX); \ |
| 113 | } while (--w > 0); \ |
| 114 | SRCPTR = PtrAddBytes(SRCPTR, srcScan); \ |
| 115 | DSTPTR = PtrAddBytes(DSTPTR, dstScan); \ |
| 116 | Next ## DSTTYPE ## StoreVarsY(DSTPREFIX); \ |
| 117 | } while (--HEIGHT > 0); \ |
| 118 | } while (0) |
| 119 | |
| 120 | /* |
| 121 | * This loop is the standard nested "while (--width/height > 0)" loop |
| 122 | * used by most of the scaled blits below. It calculates the proper |
| 123 | * X source variable |
| 124 | */ |
| 125 | #define BlitLoopScaleWidthHeight(SRCTYPE, SRCPTR, SRCBASE, SRCINFO, \ |
| 126 | DSTTYPE, DSTPTR, DSTBASE, DSTINFO, DSTPREFIX, \ |
| 127 | XVAR, WIDTH, HEIGHT, \ |
| 128 | SXLOC, SYLOC, SXINC, SYINC, SHIFT, \ |
| 129 | BODY) \ |
| 130 | do { \ |
| 131 | SRCTYPE ## DataType *SRCPTR; \ |
| 132 | DSTTYPE ## DataType *DSTPTR = (DSTTYPE ## DataType *) (DSTBASE); \ |
| 133 | jint srcScan = (SRCINFO)->scanStride; \ |
| 134 | jint dstScan = (DSTINFO)->scanStride; \ |
| 135 | Init ## DSTTYPE ## StoreVarsY(DSTPREFIX, DSTINFO); \ |
| 136 | dstScan -= (WIDTH) * DSTTYPE ## PixelStride; \ |
| 137 | do { \ |
| 138 | juint w = WIDTH; \ |
| 139 | jint tmpsxloc = SXLOC; \ |
| 140 | SRCPTR = PtrAddBytes(SRCBASE, ((SYLOC >> SHIFT) * srcScan)); \ |
| 141 | Init ## DSTTYPE ## StoreVarsX(DSTPREFIX, DSTINFO); \ |
| 142 | do { \ |
| 143 | jint XVAR = (tmpsxloc >> SHIFT); \ |
| 144 | BODY; \ |
| 145 | DSTPTR = PtrAddBytes(DSTPTR, DSTTYPE ## PixelStride); \ |
| 146 | Next ## DSTTYPE ## StoreVarsX(DSTPREFIX); \ |
| 147 | tmpsxloc += SXINC; \ |
| 148 | } while (--w > 0); \ |
| 149 | DSTPTR = PtrAddBytes(DSTPTR, dstScan); \ |
| 150 | Next ## DSTTYPE ## StoreVarsY(DSTPREFIX); \ |
| 151 | SYLOC += SYINC; \ |
| 152 | } while (--HEIGHT > 0); \ |
| 153 | } while (0) |
| 154 | |
| 155 | /* |
| 156 | * This loop is a standard horizontal loop iterating with a "relative" |
| 157 | * X coordinate (0 <= X < WIDTH) used primarily by the LUT conversion |
| 158 | * preprocessing loops below. |
| 159 | */ |
| 160 | #define BlitLoopXRel(DSTTYPE, DSTINFO, DSTPREFIX, \ |
| 161 | XVAR, WIDTH, BODY) \ |
| 162 | do { \ |
| 163 | juint XVAR = 0; \ |
| 164 | Init ## DSTTYPE ## StoreVarsX(DSTPREFIX, DSTINFO); \ |
| 165 | do { \ |
| 166 | BODY; \ |
| 167 | Next ## DSTTYPE ## StoreVarsX(DSTPREFIX); \ |
| 168 | } while (++XVAR < WIDTH); \ |
| 169 | } while (0) |
| 170 | |
| 171 | /* |
| 172 | * This is a "conversion strategy" for use with the DEFINE_CONVERT_BLIT |
| 173 | * macros. It converts from the source pixel format to the destination |
| 174 | * via an intermediate "jint rgb" format. |
| 175 | */ |
| 176 | #define ConvertVia1IntRgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 177 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 178 | SXVAR, DXVAR) \ |
| 179 | do { \ |
| 180 | int rgb; \ |
| 181 | Load ## SRCTYPE ## To1IntRgb(SRCPTR, SRCPREFIX, SXVAR, rgb); \ |
| 182 | Store ## DSTTYPE ## From1IntRgb(DSTPTR, DSTPREFIX, DXVAR, rgb); \ |
| 183 | } while (0) |
| 184 | |
| 185 | /* |
| 186 | * This is a "conversion strategy" for use with the DEFINE_CONVERT_BLIT |
| 187 | * macros. It converts from the source pixel format to the destination |
| 188 | * via an intermediate "jint argb" format. |
| 189 | */ |
| 190 | #define ConvertVia1IntArgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 191 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 192 | SXVAR, DXVAR) \ |
| 193 | do { \ |
| 194 | int argb; \ |
| 195 | Load ## SRCTYPE ## To1IntArgb(SRCPTR, SRCPREFIX, SXVAR, argb); \ |
| 196 | Store ## DSTTYPE ## From1IntArgb(DSTPTR, DSTPREFIX, DXVAR, argb); \ |
| 197 | } while (0) |
| 198 | |
| 199 | /* |
| 200 | * This is a "conversion strategy" for use with the DEFINE_CONVERT_BLIT |
| 201 | * macros. It converts from the source pixel format to the destination |
| 202 | * via an intermediate set of 3 component variables "jint r, g, b". |
| 203 | */ |
| 204 | #define ConvertVia3ByteRgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 205 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 206 | SXVAR, DXVAR) \ |
| 207 | do { \ |
| 208 | jint r, g, b; \ |
| 209 | Load ## SRCTYPE ## To3ByteRgb(SRCPTR, SRCPREFIX, SXVAR, r, g, b); \ |
| 210 | Store ## DSTTYPE ## From3ByteRgb(DSTPTR, DSTPREFIX, DXVAR, r, g, b); \ |
| 211 | } while (0) |
| 212 | |
| 213 | /* |
| 214 | * This is a "conversion strategy" for use with the DEFINE_CONVERT_BLIT |
| 215 | * macros. It converts from the source pixel format to the destination |
| 216 | * via an intermediate set of 4 component variables "jint a, r, g, b". |
| 217 | */ |
| 218 | #define ConvertVia4ByteArgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 219 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 220 | SXVAR, DXVAR) \ |
| 221 | do { \ |
| 222 | jint a, r, g, b; \ |
| 223 | Load ## SRCTYPE ## To4ByteArgb(SRCPTR, SRCPREFIX, SXVAR, a, r, g, b); \ |
| 224 | Store ## DSTTYPE ## From4ByteArgb(DSTPTR, DSTPREFIX, DXVAR, \ |
| 225 | a, r, g, b); \ |
| 226 | } while (0) |
| 227 | |
| 228 | /* |
| 229 | * This is a "conversion strategy" for use with the DEFINE_CONVERT_BLIT |
| 230 | * macros. It converts from the source pixel format to the destination |
| 231 | * via an intermediate "jint gray" format. |
| 232 | */ |
| 233 | #define ConvertVia1ByteGray(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 234 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 235 | SXVAR, DXVAR) \ |
| 236 | do { \ |
| 237 | jint gray; \ |
| 238 | Load ## SRCTYPE ## To1ByteGray(SRCPTR, SRCPREFIX, SXVAR, gray); \ |
| 239 | Store ## DSTTYPE ## From1ByteGray(DSTPTR, DSTPREFIX, DXVAR, gray); \ |
| 240 | } while (0) |
| 241 | |
| 242 | /* |
| 243 | * This is a "conversion strategy" for use with the DEFINE_XPAR_CONVERT_BLIT |
| 244 | * macros. It converts from the source pixel format to the destination |
| 245 | * via the specified intermediate format while testing for transparent pixels. |
| 246 | */ |
| 247 | #define ConvertXparVia1IntRgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 248 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 249 | SXVAR, DXVAR) \ |
| 250 | do { \ |
| 251 | Declare ## SRCTYPE ## Data(XparLoad); \ |
| 252 | Load ## SRCTYPE ## Data(SRCPTR, SRCPREFIX, SXVAR, XparLoad); \ |
| 253 | if (! (Is ## SRCTYPE ## DataTransparent(XparLoad))) { \ |
| 254 | int rgb; \ |
| 255 | Convert ## SRCTYPE ## DataTo1IntRgb(XparLoad, rgb); \ |
| 256 | Store ## DSTTYPE ## From1IntRgb(DSTPTR, DSTPREFIX, DXVAR, rgb); \ |
| 257 | } \ |
| 258 | } while (0) |
| 259 | |
| 260 | /* |
| 261 | * This is a "conversion strategy" for use with the DEFINE_XPAR_BLITBG |
| 262 | * macros. It converts from the source pixel format to the destination |
| 263 | * via the specified intermediate format while substituting the specified |
| 264 | * bgcolor for transparent pixels. |
| 265 | */ |
| 266 | #define BgCopyXparVia1IntRgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 267 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 268 | SXVAR, DXVAR, BGPIXEL, BGPREFIX) \ |
| 269 | do { \ |
| 270 | Declare ## SRCTYPE ## Data(XparLoad); \ |
| 271 | Load ## SRCTYPE ## Data(SRCPTR, SRCPREFIX, SXVAR, XparLoad); \ |
| 272 | if (Is ## SRCTYPE ## DataTransparent(XparLoad)) { \ |
| 273 | Store ## DSTTYPE ## PixelData(DSTPTR, DXVAR, BGPIXEL, BGPREFIX); \ |
| 274 | } else { \ |
| 275 | int rgb; \ |
| 276 | Convert ## SRCTYPE ## DataTo1IntRgb(XparLoad, rgb); \ |
| 277 | Store ## DSTTYPE ## From1IntRgb(DSTPTR, DSTPREFIX, DXVAR, rgb); \ |
| 278 | } \ |
| 279 | } while (0) |
| 280 | |
| 281 | /* |
| 282 | * This macro determines whether or not the given pixel is considered |
| 283 | * "transparent" for XOR purposes. The ARGB pixel is considered |
| 284 | * "transparent" if the alpha value is < 0.5. |
| 285 | */ |
| 286 | #define IsArgbTransparent(pixel) \ |
| 287 | (((jint) pixel) >= 0) |
| 288 | |
| 289 | /* |
| 290 | * This is a "conversion strategy" for use with the DEFINE_XOR_BLIT macro. It |
| 291 | * converts the source pixel to an intermediate ARGB value and then converts |
| 292 | * the ARGB value to the pixel representation for the destination surface. It |
| 293 | * then XORs the srcpixel, xorpixel, and destination pixel together and stores |
| 294 | * the result in the destination surface. |
| 295 | */ |
| 296 | #define XorVia1IntArgb(SRCPTR, SRCTYPE, SRCPREFIX, \ |
| 297 | DSTPTR, DSTTYPE, DSTANYTYPE, \ |
| 298 | XVAR, XORPIXEL, XORPREFIX, \ |
| 299 | MASK, MASKPREFIX, DSTINFOPTR) \ |
| 300 | do { \ |
| 301 | jint srcpixel; \ |
| 302 | Declare ## DSTANYTYPE ## PixelData(pix) \ |
| 303 | Load ## SRCTYPE ## To1IntArgb(SRCPTR, SRCPREFIX, XVAR, srcpixel); \ |
| 304 | \ |
| 305 | if (IsArgbTransparent(srcpixel)) { \ |
| 306 | break; \ |
| 307 | } \ |
| 308 | \ |
| 309 | DSTTYPE ## PixelFromArgb(srcpixel, srcpixel, DSTINFOPTR); \ |
| 310 | \ |
| 311 | Extract ## DSTANYTYPE ## PixelData(srcpixel, pix); \ |
| 312 | Xor ## DSTANYTYPE ## PixelData(srcpixel, pix, DSTPTR, XVAR, \ |
| 313 | XORPIXEL, XORPREFIX, \ |
| 314 | MASK, MASKPREFIX); \ |
| 315 | } while (0) |
| 316 | |
| 317 | /* |
| 318 | * "LUT_STRATEGY" macro sets. |
| 319 | * |
| 320 | * There are 2 major strategies for dealing with luts and 3 |
| 321 | * implementations of those strategies. |
| 322 | * |
| 323 | * The 2 strategies are "PreProcessLut" and "ConvertOnTheFly". |
| 324 | * |
| 325 | * For the "PreProcessLut" strategy, the raw ARGB lut supplied |
| 326 | * by the SD_LOCK_LUT flag is converted at the beginning into a |
| 327 | * form that is more suited for storing into the destination |
| 328 | * pixel format. The inner loop consists of a series of table |
| 329 | * lookups with very little conversion from that intermediate |
| 330 | * pixel format. |
| 331 | * |
| 332 | * For the "ConvertOnTheFly" strategy, the raw ARGB values are |
| 333 | * converted on a pixel by pixel basis in the inner loop itself. |
| 334 | * This strategy is most useful for formats which tend to use |
| 335 | * the ARGB color format as their pixel format also. |
| 336 | * |
| 337 | * Each of these strategies has 3 implementations which are needed |
| 338 | * for the special cases: |
| 339 | * - straight conversion (invoked from DEFINE_CONVERT_BLIT_LUT) |
| 340 | * - straight conversion with transparency handling (invoked from |
| 341 | * DEFINE_XPAR_CONVERT_BLIT_LUT) |
| 342 | * - straight conversion with a bgcolor for the transparent pixels |
| 343 | * (invoked from DEFINE_XPAR_BLITBG_LUT) |
| 344 | */ |
| 345 | |
| 346 | /*** |
| 347 | * Start of PreProcessLut strategy macros, CONVERT_BLIT implementation. |
| 348 | */ |
| 349 | #define LutSize(TYPE) \ |
| 350 | (1 << TYPE ## BitsPerPixel) |
| 351 | |
| 352 | #define DeclarePreProcessLutLut(SRC, DST, PIXLUT) \ |
| 353 | DST ## PixelType PIXLUT[LutSize(SRC)]; |
| 354 | |
| 355 | #define SetupPreProcessLutLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO) \ |
| 356 | do { \ |
| 357 | jint *srcLut = (SRCINFO)->lutBase; \ |
| 358 | juint lutSize = (SRCINFO)->lutSize; \ |
| 359 | Declare ## DST ## StoreVars(PreLut) \ |
| 360 | Init ## DST ## StoreVarsY(PreLut, DSTINFO); \ |
| 361 | if (lutSize >= LutSize(SRC)) { \ |
| 362 | lutSize = LutSize(SRC); \ |
| 363 | } else { \ |
| 364 | DST ## PixelType *pPIXLUT = &PIXLUT[lutSize]; \ |
| 365 | do { \ |
| 366 | Store ## DST ## From1IntArgb(pPIXLUT, PreLut, 0, 0); \ |
| 367 | } while (++pPIXLUT < &PIXLUT[LutSize(SRC)]); \ |
| 368 | } \ |
| 369 | BlitLoopXRel(DST, DSTINFO, PreLut, x, lutSize, \ |
| 370 | do { \ |
| 371 | jint argb = srcLut[x]; \ |
| 372 | Store ## DST ## From1IntArgb(PIXLUT, PreLut, x, argb); \ |
| 373 | } while (0)); \ |
| 374 | } while (0) |
| 375 | |
| 376 | #define BodyPreProcessLutLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 377 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 378 | SXVAR, DXVAR) \ |
| 379 | DSTPTR[DXVAR] = PIXLUT[SRCPTR[SXVAR]] |
| 380 | |
| 381 | /* |
| 382 | * End of PreProcessLut/CONVERT_BLIT macros. |
| 383 | ***/ |
| 384 | |
| 385 | /*** |
| 386 | * Start of ConvertOnTheFly strategy macros, CONVERT_BLIT implementation. |
| 387 | */ |
| 388 | #define DeclareConvertOnTheFlyLut(SRC, DST, PIXLUT) \ |
| 389 | Declare ## SRC ## LoadVars(PIXLUT) |
| 390 | |
| 391 | #define SetupConvertOnTheFlyLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO) \ |
| 392 | Init ## SRC ## LoadVars(PIXLUT, SRCINFO) |
| 393 | |
| 394 | #define BodyConvertOnTheFlyLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 395 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 396 | SXVAR, DXVAR) \ |
| 397 | ConvertVia1IntArgb(SRCPTR, SRCTYPE, PIXLUT, \ |
| 398 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 399 | SXVAR, DXVAR) |
| 400 | |
| 401 | /* |
| 402 | * End of ConvertOnTheFly/CONVERT_BLIT macros. |
| 403 | ***/ |
| 404 | |
| 405 | /*** |
| 406 | * Start of PreProcessLut strategy macros, XPAR_CONVERT_BLIT implementation. |
| 407 | */ |
| 408 | #define DeclarePreProcessLutXparLut(SRC, DST, PIXLUT) \ |
| 409 | jint PIXLUT[LutSize(SRC)]; |
| 410 | |
| 411 | #define SetupPreProcessLutXparLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO) \ |
| 412 | do { \ |
| 413 | jint *srcLut = (SRCINFO)->lutBase; \ |
| 414 | juint lutSize = (SRCINFO)->lutSize; \ |
| 415 | Declare ## DST ## StoreVars(PreLut) \ |
| 416 | Init ## DST ## StoreVarsY(PreLut, DSTINFO); \ |
| 417 | if (lutSize >= LutSize(SRC)) { \ |
| 418 | lutSize = LutSize(SRC); \ |
| 419 | } else { \ |
| 420 | jint *pPIXLUT = &PIXLUT[lutSize]; \ |
| 421 | do { \ |
| 422 | pPIXLUT[0] = DST ## XparLutEntry; \ |
| 423 | } while (++pPIXLUT < &PIXLUT[LutSize(SRC)]); \ |
| 424 | } \ |
| 425 | BlitLoopXRel(DST, DSTINFO, PreLut, x, lutSize, \ |
| 426 | do { \ |
| 427 | jint argb = srcLut[x]; \ |
| 428 | if (argb < 0) { \ |
| 429 | Store ## DST ## NonXparFromArgb \ |
| 430 | (PIXLUT, PreLut, x, argb); \ |
| 431 | } else { \ |
| 432 | PIXLUT[x] = DST ## XparLutEntry; \ |
| 433 | } \ |
| 434 | } while (0)); \ |
| 435 | } while (0) |
| 436 | |
| 437 | #define BodyPreProcessLutXparLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 438 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 439 | SXVAR, DXVAR) \ |
| 440 | do { \ |
| 441 | jint pix = PIXLUT[SRCPTR[SXVAR]]; \ |
| 442 | if (! DSTTYPE ## IsXparLutEntry(pix)) { \ |
| 443 | DSTPTR[DXVAR] = (DSTTYPE ## PixelType) pix; \ |
| 444 | } \ |
| 445 | } while (0) |
| 446 | |
| 447 | /* |
| 448 | * End of PreProcessLut/XPAR_CONVERT_BLIT macros. |
| 449 | ***/ |
| 450 | |
| 451 | /*** |
| 452 | * Start of ConvertOnTheFly strategy macros, CONVERT_BLIT implementation. |
| 453 | */ |
| 454 | #define DeclareConvertOnTheFlyXparLut(SRC, DST, PIXLUT) \ |
| 455 | Declare ## SRC ## LoadVars(PIXLUT) |
| 456 | |
| 457 | #define SetupConvertOnTheFlyXparLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO) \ |
| 458 | Init ## SRC ## LoadVars(PIXLUT, SRCINFO) |
| 459 | |
| 460 | #define BodyConvertOnTheFlyXparLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 461 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 462 | SXVAR, DXVAR) \ |
| 463 | do { \ |
| 464 | jint argb; \ |
| 465 | Load ## SRCTYPE ## To1IntArgb(SRCPTR, PIXLUT, SXVAR, argb); \ |
| 466 | if (argb < 0) { \ |
| 467 | Store ## DSTTYPE ## From1IntArgb(DSTPTR, DSTPREFIX, DXVAR, argb); \ |
| 468 | } \ |
| 469 | } while (0) |
| 470 | |
| 471 | /* |
| 472 | * End of ConvertOnTheFly/CONVERT_BLIT macros. |
| 473 | ***/ |
| 474 | |
| 475 | /*** |
| 476 | * Start of PreProcessLut strategy macros, BLITBG implementation. |
| 477 | */ |
| 478 | #define DeclarePreProcessLutBgLut(SRC, DST, PIXLUT) \ |
| 479 | jint PIXLUT[LutSize(SRC)]; |
| 480 | |
| 481 | #define SetupPreProcessLutBgLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO, BGPIXEL) \ |
| 482 | do { \ |
| 483 | jint *srcLut = (SRCINFO)->lutBase; \ |
| 484 | juint lutSize = (SRCINFO)->lutSize; \ |
| 485 | Declare ## DST ## StoreVars(PreLut) \ |
| 486 | Init ## DST ## StoreVarsY(PreLut, DSTINFO); \ |
| 487 | if (lutSize >= LutSize(SRC)) { \ |
| 488 | lutSize = LutSize(SRC); \ |
| 489 | } else { \ |
| 490 | jint *pPIXLUT = &PIXLUT[lutSize]; \ |
| 491 | do { \ |
| 492 | pPIXLUT[0] = BGPIXEL; \ |
| 493 | } while (++pPIXLUT < &PIXLUT[LutSize(SRC)]); \ |
| 494 | } \ |
| 495 | BlitLoopXRel(DST, DSTINFO, PreLut, x, lutSize, \ |
| 496 | do { \ |
| 497 | jint argb = srcLut[x]; \ |
| 498 | if (argb < 0) { \ |
| 499 | Store ## DST ## From1IntArgb(PIXLUT, PreLut, \ |
| 500 | x, argb); \ |
| 501 | } else { \ |
| 502 | PIXLUT[x] = BGPIXEL; \ |
| 503 | } \ |
| 504 | } while (0)); \ |
| 505 | } while (0) |
| 506 | |
| 507 | #define BodyPreProcessLutBgLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 508 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 509 | SXVAR, DXVAR, BGPIXEL) \ |
| 510 | do { \ |
| 511 | jint pix = PIXLUT[SRCPTR[SXVAR]]; \ |
| 512 | Store ## DSTTYPE ## Pixel(DSTPTR, DXVAR, pix); \ |
| 513 | } while (0) |
| 514 | |
| 515 | /* |
| 516 | * End of PreProcessLut/BLITBG implementation. |
| 517 | ***/ |
| 518 | |
| 519 | /*** |
| 520 | * Start of ConvertOnTheFly strategy macros, BLITBG implementation. |
| 521 | */ |
| 522 | #define DeclareConvertOnTheFlyBgLut(SRC, DST, PIXLUT) \ |
| 523 | Declare ## SRC ## LoadVars(PIXLUT) \ |
| 524 | Declare ## DST ## PixelData(bgpix); |
| 525 | |
| 526 | #define SetupConvertOnTheFlyBgLut(SRC, DST, PIXLUT, SRCINFO, DSTINFO, BGPIXEL) \ |
| 527 | do { \ |
| 528 | Init ## SRC ## LoadVars(PIXLUT, SRCINFO); \ |
| 529 | Extract ## DST ## PixelData(BGPIXEL, bgpix); \ |
| 530 | } while (0) |
| 531 | |
| 532 | #define BodyConvertOnTheFlyBgLut(SRCPTR, SRCTYPE, PIXLUT, \ |
| 533 | DSTPTR, DSTTYPE, DSTPREFIX, \ |
| 534 | SXVAR, DXVAR, BGPIXEL) \ |
| 535 | do { \ |
| 536 | jint argb; \ |
| 537 | Load ## SRCTYPE ## To1IntArgb(SRCPTR, PIXLUT, SXVAR, argb); \ |
| 538 | if (argb < 0) { \ |
| 539 | Store ## DSTTYPE ## From1IntArgb(DSTPTR, DSTPREFIX, DXVAR, argb); \ |
| 540 | } else { \ |
| 541 | Store ## DSTTYPE ## PixelData(DSTPTR, DXVAR, BGPIXEL, bgpix); \ |
| 542 | } \ |
| 543 | } while (0) |
| 544 | |
| 545 | /* |
| 546 | * End of ConvertOnTheFly/BLITBG macros. |
| 547 | ***/ |
| 548 | |
| 549 | /* |
| 550 | * These macros provide consistent naming conventions for the |
| 551 | * various types of native primitive inner loop functions. |
| 552 | * The names are mechanically constructed from the SurfaceType names. |
| 553 | */ |
| 554 | #define NAME_CONVERT_BLIT(SRC, DST) SRC ## To ## DST ## Convert |
| 555 | |
| 556 | #define NAME_SCALE_BLIT(SRC, DST) SRC ## To ## DST ## ScaleConvert |
| 557 | |
| 558 | #define NAME_XPAR_CONVERT_BLIT(SRC, DST) SRC ## To ## DST ## XparOver |
| 559 | |
| 560 | #define NAME_XPAR_SCALE_BLIT(SRC, DST) SRC ## To ## DST ## ScaleXparOver |
| 561 | |
| 562 | #define NAME_XPAR_BLITBG(SRC, DST) SRC ## To ## DST ## XparBgCopy |
| 563 | |
| 564 | #define NAME_XOR_BLIT(SRC, DST) SRC ## To ## DST ## XorBlit |
| 565 | |
| 566 | #define NAME_ISOCOPY_BLIT(ANYTYPE) ANYTYPE ## IsomorphicCopy |
| 567 | |
| 568 | #define NAME_ISOSCALE_BLIT(ANYTYPE) ANYTYPE ## IsomorphicScaleCopy |
| 569 | |
| 570 | #define NAME_ISOXOR_BLIT(ANYTYPE) ANYTYPE ## IsomorphicXorCopy |
| 571 | |
| 572 | #define NAME_SOLID_FILLRECT(TYPE) TYPE ## SetRect |
| 573 | |
| 574 | #define NAME_SOLID_FILLSPANS(TYPE) TYPE ## SetSpans |
| 575 | |
| 576 | #define NAME_SOLID_DRAWLINE(TYPE) TYPE ## SetLine |
| 577 | |
| 578 | #define NAME_XOR_FILLRECT(TYPE) TYPE ## XorRect |
| 579 | |
| 580 | #define NAME_XOR_FILLSPANS(TYPE) TYPE ## XorSpans |
| 581 | |
| 582 | #define NAME_XOR_DRAWLINE(TYPE) TYPE ## XorLine |
| 583 | |
| 584 | #define NAME_SRC_MASKFILL(TYPE) TYPE ## SrcMaskFill |
| 585 | |
| 586 | #define NAME_SRCOVER_MASKFILL(TYPE) TYPE ## SrcOverMaskFill |
| 587 | |
| 588 | #define NAME_ALPHA_MASKFILL(TYPE) TYPE ## AlphaMaskFill |
| 589 | |
| 590 | #define NAME_SRCOVER_MASKBLIT(SRC, DST) SRC ## To ## DST ## SrcOverMaskBlit |
| 591 | |
| 592 | #define NAME_ALPHA_MASKBLIT(SRC, DST) SRC ## To ## DST ## AlphaMaskBlit |
| 593 | |
| 594 | #define NAME_SOLID_DRAWGLYPHLIST(TYPE) TYPE ## DrawGlyphList |
| 595 | |
| 596 | #define NAME_SOLID_DRAWGLYPHLISTAA(TYPE) TYPE ## DrawGlyphListAA |
| 597 | |
| 598 | #define NAME_SOLID_DRAWGLYPHLISTLCD(TYPE) TYPE ## DrawGlyphListLCD |
| 599 | |
| 600 | #define NAME_XOR_DRAWGLYPHLIST(TYPE) TYPE ## DrawGlyphListXor |
| 601 | |
| 602 | #define NAME_TRANSFORMHELPER(TYPE, MODE) TYPE ## MODE ## TransformHelper |
| 603 | |
| 604 | #define NAME_TRANSFORMHELPER_NN(TYPE) NAME_TRANSFORMHELPER(TYPE, NrstNbr) |
| 605 | #define NAME_TRANSFORMHELPER_BL(TYPE) NAME_TRANSFORMHELPER(TYPE, Bilinear) |
| 606 | #define NAME_TRANSFORMHELPER_BC(TYPE) NAME_TRANSFORMHELPER(TYPE, Bicubic) |
| 607 | |
| 608 | #define NAME_TRANSFORMHELPER_FUNCS(TYPE) TYPE ## TransformHelperFuncs |
| 609 | |
| 610 | #define NAME_SOLID_FILLPGRAM(TYPE) TYPE ## SetParallelogram |
| 611 | #define NAME_SOLID_PGRAM_FUNCS(TYPE) TYPE ## SetParallelogramFuncs |
| 612 | |
| 613 | #define NAME_XOR_FILLPGRAM(TYPE) TYPE ## XorParallelogram |
| 614 | #define NAME_XOR_PGRAM_FUNCS(TYPE) TYPE ## XorParallelogramFuncs |
| 615 | |
| 616 | /* |
| 617 | * These macros conveniently name and declare the indicated native |
| 618 | * primitive loop function for forward referencing. |
| 619 | */ |
| 620 | #define DECLARE_CONVERT_BLIT(SRC, DST) \ |
| 621 | BlitFunc NAME_CONVERT_BLIT(SRC, DST) |
| 622 | |
| 623 | #define DECLARE_SCALE_BLIT(SRC, DST) \ |
| 624 | ScaleBlitFunc NAME_SCALE_BLIT(SRC, DST) |
| 625 | |
| 626 | #define DECLARE_XPAR_CONVERT_BLIT(SRC, DST) \ |
| 627 | BlitFunc NAME_XPAR_CONVERT_BLIT(SRC, DST) |
| 628 | |
| 629 | #define DECLARE_XPAR_SCALE_BLIT(SRC, DST) \ |
| 630 | ScaleBlitFunc NAME_XPAR_SCALE_BLIT(SRC, DST) |
| 631 | |
| 632 | #define DECLARE_XPAR_BLITBG(SRC, DST) \ |
| 633 | BlitBgFunc NAME_XPAR_BLITBG(SRC, DST) |
| 634 | |
| 635 | #define DECLARE_XOR_BLIT(SRC, DST) \ |
| 636 | BlitFunc NAME_XOR_BLIT(SRC, DST) |
| 637 | |
| 638 | #define DECLARE_ISOCOPY_BLIT(ANYTYPE) \ |
| 639 | BlitFunc NAME_ISOCOPY_BLIT(ANYTYPE) |
| 640 | |
| 641 | #define DECLARE_ISOSCALE_BLIT(ANYTYPE) \ |
| 642 | ScaleBlitFunc NAME_ISOSCALE_BLIT(ANYTYPE) |
| 643 | |
| 644 | #define DECLARE_ISOXOR_BLIT(ANYTYPE) \ |
| 645 | BlitFunc NAME_ISOXOR_BLIT(ANYTYPE) |
| 646 | |
| 647 | #define DECLARE_SOLID_FILLRECT(TYPE) \ |
| 648 | FillRectFunc NAME_SOLID_FILLRECT(TYPE) |
| 649 | |
| 650 | #define DECLARE_SOLID_FILLSPANS(TYPE) \ |
| 651 | FillSpansFunc NAME_SOLID_FILLSPANS(TYPE) |
| 652 | |
| 653 | #define DECLARE_SOLID_DRAWLINE(TYPE) \ |
| 654 | DrawLineFunc NAME_SOLID_DRAWLINE(TYPE) |
| 655 | |
| 656 | #define DECLARE_XOR_FILLRECT(TYPE) \ |
| 657 | FillRectFunc NAME_XOR_FILLRECT(TYPE) |
| 658 | |
| 659 | #define DECLARE_XOR_FILLSPANS(TYPE) \ |
| 660 | FillSpansFunc NAME_XOR_FILLSPANS(TYPE) |
| 661 | |
| 662 | #define DECLARE_XOR_DRAWLINE(TYPE) \ |
| 663 | DrawLineFunc NAME_XOR_DRAWLINE(TYPE) |
| 664 | |
| 665 | #define DECLARE_ALPHA_MASKFILL(TYPE) \ |
| 666 | MaskFillFunc NAME_ALPHA_MASKFILL(TYPE) |
| 667 | |
| 668 | #define DECLARE_SRC_MASKFILL(TYPE) \ |
| 669 | MaskFillFunc NAME_SRC_MASKFILL(TYPE) |
| 670 | |
| 671 | #define DECLARE_SRCOVER_MASKFILL(TYPE) \ |
| 672 | MaskFillFunc NAME_SRCOVER_MASKFILL(TYPE) |
| 673 | |
| 674 | #define DECLARE_SRCOVER_MASKBLIT(SRC, DST) \ |
| 675 | MaskBlitFunc NAME_SRCOVER_MASKBLIT(SRC, DST) |
| 676 | |
| 677 | #define DECLARE_ALPHA_MASKBLIT(SRC, DST) \ |
| 678 | MaskBlitFunc NAME_ALPHA_MASKBLIT(SRC, DST) |
| 679 | |
| 680 | #define DECLARE_SOLID_DRAWGLYPHLIST(TYPE) \ |
| 681 | DrawGlyphListFunc NAME_SOLID_DRAWGLYPHLIST(TYPE) |
| 682 | |
| 683 | #define DECLARE_SOLID_DRAWGLYPHLISTAA(TYPE) \ |
| 684 | DrawGlyphListAAFunc NAME_SOLID_DRAWGLYPHLISTAA(TYPE) |
| 685 | |
| 686 | #define DECLARE_SOLID_DRAWGLYPHLISTLCD(TYPE) \ |
| 687 | DrawGlyphListLCDFunc NAME_SOLID_DRAWGLYPHLISTLCD(TYPE) |
| 688 | |
| 689 | #define DECLARE_XOR_DRAWGLYPHLIST(TYPE) \ |
| 690 | DrawGlyphListFunc NAME_XOR_DRAWGLYPHLIST(TYPE) |
| 691 | |
| 692 | #define DECLARE_TRANSFORMHELPER_FUNCS(TYPE) \ |
| 693 | TransformHelperFunc NAME_TRANSFORMHELPER_NN(TYPE); \ |
| 694 | TransformHelperFunc NAME_TRANSFORMHELPER_BL(TYPE); \ |
| 695 | TransformHelperFunc NAME_TRANSFORMHELPER_BC(TYPE); \ |
| 696 | TransformHelperFuncs NAME_TRANSFORMHELPER_FUNCS(TYPE) |
| 697 | |
| 698 | #define DECLARE_SOLID_PARALLELOGRAM(TYPE) \ |
| 699 | FillParallelogramFunc NAME_SOLID_FILLPGRAM(TYPE); \ |
| 700 | DECLARE_SOLID_DRAWLINE(TYPE); \ |
| 701 | DrawParallelogramFuncs NAME_SOLID_PGRAM_FUNCS(TYPE) |
| 702 | |
| 703 | #define DECLARE_XOR_PARALLELOGRAM(TYPE) \ |
| 704 | FillParallelogramFunc NAME_XOR_FILLPGRAM(TYPE); \ |
| 705 | DECLARE_XOR_DRAWLINE(TYPE); \ |
| 706 | DrawParallelogramFuncs NAME_XOR_PGRAM_FUNCS(TYPE) |
| 707 | |
| 708 | /* |
| 709 | * These macros construct the necessary NativePrimitive structure |
| 710 | * for the indicated native primitive loop function which will be |
| 711 | * declared somewhere prior and defined elsewhere (usually after). |
| 712 | */ |
| 713 | #define REGISTER_CONVERT_BLIT(SRC, DST) \ |
| 714 | REGISTER_BLIT(SRC, SrcNoEa, DST, NAME_CONVERT_BLIT(SRC, DST)) |
| 715 | |
| 716 | #define REGISTER_CONVERT_BLIT_FLAGS(SRC, DST, SFLAGS, DFLAGS) \ |
| 717 | REGISTER_BLIT_FLAGS(SRC, SrcNoEa, DST, NAME_CONVERT_BLIT(SRC, DST), \ |
| 718 | SFLAGS, DFLAGS) |
| 719 | |
| 720 | #define REGISTER_CONVERT_BLIT_EQUIV(SRC, DST, FUNC) \ |
| 721 | REGISTER_BLIT(SRC, SrcNoEa, DST, FUNC) |
| 722 | |
| 723 | #define REGISTER_SCALE_BLIT(SRC, DST) \ |
| 724 | REGISTER_SCALEBLIT(SRC, SrcNoEa, DST, NAME_SCALE_BLIT(SRC, DST)) |
| 725 | |
| 726 | #define REGISTER_SCALE_BLIT_FLAGS(SRC, DST, SFLAGS, DFLAGS) \ |
| 727 | REGISTER_SCALEBLIT_FLAGS(SRC, SrcNoEa, DST, NAME_SCALE_BLIT(SRC, DST), \ |
| 728 | SFLAGS, DFLAGS) |
| 729 | |
| 730 | #define REGISTER_SCALE_BLIT_EQUIV(SRC, DST, FUNC) \ |
| 731 | REGISTER_SCALEBLIT(SRC, SrcNoEa, DST, FUNC) |
| 732 | |
| 733 | #define REGISTER_XPAR_CONVERT_BLIT(SRC, DST) \ |
| 734 | REGISTER_BLIT(SRC, SrcOverBmNoEa, DST, NAME_XPAR_CONVERT_BLIT(SRC, DST)) |
| 735 | |
| 736 | #define REGISTER_XPAR_CONVERT_BLIT_EQUIV(SRC, DST, FUNC) \ |
| 737 | REGISTER_BLIT(SRC, SrcOverBmNoEa, DST, FUNC) |
| 738 | |
| 739 | #define REGISTER_XPAR_SCALE_BLIT(SRC, DST) \ |
| 740 | REGISTER_SCALEBLIT(SRC, SrcOverBmNoEa, DST, NAME_XPAR_SCALE_BLIT(SRC, DST)) |
| 741 | |
| 742 | #define REGISTER_XPAR_SCALE_BLIT_EQUIV(SRC, DST, FUNC) \ |
| 743 | REGISTER_SCALEBLIT(SRC, SrcOverBmNoEa, DST, FUNC) |
| 744 | |
| 745 | #define REGISTER_XPAR_BLITBG(SRC, DST) \ |
| 746 | REGISTER_BLITBG(SRC, SrcNoEa, DST, NAME_XPAR_BLITBG(SRC, DST)) |
| 747 | |
| 748 | #define REGISTER_XPAR_BLITBG_EQUIV(SRC, DST, FUNC) \ |
| 749 | REGISTER_BLITBG(SRC, SrcNoEa, DST, FUNC) |
| 750 | |
| 751 | #define REGISTER_XOR_BLIT(SRC, DST) \ |
| 752 | REGISTER_BLIT(SRC, Xor, DST, NAME_XOR_BLIT(SRC, DST)) |
| 753 | |
| 754 | #define REGISTER_ISOCOPY_BLIT(THISTYPE, ANYTYPE) \ |
| 755 | REGISTER_BLIT(THISTYPE, SrcNoEa, THISTYPE, NAME_ISOCOPY_BLIT(ANYTYPE)) |
| 756 | |
| 757 | #define REGISTER_ISOSCALE_BLIT(THISTYPE, ANYTYPE) \ |
| 758 | REGISTER_SCALEBLIT(THISTYPE, SrcNoEa, THISTYPE, NAME_ISOSCALE_BLIT(ANYTYPE)) |
| 759 | |
| 760 | #define REGISTER_ISOXOR_BLIT(THISTYPE, ANYTYPE) \ |
| 761 | REGISTER_BLIT(THISTYPE, Xor, THISTYPE, NAME_ISOXOR_BLIT(ANYTYPE)) |
| 762 | |
| 763 | #define REGISTER_SOLID_FILLRECT(TYPE) \ |
| 764 | REGISTER_FILLRECT(AnyColor, SrcNoEa, TYPE, NAME_SOLID_FILLRECT(TYPE)) |
| 765 | |
| 766 | #define REGISTER_SOLID_FILLSPANS(TYPE) \ |
| 767 | REGISTER_FILLSPANS(AnyColor, SrcNoEa, TYPE, NAME_SOLID_FILLSPANS(TYPE)) |
| 768 | |
| 769 | #define REGISTER_SOLID_LINE_PRIMITIVES(TYPE) \ |
| 770 | REGISTER_LINE_PRIMITIVES(AnyColor, SrcNoEa, TYPE, \ |
| 771 | NAME_SOLID_DRAWLINE(TYPE)) |
| 772 | |
| 773 | #define REGISTER_XOR_FILLRECT(TYPE) \ |
| 774 | REGISTER_FILLRECT(AnyColor, Xor, TYPE, NAME_XOR_FILLRECT(TYPE)) |
| 775 | |
| 776 | #define REGISTER_XOR_FILLSPANS(TYPE) \ |
| 777 | REGISTER_FILLSPANS(AnyColor, Xor, TYPE, NAME_XOR_FILLSPANS(TYPE)) |
| 778 | |
| 779 | #define REGISTER_XOR_LINE_PRIMITIVES(TYPE) \ |
| 780 | REGISTER_LINE_PRIMITIVES(AnyColor, Xor, TYPE, NAME_XOR_DRAWLINE(TYPE)) |
| 781 | |
| 782 | #define REGISTER_ALPHA_MASKFILL(TYPE) \ |
| 783 | REGISTER_MASKFILL(AnyColor, AnyAlpha, TYPE, NAME_ALPHA_MASKFILL(TYPE)) |
| 784 | |
| 785 | #define REGISTER_SRC_MASKFILL(TYPE) \ |
| 786 | REGISTER_MASKFILL(AnyColor, Src, TYPE, NAME_SRC_MASKFILL(TYPE)) |
| 787 | |
| 788 | #define REGISTER_SRCOVER_MASKFILL(TYPE) \ |
| 789 | REGISTER_MASKFILL(AnyColor, SrcOver, TYPE, NAME_SRCOVER_MASKFILL(TYPE)) |
| 790 | |
| 791 | #define REGISTER_SRCOVER_MASKBLIT(SRC, DST) \ |
| 792 | REGISTER_MASKBLIT(SRC, SrcOver, DST, NAME_SRCOVER_MASKBLIT(SRC, DST)) |
| 793 | |
| 794 | #define REGISTER_ALPHA_MASKBLIT(SRC, DST) \ |
| 795 | REGISTER_MASKBLIT(SRC, AnyAlpha, DST, NAME_ALPHA_MASKBLIT(SRC, DST)) |
| 796 | |
| 797 | #define REGISTER_SOLID_DRAWGLYPHLIST(TYPE) \ |
| 798 | REGISTER_DRAWGLYPHLIST(AnyColor, SrcNoEa, TYPE, \ |
| 799 | NAME_SOLID_DRAWGLYPHLIST(TYPE)) |
| 800 | |
| 801 | #define REGISTER_SOLID_DRAWGLYPHLISTAA(TYPE) \ |
| 802 | REGISTER_DRAWGLYPHLISTAA(AnyColor, SrcNoEa, TYPE, \ |
| 803 | NAME_SOLID_DRAWGLYPHLISTAA(TYPE)) |
| 804 | |
| 805 | #define REGISTER_SOLID_DRAWGLYPHLISTLCD(TYPE) \ |
| 806 | REGISTER_DRAWGLYPHLISTLCD(AnyColor, SrcNoEa, TYPE, \ |
| 807 | NAME_SOLID_DRAWGLYPHLISTLCD(TYPE)) |
| 808 | |
| 809 | #define REGISTER_XOR_DRAWGLYPHLIST(TYPE) \ |
| 810 | REGISTER_DRAWGLYPHLIST(AnyColor, Xor, TYPE, \ |
| 811 | NAME_XOR_DRAWGLYPHLIST(TYPE)), \ |
| 812 | REGISTER_DRAWGLYPHLISTAA(AnyColor, Xor, TYPE, \ |
| 813 | NAME_XOR_DRAWGLYPHLIST(TYPE)) |
| 814 | |
| 815 | #define REGISTER_TRANSFORMHELPER_FUNCS(TYPE) \ |
| 816 | REGISTER_PRIMITIVE(TransformHelper, TYPE, SrcNoEa, IntArgbPre, \ |
| 817 | (AnyFunc *) &NAME_TRANSFORMHELPER_FUNCS(TYPE)) |
| 818 | |
| 819 | #define REGISTER_SOLID_PARALLELOGRAM(TYPE) \ |
| 820 | REGISTER_PRIMITIVE(FillParallelogram, AnyColor, SrcNoEa, TYPE, \ |
| 821 | NAME_SOLID_FILLPGRAM(TYPE)), \ |
| 822 | REGISTER_PRIMITIVE(DrawParallelogram, AnyColor, SrcNoEa, TYPE, \ |
| 823 | (AnyFunc *) &NAME_SOLID_PGRAM_FUNCS(TYPE)) |
| 824 | |
| 825 | #define REGISTER_XOR_PARALLELOGRAM(TYPE) \ |
| 826 | REGISTER_PRIMITIVE(FillParallelogram, AnyColor, Xor, TYPE, \ |
| 827 | NAME_XOR_FILLPGRAM(TYPE)), \ |
| 828 | REGISTER_PRIMITIVE(DrawParallelogram, AnyColor, Xor, TYPE, \ |
| 829 | (AnyFunc *) &NAME_XOR_PGRAM_FUNCS(TYPE)) |
| 830 | |
| 831 | /* |
| 832 | * This macro defines an entire function to implement a Blit inner loop |
| 833 | * for copying pixels of a common type from one buffer to another. |
| 834 | */ |
| 835 | #define DEFINE_ISOCOPY_BLIT(ANYTYPE) \ |
| 836 | void NAME_ISOCOPY_BLIT(ANYTYPE)(void *srcBase, void *dstBase, \ |
| 837 | juint width, juint height, \ |
| 838 | SurfaceDataRasInfo *pSrcInfo, \ |
| 839 | SurfaceDataRasInfo *pDstInfo, \ |
| 840 | NativePrimitive *pPrim, \ |
| 841 | CompositeInfo *pCompInfo) \ |
| 842 | { \ |
| 843 | Declare ## ANYTYPE ## StoreVars(DstWrite) \ |
| 844 | BlitLoopHeight(ANYTYPE, pSrc, srcBase, pSrcInfo, \ |
| 845 | ANYTYPE, pDst, dstBase, pDstInfo, DstWrite, \ |
| 846 | height, \ |
| 847 | memcpy(pDst, pSrc, width * ANYTYPE ## PixelStride)); \ |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * This macro defines an entire function to implement a ScaleBlit inner loop |
| 852 | * for scaling pixels of a common type from one buffer to another. |
| 853 | */ |
| 854 | #define DEFINE_ISOSCALE_BLIT(ANYTYPE) \ |
| 855 | void NAME_ISOSCALE_BLIT(ANYTYPE)(void *srcBase, void *dstBase, \ |
| 856 | juint width, juint height, \ |
| 857 | jint sxloc, jint syloc, \ |
| 858 | jint sxinc, jint syinc, jint shift, \ |
| 859 | SurfaceDataRasInfo *pSrcInfo, \ |
| 860 | SurfaceDataRasInfo *pDstInfo, \ |
| 861 | NativePrimitive *pPrim, \ |
| 862 | CompositeInfo *pCompInfo) \ |
| 863 | { \ |
| 864 | Declare ## ANYTYPE ## StoreVars(DstWrite) \ |
| 865 | BlitLoopScaleWidthHeight(ANYTYPE, pSrc, srcBase, pSrcInfo, \ |
| 866 | ANYTYPE, pDst, dstBase, pDstInfo, DstWrite, \ |
| 867 | x, width, height, \ |
| 868 | sxloc, syloc, sxinc, syinc, shift, \ |
| 869 | Copy ## ANYTYPE ## PixelData(pSrc, x, pDst, 0)); \ |
| 870 | } |
| 871 | |
| 872 | /* |
| 873 | * This macro defines an entire function to implement a Blit inner loop |
| 874 | * for XORing pixels of a common type from one buffer into another. |
| 875 | */ |
| 876 | #define DEFINE_ISOXOR_BLIT(ANYTYPE) \ |
| 877 | void NAME_ISOXOR_BLIT(ANYTYPE)(void *srcBase, void *dstBase, \ |
| 878 | juint width, juint height, \ |
| 879 | SurfaceDataRasInfo *pSrcInfo, \ |
| 880 | SurfaceDataRasInfo *pDstInfo, \ |
| 881 | NativePrimitive *pPrim, \ |
| 882 | CompositeInfo *pCompInfo) \ |
| 883 | { \ |
| 884 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 885 | Declare ## ANYTYPE ## PixelData(xor) \ |
| 886 | Declare ## ANYTYPE ## StoreVars(DstWrite) \ |
| 887 | \ |
| 888 | Extract ## ANYTYPE ## PixelData(xorpixel, xor); \ |
| 889 | \ |
| 890 | BlitLoopWidthHeight(ANYTYPE, pSrc, srcBase, pSrcInfo, \ |
| 891 | ANYTYPE, pDst, dstBase, pDstInfo, DstWrite, \ |
| 892 | width, height, \ |
| 893 | XorCopy ## ANYTYPE ## PixelData(pSrc, pDst, 0, \ |
| 894 | xorpixel, xor)); \ |
| 895 | } |
| 896 | |
| 897 | /* |
| 898 | * This macro defines an entire function to implement a Blit inner loop |
| 899 | * for converting pixels from a buffer of one type into a buffer of |
| 900 | * another type. No blending is done of the pixels. |
| 901 | */ |
| 902 | #define DEFINE_CONVERT_BLIT(SRC, DST, STRATEGY) \ |
| 903 | void NAME_CONVERT_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 904 | juint width, juint height, \ |
| 905 | SurfaceDataRasInfo *pSrcInfo, \ |
| 906 | SurfaceDataRasInfo *pDstInfo, \ |
| 907 | NativePrimitive *pPrim, \ |
| 908 | CompositeInfo *pCompInfo) \ |
| 909 | { \ |
| 910 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 911 | Declare ## DST ## StoreVars(DstWrite) \ |
| 912 | \ |
| 913 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 914 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 915 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 916 | width, height, \ |
| 917 | ConvertVia ## STRATEGY(pSrc, SRC, SrcRead, \ |
| 918 | pDst, DST, DstWrite, \ |
| 919 | 0, 0)); \ |
| 920 | } |
| 921 | |
| 922 | /* |
| 923 | * This macro defines an entire function to implement a Blit inner loop |
| 924 | * for converting pixels from a buffer of byte pixels with a lookup |
| 925 | * table into a buffer of another type. No blending is done of the pixels. |
| 926 | */ |
| 927 | #define DEFINE_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) \ |
| 928 | void NAME_CONVERT_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 929 | juint width, juint height, \ |
| 930 | SurfaceDataRasInfo *pSrcInfo, \ |
| 931 | SurfaceDataRasInfo *pDstInfo, \ |
| 932 | NativePrimitive *pPrim, \ |
| 933 | CompositeInfo *pCompInfo) \ |
| 934 | { \ |
| 935 | Declare ## DST ## StoreVars(DstWrite) \ |
| 936 | Declare ## LUT_STRATEGY ## Lut(SRC, DST, pixLut) \ |
| 937 | \ |
| 938 | Setup ## LUT_STRATEGY ## Lut(SRC, DST, pixLut,\ |
| 939 | pSrcInfo, pDstInfo); \ |
| 940 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 941 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 942 | width, height, \ |
| 943 | Body ## LUT_STRATEGY ## Lut(pSrc, SRC, \ |
| 944 | pixLut, \ |
| 945 | pDst, DST, \ |
| 946 | DstWrite, 0, 0));\ |
| 947 | } |
| 948 | #define DEFINE_CONVERT_BLIT_LUT8(SRC, DST, LUT_STRATEGY) \ |
| 949 | DEFINE_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 950 | |
| 951 | /* |
| 952 | * This macro defines an entire function to implement a ScaleBlit inner |
| 953 | * loop for scaling and converting pixels from a buffer of one type into |
| 954 | * a buffer of another type. No blending is done of the pixels. |
| 955 | */ |
| 956 | #define DEFINE_SCALE_BLIT(SRC, DST, STRATEGY) \ |
| 957 | void NAME_SCALE_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 958 | juint width, juint height, \ |
| 959 | jint sxloc, jint syloc, \ |
| 960 | jint sxinc, jint syinc, jint shift, \ |
| 961 | SurfaceDataRasInfo *pSrcInfo, \ |
| 962 | SurfaceDataRasInfo *pDstInfo, \ |
| 963 | NativePrimitive *pPrim, \ |
| 964 | CompositeInfo *pCompInfo) \ |
| 965 | { \ |
| 966 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 967 | Declare ## DST ## StoreVars(DstWrite) \ |
| 968 | \ |
| 969 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 970 | BlitLoopScaleWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 971 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 972 | x, width, height, \ |
| 973 | sxloc, syloc, sxinc, syinc, shift, \ |
| 974 | ConvertVia ## STRATEGY(pSrc, SRC, SrcRead, \ |
| 975 | pDst, DST, DstWrite, \ |
| 976 | x, 0)); \ |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * This macro defines an entire function to implement a ScaleBlit inner |
| 981 | * loop for scaling and converting pixels from a buffer of byte pixels |
| 982 | * with a lookup table into a buffer of another type. No blending is |
| 983 | * done of the pixels. |
| 984 | */ |
| 985 | #define DEFINE_SCALE_BLIT_LUT(SRC, DST, LUT_STRATEGY) \ |
| 986 | void NAME_SCALE_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 987 | juint width, juint height, \ |
| 988 | jint sxloc, jint syloc, \ |
| 989 | jint sxinc, jint syinc, jint shift, \ |
| 990 | SurfaceDataRasInfo *pSrcInfo, \ |
| 991 | SurfaceDataRasInfo *pDstInfo, \ |
| 992 | NativePrimitive *pPrim, \ |
| 993 | CompositeInfo *pCompInfo) \ |
| 994 | { \ |
| 995 | Declare ## DST ## StoreVars(DstWrite) \ |
| 996 | Declare ## LUT_STRATEGY ## Lut(SRC, DST, pixLut) \ |
| 997 | \ |
| 998 | Setup ## LUT_STRATEGY ## Lut(SRC, DST, pixLut, pSrcInfo, pDstInfo); \ |
| 999 | BlitLoopScaleWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1000 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1001 | x, width, height, \ |
| 1002 | sxloc, syloc, sxinc, syinc, shift, \ |
| 1003 | Body ## LUT_STRATEGY ## Lut(pSrc, SRC, pixLut, \ |
| 1004 | pDst, DST, \ |
| 1005 | DstWrite, x, 0));\ |
| 1006 | } |
| 1007 | #define DEFINE_SCALE_BLIT_LUT8(SRC, DST, LUT_STRATEGY) \ |
| 1008 | DEFINE_SCALE_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 1009 | |
| 1010 | /* |
| 1011 | * This macro defines an entire function to implement a Blit inner loop |
| 1012 | * for drawing opaque pixels from a buffer of one type onto a buffer of |
| 1013 | * another type, ignoring the transparent pixels in the source buffer. |
| 1014 | * No blending is done of the pixels - the converted pixel value is |
| 1015 | * either copied or the destination is left untouched. |
| 1016 | */ |
| 1017 | #define DEFINE_XPAR_CONVERT_BLIT(SRC, DST, STRATEGY) \ |
| 1018 | void NAME_XPAR_CONVERT_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1019 | juint width, juint height, \ |
| 1020 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1021 | SurfaceDataRasInfo *pDstInfo, \ |
| 1022 | NativePrimitive *pPrim, \ |
| 1023 | CompositeInfo *pCompInfo) \ |
| 1024 | { \ |
| 1025 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 1026 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1027 | \ |
| 1028 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 1029 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1030 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1031 | width, height, \ |
| 1032 | ConvertXparVia ## STRATEGY(pSrc, SRC, SrcRead, \ |
| 1033 | pDst, DST, DstWrite, \ |
| 1034 | 0, 0)); \ |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * This macro defines an entire function to implement a Blit inner loop |
| 1039 | * for converting pixels from a buffer of byte pixels with a lookup |
| 1040 | * table containing transparent pixels into a buffer of another type. |
| 1041 | * No blending is done of the pixels - the converted pixel value is |
| 1042 | * either copied or the destination is left untouched. |
| 1043 | */ |
| 1044 | #define DEFINE_XPAR_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) \ |
| 1045 | void NAME_XPAR_CONVERT_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1046 | juint width, juint height, \ |
| 1047 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1048 | SurfaceDataRasInfo *pDstInfo, \ |
| 1049 | NativePrimitive *pPrim, \ |
| 1050 | CompositeInfo *pCompInfo) \ |
| 1051 | { \ |
| 1052 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1053 | Declare ## LUT_STRATEGY ## XparLut(SRC, DST, pixLut) \ |
| 1054 | \ |
| 1055 | Setup ## LUT_STRATEGY ## XparLut(SRC, DST, pixLut, pSrcInfo, pDstInfo); \ |
| 1056 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1057 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1058 | width, height, \ |
| 1059 | Body ## LUT_STRATEGY ## XparLut(pSrc, SRC, pixLut, \ |
| 1060 | pDst, DST, \ |
| 1061 | DstWrite, 0, 0)); \ |
| 1062 | } |
| 1063 | #define DEFINE_XPAR_CONVERT_BLIT_LUT8(SRC, DST, LUT_STRATEGY) \ |
| 1064 | DEFINE_XPAR_CONVERT_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 1065 | |
| 1066 | /* |
| 1067 | * This macro defines an entire function to implement a ScaleBlit inner |
| 1068 | * loop for scaling and converting pixels from a buffer of byte pixels |
| 1069 | * with a lookup table containing transparent pixels into a buffer of |
| 1070 | * another type. |
| 1071 | * No blending is done of the pixels - the converted pixel value is |
| 1072 | * either copied or the destination is left untouched. |
| 1073 | */ |
| 1074 | #define DEFINE_XPAR_SCALE_BLIT_LUT(SRC, DST, LUT_STRATEGY) \ |
| 1075 | void NAME_XPAR_SCALE_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1076 | juint width, juint height, \ |
| 1077 | jint sxloc, jint syloc, \ |
| 1078 | jint sxinc, jint syinc, jint shift, \ |
| 1079 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1080 | SurfaceDataRasInfo *pDstInfo, \ |
| 1081 | NativePrimitive *pPrim, \ |
| 1082 | CompositeInfo *pCompInfo) \ |
| 1083 | { \ |
| 1084 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1085 | Declare ## LUT_STRATEGY ## XparLut(SRC, DST, pixLut) \ |
| 1086 | \ |
| 1087 | Setup ## LUT_STRATEGY ## XparLut(SRC, DST, pixLut, pSrcInfo, pDstInfo); \ |
| 1088 | BlitLoopScaleWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1089 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1090 | x, width, height, \ |
| 1091 | sxloc, syloc, sxinc, syinc, shift, \ |
| 1092 | Body ## LUT_STRATEGY ## XparLut(pSrc, SRC, pixLut, \ |
| 1093 | pDst, DST, \ |
| 1094 | DstWrite, \ |
| 1095 | x, 0)); \ |
| 1096 | } |
| 1097 | #define DEFINE_XPAR_SCALE_BLIT_LUT8(SRC, DST, LUT_STRATEGY) \ |
| 1098 | DEFINE_XPAR_SCALE_BLIT_LUT(SRC, DST, LUT_STRATEGY) |
| 1099 | |
| 1100 | /* |
| 1101 | * This macro defines an entire function to implement a ScaleBlit inner |
| 1102 | * loop for scaling and converting pixels from a buffer of one type |
| 1103 | * containing transparent pixels into a buffer of another type. |
| 1104 | * |
| 1105 | * No blending is done of the pixels - the converted pixel value is |
| 1106 | * either copied or the destination is left untouched. |
| 1107 | */ |
| 1108 | #define DEFINE_XPAR_SCALE_BLIT(SRC, DST, STRATEGY) \ |
| 1109 | void NAME_XPAR_SCALE_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1110 | juint width, juint height, \ |
| 1111 | jint sxloc, jint syloc, \ |
| 1112 | jint sxinc, jint syinc, jint shift, \ |
| 1113 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1114 | SurfaceDataRasInfo *pDstInfo, \ |
| 1115 | NativePrimitive *pPrim, \ |
| 1116 | CompositeInfo *pCompInfo) \ |
| 1117 | { \ |
| 1118 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 1119 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1120 | \ |
| 1121 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 1122 | BlitLoopScaleWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1123 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1124 | x, width, height, \ |
| 1125 | sxloc, syloc, sxinc, syinc, shift, \ |
| 1126 | ConvertXparVia ## STRATEGY(pSrc, SRC, SrcRead, \ |
| 1127 | pDst, DST, DstWrite, \ |
| 1128 | x, 0)); \ |
| 1129 | } |
| 1130 | |
| 1131 | /* |
| 1132 | * This macro defines an entire function to implement a BlitBg inner loop |
| 1133 | * for converting pixels from a buffer of one type containing transparent |
| 1134 | * pixels into a buffer of another type with a specified bgcolor for the |
| 1135 | * transparent pixels. |
| 1136 | * No blending is done of the pixels other than to substitute the |
| 1137 | * bgcolor for any transparent pixels. |
| 1138 | */ |
| 1139 | #define DEFINE_XPAR_BLITBG(SRC, DST, STRATEGY) \ |
| 1140 | void NAME_XPAR_BLITBG(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1141 | juint width, juint height, \ |
| 1142 | jint bgpixel, \ |
| 1143 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1144 | SurfaceDataRasInfo *pDstInfo, \ |
| 1145 | NativePrimitive *pPrim, \ |
| 1146 | CompositeInfo *pCompInfo) \ |
| 1147 | { \ |
| 1148 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 1149 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1150 | Declare ## DST ## PixelData(bgdata) \ |
| 1151 | \ |
| 1152 | Extract ## DST ## PixelData(bgpixel, bgdata); \ |
| 1153 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1154 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1155 | width, height, \ |
| 1156 | BgCopyXparVia ## STRATEGY(pSrc, SRC, SrcRead, \ |
| 1157 | pDst, DST, DstWrite, \ |
| 1158 | 0, 0, bgpixel, bgdata)); \ |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * This macro defines an entire function to implement a BlitBg inner loop |
| 1163 | * for converting pixels from a buffer of byte pixels with a lookup |
| 1164 | * table containing transparent pixels into a buffer of another type |
| 1165 | * with a specified bgcolor for the transparent pixels. |
| 1166 | * No blending is done of the pixels other than to substitute the |
| 1167 | * bgcolor for any transparent pixels. |
| 1168 | */ |
| 1169 | #define DEFINE_XPAR_BLITBG_LUT(SRC, DST, LUT_STRATEGY) \ |
| 1170 | void NAME_XPAR_BLITBG(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1171 | juint width, juint height, \ |
| 1172 | jint bgpixel, \ |
| 1173 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1174 | SurfaceDataRasInfo *pDstInfo, \ |
| 1175 | NativePrimitive *pPrim, \ |
| 1176 | CompositeInfo *pCompInfo) \ |
| 1177 | { \ |
| 1178 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1179 | Declare ## LUT_STRATEGY ## BgLut(SRC, DST, pixLut) \ |
| 1180 | \ |
| 1181 | Setup ## LUT_STRATEGY ## BgLut(SRC, DST, pixLut, pSrcInfo, pDstInfo, \ |
| 1182 | bgpixel); \ |
| 1183 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1184 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1185 | width, height, \ |
| 1186 | Body ## LUT_STRATEGY ## BgLut(pSrc, SRC, pixLut, \ |
| 1187 | pDst, DST, \ |
| 1188 | DstWrite, 0, 0, \ |
| 1189 | bgpixel)); \ |
| 1190 | } |
| 1191 | #define DEFINE_XPAR_BLITBG_LUT8(SRC, DST, LUT_STRATEGY) \ |
| 1192 | DEFINE_XPAR_BLITBG_LUT(SRC, DST, LUT_STRATEGY) |
| 1193 | |
| 1194 | /* |
| 1195 | * This macro defines an entire function to implement a Blit inner loop |
| 1196 | * for converting pixels from a buffer of one type into a buffer of |
| 1197 | * another type. Each source pixel is XORed with the current XOR color value. |
| 1198 | * That result is then XORed with the destination pixel and the final |
| 1199 | * result is stored in the destination surface. |
| 1200 | */ |
| 1201 | #define DEFINE_XOR_BLIT(SRC, DST, DSTANYTYPE) \ |
| 1202 | void NAME_XOR_BLIT(SRC, DST)(void *srcBase, void *dstBase, \ |
| 1203 | juint width, juint height, \ |
| 1204 | SurfaceDataRasInfo *pSrcInfo, \ |
| 1205 | SurfaceDataRasInfo *pDstInfo, \ |
| 1206 | NativePrimitive *pPrim, \ |
| 1207 | CompositeInfo *pCompInfo) \ |
| 1208 | { \ |
| 1209 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 1210 | juint alphamask = pCompInfo->alphaMask; \ |
| 1211 | Declare ## DSTANYTYPE ## PixelData(xor) \ |
| 1212 | Declare ## DSTANYTYPE ## PixelData(mask) \ |
| 1213 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 1214 | Declare ## DST ## StoreVars(DstWrite) \ |
| 1215 | \ |
| 1216 | Extract ## DSTANYTYPE ## PixelData(xorpixel, xor); \ |
| 1217 | Extract ## DSTANYTYPE ## PixelData(alphamask, mask); \ |
| 1218 | \ |
| 1219 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 1220 | BlitLoopWidthHeight(SRC, pSrc, srcBase, pSrcInfo, \ |
| 1221 | DST, pDst, dstBase, pDstInfo, DstWrite, \ |
| 1222 | width, height, \ |
| 1223 | XorVia1IntArgb(pSrc, SRC, SrcRead, \ |
| 1224 | pDst, DST, DSTANYTYPE, \ |
| 1225 | 0, xorpixel, xor, \ |
| 1226 | alphamask, mask, pDstInfo)); \ |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * This macro defines an entire function to implement a FillRect inner loop |
| 1231 | * for setting a rectangular region of pixels to a specific pixel value. |
| 1232 | * No blending of the fill color is done with the pixels. |
| 1233 | */ |
| 1234 | #define DEFINE_SOLID_FILLRECT(DST) \ |
| 1235 | void NAME_SOLID_FILLRECT(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1236 | jint lox, jint loy, \ |
| 1237 | jint hix, jint hiy, \ |
| 1238 | jint pixel, \ |
| 1239 | NativePrimitive *pPrim, \ |
| 1240 | CompositeInfo *pCompInfo) \ |
| 1241 | { \ |
| 1242 | Declare ## DST ## PixelData(pix) \ |
| 1243 | DST ## DataType *pPix; \ |
| 1244 | jint scan = pRasInfo->scanStride; \ |
| 1245 | juint height = hiy - loy; \ |
| 1246 | juint width = hix - lox; \ |
| 1247 | \ |
| 1248 | pPix = PtrCoord(pRasInfo->rasBase, lox, DST ## PixelStride, loy, scan); \ |
| 1249 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1250 | do { \ |
| 1251 | juint x = 0; \ |
| 1252 | do { \ |
| 1253 | Store ## DST ## PixelData(pPix, x, pixel, pix); \ |
| 1254 | } while (++x < width); \ |
| 1255 | pPix = PtrAddBytes(pPix, scan); \ |
| 1256 | } while (--height > 0); \ |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * This macro defines an entire function to implement a FillSpans inner loop |
| 1261 | * for iterating through a list of spans and setting those regions of pixels |
| 1262 | * to a specific pixel value. No blending of the fill color is done with |
| 1263 | * the pixels. |
| 1264 | */ |
| 1265 | #define DEFINE_SOLID_FILLSPANS(DST) \ |
| 1266 | void NAME_SOLID_FILLSPANS(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1267 | SpanIteratorFuncs *pSpanFuncs, void *siData, \ |
| 1268 | jint pixel, NativePrimitive *pPrim, \ |
| 1269 | CompositeInfo *pCompInfo) \ |
| 1270 | { \ |
| 1271 | void *pBase = pRasInfo->rasBase; \ |
| 1272 | Declare ## DST ## PixelData(pix) \ |
| 1273 | jint scan = pRasInfo->scanStride; \ |
| 1274 | jint bbox[4]; \ |
| 1275 | \ |
| 1276 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1277 | while ((*pSpanFuncs->nextSpan)(siData, bbox)) { \ |
| 1278 | jint x = bbox[0]; \ |
| 1279 | jint y = bbox[1]; \ |
| 1280 | juint w = bbox[2] - x; \ |
| 1281 | juint h = bbox[3] - y; \ |
| 1282 | DST ## DataType *pPix = PtrCoord(pBase, \ |
| 1283 | x, DST ## PixelStride, \ |
| 1284 | y, scan); \ |
| 1285 | do { \ |
| 1286 | juint relx; \ |
| 1287 | for (relx = 0; relx < w; relx++) { \ |
| 1288 | Store ## DST ## PixelData(pPix, relx, pixel, pix); \ |
| 1289 | } \ |
| 1290 | pPix = PtrAddBytes(pPix, scan); \ |
| 1291 | } while (--h > 0); \ |
| 1292 | } \ |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * This macro defines an entire function to implement a FillParallelogram |
| 1297 | * inner loop for tracing 2 diagonal edges (left and right) and setting |
| 1298 | * those regions of pixels between them to a specific pixel value. |
| 1299 | * No blending of the fill color is done with the pixels. |
| 1300 | */ |
| 1301 | #define DEFINE_SOLID_FILLPGRAM(DST) \ |
| 1302 | void NAME_SOLID_FILLPGRAM(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1303 | jint lox, jint loy, jint hix, jint hiy, \ |
| 1304 | jlong leftx, jlong dleftx, \ |
| 1305 | jlong rightx, jlong drightx, \ |
| 1306 | jint pixel, struct _NativePrimitive *pPrim, \ |
| 1307 | CompositeInfo *pCompInfo) \ |
| 1308 | { \ |
| 1309 | Declare ## DST ## PixelData(pix) \ |
| 1310 | jint scan = pRasInfo->scanStride; \ |
| 1311 | DST ## DataType *pPix = PtrCoord(pRasInfo->rasBase, 0, 0, loy, scan); \ |
| 1312 | \ |
| 1313 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1314 | while (loy < hiy) { \ |
| 1315 | jint lx = WholeOfLong(leftx); \ |
| 1316 | jint rx = WholeOfLong(rightx); \ |
| 1317 | if (lx < lox) lx = lox; \ |
| 1318 | if (rx > hix) rx = hix; \ |
| 1319 | while (lx < rx) { \ |
| 1320 | Store ## DST ## PixelData(pPix, lx, pixel, pix); \ |
| 1321 | lx++; \ |
| 1322 | } \ |
| 1323 | pPix = PtrAddBytes(pPix, scan); \ |
| 1324 | leftx += dleftx; \ |
| 1325 | rightx += drightx; \ |
| 1326 | loy++; \ |
| 1327 | } \ |
| 1328 | } |
| 1329 | |
| 1330 | #define DEFINE_SOLID_DRAWPARALLELOGRAM_FUNCS(DST) \ |
| 1331 | DrawParallelogramFuncs NAME_SOLID_PGRAM_FUNCS(DST) = { \ |
| 1332 | NAME_SOLID_FILLPGRAM(DST), \ |
| 1333 | NAME_SOLID_DRAWLINE(DST), \ |
| 1334 | }; |
| 1335 | |
| 1336 | #define DEFINE_SOLID_PARALLELOGRAM(DST) \ |
| 1337 | DEFINE_SOLID_FILLPGRAM(DST) \ |
| 1338 | DEFINE_SOLID_DRAWPARALLELOGRAM_FUNCS(DST) |
| 1339 | |
| 1340 | /* |
| 1341 | * This macro declares the bumpmajor and bumpminor variables used for the |
| 1342 | * DrawLine functions. |
| 1343 | */ |
| 1344 | #define DeclareBumps(BUMPMAJOR, BUMPMINOR) \ |
| 1345 | jint BUMPMAJOR, BUMPMINOR; |
| 1346 | |
| 1347 | /* |
| 1348 | * This macro extracts "instructions" from the bumpmajor and bumpminor masks |
| 1349 | * that determine the initial bumpmajor and bumpminor values. The bumpmajor |
| 1350 | * and bumpminor masks are laid out in the following format: |
| 1351 | * |
| 1352 | * bumpmajormask: bumpminormask: |
| 1353 | * bit0: bumpmajor = pixelStride bit0: bumpminor = pixelStride |
| 1354 | * bit1: bumpmajor = -pixelStride bit1: bumpminor = -pixelStride |
| 1355 | * bit2: bumpmajor = scanStride bit2: bumpminor = scanStride |
| 1356 | * bit3: bumpmajor = -scanStride bit3: bumpminor = -scanStride |
| 1357 | */ |
| 1358 | #define InitBumps(BUMPMAJOR, BUMPMINOR, \ |
| 1359 | BUMPMAJORMASK, BUMPMINORMASK, \ |
| 1360 | PIXELSTRIDE, SCANSTRIDE) \ |
| 1361 | BUMPMAJOR = (BUMPMAJORMASK & BUMP_POS_PIXEL) ? PIXELSTRIDE : \ |
| 1362 | (BUMPMAJORMASK & BUMP_NEG_PIXEL) ? -PIXELSTRIDE : \ |
| 1363 | (BUMPMAJORMASK & BUMP_POS_SCAN) ? SCANSTRIDE : \ |
| 1364 | -SCANSTRIDE; \ |
| 1365 | BUMPMINOR = (BUMPMINORMASK & BUMP_POS_PIXEL) ? PIXELSTRIDE : \ |
| 1366 | (BUMPMINORMASK & BUMP_NEG_PIXEL) ? -PIXELSTRIDE : \ |
| 1367 | (BUMPMINORMASK & BUMP_POS_SCAN) ? SCANSTRIDE : \ |
| 1368 | (BUMPMINORMASK & BUMP_NEG_SCAN) ? -SCANSTRIDE : \ |
| 1369 | 0; \ |
| 1370 | BUMPMINOR += BUMPMAJOR; |
| 1371 | |
| 1372 | /* |
| 1373 | * This macro defines an entire function to implement a DrawLine inner loop |
| 1374 | * for iterating along a horizontal or vertical line and setting the pixels |
| 1375 | * on that line to a specific pixel value. No blending of the fill color |
| 1376 | * is done with the pixels. |
| 1377 | */ |
| 1378 | #define DEFINE_SOLID_DRAWLINE(DST) \ |
| 1379 | void NAME_SOLID_DRAWLINE(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1380 | jint x1, jint y1, jint pixel, \ |
| 1381 | jint steps, jint error, \ |
| 1382 | jint bumpmajormask, jint errmajor, \ |
| 1383 | jint bumpminormask, jint errminor, \ |
| 1384 | NativePrimitive *pPrim, \ |
| 1385 | CompositeInfo *pCompInfo) \ |
| 1386 | { \ |
| 1387 | Declare ## DST ## PixelData(pix) \ |
| 1388 | jint scan = pRasInfo->scanStride; \ |
| 1389 | DST ## DataType *pPix = PtrCoord(pRasInfo->rasBase, \ |
| 1390 | x1, DST ## PixelStride, \ |
| 1391 | y1, scan); \ |
| 1392 | DeclareBumps(bumpmajor, bumpminor) \ |
| 1393 | \ |
| 1394 | InitBumps(bumpmajor, bumpminor, bumpmajormask, bumpminormask, \ |
| 1395 | DST ## PixelStride, scan); \ |
| 1396 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1397 | if (errmajor == 0) { \ |
| 1398 | do { \ |
| 1399 | Store ## DST ## PixelData(pPix, 0, pixel, pix); \ |
| 1400 | pPix = PtrAddBytes(pPix, bumpmajor); \ |
| 1401 | } while (--steps > 0); \ |
| 1402 | } else { \ |
| 1403 | do { \ |
| 1404 | Store ## DST ## PixelData(pPix, 0, pixel, pix); \ |
| 1405 | if (error < 0) { \ |
| 1406 | pPix = PtrAddBytes(pPix, bumpmajor); \ |
| 1407 | error += errmajor; \ |
| 1408 | } else { \ |
| 1409 | pPix = PtrAddBytes(pPix, bumpminor); \ |
| 1410 | error -= errminor; \ |
| 1411 | } \ |
| 1412 | } while (--steps > 0); \ |
| 1413 | } \ |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * This macro defines an entire function to implement a FillRect inner loop |
| 1418 | * for setting a rectangular region of pixels to a specific pixel value. |
| 1419 | * Each destination pixel is XORed with the current XOR mode color as well as |
| 1420 | * the current fill color. |
| 1421 | */ |
| 1422 | #define DEFINE_XOR_FILLRECT(DST) \ |
| 1423 | void NAME_XOR_FILLRECT(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1424 | jint lox, jint loy, \ |
| 1425 | jint hix, jint hiy, \ |
| 1426 | jint pixel, \ |
| 1427 | NativePrimitive *pPrim, \ |
| 1428 | CompositeInfo *pCompInfo) \ |
| 1429 | { \ |
| 1430 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 1431 | juint alphamask = pCompInfo->alphaMask; \ |
| 1432 | Declare ## DST ## PixelData(xor) \ |
| 1433 | Declare ## DST ## PixelData(pix) \ |
| 1434 | Declare ## DST ## PixelData(mask) \ |
| 1435 | DST ## DataType *pPix; \ |
| 1436 | jint scan = pRasInfo->scanStride; \ |
| 1437 | juint height = hiy - loy; \ |
| 1438 | juint width = hix - lox; \ |
| 1439 | \ |
| 1440 | pPix = PtrCoord(pRasInfo->rasBase, lox, DST ## PixelStride, loy, scan); \ |
| 1441 | Extract ## DST ## PixelData(xorpixel, xor); \ |
| 1442 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1443 | Extract ## DST ## PixelData(alphamask, mask); \ |
| 1444 | \ |
| 1445 | do { \ |
| 1446 | juint x = 0; \ |
| 1447 | do { \ |
| 1448 | Xor ## DST ## PixelData(pixel, pix, pPix, x, \ |
| 1449 | xorpixel, xor, alphamask, mask); \ |
| 1450 | } while (++x < width); \ |
| 1451 | pPix = PtrAddBytes(pPix, scan); \ |
| 1452 | } while (--height > 0); \ |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * This macro defines an entire function to implement a FillSpans inner loop |
| 1457 | * for iterating through a list of spans and setting those regions of pixels |
| 1458 | * to a specific pixel value. Each destination pixel is XORed with the |
| 1459 | * current XOR mode color as well as the current fill color. |
| 1460 | */ |
| 1461 | #define DEFINE_XOR_FILLSPANS(DST) \ |
| 1462 | void NAME_XOR_FILLSPANS(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1463 | SpanIteratorFuncs *pSpanFuncs, \ |
| 1464 | void *siData, jint pixel, \ |
| 1465 | NativePrimitive *pPrim, \ |
| 1466 | CompositeInfo *pCompInfo) \ |
| 1467 | { \ |
| 1468 | void *pBase = pRasInfo->rasBase; \ |
| 1469 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 1470 | juint alphamask = pCompInfo->alphaMask; \ |
| 1471 | Declare ## DST ## PixelData(xor) \ |
| 1472 | Declare ## DST ## PixelData(pix) \ |
| 1473 | Declare ## DST ## PixelData(mask) \ |
| 1474 | jint scan = pRasInfo->scanStride; \ |
| 1475 | jint bbox[4]; \ |
| 1476 | \ |
| 1477 | Extract ## DST ## PixelData(xorpixel, xor); \ |
| 1478 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1479 | Extract ## DST ## PixelData(alphamask, mask); \ |
| 1480 | \ |
| 1481 | while ((*pSpanFuncs->nextSpan)(siData, bbox)) { \ |
| 1482 | jint x = bbox[0]; \ |
| 1483 | jint y = bbox[1]; \ |
| 1484 | juint w = bbox[2] - x; \ |
| 1485 | juint h = bbox[3] - y; \ |
| 1486 | DST ## DataType *pPix = PtrCoord(pBase, \ |
| 1487 | x, DST ## PixelStride, \ |
| 1488 | y, scan); \ |
| 1489 | do { \ |
| 1490 | juint relx; \ |
| 1491 | for (relx = 0; relx < w; relx++) { \ |
| 1492 | Xor ## DST ## PixelData(pixel, pix, pPix, relx, \ |
| 1493 | xorpixel, xor, alphamask, mask); \ |
| 1494 | } \ |
| 1495 | pPix = PtrAddBytes(pPix, scan); \ |
| 1496 | } while (--h > 0); \ |
| 1497 | } \ |
| 1498 | } |
| 1499 | |
| 1500 | /* |
| 1501 | * This macro defines an entire function to implement a DrawLine inner loop |
| 1502 | * for iterating along a horizontal or vertical line and setting the pixels |
| 1503 | * on that line to a specific pixel value. Each destination pixel is XORed |
| 1504 | * with the current XOR mode color as well as the current draw color. |
| 1505 | */ |
| 1506 | #define DEFINE_XOR_DRAWLINE(DST) \ |
| 1507 | void NAME_XOR_DRAWLINE(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1508 | jint x1, jint y1, jint pixel, \ |
| 1509 | jint steps, jint error, \ |
| 1510 | jint bumpmajormask, jint errmajor, \ |
| 1511 | jint bumpminormask, jint errminor, \ |
| 1512 | NativePrimitive *pPrim, \ |
| 1513 | CompositeInfo *pCompInfo) \ |
| 1514 | { \ |
| 1515 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 1516 | juint alphamask = pCompInfo->alphaMask; \ |
| 1517 | Declare ## DST ## PixelData(xor) \ |
| 1518 | Declare ## DST ## PixelData(pix) \ |
| 1519 | Declare ## DST ## PixelData(mask) \ |
| 1520 | jint scan = pRasInfo->scanStride; \ |
| 1521 | DST ## DataType *pPix = PtrCoord(pRasInfo->rasBase, \ |
| 1522 | x1, DST ## PixelStride, \ |
| 1523 | y1, scan); \ |
| 1524 | DeclareBumps(bumpmajor, bumpminor) \ |
| 1525 | \ |
| 1526 | InitBumps(bumpmajor, bumpminor, bumpmajormask, bumpminormask, \ |
| 1527 | DST ## PixelStride, scan); \ |
| 1528 | Extract ## DST ## PixelData(xorpixel, xor); \ |
| 1529 | Extract ## DST ## PixelData(pixel, pix); \ |
| 1530 | Extract ## DST ## PixelData(alphamask, mask); \ |
| 1531 | \ |
| 1532 | if (errmajor == 0) { \ |
| 1533 | do { \ |
| 1534 | Xor ## DST ## PixelData(pixel, pix, pPix, 0, \ |
| 1535 | xorpixel, xor, alphamask, mask); \ |
| 1536 | pPix = PtrAddBytes(pPix, bumpmajor); \ |
| 1537 | } while (--steps > 0); \ |
| 1538 | } else { \ |
| 1539 | do { \ |
| 1540 | Xor ## DST ## PixelData(pixel, pix, pPix, 0, \ |
| 1541 | xorpixel, xor, alphamask, mask); \ |
| 1542 | if (error < 0) { \ |
| 1543 | pPix = PtrAddBytes(pPix, bumpmajor); \ |
| 1544 | error += errmajor; \ |
| 1545 | } else { \ |
| 1546 | pPix = PtrAddBytes(pPix, bumpminor); \ |
| 1547 | error -= errminor; \ |
| 1548 | } \ |
| 1549 | } while (--steps > 0); \ |
| 1550 | } \ |
| 1551 | } |
| 1552 | |
| 1553 | /* |
| 1554 | * This macro is used to declare the variables needed by the glyph clipping |
| 1555 | * macro. |
| 1556 | */ |
| 1557 | #define DeclareDrawGlyphListClipVars(PIXELS, ROWBYTES, WIDTH, HEIGHT, \ |
| 1558 | LEFT, TOP, RIGHT, BOTTOM) \ |
| 1559 | const jubyte * PIXELS; \ |
| 1560 | int ROWBYTES; \ |
| 1561 | int LEFT, TOP; \ |
| 1562 | int WIDTH, HEIGHT; \ |
| 1563 | int RIGHT, BOTTOM; |
| 1564 | |
| 1565 | /* |
| 1566 | * This macro represents the glyph clipping code used in the various |
| 1567 | * DRAWGLYPHLIST macros. This macro is typically used within a loop. Note |
| 1568 | * that the body of this macro is NOT wrapped in a do..while block due to |
| 1569 | * the use of continue statements within the block (those continue statements |
| 1570 | * are intended skip the outer loop, not the do..while loop). To combat this |
| 1571 | * problem, pass in the code (typically a continue statement) that should be |
| 1572 | * executed when a null glyph is encountered. |
| 1573 | */ |
| 1574 | #define ClipDrawGlyphList(DST, PIXELS, BYTESPERPIXEL, ROWBYTES, WIDTH, HEIGHT,\ |
| 1575 | LEFT, TOP, RIGHT, BOTTOM, \ |
| 1576 | CLIPLEFT, CLIPTOP, CLIPRIGHT, CLIPBOTTOM, \ |
| 1577 | GLYPHS, GLYPHCOUNTER, NULLGLYPHCODE) \ |
| 1578 | PIXELS = (const jubyte *)GLYPHS[GLYPHCOUNTER].pixels; \ |
| 1579 | if (!PIXELS) { \ |
| 1580 | NULLGLYPHCODE; \ |
| 1581 | } \ |
| 1582 | ROWBYTES = GLYPHS[GLYPHCOUNTER].rowBytes; \ |
| 1583 | LEFT = GLYPHS[GLYPHCOUNTER].x; \ |
| 1584 | TOP = GLYPHS[GLYPHCOUNTER].y; \ |
| 1585 | WIDTH = GLYPHS[GLYPHCOUNTER].width; \ |
| 1586 | HEIGHT = GLYPHS[GLYPHCOUNTER].height; \ |
| 1587 | \ |
| 1588 | /* if any clipping required, modify parameters now */ \ |
| 1589 | RIGHT = LEFT + WIDTH; \ |
| 1590 | BOTTOM = TOP + HEIGHT; \ |
| 1591 | if (LEFT < CLIPLEFT) { \ |
| 1592 | /* Multiply needed for LCD text as PIXELS is really BYTES */ \ |
| 1593 | PIXELS += (CLIPLEFT - LEFT) * BYTESPERPIXEL ; \ |
| 1594 | LEFT = CLIPLEFT; \ |
| 1595 | } \ |
| 1596 | if (TOP < CLIPTOP) { \ |
| 1597 | PIXELS += (CLIPTOP - TOP) * ROWBYTES; \ |
| 1598 | TOP = CLIPTOP; \ |
| 1599 | } \ |
| 1600 | if (RIGHT > CLIPRIGHT) { \ |
| 1601 | RIGHT = CLIPRIGHT; \ |
| 1602 | } \ |
| 1603 | if (BOTTOM > CLIPBOTTOM) { \ |
| 1604 | BOTTOM = CLIPBOTTOM; \ |
| 1605 | } \ |
| 1606 | if (RIGHT <= LEFT || BOTTOM <= TOP) { \ |
| 1607 | NULLGLYPHCODE; \ |
| 1608 | } \ |
| 1609 | WIDTH = RIGHT - LEFT; \ |
| 1610 | HEIGHT = BOTTOM - TOP; |
| 1611 | |
| 1612 | #define DEFINE_SOLID_DRAWGLYPHLIST(DST) \ |
| 1613 | void NAME_SOLID_DRAWGLYPHLIST(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1614 | ImageRef *glyphs, \ |
| 1615 | jint totalGlyphs, jint fgpixel, \ |
| 1616 | jint argbcolor, \ |
| 1617 | jint clipLeft, jint clipTop, \ |
| 1618 | jint clipRight, jint clipBottom, \ |
| 1619 | NativePrimitive *pPrim, \ |
| 1620 | CompositeInfo *pCompInfo) \ |
| 1621 | { \ |
| 1622 | jint glyphCounter; \ |
| 1623 | jint scan = pRasInfo->scanStride; \ |
| 1624 | Declare ## DST ## PixelData(pix) \ |
| 1625 | DST ## DataType *pPix; \ |
| 1626 | \ |
| 1627 | Extract ## DST ## PixelData(fgpixel, pix); \ |
| 1628 | for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) { \ |
| 1629 | DeclareDrawGlyphListClipVars(pixels, rowBytes, width, height, \ |
| 1630 | left, top, right, bottom) \ |
| 1631 | ClipDrawGlyphList(DST, pixels, 1, rowBytes, width, height, \ |
| 1632 | left, top, right, bottom, \ |
| 1633 | clipLeft, clipTop, clipRight, clipBottom, \ |
| 1634 | glyphs, glyphCounter, continue) \ |
| 1635 | pPix = PtrCoord(pRasInfo->rasBase,left,DST ## PixelStride,top,scan); \ |
| 1636 | \ |
| 1637 | do { \ |
| 1638 | int x = 0; \ |
| 1639 | do { \ |
| 1640 | if (pixels[x]) { \ |
| 1641 | Store ## DST ## PixelData(pPix, x, fgpixel, pix); \ |
| 1642 | } \ |
| 1643 | } while (++x < width); \ |
| 1644 | pPix = PtrAddBytes(pPix, scan); \ |
| 1645 | pixels += rowBytes; \ |
| 1646 | } while (--height > 0); \ |
| 1647 | } \ |
| 1648 | } |
| 1649 | |
| 1650 | #define GlyphListAABlend3ByteRgb(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1651 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1652 | do { \ |
| 1653 | DeclareCompVarsFor3ByteRgb(dst) \ |
| 1654 | jint mixValSrc = GLYPH_PIXELS[PIXEL_INDEX]; \ |
| 1655 | if (mixValSrc) { \ |
| 1656 | if (mixValSrc < 255) { \ |
| 1657 | jint mixValDst = 255 - mixValSrc; \ |
| 1658 | Load ## DST ## To3ByteRgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1659 | dstR, dstG, dstB); \ |
| 1660 | MultMultAddAndStore3ByteRgbComps(dst, mixValDst, dst, \ |
| 1661 | mixValSrc, SRC_PREFIX); \ |
| 1662 | Store ## DST ## From3ByteRgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1663 | dstR, dstG, dstB); \ |
| 1664 | } else { \ |
| 1665 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1666 | FG_PIXEL, PREFIX); \ |
| 1667 | } \ |
| 1668 | } \ |
| 1669 | } while (0); |
| 1670 | |
| 1671 | /* |
| 1672 | * Antialiased glyph drawing results in artifacts around the character edges |
| 1673 | * when text is drawn ontop of translucent background color. The standard |
| 1674 | * blending equation for two colors: |
| 1675 | * destColor = srcColor * glyphAlpha + destColor * (1 - glyphAlpha) |
| 1676 | * works only when srcColor and destColor are opaque. For translucent srcColor |
| 1677 | * and destColor, the respective alpha components in each color will influence |
| 1678 | * the visibility of the color and the visibility of the color below it. Hence |
| 1679 | * the equation for blending is given as: |
| 1680 | * resA = srcAlpha + dstAlpha * (1 - srcAlpha) |
| 1681 | * resCol = (srcColor * srcAlpha + destColor * destAlpha * (1- srcAlpha))/resA |
| 1682 | * In addition, srcAlpha is multiplied with the glyphAlpha- that indicates the |
| 1683 | * grayscale mask value of the glyph being drawn. The combined result provides |
| 1684 | * smooth antialiased text on the buffer without any artifacts. Since the |
| 1685 | * logic is executed for every pixel in a glyph, the implementation is further |
| 1686 | * optimized to reduce computation and improve execution time. |
| 1687 | */ |
| 1688 | #define GlyphListAABlend4ByteArgb(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1689 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1690 | do { \ |
| 1691 | DeclareAlphaVarFor4ByteArgb(resA) \ |
| 1692 | DeclareCompVarsFor4ByteArgb(res) \ |
| 1693 | jint mixValSrc = GLYPH_PIXELS[PIXEL_INDEX]; \ |
| 1694 | if (mixValSrc) { \ |
| 1695 | if (mixValSrc != 0xff) { \ |
| 1696 | PromoteByteAlphaFor4ByteArgb(mixValSrc); \ |
| 1697 | resA = MultiplyAlphaFor4ByteArgb(mixValSrc, SRC_PREFIX ## A); \ |
| 1698 | } else { \ |
| 1699 | resA = SRC_PREFIX ## A; \ |
| 1700 | } \ |
| 1701 | if (resA != MaxValFor4ByteArgb) { \ |
| 1702 | DeclareAndInvertAlphaVarFor4ByteArgb(dstF, resA) \ |
| 1703 | DeclareAndClearAlphaVarFor4ByteArgb(dstA) \ |
| 1704 | DeclareCompVarsFor4ByteArgb(dst) \ |
| 1705 | DeclareCompVarsFor4ByteArgb(tmp) \ |
| 1706 | MultiplyAndStore4ByteArgbComps(res, resA, SRC_PREFIX); \ |
| 1707 | if (!(DST ## IsPremultiplied)) { \ |
| 1708 | Load ## DST ## To4ByteArgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1709 | dstA, dstR, dstG, dstB); \ |
| 1710 | Store4ByteArgbCompsUsingOp(tmp, =, dst); \ |
| 1711 | } else { \ |
| 1712 | Declare ## DST ## AlphaLoadData(DstPix) \ |
| 1713 | jint pixelOffset = PIXEL_INDEX * (DST ## PixelStride); \ |
| 1714 | DST ## DataType *pixelAddress = PtrAddBytes(DST_PTR, \ |
| 1715 | pixelOffset); \ |
| 1716 | LoadAlphaFrom ## DST ## For4ByteArgb(pixelAddress, \ |
| 1717 | DstPix, \ |
| 1718 | dst); \ |
| 1719 | Postload4ByteArgbFrom ## DST(pixelAddress, \ |
| 1720 | DstPix, \ |
| 1721 | tmp); \ |
| 1722 | } \ |
| 1723 | if (dstA) { \ |
| 1724 | DeclareAlphaVarFor4ByteArgb(blendF) \ |
| 1725 | dstA = MultiplyAlphaFor4ByteArgb(dstF, dstA); \ |
| 1726 | resA += dstA; \ |
| 1727 | blendF = SrcOver ## DST ## BlendFactor(dstF, dstA); \ |
| 1728 | if (blendF != MaxValFor4ByteArgb) { \ |
| 1729 | MultiplyAndStore4ByteArgbComps(tmp, \ |
| 1730 | blendF, \ |
| 1731 | tmp); \ |
| 1732 | } \ |
| 1733 | Store4ByteArgbCompsUsingOp(res, +=, tmp); \ |
| 1734 | } \ |
| 1735 | } else { \ |
| 1736 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1737 | FG_PIXEL, PREFIX); \ |
| 1738 | break; \ |
| 1739 | } \ |
| 1740 | if (!(DST ## IsOpaque) && \ |
| 1741 | !(DST ## IsPremultiplied) && resA && \ |
| 1742 | resA < MaxValFor4ByteArgb) \ |
| 1743 | { \ |
| 1744 | DivideAndStore4ByteArgbComps(res, res, resA); \ |
| 1745 | } \ |
| 1746 | Store ## DST ## From4ByteArgbComps(DST_PTR, pix, \ |
| 1747 | PIXEL_INDEX, res); \ |
| 1748 | } \ |
| 1749 | } while (0); |
| 1750 | |
| 1751 | #define GlyphListAABlend1ByteGray(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1752 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1753 | do { \ |
| 1754 | DeclareCompVarsFor1ByteGray(dst) \ |
| 1755 | jint mixValSrc = GLYPH_PIXELS[PIXEL_INDEX]; \ |
| 1756 | if (mixValSrc) { \ |
| 1757 | if (mixValSrc < 255) { \ |
| 1758 | jint mixValDst = 255 - mixValSrc; \ |
| 1759 | Load ## DST ## To1ByteGray(DST_PTR, pix, PIXEL_INDEX, \ |
| 1760 | dstG); \ |
| 1761 | MultMultAddAndStore1ByteGrayComps(dst, mixValDst, dst, \ |
| 1762 | mixValSrc, SRC_PREFIX); \ |
| 1763 | Store ## DST ## From1ByteGray(DST_PTR, pix, PIXEL_INDEX, \ |
| 1764 | dstG); \ |
| 1765 | } else { \ |
| 1766 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1767 | FG_PIXEL, PREFIX); \ |
| 1768 | } \ |
| 1769 | } \ |
| 1770 | } while (0); |
| 1771 | |
| 1772 | #define GlyphListAABlend1ShortGray(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1773 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1774 | do { \ |
| 1775 | DeclareCompVarsFor1ShortGray(dst) \ |
| 1776 | juint mixValSrc = GLYPH_PIXELS[PIXEL_INDEX]; \ |
| 1777 | if (mixValSrc) { \ |
| 1778 | if (mixValSrc < 255) { \ |
| 1779 | juint mixValDst; \ |
| 1780 | PromoteByteAlphaFor1ShortGray(mixValSrc); \ |
| 1781 | mixValDst = 0xffff - mixValSrc; \ |
| 1782 | Load ## DST ## To1ShortGray(DST_PTR, pix, PIXEL_INDEX, \ |
| 1783 | dstG); \ |
| 1784 | MultMultAddAndStore1ShortGrayComps(dst, mixValDst, dst, \ |
| 1785 | mixValSrc, SRC_PREFIX); \ |
| 1786 | Store ## DST ## From1ShortGray(DST_PTR, pix, PIXEL_INDEX, \ |
| 1787 | dstG); \ |
| 1788 | } else { \ |
| 1789 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1790 | FG_PIXEL, PREFIX); \ |
| 1791 | } \ |
| 1792 | } \ |
| 1793 | } while (0); |
| 1794 | |
| 1795 | #define DEFINE_SOLID_DRAWGLYPHLISTAA(DST, STRATEGY) \ |
| 1796 | void NAME_SOLID_DRAWGLYPHLISTAA(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1797 | ImageRef *glyphs, \ |
| 1798 | jint totalGlyphs, jint fgpixel, \ |
| 1799 | jint argbcolor, \ |
| 1800 | jint clipLeft, jint clipTop, \ |
| 1801 | jint clipRight, jint clipBottom, \ |
| 1802 | NativePrimitive *pPrim, \ |
| 1803 | CompositeInfo *pCompInfo) \ |
| 1804 | { \ |
| 1805 | jint glyphCounter; \ |
| 1806 | jint scan = pRasInfo->scanStride; \ |
| 1807 | DST ## DataType *pPix; \ |
| 1808 | Declare ## DST ## PixelData(solidpix) \ |
| 1809 | DeclareAlphaVarFor ## STRATEGY(srcA) \ |
| 1810 | DeclareCompVarsFor ## STRATEGY(src) \ |
| 1811 | \ |
| 1812 | Declare ## DST ## LoadVars(pix) \ |
| 1813 | Declare ## DST ## StoreVars(pix) \ |
| 1814 | \ |
| 1815 | Init ## DST ## LoadVars(pix, pRasInfo); \ |
| 1816 | Init ## DST ## StoreVarsY(pix, pRasInfo); \ |
| 1817 | Init ## DST ## StoreVarsX(pix, pRasInfo); \ |
| 1818 | Extract ## STRATEGY ## CompsAndAlphaFromArgb(argbcolor, src); \ |
| 1819 | Extract ## DST ## PixelData(fgpixel, solidpix); \ |
| 1820 | \ |
| 1821 | for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) { \ |
| 1822 | DeclareDrawGlyphListClipVars(pixels, rowBytes, width, height, \ |
| 1823 | left, top, right, bottom) \ |
| 1824 | ClipDrawGlyphList(DST, pixels, 1, rowBytes, width, height, \ |
| 1825 | left, top, right, bottom, \ |
| 1826 | clipLeft, clipTop, clipRight, clipBottom, \ |
| 1827 | glyphs, glyphCounter, continue) \ |
| 1828 | pPix = PtrCoord(pRasInfo->rasBase,left,DST ## PixelStride,top,scan); \ |
| 1829 | \ |
| 1830 | Set ## DST ## StoreVarsYPos(pix, pRasInfo, top); \ |
| 1831 | do { \ |
| 1832 | int x = 0; \ |
| 1833 | Set ## DST ## StoreVarsXPos(pix, pRasInfo, left); \ |
| 1834 | do { \ |
| 1835 | GlyphListAABlend ## STRATEGY(DST, pixels, x, pPix, \ |
| 1836 | fgpixel, solidpix, src); \ |
| 1837 | Next ## DST ## StoreVarsX(pix); \ |
| 1838 | } while (++x < width); \ |
| 1839 | pPix = PtrAddBytes(pPix, scan); \ |
| 1840 | pixels += rowBytes; \ |
| 1841 | Next ## DST ## StoreVarsY(pix); \ |
| 1842 | } while (--height > 0); \ |
| 1843 | } \ |
| 1844 | } |
| 1845 | |
| 1846 | |
| 1847 | #define GlyphListLCDBlend3ByteRgb(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1848 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1849 | do { \ |
| 1850 | DeclareCompVarsFor3ByteRgb(dst) \ |
| 1851 | jint mixValSrcG = GLYPH_PIXELS[PIXEL_INDEX*3+1]; \ |
| 1852 | jint mixValSrcR, mixValSrcB; \ |
| 1853 | if (rgbOrder) { \ |
| 1854 | mixValSrcR = GLYPH_PIXELS[PIXEL_INDEX*3]; \ |
| 1855 | mixValSrcB = GLYPH_PIXELS[PIXEL_INDEX*3+2]; \ |
| 1856 | } else { \ |
| 1857 | mixValSrcR = GLYPH_PIXELS[PIXEL_INDEX*3+2]; \ |
| 1858 | mixValSrcB = GLYPH_PIXELS[PIXEL_INDEX*3]; \ |
| 1859 | } \ |
| 1860 | if ((mixValSrcR | mixValSrcG | mixValSrcB) != 0) { \ |
| 1861 | if ((mixValSrcR & mixValSrcG & mixValSrcB) < 255) { \ |
| 1862 | jint mixValDstR = 255 - mixValSrcR; \ |
| 1863 | jint mixValDstG = 255 - mixValSrcG; \ |
| 1864 | jint mixValDstB = 255 - mixValSrcB; \ |
| 1865 | Load ## DST ## To3ByteRgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1866 | dstR, dstG, dstB); \ |
| 1867 | dstR = invGammaLut[dstR]; \ |
| 1868 | dstG = invGammaLut[dstG]; \ |
| 1869 | dstB = invGammaLut[dstB]; \ |
| 1870 | MultMultAddAndStoreLCD3ByteRgbComps(dst, mixValDst, dst, \ |
| 1871 | mixValSrc, SRC_PREFIX); \ |
| 1872 | dstR = gammaLut[dstR]; \ |
| 1873 | dstG = gammaLut[dstG]; \ |
| 1874 | dstB = gammaLut[dstB]; \ |
| 1875 | Store ## DST ## From3ByteRgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1876 | dstR, dstG, dstB); \ |
| 1877 | } else { \ |
| 1878 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1879 | FG_PIXEL, PREFIX); \ |
| 1880 | } \ |
| 1881 | } \ |
| 1882 | } while (0) |
| 1883 | |
| 1884 | |
| 1885 | /* There is no alpha channel in the glyph data with which to interpolate |
| 1886 | * between the src and dst alphas, but a reasonable approximation is to |
| 1887 | * sum the coverage alphas of the colour channels and divide by 3. |
| 1888 | * We can approximate division by 3 using mult and shift. See |
| 1889 | * sun/font/scalerMethods.c for a detailed explanation of why "21931" |
| 1890 | */ |
| 1891 | #define GlyphListLCDBlend4ByteArgb(DST, GLYPH_PIXELS, PIXEL_INDEX, DST_PTR, \ |
| 1892 | FG_PIXEL, PREFIX, SRC_PREFIX) \ |
| 1893 | do { \ |
| 1894 | DeclareAlphaVarFor4ByteArgb(dstA) \ |
| 1895 | DeclareCompVarsFor4ByteArgb(dst) \ |
| 1896 | jint mixValSrcG = GLYPH_PIXELS[PIXEL_INDEX*3+1]; \ |
| 1897 | jint mixValSrcR, mixValSrcB; \ |
| 1898 | if (rgbOrder) { \ |
| 1899 | mixValSrcR = GLYPH_PIXELS[PIXEL_INDEX*3]; \ |
| 1900 | mixValSrcB = GLYPH_PIXELS[PIXEL_INDEX*3+2]; \ |
| 1901 | } else { \ |
| 1902 | mixValSrcR = GLYPH_PIXELS[PIXEL_INDEX*3+2]; \ |
| 1903 | mixValSrcB = GLYPH_PIXELS[PIXEL_INDEX*3]; \ |
| 1904 | } \ |
| 1905 | if ((mixValSrcR | mixValSrcG | mixValSrcB) != 0) { \ |
| 1906 | if ((mixValSrcR & mixValSrcG & mixValSrcB) < 255) { \ |
| 1907 | jint mixValDstR = 255 - mixValSrcR; \ |
| 1908 | jint mixValDstG = 255 - mixValSrcG; \ |
| 1909 | jint mixValDstB = 255 - mixValSrcB; \ |
| 1910 | jint mixValSrcA = ((mixValSrcR + mixValSrcG + mixValSrcB) \ |
| 1911 | * 21931) >> 16;\ |
| 1912 | jint mixValDstA = 255 - mixValSrcA; \ |
| 1913 | Load ## DST ## To4ByteArgb(DST_PTR, pix, PIXEL_INDEX, \ |
| 1914 | dstA, dstR, dstG, dstB); \ |
| 1915 | dstR = invGammaLut[dstR]; \ |
| 1916 | dstG = invGammaLut[dstG]; \ |
| 1917 | dstB = invGammaLut[dstB]; \ |
| 1918 | dstA = MUL8(dstA, mixValDstA) + \ |
| 1919 | MUL8(SRC_PREFIX ## A, mixValSrcA); \ |
| 1920 | MultMultAddAndStoreLCD4ByteArgbComps(dst, mixValDst, dst, \ |
| 1921 | mixValSrc, SRC_PREFIX); \ |
| 1922 | dstR = gammaLut[dstR]; \ |
| 1923 | dstG = gammaLut[dstG]; \ |
| 1924 | dstB = gammaLut[dstB]; \ |
| 1925 | if (!(DST ## IsOpaque) && \ |
| 1926 | !(DST ## IsPremultiplied) && dstA && dstA < 255) { \ |
| 1927 | DivideAndStore4ByteArgbComps(dst, dst, dstA); \ |
| 1928 | } \ |
| 1929 | Store ## DST ## From4ByteArgbComps(DST_PTR, pix, \ |
| 1930 | PIXEL_INDEX, dst); \ |
| 1931 | } else { \ |
| 1932 | Store ## DST ## PixelData(DST_PTR, PIXEL_INDEX, \ |
| 1933 | FG_PIXEL, PREFIX); \ |
| 1934 | } \ |
| 1935 | } \ |
| 1936 | } while (0); |
| 1937 | |
| 1938 | #define DEFINE_SOLID_DRAWGLYPHLISTLCD(DST, STRATEGY) \ |
| 1939 | void NAME_SOLID_DRAWGLYPHLISTLCD(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 1940 | ImageRef *glyphs, \ |
| 1941 | jint totalGlyphs, jint fgpixel, \ |
| 1942 | jint argbcolor, \ |
| 1943 | jint clipLeft, jint clipTop, \ |
| 1944 | jint clipRight, jint clipBottom, \ |
| 1945 | jint rgbOrder, \ |
| 1946 | unsigned char *gammaLut, \ |
| 1947 | unsigned char * invGammaLut, \ |
| 1948 | NativePrimitive *pPrim, \ |
| 1949 | CompositeInfo *pCompInfo) \ |
| 1950 | { \ |
| 1951 | jint glyphCounter, bpp; \ |
| 1952 | jint scan = pRasInfo->scanStride; \ |
| 1953 | DST ## DataType *pPix; \ |
| 1954 | Declare ## DST ## PixelData(solidpix) \ |
| 1955 | DeclareAlphaVarFor ## STRATEGY(srcA) \ |
| 1956 | DeclareCompVarsFor ## STRATEGY(src) \ |
| 1957 | \ |
| 1958 | Declare ## DST ## LoadVars(pix) \ |
| 1959 | Declare ## DST ## StoreVars(pix) \ |
| 1960 | \ |
| 1961 | Init ## DST ## LoadVars(pix, pRasInfo); \ |
| 1962 | Init ## DST ## StoreVarsY(pix, pRasInfo); \ |
| 1963 | Init ## DST ## StoreVarsX(pix, pRasInfo); \ |
| 1964 | Extract ## STRATEGY ## CompsAndAlphaFromArgb(argbcolor, src); \ |
| 1965 | Extract ## DST ## PixelData(fgpixel, solidpix); \ |
| 1966 | srcR = invGammaLut[srcR]; \ |
| 1967 | srcG = invGammaLut[srcG]; \ |
| 1968 | srcB = invGammaLut[srcB]; \ |
| 1969 | \ |
| 1970 | for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) { \ |
| 1971 | DeclareDrawGlyphListClipVars(pixels, rowBytes, width, height, \ |
| 1972 | left, top, right, bottom) \ |
| 1973 | bpp = \ |
| 1974 | (glyphs[glyphCounter].rowBytes == glyphs[glyphCounter].width) ? 1 : 3;\ |
| 1975 | ClipDrawGlyphList(DST, pixels, bpp, rowBytes, width, height, \ |
| 1976 | left, top, right, bottom, \ |
| 1977 | clipLeft, clipTop, clipRight, clipBottom, \ |
| 1978 | glyphs, glyphCounter, continue) \ |
| 1979 | pPix = PtrCoord(pRasInfo->rasBase,left,DST ## PixelStride,top,scan); \ |
| 1980 | \ |
| 1981 | Set ## DST ## StoreVarsYPos(pix, pRasInfo, top); \ |
| 1982 | if (bpp!=1) { \ |
| 1983 | /* subpixel positioning adjustment */ \ |
| 1984 | pixels += glyphs[glyphCounter].rowBytesOffset; \ |
| 1985 | } \ |
| 1986 | do { \ |
| 1987 | int x = 0; \ |
| 1988 | Set ## DST ## StoreVarsXPos(pix, pRasInfo, left); \ |
| 1989 | if (bpp==1) { \ |
| 1990 | do { \ |
| 1991 | if (pixels[x]) { \ |
| 1992 | Store ## DST ## PixelData(pPix, x, fgpixel, solidpix);\ |
| 1993 | } \ |
| 1994 | } while (++x < width); \ |
| 1995 | } else { \ |
| 1996 | do { \ |
| 1997 | GlyphListLCDBlend ## STRATEGY(DST, pixels, x, pPix, \ |
| 1998 | fgpixel, solidpix, src); \ |
| 1999 | Next ## DST ## StoreVarsX(pix); \ |
| 2000 | } while (++x < width); \ |
| 2001 | } \ |
| 2002 | pPix = PtrAddBytes(pPix, scan); \ |
| 2003 | pixels += rowBytes; \ |
| 2004 | Next ## DST ## StoreVarsY(pix); \ |
| 2005 | } while (--height > 0); \ |
| 2006 | } \ |
| 2007 | } |
| 2008 | |
| 2009 | #define DEFINE_XOR_DRAWGLYPHLIST(DST) \ |
| 2010 | void NAME_XOR_DRAWGLYPHLIST(DST)(SurfaceDataRasInfo *pRasInfo, \ |
| 2011 | ImageRef *glyphs, \ |
| 2012 | jint totalGlyphs, jint fgpixel, \ |
| 2013 | jint argbcolor, \ |
| 2014 | jint clipLeft, jint clipTop, \ |
| 2015 | jint clipRight, jint clipBottom, \ |
| 2016 | NativePrimitive *pPrim, \ |
| 2017 | CompositeInfo *pCompInfo) \ |
| 2018 | { \ |
| 2019 | jint glyphCounter; \ |
| 2020 | jint scan = pRasInfo->scanStride; \ |
| 2021 | jint xorpixel = pCompInfo->details.xorPixel; \ |
| 2022 | juint alphamask = pCompInfo->alphaMask; \ |
| 2023 | Declare ## DST ## PixelData(xor) \ |
| 2024 | Declare ## DST ## PixelData(pix) \ |
| 2025 | Declare ## DST ## PixelData(mask) \ |
| 2026 | DST ## DataType *pPix; \ |
| 2027 | \ |
| 2028 | Extract ## DST ## PixelData(xorpixel, xor); \ |
| 2029 | Extract ## DST ## PixelData(fgpixel, pix); \ |
| 2030 | Extract ## DST ## PixelData(alphamask, mask); \ |
| 2031 | for (glyphCounter = 0; glyphCounter < totalGlyphs; glyphCounter++) { \ |
| 2032 | DeclareDrawGlyphListClipVars(pixels, rowBytes, width, height, \ |
| 2033 | left, top, right, bottom) \ |
| 2034 | ClipDrawGlyphList(DST, pixels, 1, rowBytes, width, height, \ |
| 2035 | left, top, right, bottom, \ |
| 2036 | clipLeft, clipTop, clipRight, clipBottom, \ |
| 2037 | glyphs, glyphCounter, continue) \ |
| 2038 | pPix = PtrCoord(pRasInfo->rasBase,left,DST ## PixelStride,top,scan); \ |
| 2039 | \ |
| 2040 | do { \ |
| 2041 | int x = 0; \ |
| 2042 | do { \ |
| 2043 | if (pixels[x]) { \ |
| 2044 | Xor ## DST ## PixelData(fgpixel, pix, pPix, x, \ |
| 2045 | xorpixel, xor, alphamask, mask); \ |
| 2046 | } \ |
| 2047 | } while (++x < width); \ |
| 2048 | pPix = PtrAddBytes(pPix, scan); \ |
| 2049 | pixels += rowBytes; \ |
| 2050 | } while (--height > 0); \ |
| 2051 | } \ |
| 2052 | } |
| 2053 | |
| 2054 | #define DEFINE_TRANSFORMHELPER_NN(SRC) \ |
| 2055 | void NAME_TRANSFORMHELPER_NN(SRC)(SurfaceDataRasInfo *pSrcInfo, \ |
| 2056 | jint *pRGB, jint numpix, \ |
| 2057 | jlong xlong, jlong dxlong, \ |
| 2058 | jlong ylong, jlong dylong) \ |
| 2059 | { \ |
| 2060 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 2061 | SRC ## DataType *pBase = pSrcInfo->rasBase; \ |
| 2062 | jint scan = pSrcInfo->scanStride; \ |
| 2063 | jint *pEnd = pRGB + numpix; \ |
| 2064 | \ |
| 2065 | xlong += IntToLong(pSrcInfo->bounds.x1); \ |
| 2066 | ylong += IntToLong(pSrcInfo->bounds.y1); \ |
| 2067 | \ |
| 2068 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 2069 | while (pRGB < pEnd) { \ |
| 2070 | SRC ## DataType *pRow = PtrAddBytes(pBase, WholeOfLong(ylong) * scan); \ |
| 2071 | Copy ## SRC ## ToIntArgbPre(pRGB, 0, \ |
| 2072 | SrcRead, pRow, WholeOfLong(xlong)); \ |
| 2073 | pRGB++; \ |
| 2074 | xlong += dxlong; \ |
| 2075 | ylong += dylong; \ |
| 2076 | } \ |
| 2077 | } |
| 2078 | |
| 2079 | #define DEFINE_TRANSFORMHELPER_BL(SRC) \ |
| 2080 | void NAME_TRANSFORMHELPER_BL(SRC)(SurfaceDataRasInfo *pSrcInfo, \ |
| 2081 | jint *pRGB, jint numpix, \ |
| 2082 | jlong xlong, jlong dxlong, \ |
| 2083 | jlong ylong, jlong dylong) \ |
| 2084 | { \ |
| 2085 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 2086 | jint scan = pSrcInfo->scanStride; \ |
| 2087 | jint cx, cy, cw, ch; \ |
| 2088 | jint *pEnd = pRGB + numpix*4; \ |
| 2089 | \ |
| 2090 | cx = pSrcInfo->bounds.x1; \ |
| 2091 | cw = pSrcInfo->bounds.x2-cx; \ |
| 2092 | \ |
| 2093 | cy = pSrcInfo->bounds.y1; \ |
| 2094 | ch = pSrcInfo->bounds.y2-cy; \ |
| 2095 | \ |
| 2096 | xlong -= LongOneHalf; \ |
| 2097 | ylong -= LongOneHalf; \ |
| 2098 | \ |
| 2099 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 2100 | while (pRGB < pEnd) { \ |
| 2101 | jint xwhole = WholeOfLong(xlong); \ |
| 2102 | jint ywhole = WholeOfLong(ylong); \ |
| 2103 | jint xdelta, ydelta, isneg; \ |
| 2104 | SRC ## DataType *pRow; \ |
| 2105 | \ |
| 2106 | xdelta = ((juint) (xwhole + 1 - cw)) >> 31; \ |
| 2107 | isneg = xwhole >> 31; \ |
| 2108 | xwhole -= isneg; \ |
| 2109 | xdelta += isneg; \ |
| 2110 | \ |
| 2111 | ydelta = ((ywhole + 1 - ch) >> 31); \ |
| 2112 | isneg = ywhole >> 31; \ |
| 2113 | ywhole -= isneg; \ |
| 2114 | ydelta -= isneg; \ |
| 2115 | ydelta &= scan; \ |
| 2116 | \ |
| 2117 | xwhole += cx; \ |
| 2118 | pRow = PtrAddBytes(pSrcInfo->rasBase, (ywhole + cy) * scan); \ |
| 2119 | Copy ## SRC ## ToIntArgbPre(pRGB, 0, SrcRead, pRow, xwhole); \ |
| 2120 | Copy ## SRC ## ToIntArgbPre(pRGB, 1, SrcRead, pRow, xwhole+xdelta); \ |
| 2121 | pRow = PtrAddBytes(pRow, ydelta); \ |
| 2122 | Copy ## SRC ## ToIntArgbPre(pRGB, 2, SrcRead, pRow, xwhole); \ |
| 2123 | Copy ## SRC ## ToIntArgbPre(pRGB, 3, SrcRead, pRow, xwhole+xdelta); \ |
| 2124 | \ |
| 2125 | pRGB += 4; \ |
| 2126 | xlong += dxlong; \ |
| 2127 | ylong += dylong; \ |
| 2128 | } \ |
| 2129 | } |
| 2130 | |
| 2131 | #define DEFINE_TRANSFORMHELPER_BC(SRC) \ |
| 2132 | void NAME_TRANSFORMHELPER_BC(SRC)(SurfaceDataRasInfo *pSrcInfo, \ |
| 2133 | jint *pRGB, jint numpix, \ |
| 2134 | jlong xlong, jlong dxlong, \ |
| 2135 | jlong ylong, jlong dylong) \ |
| 2136 | { \ |
| 2137 | Declare ## SRC ## LoadVars(SrcRead) \ |
| 2138 | jint scan = pSrcInfo->scanStride; \ |
| 2139 | jint cx, cy, cw, ch; \ |
| 2140 | jint *pEnd = pRGB + numpix*16; \ |
| 2141 | \ |
| 2142 | cx = pSrcInfo->bounds.x1; \ |
| 2143 | cw = pSrcInfo->bounds.x2-cx; \ |
| 2144 | \ |
| 2145 | cy = pSrcInfo->bounds.y1; \ |
| 2146 | ch = pSrcInfo->bounds.y2-cy; \ |
| 2147 | \ |
| 2148 | xlong -= LongOneHalf; \ |
| 2149 | ylong -= LongOneHalf; \ |
| 2150 | \ |
| 2151 | Init ## SRC ## LoadVars(SrcRead, pSrcInfo); \ |
| 2152 | while (pRGB < pEnd) { \ |
| 2153 | jint xwhole = WholeOfLong(xlong); \ |
| 2154 | jint ywhole = WholeOfLong(ylong); \ |
| 2155 | jint xdelta0, xdelta1, xdelta2; \ |
| 2156 | jint ydelta0, ydelta1, ydelta2; \ |
| 2157 | jint isneg; \ |
| 2158 | SRC ## DataType *pRow; \ |
| 2159 | \ |
| 2160 | xdelta0 = (-xwhole) >> 31; \ |
| 2161 | xdelta1 = ((juint) (xwhole + 1 - cw)) >> 31; \ |
| 2162 | xdelta2 = ((juint) (xwhole + 2 - cw)) >> 31; \ |
| 2163 | isneg = xwhole >> 31; \ |
| 2164 | xwhole -= isneg; \ |
| 2165 | xdelta1 += isneg; \ |
| 2166 | xdelta2 += xdelta1; \ |
| 2167 | \ |
| 2168 | ydelta0 = ((-ywhole) >> 31) & (-scan); \ |
| 2169 | ydelta1 = ((ywhole + 1 - ch) >> 31) & scan; \ |
| 2170 | ydelta2 = ((ywhole + 2 - ch) >> 31) & scan; \ |
| 2171 | isneg = ywhole >> 31; \ |
| 2172 | ywhole -= isneg; \ |
| 2173 | ydelta1 += (isneg & -scan); \ |
| 2174 | \ |
| 2175 | xwhole += cx; \ |
| 2176 | pRow = PtrAddBytes(pSrcInfo->rasBase, (ywhole + cy) * scan); \ |
| 2177 | pRow = PtrAddBytes(pRow, ydelta0); \ |
| 2178 | Copy ## SRC ## ToIntArgbPre(pRGB, 0, SrcRead, pRow, xwhole+xdelta0); \ |
| 2179 | Copy ## SRC ## ToIntArgbPre(pRGB, 1, SrcRead, pRow, xwhole ); \ |
| 2180 | Copy ## SRC ## ToIntArgbPre(pRGB, 2, SrcRead, pRow, xwhole+xdelta1); \ |
| 2181 | Copy ## SRC ## ToIntArgbPre(pRGB, 3, SrcRead, pRow, xwhole+xdelta2); \ |
| 2182 | pRow = PtrAddBytes(pRow, -ydelta0); \ |
| 2183 | Copy ## SRC ## ToIntArgbPre(pRGB, 4, SrcRead, pRow, xwhole+xdelta0); \ |
| 2184 | Copy ## SRC ## ToIntArgbPre(pRGB, 5, SrcRead, pRow, xwhole ); \ |
| 2185 | Copy ## SRC ## ToIntArgbPre(pRGB, 6, SrcRead, pRow, xwhole+xdelta1); \ |
| 2186 | Copy ## SRC ## ToIntArgbPre(pRGB, 7, SrcRead, pRow, xwhole+xdelta2); \ |
| 2187 | pRow = PtrAddBytes(pRow, ydelta1); \ |
| 2188 | Copy ## SRC ## ToIntArgbPre(pRGB, 8, SrcRead, pRow, xwhole+xdelta0); \ |
| 2189 | Copy ## SRC ## ToIntArgbPre(pRGB, 9, SrcRead, pRow, xwhole ); \ |
| 2190 | Copy ## SRC ## ToIntArgbPre(pRGB, 10, SrcRead, pRow, xwhole+xdelta1); \ |
| 2191 | Copy ## SRC ## ToIntArgbPre(pRGB, 11, SrcRead, pRow, xwhole+xdelta2); \ |
| 2192 | pRow = PtrAddBytes(pRow, ydelta2); \ |
| 2193 | Copy ## SRC ## ToIntArgbPre(pRGB, 12, SrcRead, pRow, xwhole+xdelta0); \ |
| 2194 | Copy ## SRC ## ToIntArgbPre(pRGB, 13, SrcRead, pRow, xwhole ); \ |
| 2195 | Copy ## SRC ## ToIntArgbPre(pRGB, 14, SrcRead, pRow, xwhole+xdelta1); \ |
| 2196 | Copy ## SRC ## ToIntArgbPre(pRGB, 15, SrcRead, pRow, xwhole+xdelta2); \ |
| 2197 | \ |
| 2198 | pRGB += 16; \ |
| 2199 | xlong += dxlong; \ |
| 2200 | ylong += dylong; \ |
| 2201 | } \ |
| 2202 | } |
| 2203 | |
| 2204 | #define DEFINE_TRANSFORMHELPER_FUNCS(SRC) \ |
| 2205 | TransformHelperFuncs NAME_TRANSFORMHELPER_FUNCS(SRC) = { \ |
| 2206 | NAME_TRANSFORMHELPER_NN(SRC), \ |
| 2207 | NAME_TRANSFORMHELPER_BL(SRC), \ |
| 2208 | NAME_TRANSFORMHELPER_BC(SRC), \ |
| 2209 | }; |
| 2210 | |
| 2211 | #define DEFINE_TRANSFORMHELPERS(SRC) \ |
| 2212 | DEFINE_TRANSFORMHELPER_NN(SRC) \ |
| 2213 | DEFINE_TRANSFORMHELPER_BL(SRC) \ |
| 2214 | DEFINE_TRANSFORMHELPER_BC(SRC) \ |
| 2215 | DEFINE_TRANSFORMHELPER_FUNCS(SRC) |
| 2216 | |
| 2217 | /* |
| 2218 | * The macros defined above use the following macro definitions supplied |
| 2219 | * for the various surface types to manipulate pixels and pixel data. |
| 2220 | * The surface-specific macros are typically supplied by header files |
| 2221 | * named after the SurfaceType name (i.e. IntArgb.h, ByteGray.h, etc.). |
| 2222 | * |
| 2223 | * In the macro names in the following definitions, the string <stype> |
| 2224 | * is used as a place holder for the SurfaceType name (i.e. IntArgb). |
| 2225 | * The macros above access these type specific macros using the ANSI |
| 2226 | * CPP token concatenation operator "##". |
| 2227 | * |
| 2228 | * <stype>DataType A typedef for the type of the pointer |
| 2229 | * that is used to access the raster data |
| 2230 | * for the given surface type. |
| 2231 | * <stype>PixelStride Pixel stride for the surface type. |
| 2232 | * |
| 2233 | * Declare<stype>LoadVars Declare the variables needed to control |
| 2234 | * loading color information from an stype |
| 2235 | * raster (i.e. lookup tables). |
| 2236 | * Init<stype>LoadVars Init the lookup table variables. |
| 2237 | * Declare<stype>StoreVars Declare the storage variables needed to |
| 2238 | * control storing pixel data based on the |
| 2239 | * pixel coordinate (i.e. dithering variables). |
| 2240 | * Init<stype>StoreVarsY Init the dither variables for starting Y. |
| 2241 | * Next<stype>StoreVarsY Increment the dither variables for next Y. |
| 2242 | * Init<stype>StoreVarsX Init the dither variables for starting X. |
| 2243 | * Next<stype>StoreVarsX Increment the dither variables for next X. |
| 2244 | * |
| 2245 | * Load<stype>To1IntRgb Load a pixel and form an INT_RGB integer. |
| 2246 | * Store<stype>From1IntRgb Store a pixel from an INT_RGB integer. |
| 2247 | * Load<stype>To1IntArgb Load a pixel and form an INT_ARGB integer. |
| 2248 | * Store<stype>From1IntArgb Store a pixel from an INT_ARGB integer. |
| 2249 | * Load<stype>To3ByteRgb Load a pixel into R, G, and B components. |
| 2250 | * Store<stype>From3ByteRgb Store a pixel from R, G, and B components. |
| 2251 | * Load<stype>To4ByteArgb Load a pixel into A, R, G, and B components. |
| 2252 | * Store<stype>From4ByteArgb Store a pixel from A, R, G, and B components. |
| 2253 | * Load<stype>To1ByteGray Load a pixel and form a BYTE_GRAY byte. |
| 2254 | * Store<stype>From1ByteGray Store a pixel from a BYTE_GRAY byte. |
| 2255 | * |
| 2256 | * <stype>PixelType Typedef for a "single quantity pixel" (SQP) |
| 2257 | * that can hold the data for one stype pixel. |
| 2258 | * <stype>XparLutEntry An SQP that can be used to represent a |
| 2259 | * transparent pixel for stype. |
| 2260 | * Store<stype>NonXparFromArgb Store an SQP from an INT_ARGB integer in |
| 2261 | * such a way that it would not be confused |
| 2262 | * with the XparLutEntry value for stype. |
| 2263 | * <stype>IsXparLutEntry Test an SQP for the XparLutEntry value. |
| 2264 | * Store<stype>Pixel Store the pixel data from an SQP. |
| 2265 | * <stype>PixelFromArgb Converts an INT_ARGB value into the specific |
| 2266 | * pixel representation for the surface type. |
| 2267 | * |
| 2268 | * Declare<stype>PixelData Declare the pixel data variables (PDV) needed |
| 2269 | * to hold the elements of pixel data ready to |
| 2270 | * store into an stype raster (may be empty for |
| 2271 | * stypes whose SQP format is their data format). |
| 2272 | * Extract<stype>PixelData Extract an SQP value into the PDVs. |
| 2273 | * Store<stype>PixelData Store the PDVs into an stype raster. |
| 2274 | * XorCopy<stype>PixelData Xor the PDVs into an stype raster. |
| 2275 | */ |
| 2276 | #endif /* LoopMacros_h_Included */ |
| 2277 | |