1 | /* |
2 | * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. Oracle designates this |
8 | * particular file as subject to the "Classpath" exception as provided |
9 | * by Oracle in the LICENSE file that accompanied this code. |
10 | * |
11 | * This code is distributed in the hope that it will be useful, but WITHOUT |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | * version 2 for more details (a copy is included in the LICENSE file that |
15 | * accompanied this code). |
16 | * |
17 | * You should have received a copy of the GNU General Public License version |
18 | * 2 along with this work; if not, write to the Free Software Foundation, |
19 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
20 | * |
21 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
22 | * or visit www.oracle.com if you need additional information or have any |
23 | * questions. |
24 | */ |
25 | |
26 | #include <math.h> |
27 | #include <assert.h> |
28 | #include <stdlib.h> |
29 | #include <string.h> |
30 | |
31 | #include "jni.h" |
32 | #include "j2d_md.h" |
33 | #include "java_awt_geom_PathIterator.h" |
34 | |
35 | #include "ProcessPath.h" |
36 | |
37 | /* |
38 | * This framework performs filling and drawing of paths with sub-pixel |
39 | * precision. Also, it performs clipping by the specified view area. |
40 | * |
41 | * Drawing of the shapes is performed not pixel by pixel but segment by segment |
42 | * except several pixels near endpoints of the drawn line. This approach saves |
43 | * lot's of cpu cycles especially in case of large primitives (like ovals with |
44 | * sizes more than 50) and helps in achieving appropriate visual quality. Also, |
45 | * such method of drawing is useful for the accelerated pipelines where |
46 | * overhead of the per-pixel drawing could eliminate all benefits of the |
47 | * hardware acceleration. |
48 | * |
49 | * Filling of the path was taken from |
50 | * |
51 | * [Graphics Gems, edited by Andrew S Glassner. Academic Press 1990, |
52 | * ISBN 0-12-286165-5 (Concave polygon scan conversion), 87-91] |
53 | * |
54 | * and modified to work with sub-pixel precision and non-continuous paths. |
55 | * It's also speeded up by using hash table by rows of the filled objects. |
56 | * |
57 | * Here is high level scheme showing the rendering process: |
58 | * |
59 | * doDrawPath doFillPath |
60 | * \ / |
61 | * ProcessPath |
62 | * | |
63 | * CheckPathSegment |
64 | * | |
65 | * --------+------ |
66 | * | | |
67 | * | | |
68 | * | | |
69 | * _->ProcessCurve | |
70 | * / / | | |
71 | * \___/ | | |
72 | * | | |
73 | * DrawCurve ProcessLine |
74 | * \ / |
75 | * \ / |
76 | * \ / |
77 | * \ / |
78 | * ------+------ |
79 | * (filling) / \ (drawing) |
80 | * / \ |
81 | * Clipping and Clipping |
82 | * clamping \ |
83 | * | \ |
84 | * StoreFixedLine ProcessFixedLine |
85 | * | / \ |
86 | * | / \ |
87 | * FillPolygon PROCESS_LINE PROCESS_POINT |
88 | * |
89 | * |
90 | * |
91 | * CheckPathSegment - rough checking and skipping path's segments in case of |
92 | * invalid or huge coordinates of the control points to |
93 | * avoid calculation problems with NaNs and values close |
94 | * to the FLT_MAX |
95 | * |
96 | * ProcessCurve - (ProcessQuad, ProcessCubic) Splitting the curve into |
97 | * monotonic parts having appropriate size (calculated as |
98 | * boundary box of the control points) |
99 | * |
100 | * DrawMonotonicCurve - (DrawMonotonicQuad, DrawMonotonicCubic) flattening |
101 | * monotonic curve using adaptive forward differencing |
102 | * |
103 | * StoreFixedLine - storing segment from the flattened path to the |
104 | * FillData structure. Performing clipping and clamping if |
105 | * necessary. |
106 | * |
107 | * PROCESS_LINE, PROCESS_POINT - Helpers for calling appropriate primitive from |
108 | * DrawHandler structure |
109 | * |
110 | * ProcessFixedLine - Drawing line segment with subpixel precision. |
111 | * |
112 | */ |
113 | |
114 | #define PROCESS_LINE(hnd, fX0, fY0, fX1, fY1, checkBounds, pixelInfo) \ |
115 | do { \ |
116 | jint X0 = (fX0) >> MDP_PREC; \ |
117 | jint Y0 = (fY0) >> MDP_PREC; \ |
118 | jint X1 = (fX1) >> MDP_PREC; \ |
119 | jint Y1 = (fY1) >> MDP_PREC; \ |
120 | jint res; \ |
121 | \ |
122 | /* Checking bounds and clipping if necessary. \ |
123 | * REMIND: It's temporary solution to avoid OOB in rendering code. \ |
124 | * Current approach uses float equations which are unreliable for \ |
125 | * clipping and makes assumptions about the line biases of the \ |
126 | * rendering algorithm. Also, clipping code should be moved down \ |
127 | * into only those output renderers that need it. \ |
128 | */ \ |
129 | if (checkBounds) { \ |
130 | jfloat xMinf = hnd->dhnd->xMinf + 0.5f; \ |
131 | jfloat yMinf = hnd->dhnd->yMinf + 0.5f; \ |
132 | jfloat xMaxf = hnd->dhnd->xMaxf + 0.5f; \ |
133 | jfloat yMaxf = hnd->dhnd->yMaxf + 0.5f; \ |
134 | TESTANDCLIP(yMinf, yMaxf, Y0, X0, Y1, X1, jint, res); \ |
135 | if (res == CRES_INVISIBLE) break; \ |
136 | TESTANDCLIP(yMinf, yMaxf, Y1, X1, Y0, X0, jint, res); \ |
137 | if (res == CRES_INVISIBLE) break; \ |
138 | TESTANDCLIP(xMinf, xMaxf, X0, Y0, X1, Y1, jint, res); \ |
139 | if (res == CRES_INVISIBLE) break; \ |
140 | TESTANDCLIP(xMinf, xMaxf, X1, Y1, X0, Y0, jint, res); \ |
141 | if (res == CRES_INVISIBLE) break; \ |
142 | } \ |
143 | \ |
144 | /* Handling lines having just one pixel */ \ |
145 | if (((X0^X1) | (Y0^Y1)) == 0) { \ |
146 | if (pixelInfo[0] == 0) { \ |
147 | pixelInfo[0] = 1; \ |
148 | pixelInfo[1] = X0; \ |
149 | pixelInfo[2] = Y0; \ |
150 | pixelInfo[3] = X0; \ |
151 | pixelInfo[4] = Y0; \ |
152 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ |
153 | } else if ((X0 != pixelInfo[3] || Y0 != pixelInfo[4]) && \ |
154 | (X0 != pixelInfo[1] || Y0 != pixelInfo[2])) { \ |
155 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ |
156 | pixelInfo[3] = X0; \ |
157 | pixelInfo[4] = Y0; \ |
158 | } \ |
159 | break; \ |
160 | } \ |
161 | \ |
162 | if (pixelInfo[0] && \ |
163 | ((pixelInfo[1] == X0 && pixelInfo[2] == Y0) || \ |
164 | (pixelInfo[3] == X0 && pixelInfo[4] == Y0))) \ |
165 | { \ |
166 | hnd->dhnd->pDrawPixel(hnd->dhnd, X0, Y0); \ |
167 | } \ |
168 | \ |
169 | hnd->dhnd->pDrawLine(hnd->dhnd, X0, Y0, X1, Y1); \ |
170 | \ |
171 | if (pixelInfo[0] == 0) { \ |
172 | pixelInfo[0] = 1; \ |
173 | pixelInfo[1] = X0; \ |
174 | pixelInfo[2] = Y0; \ |
175 | pixelInfo[3] = X0; \ |
176 | pixelInfo[4] = Y0; \ |
177 | } \ |
178 | \ |
179 | /* Switch on last pixel of the line if it was already \ |
180 | * drawn during rendering of the previous segments \ |
181 | */ \ |
182 | if ((pixelInfo[1] == X1 && pixelInfo[2] == Y1) || \ |
183 | (pixelInfo[3] == X1 && pixelInfo[4] == Y1)) \ |
184 | { \ |
185 | hnd->dhnd->pDrawPixel(hnd->dhnd, X1, Y1); \ |
186 | } \ |
187 | pixelInfo[3] = X1; \ |
188 | pixelInfo[4] = Y1; \ |
189 | } while(0) |
190 | |
191 | #define PROCESS_POINT(hnd, fX, fY, checkBounds, pixelInfo) \ |
192 | do { \ |
193 | jint X_ = (fX)>> MDP_PREC; \ |
194 | jint Y_ = (fY)>> MDP_PREC; \ |
195 | if (checkBounds && \ |
196 | (hnd->dhnd->yMin > Y_ || \ |
197 | hnd->dhnd->yMax <= Y_ || \ |
198 | hnd->dhnd->xMin > X_ || \ |
199 | hnd->dhnd->xMax <= X_)) break; \ |
200 | /* \ |
201 | * (X_,Y_) should be inside boundaries \ |
202 | * \ |
203 | * assert(hnd->dhnd->yMin <= Y_ && \ |
204 | * hnd->dhnd->yMax > Y_ && \ |
205 | * hnd->dhnd->xMin <= X_ && \ |
206 | * hnd->dhnd->xMax > X_); \ |
207 | * \ |
208 | */ \ |
209 | if (pixelInfo[0] == 0) { \ |
210 | pixelInfo[0] = 1; \ |
211 | pixelInfo[1] = X_; \ |
212 | pixelInfo[2] = Y_; \ |
213 | pixelInfo[3] = X_; \ |
214 | pixelInfo[4] = Y_; \ |
215 | hnd->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); \ |
216 | } else if ((X_ != pixelInfo[3] || Y_ != pixelInfo[4]) && \ |
217 | (X_ != pixelInfo[1] || Y_ != pixelInfo[2])) { \ |
218 | hnd->dhnd->pDrawPixel(hnd->dhnd, X_, Y_); \ |
219 | pixelInfo[3] = X_; \ |
220 | pixelInfo[4] = Y_; \ |
221 | } \ |
222 | } while(0) |
223 | |
224 | |
225 | /* |
226 | * Constants for the forward differencing |
227 | * of the cubic and quad curves |
228 | */ |
229 | |
230 | /* Maximum size of the cubic curve (calculated as the size of the bounding box |
231 | * of the control points) which could be rendered without splitting |
232 | */ |
233 | #define MAX_CUB_SIZE 256 |
234 | |
235 | /* Maximum size of the quad curve (calculated as the size of the bounding box |
236 | * of the control points) which could be rendered without splitting |
237 | */ |
238 | #define MAX_QUAD_SIZE 1024 |
239 | |
240 | /* Default power of 2 steps used in the forward differencing. Here DF prefix |
241 | * stands for DeFault. Constants below are used as initial values for the |
242 | * adaptive forward differencing algorithm. |
243 | */ |
244 | #define DF_CUB_STEPS 3 |
245 | #define DF_QUAD_STEPS 2 |
246 | |
247 | /* Shift of the current point of the curve for preparing to the midpoint |
248 | * rounding |
249 | */ |
250 | #define DF_CUB_SHIFT (FWD_PREC + DF_CUB_STEPS*3 - MDP_PREC) |
251 | #define DF_QUAD_SHIFT (FWD_PREC + DF_QUAD_STEPS*2 - MDP_PREC) |
252 | |
253 | /* Default amount of steps of the forward differencing */ |
254 | #define DF_CUB_COUNT (1<<DF_CUB_STEPS) |
255 | #define DF_QUAD_COUNT (1<<DF_QUAD_STEPS) |
256 | |
257 | /* Default boundary constants used to check the necessity of the restepping */ |
258 | #define DF_CUB_DEC_BND (1<<(DF_CUB_STEPS*3 + FWD_PREC + 2)) |
259 | #define DF_CUB_INC_BND (1<<(DF_CUB_STEPS*3 + FWD_PREC - 1)) |
260 | #define DF_QUAD_DEC_BND (1<<(DF_QUAD_STEPS*2 + FWD_PREC + 2)) |
261 | |
262 | /* Multiplyers for the coefficients of the polynomial form of the cubic and |
263 | * quad curves representation |
264 | */ |
265 | #define CUB_A_SHIFT FWD_PREC |
266 | #define CUB_B_SHIFT (DF_CUB_STEPS + FWD_PREC + 1) |
267 | #define CUB_C_SHIFT (DF_CUB_STEPS*2 + FWD_PREC) |
268 | |
269 | #define CUB_A_MDP_MULT (1<<CUB_A_SHIFT) |
270 | #define CUB_B_MDP_MULT (1<<CUB_B_SHIFT) |
271 | #define CUB_C_MDP_MULT (1<<CUB_C_SHIFT) |
272 | |
273 | #define QUAD_A_SHIFT FWD_PREC |
274 | #define QUAD_B_SHIFT (DF_QUAD_STEPS + FWD_PREC) |
275 | |
276 | #define QUAD_A_MDP_MULT (1<<QUAD_A_SHIFT) |
277 | #define QUAD_B_MDP_MULT (1<<QUAD_B_SHIFT) |
278 | |
279 | #define CALC_MAX(MAX, X) ((MAX)=((X)>(MAX))?(X):(MAX)) |
280 | #define CALC_MIN(MIN, X) ((MIN)=((X)<(MIN))?(X):(MIN)) |
281 | #define MAX(MAX, X) (((X)>(MAX))?(X):(MAX)) |
282 | #define MIN(MIN, X) (((X)<(MIN))?(X):(MIN)) |
283 | #define ABS32(X) (((X)^((X)>>31))-((X)>>31)) |
284 | #define SIGN32(X) ((X) >> 31) | ((juint)(-(X)) >> 31) |
285 | |
286 | /* Boundaries used for clipping large path segments (those are inside |
287 | * [UPPER/LOWER]_BND boundaries) |
288 | */ |
289 | #define UPPER_OUT_BND (1 << (30 - MDP_PREC)) |
290 | #define LOWER_OUT_BND (-UPPER_OUT_BND) |
291 | |
292 | #define ADJUST(X, LBND, UBND) \ |
293 | do { \ |
294 | if ((X) < (LBND)) { \ |
295 | (X) = (LBND); \ |
296 | } else if ((X) > UBND) { \ |
297 | (X) = (UBND); \ |
298 | } \ |
299 | } while(0) |
300 | |
301 | /* Following constants are used for providing open boundaries of the intervals |
302 | */ |
303 | #define EPSFX 1 |
304 | #define EPSF (((jfloat)EPSFX)/MDP_MULT) |
305 | |
306 | /* Calculation boundary. It is used for switching to the more slow but allowing |
307 | * larger input values method of calculation of the initial values of the scan |
308 | * converted line segments inside the FillPolygon. |
309 | */ |
310 | #define CALC_BND (1 << (30 - MDP_PREC)) |
311 | |
312 | /* Clipping macros for drawing and filling algorithms */ |
313 | |
314 | #define CLIP(a1, b1, a2, b2, t) \ |
315 | (b1 + ((jdouble)(t - a1)*(b2 - b1)) / (a2 - a1)) |
316 | |
317 | enum { |
318 | CRES_MIN_CLIPPED, |
319 | CRES_MAX_CLIPPED, |
320 | CRES_NOT_CLIPPED, |
321 | CRES_INVISIBLE |
322 | }; |
323 | |
324 | #define IS_CLIPPED(res) (res == CRES_MIN_CLIPPED || res == CRES_MAX_CLIPPED) |
325 | |
326 | #define TESTANDCLIP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, TYPE, res) \ |
327 | do { \ |
328 | jdouble t; \ |
329 | res = CRES_NOT_CLIPPED; \ |
330 | if (a1 < (LINE_MIN) || a1 > (LINE_MAX)) { \ |
331 | if (a1 < (LINE_MIN)) { \ |
332 | if (a2 < (LINE_MIN)) { \ |
333 | res = CRES_INVISIBLE; \ |
334 | break; \ |
335 | }; \ |
336 | res = CRES_MIN_CLIPPED; \ |
337 | t = (LINE_MIN); \ |
338 | } else { \ |
339 | if (a2 > (LINE_MAX)) { \ |
340 | res = CRES_INVISIBLE; \ |
341 | break; \ |
342 | }; \ |
343 | res = CRES_MAX_CLIPPED; \ |
344 | t = (LINE_MAX); \ |
345 | } \ |
346 | b1 = (TYPE)CLIP(a1, b1, a2, b2, t); \ |
347 | a1 = (TYPE)t; \ |
348 | } \ |
349 | } while (0) |
350 | |
351 | /* Following macro is used for clipping and clumping filled shapes. |
352 | * An example of this process is shown on the picture below: |
353 | * ----+ ----+ |
354 | * |/ | |/ | |
355 | * + | + | |
356 | * /| | I | |
357 | * / | | I | |
358 | * | | | ===> I | |
359 | * \ | | I | |
360 | * \| | I | |
361 | * + | + | |
362 | * |\ | |\ | |
363 | * | ----+ | ----+ |
364 | * boundary boundary |
365 | * |
366 | * We can only perform clipping in case of right side of the output area |
367 | * because all segments passed out the right boundary don't influence on the |
368 | * result of scan conversion algorithm (it correctly handles half open |
369 | * contours). |
370 | * |
371 | */ |
372 | #define CLIPCLAMP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, a3, b3, TYPE, res) \ |
373 | do { \ |
374 | a3 = a1; \ |
375 | b3 = b1; \ |
376 | TESTANDCLIP(LINE_MIN, LINE_MAX, a1, b1, a2, b2, TYPE, res); \ |
377 | if (res == CRES_MIN_CLIPPED) { \ |
378 | a3 = a1; \ |
379 | } else if (res == CRES_MAX_CLIPPED) { \ |
380 | a3 = a1; \ |
381 | res = CRES_MAX_CLIPPED; \ |
382 | } else if (res == CRES_INVISIBLE) { \ |
383 | if (a1 > LINE_MAX) { \ |
384 | res = CRES_INVISIBLE; \ |
385 | } else { \ |
386 | a1 = (TYPE)LINE_MIN; \ |
387 | a2 = (TYPE)LINE_MIN; \ |
388 | res = CRES_NOT_CLIPPED; \ |
389 | } \ |
390 | } \ |
391 | } while (0) |
392 | |
393 | /* Following macro is used for solving quadratic equations: |
394 | * A*t^2 + B*t + C = 0 |
395 | * in (0,1) range. That means we put to the RES the only roots which |
396 | * belongs to the (0,1) range. Note: 0 and 1 are not included. |
397 | * See solveQuadratic method in |
398 | * src/share/classes/java/awt/geom/QuadCurve2D.java |
399 | * for more info about calculations |
400 | */ |
401 | #define SOLVEQUADINRANGE(A,B,C,RES,RCNT) \ |
402 | do { \ |
403 | double param; \ |
404 | if ((A) != 0) { \ |
405 | /* Calculating roots of the following equation \ |
406 | * A*t^2 + B*t + C = 0 \ |
407 | */ \ |
408 | double d = (B)*(B) - 4*(A)*(C); \ |
409 | double q; \ |
410 | if (d < 0) { \ |
411 | break; \ |
412 | } \ |
413 | d = sqrt(d); \ |
414 | /* For accuracy, calculate one root using: \ |
415 | * (-B +/- d) / 2*A \ |
416 | * and the other using: \ |
417 | * 2*C / (-B +/- d) \ |
418 | * Choose the sign of the +/- so that B+D gets larger \ |
419 | * in magnitude \ |
420 | */ \ |
421 | if ((B) < 0) { \ |
422 | d = -d; \ |
423 | } \ |
424 | q = ((B) + d) / -2.0; \ |
425 | param = q/(A); \ |
426 | if (param < 1.0 && param > 0.0) { \ |
427 | (RES)[(RCNT)++] = param; \ |
428 | } \ |
429 | if (d == 0 || q == 0) { \ |
430 | break; \ |
431 | } \ |
432 | param = (C)/q; \ |
433 | if (param < 1.0 && param > 0.0) { \ |
434 | (RES)[(RCNT)++] = param; \ |
435 | } \ |
436 | } else { \ |
437 | /* Calculating root of the following equation \ |
438 | * B*t + C = 0 \ |
439 | */ \ |
440 | if ((B) == 0) { \ |
441 | break; \ |
442 | } \ |
443 | param = -(C)/(B); \ |
444 | if (param < 1.0 && param > 0.0) { \ |
445 | (RES)[(RCNT)++] = param; \ |
446 | } \ |
447 | } \ |
448 | } while(0) |
449 | |
450 | /* Drawing line with subpixel endpoints |
451 | * |
452 | * (x1, y1), (x2, y2) - fixed point coordinates of the endpoints |
453 | * with MDP_PREC bits for the fractional part |
454 | * |
455 | * pixelInfo - structure which keeps drawing info for avoiding |
456 | * multiple drawing at the same position on the |
457 | * screen (required for the XOR mode of drawing) |
458 | * |
459 | * pixelInfo[0] - state of the drawing |
460 | * 0 - no pixel drawn between |
461 | * moveTo/close of the path |
462 | * 1 - there are drawn pixels |
463 | * |
464 | * pixelInfo[1,2] - first pixel of the path |
465 | * between moveTo/close of the |
466 | * path |
467 | * |
468 | * pixelInfo[3,4] - last drawn pixel between |
469 | * moveTo/close of the path |
470 | * |
471 | * checkBounds - flag showing necessity of checking the clip |
472 | * |
473 | */ |
474 | void ProcessFixedLine(ProcessHandler* hnd,jint x1,jint y1,jint x2,jint y2, |
475 | jint* pixelInfo,jboolean checkBounds, |
476 | jboolean endSubPath) |
477 | { |
478 | /* Checking if line is inside a (X,Y),(X+MDP_MULT,Y+MDP_MULT) box */ |
479 | jint c = ((x1 ^ x2) | (y1 ^ y2)); |
480 | jint rx1, ry1, rx2, ry2; |
481 | if ((c & MDP_W_MASK) == 0) { |
482 | /* Checking for the segments with integer coordinates having |
483 | * the same start and end points |
484 | */ |
485 | if (c == 0) { |
486 | PROCESS_POINT(hnd, x1 + MDP_HALF_MULT, y1 + MDP_HALF_MULT, |
487 | checkBounds, pixelInfo); |
488 | } |
489 | return; |
490 | } |
491 | |
492 | if (x1 == x2 || y1 == y2) { |
493 | rx1 = x1 + MDP_HALF_MULT; |
494 | rx2 = x2 + MDP_HALF_MULT; |
495 | ry1 = y1 + MDP_HALF_MULT; |
496 | ry2 = y2 + MDP_HALF_MULT; |
497 | } else { |
498 | /* Neither dx nor dy can be zero because of the check above */ |
499 | jint dx = x2 - x1; |
500 | jint dy = y2 - y1; |
501 | |
502 | /* Floor of x1, y1, x2, y2 */ |
503 | jint fx1 = x1 & MDP_W_MASK; |
504 | jint fy1 = y1 & MDP_W_MASK; |
505 | jint fx2 = x2 & MDP_W_MASK; |
506 | jint fy2 = y2 & MDP_W_MASK; |
507 | |
508 | /* Processing first endpoint */ |
509 | if (fx1 == x1 || fy1 == y1) { |
510 | /* Adding MDP_HALF_MULT to the [xy]1 if f[xy]1 == [xy]1 will not |
511 | * affect the result |
512 | */ |
513 | rx1 = x1 + MDP_HALF_MULT; |
514 | ry1 = y1 + MDP_HALF_MULT; |
515 | } else { |
516 | /* Boundary at the direction from (x1,y1) to (x2,y2) */ |
517 | jint bx1 = (x1 < x2) ? fx1 + MDP_MULT : fx1; |
518 | jint by1 = (y1 < y2) ? fy1 + MDP_MULT : fy1; |
519 | |
520 | /* intersection with column bx1 */ |
521 | jint cross = y1 + ((bx1 - x1)*dy)/dx; |
522 | if (cross >= fy1 && cross <= fy1 + MDP_MULT) { |
523 | rx1 = bx1; |
524 | ry1 = cross + MDP_HALF_MULT; |
525 | } else { |
526 | /* intersection with row by1 */ |
527 | cross = x1 + ((by1 - y1)*dx)/dy; |
528 | rx1 = cross + MDP_HALF_MULT; |
529 | ry1 = by1; |
530 | } |
531 | } |
532 | |
533 | /* Processing second endpoint */ |
534 | if (fx2 == x2 || fy2 == y2) { |
535 | /* Adding MDP_HALF_MULT to the [xy]2 if f[xy]2 == [xy]2 will not |
536 | * affect the result |
537 | */ |
538 | rx2 = x2 + MDP_HALF_MULT; |
539 | ry2 = y2 + MDP_HALF_MULT; |
540 | } else { |
541 | /* Boundary at the direction from (x2,y2) to (x1,y1) */ |
542 | jint bx2 = (x1 > x2) ? fx2 + MDP_MULT : fx2; |
543 | jint by2 = (y1 > y2) ? fy2 + MDP_MULT : fy2; |
544 | |
545 | /* intersection with column bx2 */ |
546 | jint cross = y2 + ((bx2 - x2)*dy)/dx; |
547 | if (cross >= fy2 && cross <= fy2 + MDP_MULT) { |
548 | rx2 = bx2; |
549 | ry2 = cross + MDP_HALF_MULT; |
550 | } else { |
551 | /* intersection with row by2 */ |
552 | cross = x2 + ((by2 - y2)*dx)/dy; |
553 | rx2 = cross + MDP_HALF_MULT; |
554 | ry2 = by2; |
555 | } |
556 | } |
557 | } |
558 | |
559 | PROCESS_LINE(hnd, rx1, ry1, rx2, ry2, checkBounds, pixelInfo); |
560 | } |
561 | |
562 | /* Performing drawing of the monotonic in X and Y quadratic curves with sizes |
563 | * less than MAX_QUAD_SIZE by using forward differencing method of calculation. |
564 | * See comments to the DrawMonotonicCubic. |
565 | */ |
566 | static void DrawMonotonicQuad(ProcessHandler* hnd, |
567 | jfloat *coords, |
568 | jboolean checkBounds, |
569 | jint* pixelInfo) |
570 | { |
571 | jint x0 = (jint)(coords[0]*MDP_MULT); |
572 | jint y0 = (jint)(coords[1]*MDP_MULT); |
573 | |
574 | jint xe = (jint)(coords[4]*MDP_MULT); |
575 | jint ye = (jint)(coords[5]*MDP_MULT); |
576 | |
577 | /* Extracting fractional part of coordinates of first control point */ |
578 | jint px = (x0 & (~MDP_W_MASK)) << DF_QUAD_SHIFT; |
579 | jint py = (y0 & (~MDP_W_MASK)) << DF_QUAD_SHIFT; |
580 | |
581 | /* Setting default amount of steps */ |
582 | jint count = DF_QUAD_COUNT; |
583 | |
584 | /* Setting default shift for preparing to the midpoint rounding */ |
585 | jint shift = DF_QUAD_SHIFT; |
586 | |
587 | jint ax = (jint)((coords[0] - 2*coords[2] + |
588 | coords[4])*QUAD_A_MDP_MULT); |
589 | jint ay = (jint)((coords[1] - 2*coords[3] + |
590 | coords[5])*QUAD_A_MDP_MULT); |
591 | |
592 | jint bx = (jint)((-2*coords[0] + 2*coords[2])*QUAD_B_MDP_MULT); |
593 | jint by = (jint)((-2*coords[1] + 2*coords[3])*QUAD_B_MDP_MULT); |
594 | |
595 | jint ddpx = 2*ax; |
596 | jint ddpy = 2*ay; |
597 | |
598 | jint dpx = ax + bx; |
599 | jint dpy = ay + by; |
600 | |
601 | jint x1, y1; |
602 | |
603 | jint x2 = x0; |
604 | jint y2 = y0; |
605 | |
606 | jint maxDD = MAX(ABS32(ddpx),ABS32(ddpy)); |
607 | jint x0w = x0 & MDP_W_MASK; |
608 | jint y0w = y0 & MDP_W_MASK; |
609 | |
610 | jint dx = xe - x0; |
611 | jint dy = ye - y0; |
612 | |
613 | /* Perform decreasing step in 2 times if slope of the second forward |
614 | * difference changes too quickly (more than a pixel per step in X or Y |
615 | * direction). We can perform adjusting of the step size before the |
616 | * rendering loop because the curvature of the quad curve remains the same |
617 | * along all the curve |
618 | */ |
619 | while (maxDD > DF_QUAD_DEC_BND) { |
620 | dpx = (dpx<<1) - ax; |
621 | dpy = (dpy<<1) - ay; |
622 | count <<= 1; |
623 | maxDD >>= 2; |
624 | px <<=2; |
625 | py <<=2; |
626 | shift += 2; |
627 | } |
628 | |
629 | while(count-- > 1) { |
630 | |
631 | px += dpx; |
632 | py += dpy; |
633 | |
634 | dpx += ddpx; |
635 | dpy += ddpy; |
636 | |
637 | x1 = x2; |
638 | y1 = y2; |
639 | |
640 | x2 = x0w + (px >> shift); |
641 | y2 = y0w + (py >> shift); |
642 | |
643 | /* Checking that we are not running out of the endpoint and bounding |
644 | * violating coordinate. The check is pretty simple because the curve |
645 | * passed to the DrawMonotonicQuad already split into the monotonic |
646 | * in X and Y pieces |
647 | */ |
648 | |
649 | /* Bounding x2 by xe */ |
650 | if (((xe-x2)^dx) < 0) { |
651 | x2 = xe; |
652 | } |
653 | |
654 | /* Bounding y2 by ye */ |
655 | if (((ye-y2)^dy) < 0) { |
656 | y2 = ye; |
657 | } |
658 | |
659 | hnd->pProcessFixedLine(hnd, x1, y1, x2, y2, pixelInfo, checkBounds, |
660 | JNI_FALSE); |
661 | } |
662 | |
663 | /* We are performing one step less than necessary and use actual (xe,ye) |
664 | * curve's endpoint instead of calculated. This prevent us from accumulated |
665 | * errors at the last point. |
666 | */ |
667 | |
668 | hnd->pProcessFixedLine(hnd, x2, y2, xe, ye, pixelInfo, checkBounds, |
669 | JNI_FALSE); |
670 | } |
671 | |
672 | /* |
673 | * Checking size of the quad curves and split them if necessary. |
674 | * Calling DrawMonotonicQuad for the curves of the appropriate size. |
675 | * Note: coords array could be changed |
676 | */ |
677 | static void ProcessMonotonicQuad(ProcessHandler* hnd, |
678 | jfloat *coords, |
679 | jint* pixelInfo) { |
680 | |
681 | jfloat coords1[6]; |
682 | jfloat xMin, xMax; |
683 | jfloat yMin, yMax; |
684 | |
685 | xMin = xMax = coords[0]; |
686 | yMin = yMax = coords[1]; |
687 | |
688 | CALC_MIN(xMin, coords[2]); |
689 | CALC_MAX(xMax, coords[2]); |
690 | CALC_MIN(yMin, coords[3]); |
691 | CALC_MAX(yMax, coords[3]); |
692 | CALC_MIN(xMin, coords[4]); |
693 | CALC_MAX(xMax, coords[4]); |
694 | CALC_MIN(yMin, coords[5]); |
695 | CALC_MAX(yMax, coords[5]); |
696 | |
697 | |
698 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { |
699 | |
700 | /* In case of drawing we could just skip curves which are completely |
701 | * out of bounds |
702 | */ |
703 | if (hnd->dhnd->xMaxf < xMin || hnd->dhnd->xMinf > xMax || |
704 | hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax) { |
705 | return; |
706 | } |
707 | } else { |
708 | |
709 | /* In case of filling we could skip curves which are above, |
710 | * below and behind the right boundary of the visible area |
711 | */ |
712 | |
713 | if (hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax || |
714 | hnd->dhnd->xMaxf < xMin) |
715 | { |
716 | return; |
717 | } |
718 | |
719 | /* We could clamp x coordinates to the corresponding boundary |
720 | * if the curve is completely behind the left one |
721 | */ |
722 | |
723 | if (hnd->dhnd->xMinf > xMax) { |
724 | coords[0] = coords[2] = coords[4] = hnd->dhnd->xMinf; |
725 | } |
726 | } |
727 | |
728 | if (xMax - xMin > MAX_QUAD_SIZE || yMax - yMin > MAX_QUAD_SIZE) { |
729 | coords1[4] = coords[4]; |
730 | coords1[5] = coords[5]; |
731 | coords1[2] = (coords[2] + coords[4])/2.0f; |
732 | coords1[3] = (coords[3] + coords[5])/2.0f; |
733 | coords[2] = (coords[0] + coords[2])/2.0f; |
734 | coords[3] = (coords[1] + coords[3])/2.0f; |
735 | coords[4] = coords1[0] = (coords[2] + coords1[2])/2.0f; |
736 | coords[5] = coords1[1] = (coords[3] + coords1[3])/2.0f; |
737 | |
738 | ProcessMonotonicQuad(hnd, coords, pixelInfo); |
739 | |
740 | ProcessMonotonicQuad(hnd, coords1, pixelInfo); |
741 | } else { |
742 | DrawMonotonicQuad(hnd, coords, |
743 | /* Set checkBounds parameter if curve intersects |
744 | * boundary of the visible area. We know that the |
745 | * curve is visible, so the check is pretty simple |
746 | */ |
747 | hnd->dhnd->xMinf >= xMin || hnd->dhnd->xMaxf <= xMax || |
748 | hnd->dhnd->yMinf >= yMin || hnd->dhnd->yMaxf <= yMax, |
749 | pixelInfo); |
750 | } |
751 | } |
752 | |
753 | /* |
754 | * Bite the piece of the quadratic curve from start point till the point |
755 | * corresponding to the specified parameter then call ProcessQuad for the |
756 | * bitten part. |
757 | * Note: coords array will be changed |
758 | */ |
759 | static void ProcessFirstMonotonicPartOfQuad(ProcessHandler* hnd, jfloat* coords, |
760 | jint* pixelInfo, jfloat t) |
761 | { |
762 | jfloat coords1[6]; |
763 | |
764 | coords1[0] = coords[0]; |
765 | coords1[1] = coords[1]; |
766 | coords1[2] = coords[0] + t*(coords[2] - coords[0]); |
767 | coords1[3] = coords[1] + t*(coords[3] - coords[1]); |
768 | coords[2] = coords[2] + t*(coords[4] - coords[2]); |
769 | coords[3] = coords[3] + t*(coords[5] - coords[3]); |
770 | coords[0] = coords1[4] = coords1[2] + t*(coords[2] - coords1[2]); |
771 | coords[1] = coords1[5] = coords1[3] + t*(coords[3] - coords1[3]); |
772 | |
773 | ProcessMonotonicQuad(hnd, coords1, pixelInfo); |
774 | } |
775 | |
776 | /* |
777 | * Split quadratic curve into monotonic in X and Y parts. Calling |
778 | * ProcessMonotonicQuad for each monotonic piece of the curve. |
779 | * Note: coords array could be changed |
780 | */ |
781 | static void ProcessQuad(ProcessHandler* hnd, jfloat* coords, jint* pixelInfo) { |
782 | |
783 | /* Temporary array for holding parameters corresponding to the extreme in X |
784 | * and Y points. The values are inside the (0,1) range (0 and 1 excluded) |
785 | * and in ascending order. |
786 | */ |
787 | double params[2]; |
788 | |
789 | jint cnt = 0; |
790 | double param; |
791 | |
792 | /* Simple check for monotonicity in X before searching for the extreme |
793 | * points of the X(t) function. We first check if the curve is monotonic |
794 | * in X by seeing if all of the X coordinates are strongly ordered. |
795 | */ |
796 | if ((coords[0] > coords[2] || coords[2] > coords[4]) && |
797 | (coords[0] < coords[2] || coords[2] < coords[4])) |
798 | { |
799 | /* Searching for extreme points of the X(t) function by solving |
800 | * dX(t) |
801 | * ---- = 0 equation |
802 | * dt |
803 | */ |
804 | double ax = coords[0] - 2*coords[2] + coords[4]; |
805 | if (ax != 0) { |
806 | /* Calculating root of the following equation |
807 | * ax*t + bx = 0 |
808 | */ |
809 | double bx = coords[0] - coords[2]; |
810 | |
811 | param = bx/ax; |
812 | if (param < 1.0 && param > 0.0) { |
813 | params[cnt++] = param; |
814 | } |
815 | } |
816 | } |
817 | |
818 | /* Simple check for monotonicity in Y before searching for the extreme |
819 | * points of the Y(t) function. We first check if the curve is monotonic |
820 | * in Y by seeing if all of the Y coordinates are strongly ordered. |
821 | */ |
822 | if ((coords[1] > coords[3] || coords[3] > coords[5]) && |
823 | (coords[1] < coords[3] || coords[3] < coords[5])) |
824 | { |
825 | /* Searching for extreme points of the Y(t) function by solving |
826 | * dY(t) |
827 | * ----- = 0 equation |
828 | * dt |
829 | */ |
830 | double ay = coords[1] - 2*coords[3] + coords[5]; |
831 | |
832 | if (ay != 0) { |
833 | /* Calculating root of the following equation |
834 | * ay*t + by = 0 |
835 | */ |
836 | double by = coords[1] - coords[3]; |
837 | |
838 | param = by/ay; |
839 | if (param < 1.0 && param > 0.0) { |
840 | if (cnt > 0) { |
841 | /* Inserting parameter only if it differs from |
842 | * already stored |
843 | */ |
844 | if (params[0] > param) { |
845 | params[cnt++] = params[0]; |
846 | params[0] = param; |
847 | } else if (params[0] < param) { |
848 | params[cnt++] = param; |
849 | } |
850 | } else { |
851 | params[cnt++] = param; |
852 | } |
853 | } |
854 | } |
855 | } |
856 | |
857 | /* Processing obtained monotonic parts */ |
858 | switch(cnt) { |
859 | case 0: |
860 | break; |
861 | case 1: |
862 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, |
863 | (jfloat)params[0]); |
864 | break; |
865 | case 2: |
866 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, |
867 | (jfloat)params[0]); |
868 | param = params[1] - params[0]; |
869 | if (param > 0) { |
870 | ProcessFirstMonotonicPartOfQuad(hnd, coords, pixelInfo, |
871 | /* Scale parameter to match with rest of the curve */ |
872 | (jfloat)(param/(1.0 - params[0]))); |
873 | } |
874 | break; |
875 | } |
876 | |
877 | ProcessMonotonicQuad(hnd,coords,pixelInfo); |
878 | } |
879 | |
880 | /* |
881 | * Performing drawing of the monotonic in X and Y cubic curves with sizes less |
882 | * than MAX_CUB_SIZE by using forward differencing method of calculation. |
883 | * |
884 | * Here is some math used in the code below. |
885 | * |
886 | * If we express the parametric equation for the coordinates as |
887 | * simple polynomial: |
888 | * |
889 | * V(t) = a * t^3 + b * t^2 + c * t + d |
890 | * |
891 | * The equations for how we derive these polynomial coefficients |
892 | * from the Bezier control points can be found in the method comments |
893 | * for the CubicCurve.fillEqn Java method. |
894 | * |
895 | * From this polynomial, we can derive the forward differences to |
896 | * allow us to calculate V(t+K) from V(t) as follows: |
897 | * |
898 | * 1) V1(0) |
899 | * = V(K)-V(0) |
900 | * = aK^3 + bK^2 + cK + d - d |
901 | * = aK^3 + bK^2 + cK |
902 | * |
903 | * 2) V1(K) |
904 | * = V(2K)-V(K) |
905 | * = 8aK^3 + 4bK^2 + 2cK + d - aK^3 - bK^2 - cK - d |
906 | * = 7aK^3 + 3bK^2 + cK |
907 | * |
908 | * 3) V1(2K) |
909 | * = V(3K)-V(2K) |
910 | * = 27aK^3 + 9bK^2 + 3cK + d - 8aK^3 - 4bK^2 - 2cK - d |
911 | * = 19aK^3 + 5bK^2 + cK |
912 | * |
913 | * 4) V2(0) |
914 | * = V1(K) - V1(0) |
915 | * = 7aK^3 + 3bK^2 + cK - aK^3 - bK^2 - cK |
916 | * = 6aK^3 + 2bK^2 |
917 | * |
918 | * 5) V2(K) |
919 | * = V1(2K) - V1(K) |
920 | * = 19aK^3 + 5bK^2 + cK - 7aK^3 - 3bK^2 - cK |
921 | * = 12aK^3 + 2bK^2 |
922 | * |
923 | * 6) V3(0) |
924 | * = V2(K) - V2(0) |
925 | * = 12aK^3 + 2bK^2 - 6aK^3 - 2bK^2 |
926 | * = 6aK^3 |
927 | * |
928 | * Note that if we continue on to calculate V1(3K), V2(2K) and |
929 | * V3(K) we will see that V3(K) == V3(0) so we need at most |
930 | * 3 cascading forward differences to step through the cubic |
931 | * curve. |
932 | * |
933 | * Note, b coefficient calculating in the DrawCubic is actually twice the b |
934 | * coefficient seen above. It's been done for the better accuracy. |
935 | * |
936 | * In our case, initialy K is chosen as 1/(2^DF_CUB_STEPS) this value is taken |
937 | * with FWD_PREC bits precision. This means that we should do 2^DF_CUB_STEPS |
938 | * steps to pass through all the curve. |
939 | * |
940 | * On each step we examine how far we are stepping by examining our first(V1) |
941 | * and second (V2) order derivatives and verifying that they are met following |
942 | * conditions: |
943 | * |
944 | * abs(V2) <= DF_CUB_DEC_BND |
945 | * abs(V1) > DF_CUB_INC_BND |
946 | * |
947 | * So, ensures that we step through the curve more slowly when its curvature is |
948 | * high and faster when its curvature is lower. If the step size needs |
949 | * adjustment we adjust it so that we step either twice as fast, or twice as |
950 | * slow until our step size is within range. This modifies our stepping |
951 | * variables as follows: |
952 | * |
953 | * Decreasing step size |
954 | * (See Graphics Gems/by A.Glassner,(Tutorial on forward differencing),601-602) |
955 | * |
956 | * V3 = oV3/8 |
957 | * V2 = oV2/4 - V3 |
958 | * V1 = (oV1 - V2)/2 |
959 | * |
960 | * Here V1-V3 stands for new values of the forward differencies and oV1 - oV3 |
961 | * for the old ones |
962 | * |
963 | * Using the equations above it's easy to calculating stepping variables for |
964 | * the increasing step size: |
965 | * |
966 | * V1 = 2*oV1 + oV2 |
967 | * V2 = 4*oV2 + 4*oV3 |
968 | * V3 = 8*oV3 |
969 | * |
970 | * And then for not to running out of 32 bit precision we are performing 3 bit |
971 | * shift of the forward differencing precision (keeping in shift variable) in |
972 | * left or right direction depending on what is happening (decreasing or |
973 | * increasing). So, all oV1 - oV3 variables should be thought as appropriately |
974 | * shifted in regard to the V1 - V3. |
975 | * |
976 | * Taking all of the above into account we will have following: |
977 | * |
978 | * Decreasing step size: |
979 | * |
980 | * shift = shift + 3 |
981 | * V3 keeps the same |
982 | * V2 = 2*oV2 - V3 |
983 | * V1 = 4*oV1 - V2/2 |
984 | * |
985 | * Increasing step size: |
986 | * |
987 | * shift = shift - 3 |
988 | * V1 = oV1/4 + oV2/8 |
989 | * V2 = oV2/2 + oV3/2 |
990 | * V3 keeps the same |
991 | * |
992 | */ |
993 | |
994 | static void DrawMonotonicCubic(ProcessHandler* hnd, |
995 | jfloat *coords, |
996 | jboolean checkBounds, |
997 | jint* pixelInfo) |
998 | { |
999 | jint x0 = (jint)(coords[0]*MDP_MULT); |
1000 | jint y0 = (jint)(coords[1]*MDP_MULT); |
1001 | |
1002 | jint xe = (jint)(coords[6]*MDP_MULT); |
1003 | jint ye = (jint)(coords[7]*MDP_MULT); |
1004 | |
1005 | /* Extracting fractional part of coordinates of first control point */ |
1006 | jint px = (x0 & (~MDP_W_MASK)) << DF_CUB_SHIFT; |
1007 | jint py = (y0 & (~MDP_W_MASK)) << DF_CUB_SHIFT; |
1008 | |
1009 | /* Setting default boundary values for checking first and second forward |
1010 | * difference for the necessity of the restepping. See comments to the |
1011 | * boundary values in ProcessQuad for more info. |
1012 | */ |
1013 | jint incStepBnd1 = DF_CUB_INC_BND; |
1014 | jint incStepBnd2 = DF_CUB_INC_BND << 1; |
1015 | jint decStepBnd1 = DF_CUB_DEC_BND; |
1016 | jint decStepBnd2 = DF_CUB_DEC_BND << 1; |
1017 | |
1018 | /* Setting default amount of steps */ |
1019 | jint count = DF_CUB_COUNT; |
1020 | |
1021 | /* Setting default shift for preparing to the midpoint rounding */ |
1022 | jint shift = DF_CUB_SHIFT; |
1023 | |
1024 | jint ax = (jint)((-coords[0] + 3*coords[2] - 3*coords[4] + |
1025 | coords[6])*CUB_A_MDP_MULT); |
1026 | jint ay = (jint)((-coords[1] + 3*coords[3] - 3*coords[5] + |
1027 | coords[7])*CUB_A_MDP_MULT); |
1028 | |
1029 | jint bx = (jint)((3*coords[0] - 6*coords[2] + |
1030 | 3*coords[4])*CUB_B_MDP_MULT); |
1031 | jint by = (jint)((3*coords[1] - 6*coords[3] + |
1032 | 3*coords[5])*CUB_B_MDP_MULT); |
1033 | |
1034 | jint cx = (jint)((-3*coords[0] + 3*coords[2])*(CUB_C_MDP_MULT)); |
1035 | jint cy = (jint)((-3*coords[1] + 3*coords[3])*(CUB_C_MDP_MULT)); |
1036 | |
1037 | jint dddpx = 6*ax; |
1038 | jint dddpy = 6*ay; |
1039 | |
1040 | jint ddpx = dddpx + bx; |
1041 | jint ddpy = dddpy + by; |
1042 | |
1043 | jint dpx = ax + (bx>>1) + cx; |
1044 | jint dpy = ay + (by>>1) + cy; |
1045 | |
1046 | jint x1, y1; |
1047 | |
1048 | jint x2 = x0; |
1049 | jint y2 = y0; |
1050 | |
1051 | /* Calculating whole part of the first point of the curve */ |
1052 | jint x0w = x0 & MDP_W_MASK; |
1053 | jint y0w = y0 & MDP_W_MASK; |
1054 | |
1055 | jint dx = xe - x0; |
1056 | jint dy = ye - y0; |
1057 | |
1058 | while (count > 0) { |
1059 | /* Perform decreasing step in 2 times if necessary */ |
1060 | while ( |
1061 | /* The code below is an optimized version of the checks: |
1062 | * abs(ddpx) > decStepBnd1 || |
1063 | * abs(ddpy) > decStepBnd1 |
1064 | */ |
1065 | (juint)(ddpx + decStepBnd1) > (juint)decStepBnd2 || |
1066 | (juint)(ddpy + decStepBnd1) > (juint)decStepBnd2) |
1067 | { |
1068 | ddpx = (ddpx<<1) - dddpx; |
1069 | ddpy = (ddpy<<1) - dddpy; |
1070 | dpx = (dpx<<2) - (ddpx>>1); |
1071 | dpy = (dpy<<2) - (ddpy>>1); |
1072 | count <<=1; |
1073 | decStepBnd1 <<=3; |
1074 | decStepBnd2 <<=3; |
1075 | incStepBnd1 <<=3; |
1076 | incStepBnd2 <<=3; |
1077 | px <<=3; |
1078 | py <<=3; |
1079 | shift += 3; |
1080 | } |
1081 | |
1082 | /* Perform increasing step in 2 times if necessary. |
1083 | * Note: we could do it only in even steps |
1084 | */ |
1085 | |
1086 | while (((count & 1) ^ 1) && shift > DF_CUB_SHIFT && |
1087 | /* The code below is an optimized version of the check: |
1088 | * abs(dpx) <= incStepBnd1 && |
1089 | * abs(dpy) <= incStepBnd1 |
1090 | */ |
1091 | (juint)(dpx + incStepBnd1) <= (juint)incStepBnd2 && |
1092 | (juint)(dpy + incStepBnd1) <= (juint)incStepBnd2) |
1093 | { |
1094 | dpx = (dpx>>2) + (ddpx>>3); |
1095 | dpy = (dpy>>2) + (ddpy>>3); |
1096 | ddpx = (ddpx + dddpx)>>1; |
1097 | ddpy = (ddpy + dddpy)>>1; |
1098 | count >>=1; |
1099 | decStepBnd1 >>=3; |
1100 | decStepBnd2 >>=3; |
1101 | incStepBnd1 >>=3; |
1102 | incStepBnd2 >>=3; |
1103 | px >>=3; |
1104 | py >>=3; |
1105 | shift -= 3; |
1106 | } |
1107 | |
1108 | count--; |
1109 | |
1110 | /* We are performing one step less than necessary and use actual |
1111 | * (xe,ye) endpoint of the curve instead of calculated. This prevent |
1112 | * us from accumulated errors at the last point. |
1113 | */ |
1114 | if (count) { |
1115 | |
1116 | px += dpx; |
1117 | py += dpy; |
1118 | |
1119 | dpx += ddpx; |
1120 | dpy += ddpy; |
1121 | ddpx += dddpx; |
1122 | ddpy += dddpy; |
1123 | |
1124 | x1 = x2; |
1125 | y1 = y2; |
1126 | |
1127 | x2 = x0w + (px >> shift); |
1128 | y2 = y0w + (py >> shift); |
1129 | |
1130 | /* Checking that we are not running out of the endpoint and |
1131 | * bounding violating coordinate. The check is pretty simple |
1132 | * because the curve passed to the DrawMonotonicCubic already |
1133 | * split into the monotonic in X and Y pieces |
1134 | */ |
1135 | |
1136 | /* Bounding x2 by xe */ |
1137 | if (((xe-x2)^dx) < 0) { |
1138 | x2 = xe; |
1139 | } |
1140 | |
1141 | /* Bounding y2 by ye */ |
1142 | if (((ye-y2)^dy) < 0) { |
1143 | y2 = ye; |
1144 | } |
1145 | |
1146 | hnd->pProcessFixedLine(hnd, x1, y1, x2, y2, pixelInfo, checkBounds, |
1147 | JNI_FALSE); |
1148 | } else { |
1149 | hnd->pProcessFixedLine(hnd, x2, y2, xe, ye, pixelInfo, checkBounds, |
1150 | JNI_FALSE); |
1151 | } |
1152 | } |
1153 | } |
1154 | |
1155 | /* |
1156 | * Checking size of the cubic curves and split them if necessary. |
1157 | * Calling DrawMonotonicCubic for the curves of the appropriate size. |
1158 | * Note: coords array could be changed |
1159 | */ |
1160 | static void ProcessMonotonicCubic(ProcessHandler* hnd, |
1161 | jfloat *coords, |
1162 | jint* pixelInfo) { |
1163 | |
1164 | jfloat coords1[8]; |
1165 | jfloat tx, ty; |
1166 | jfloat xMin, xMax; |
1167 | jfloat yMin, yMax; |
1168 | |
1169 | xMin = xMax = coords[0]; |
1170 | yMin = yMax = coords[1]; |
1171 | |
1172 | CALC_MIN(xMin, coords[2]); |
1173 | CALC_MAX(xMax, coords[2]); |
1174 | CALC_MIN(yMin, coords[3]); |
1175 | CALC_MAX(yMax, coords[3]); |
1176 | CALC_MIN(xMin, coords[4]); |
1177 | CALC_MAX(xMax, coords[4]); |
1178 | CALC_MIN(yMin, coords[5]); |
1179 | CALC_MAX(yMax, coords[5]); |
1180 | CALC_MIN(xMin, coords[6]); |
1181 | CALC_MAX(xMax, coords[6]); |
1182 | CALC_MIN(yMin, coords[7]); |
1183 | CALC_MAX(yMax, coords[7]); |
1184 | |
1185 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { |
1186 | |
1187 | /* In case of drawing we could just skip curves which are completely |
1188 | * out of bounds |
1189 | */ |
1190 | if (hnd->dhnd->xMaxf < xMin || hnd->dhnd->xMinf > xMax || |
1191 | hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax) { |
1192 | return; |
1193 | } |
1194 | } else { |
1195 | |
1196 | /* In case of filling we could skip curves which are above, |
1197 | * below and behind the right boundary of the visible area |
1198 | */ |
1199 | |
1200 | if (hnd->dhnd->yMaxf < yMin || hnd->dhnd->yMinf > yMax || |
1201 | hnd->dhnd->xMaxf < xMin) |
1202 | { |
1203 | return; |
1204 | } |
1205 | |
1206 | /* We could clamp x coordinates to the corresponding boundary |
1207 | * if the curve is completely behind the left one |
1208 | */ |
1209 | |
1210 | if (hnd->dhnd->xMinf > xMax) { |
1211 | coords[0] = coords[2] = coords[4] = coords[6] = |
1212 | hnd->dhnd->xMinf; |
1213 | } |
1214 | } |
1215 | |
1216 | if (xMax - xMin > MAX_CUB_SIZE || yMax - yMin > MAX_CUB_SIZE) { |
1217 | coords1[6] = coords[6]; |
1218 | coords1[7] = coords[7]; |
1219 | coords1[4] = (coords[4] + coords[6])/2.0f; |
1220 | coords1[5] = (coords[5] + coords[7])/2.0f; |
1221 | tx = (coords[2] + coords[4])/2.0f; |
1222 | ty = (coords[3] + coords[5])/2.0f; |
1223 | coords1[2] = (tx + coords1[4])/2.0f; |
1224 | coords1[3] = (ty + coords1[5])/2.0f; |
1225 | coords[2] = (coords[0] + coords[2])/2.0f; |
1226 | coords[3] = (coords[1] + coords[3])/2.0f; |
1227 | coords[4] = (coords[2] + tx)/2.0f; |
1228 | coords[5] = (coords[3] + ty)/2.0f; |
1229 | coords[6]=coords1[0]=(coords[4] + coords1[2])/2.0f; |
1230 | coords[7]=coords1[1]=(coords[5] + coords1[3])/2.0f; |
1231 | |
1232 | ProcessMonotonicCubic(hnd, coords, pixelInfo); |
1233 | |
1234 | ProcessMonotonicCubic(hnd, coords1, pixelInfo); |
1235 | |
1236 | } else { |
1237 | DrawMonotonicCubic(hnd, coords, |
1238 | /* Set checkBounds parameter if curve intersects |
1239 | * boundary of the visible area. We know that the |
1240 | * curve is visible, so the check is pretty simple |
1241 | */ |
1242 | hnd->dhnd->xMinf > xMin || hnd->dhnd->xMaxf < xMax || |
1243 | hnd->dhnd->yMinf > yMin || hnd->dhnd->yMaxf < yMax, |
1244 | pixelInfo); |
1245 | } |
1246 | } |
1247 | |
1248 | /* |
1249 | * Bite the piece of the cubic curve from start point till the point |
1250 | * corresponding to the specified parameter then call ProcessMonotonicCubic for |
1251 | * the bitten part. |
1252 | * Note: coords array will be changed |
1253 | */ |
1254 | static void ProcessFirstMonotonicPartOfCubic(ProcessHandler* hnd, |
1255 | jfloat* coords, jint* pixelInfo, |
1256 | jfloat t) |
1257 | { |
1258 | jfloat coords1[8]; |
1259 | jfloat tx, ty; |
1260 | |
1261 | coords1[0] = coords[0]; |
1262 | coords1[1] = coords[1]; |
1263 | tx = coords[2] + t*(coords[4] - coords[2]); |
1264 | ty = coords[3] + t*(coords[5] - coords[3]); |
1265 | coords1[2] = coords[0] + t*(coords[2] - coords[0]); |
1266 | coords1[3] = coords[1] + t*(coords[3] - coords[1]); |
1267 | coords1[4] = coords1[2] + t*(tx - coords1[2]); |
1268 | coords1[5] = coords1[3] + t*(ty - coords1[3]); |
1269 | coords[4] = coords[4] + t*(coords[6] - coords[4]); |
1270 | coords[5] = coords[5] + t*(coords[7] - coords[5]); |
1271 | coords[2] = tx + t*(coords[4] - tx); |
1272 | coords[3] = ty + t*(coords[5] - ty); |
1273 | coords[0]=coords1[6]=coords1[4] + t*(coords[2] - coords1[4]); |
1274 | coords[1]=coords1[7]=coords1[5] + t*(coords[3] - coords1[5]); |
1275 | |
1276 | ProcessMonotonicCubic(hnd, coords1, pixelInfo); |
1277 | } |
1278 | |
1279 | /* |
1280 | * Split cubic curve into monotonic in X and Y parts. Calling ProcessCubic for |
1281 | * each monotonic piece of the curve. |
1282 | * |
1283 | * Note: coords array could be changed |
1284 | */ |
1285 | static void ProcessCubic(ProcessHandler* hnd, jfloat* coords, jint* pixelInfo) |
1286 | { |
1287 | /* Temporary array for holding parameters corresponding to the extreme in X |
1288 | * and Y points. The values are inside the (0,1) range (0 and 1 excluded) |
1289 | * and in ascending order. |
1290 | */ |
1291 | double params[4]; |
1292 | jint cnt = 0, i; |
1293 | |
1294 | /* Simple check for monotonicity in X before searching for the extreme |
1295 | * points of the X(t) function. We first check if the curve is monotonic in |
1296 | * X by seeing if all of the X coordinates are strongly ordered. |
1297 | */ |
1298 | if ((coords[0] > coords[2] || coords[2] > coords[4] || |
1299 | coords[4] > coords[6]) && |
1300 | (coords[0] < coords[2] || coords[2] < coords[4] || |
1301 | coords[4] < coords[6])) |
1302 | { |
1303 | /* Searching for extreme points of the X(t) function by solving |
1304 | * dX(t) |
1305 | * ---- = 0 equation |
1306 | * dt |
1307 | */ |
1308 | double ax = -coords[0] + 3*coords[2] - 3*coords[4] + coords[6]; |
1309 | double bx = 2*(coords[0] - 2*coords[2] + coords[4]); |
1310 | double cx = -coords[0] + coords[2]; |
1311 | |
1312 | SOLVEQUADINRANGE(ax,bx,cx,params,cnt); |
1313 | } |
1314 | |
1315 | /* Simple check for monotonicity in Y before searching for the extreme |
1316 | * points of the Y(t) function. We first check if the curve is monotonic in |
1317 | * Y by seeing if all of the Y coordinates are strongly ordered. |
1318 | */ |
1319 | if ((coords[1] > coords[3] || coords[3] > coords[5] || |
1320 | coords[5] > coords[7]) && |
1321 | (coords[1] < coords[3] || coords[3] < coords[5] || |
1322 | coords[5] < coords[7])) |
1323 | { |
1324 | /* Searching for extreme points of the Y(t) function by solving |
1325 | * dY(t) |
1326 | * ----- = 0 equation |
1327 | * dt |
1328 | */ |
1329 | double ay = -coords[1] + 3*coords[3] - 3*coords[5] + coords[7]; |
1330 | double by = 2*(coords[1] - 2*coords[3] + coords[5]); |
1331 | double cy = -coords[1] + coords[3]; |
1332 | |
1333 | SOLVEQUADINRANGE(ay,by,cy,params,cnt); |
1334 | } |
1335 | |
1336 | if (cnt > 0) { |
1337 | /* Sorting parameter values corresponding to the extremum points of |
1338 | * the curve. We are using insertion sort because of tiny size of the |
1339 | * array. |
1340 | */ |
1341 | jint j; |
1342 | |
1343 | for(i = 1; i < cnt; i++) { |
1344 | double value = params[i]; |
1345 | for (j = i - 1; j >= 0 && params[j] > value; j--) { |
1346 | params[j + 1] = params[j]; |
1347 | } |
1348 | params[j + 1] = value; |
1349 | } |
1350 | |
1351 | /* Processing obtained monotonic parts */ |
1352 | ProcessFirstMonotonicPartOfCubic(hnd, coords, pixelInfo, |
1353 | (jfloat)params[0]); |
1354 | for (i = 1; i < cnt; i++) { |
1355 | double param = params[i] - params[i-1]; |
1356 | if (param > 0) { |
1357 | ProcessFirstMonotonicPartOfCubic(hnd, coords, pixelInfo, |
1358 | /* Scale parameter to match with rest of the curve */ |
1359 | (float)(param/(1.0 - params[i - 1]))); |
1360 | } |
1361 | } |
1362 | } |
1363 | |
1364 | ProcessMonotonicCubic(hnd,coords,pixelInfo); |
1365 | } |
1366 | |
1367 | static void ProcessLine(ProcessHandler* hnd, |
1368 | jfloat *coord1, jfloat *coord2, jint* pixelInfo) { |
1369 | |
1370 | jfloat xMin, yMin, xMax, yMax; |
1371 | jint X1, Y1, X2, Y2, X3, Y3, res; |
1372 | jboolean clipped = JNI_FALSE; |
1373 | jfloat x1 = coord1[0]; |
1374 | jfloat y1 = coord1[1]; |
1375 | jfloat x2 = coord2[0]; |
1376 | jfloat y2 = coord2[1]; |
1377 | jfloat x3,y3; |
1378 | |
1379 | jboolean lastClipped; |
1380 | |
1381 | xMin = hnd->dhnd->xMinf; |
1382 | yMin = hnd->dhnd->yMinf; |
1383 | xMax = hnd->dhnd->xMaxf; |
1384 | yMax = hnd->dhnd->yMaxf; |
1385 | |
1386 | TESTANDCLIP(yMin, yMax, y1, x1, y2, x2, jfloat, res); |
1387 | if (res == CRES_INVISIBLE) return; |
1388 | clipped = IS_CLIPPED(res); |
1389 | TESTANDCLIP(yMin, yMax, y2, x2, y1, x1, jfloat, res); |
1390 | if (res == CRES_INVISIBLE) return; |
1391 | lastClipped = IS_CLIPPED(res); |
1392 | clipped = clipped || lastClipped; |
1393 | |
1394 | if (hnd->clipMode == PH_MODE_DRAW_CLIP) { |
1395 | TESTANDCLIP(xMin, xMax, |
1396 | x1, y1, x2, y2, jfloat, res); |
1397 | if (res == CRES_INVISIBLE) return; |
1398 | clipped = clipped || IS_CLIPPED(res); |
1399 | TESTANDCLIP(xMin, xMax, |
1400 | x2, y2, x1, y1, jfloat, res); |
1401 | if (res == CRES_INVISIBLE) return; |
1402 | lastClipped = lastClipped || IS_CLIPPED(res); |
1403 | clipped = clipped || lastClipped; |
1404 | X1 = (jint)(x1*MDP_MULT); |
1405 | Y1 = (jint)(y1*MDP_MULT); |
1406 | X2 = (jint)(x2*MDP_MULT); |
1407 | Y2 = (jint)(y2*MDP_MULT); |
1408 | |
1409 | hnd->pProcessFixedLine(hnd, X1, Y1, X2, Y2, pixelInfo, |
1410 | clipped, /* enable boundary checking in case |
1411 | of clipping to avoid entering |
1412 | out of bounds which could |
1413 | happens during rounding |
1414 | */ |
1415 | lastClipped /* Notify pProcessFixedLine that |
1416 | this is the end of the |
1417 | subpath (because of exiting |
1418 | out of boundaries) |
1419 | */ |
1420 | ); |
1421 | } else { |
1422 | /* Clamping starting from first vertex of the processed segment |
1423 | */ |
1424 | CLIPCLAMP(xMin, xMax, x1, y1, x2, y2, x3, y3, jfloat, res); |
1425 | X1 = (jint)(x1*MDP_MULT); |
1426 | Y1 = (jint)(y1*MDP_MULT); |
1427 | |
1428 | /* Clamping only by left boundary */ |
1429 | if (res == CRES_MIN_CLIPPED) { |
1430 | X3 = (jint)(x3*MDP_MULT); |
1431 | Y3 = (jint)(y3*MDP_MULT); |
1432 | hnd->pProcessFixedLine(hnd, X3, Y3, X1, Y1, pixelInfo, |
1433 | JNI_FALSE, lastClipped); |
1434 | |
1435 | } else if (res == CRES_INVISIBLE) { |
1436 | return; |
1437 | } |
1438 | |
1439 | /* Clamping starting from last vertex of the processed segment |
1440 | */ |
1441 | CLIPCLAMP(xMin, xMax, x2, y2, x1, y1, x3, y3, jfloat, res); |
1442 | |
1443 | /* Checking if there was a clip by right boundary */ |
1444 | lastClipped = lastClipped || (res == CRES_MAX_CLIPPED); |
1445 | |
1446 | X2 = (jint)(x2*MDP_MULT); |
1447 | Y2 = (jint)(y2*MDP_MULT); |
1448 | hnd->pProcessFixedLine(hnd, X1, Y1, X2, Y2, pixelInfo, |
1449 | JNI_FALSE, lastClipped); |
1450 | |
1451 | /* Clamping only by left boundary */ |
1452 | if (res == CRES_MIN_CLIPPED) { |
1453 | X3 = (jint)(x3*MDP_MULT); |
1454 | Y3 = (jint)(y3*MDP_MULT); |
1455 | hnd->pProcessFixedLine(hnd, X2, Y2, X3, Y3, pixelInfo, |
1456 | JNI_FALSE, lastClipped); |
1457 | } |
1458 | } |
1459 | } |
1460 | |
1461 | jboolean ProcessPath(ProcessHandler* hnd, |
1462 | jfloat transXf, jfloat transYf, |
1463 | jfloat* coords, jint maxCoords, |
1464 | jbyte* types, jint numTypes) |
1465 | { |
1466 | jfloat tCoords[8]; |
1467 | jfloat closeCoord[2]; |
1468 | jint pixelInfo[5]; |
1469 | jboolean skip = JNI_FALSE; |
1470 | jboolean subpathStarted = JNI_FALSE; |
1471 | jfloat lastX, lastY; |
1472 | int i, index = 0; |
1473 | |
1474 | pixelInfo[0] = 0; |
1475 | |
1476 | /* Adding support of the KEY_STROKE_CONTROL rendering hint. |
1477 | * Now we are supporting two modes: "pixels at centers" and |
1478 | * "pixels at corners". |
1479 | * First one is disabled by default but could be enabled by setting |
1480 | * VALUE_STROKE_PURE to the rendering hint. It means that pixel at the |
1481 | * screen (x,y) has (x + 0.5, y + 0.5) float coordinates. |
1482 | * |
1483 | * Second one is enabled by default and means straightforward mapping |
1484 | * (x,y) --> (x,y) |
1485 | * |
1486 | */ |
1487 | if (hnd->stroke == PH_STROKE_PURE) { |
1488 | closeCoord[0] = -0.5f; |
1489 | closeCoord[1] = -0.5f; |
1490 | transXf -= 0.5; |
1491 | transYf -= 0.5; |
1492 | } else { |
1493 | closeCoord[0] = 0.0f; |
1494 | closeCoord[1] = 0.0f; |
1495 | } |
1496 | |
1497 | /* Adjusting boundaries to the capabilities of the ProcessPath code */ |
1498 | ADJUST(hnd->dhnd->xMin, LOWER_OUT_BND, UPPER_OUT_BND); |
1499 | ADJUST(hnd->dhnd->yMin, LOWER_OUT_BND, UPPER_OUT_BND); |
1500 | ADJUST(hnd->dhnd->xMax, LOWER_OUT_BND, UPPER_OUT_BND); |
1501 | ADJUST(hnd->dhnd->yMax, LOWER_OUT_BND, UPPER_OUT_BND); |
1502 | |
1503 | |
1504 | /* Setting up fractional clipping box |
1505 | * |
1506 | * We are using following float -> int mapping: |
1507 | * |
1508 | * xi = floor(xf + 0.5) |
1509 | * |
1510 | * So, fractional values that hit the [xmin, xmax) integer interval will be |
1511 | * situated inside the [xmin-0.5, xmax - 0.5) fractional interval. We are |
1512 | * using EPSF constant to provide that upper boundary is not included. |
1513 | */ |
1514 | hnd->dhnd->xMinf = hnd->dhnd->xMin - 0.5f; |
1515 | hnd->dhnd->yMinf = hnd->dhnd->yMin - 0.5f; |
1516 | hnd->dhnd->xMaxf = hnd->dhnd->xMax - 0.5f - EPSF; |
1517 | hnd->dhnd->yMaxf = hnd->dhnd->yMax - 0.5f - EPSF; |
1518 | |
1519 | |
1520 | for (i = 0; i < numTypes; i++) { |
1521 | switch (types[i]) { |
1522 | case java_awt_geom_PathIterator_SEG_MOVETO: |
1523 | if (index + 2 <= maxCoords) { |
1524 | /* Performing closing of the unclosed segments */ |
1525 | if (subpathStarted & !skip) { |
1526 | if (hnd->clipMode == PH_MODE_FILL_CLIP) { |
1527 | if (tCoords[0] != closeCoord[0] || |
1528 | tCoords[1] != closeCoord[1]) |
1529 | { |
1530 | ProcessLine(hnd, tCoords, closeCoord, |
1531 | pixelInfo); |
1532 | } |
1533 | } |
1534 | hnd->pProcessEndSubPath(hnd); |
1535 | } |
1536 | |
1537 | tCoords[0] = coords[index++] + transXf; |
1538 | tCoords[1] = coords[index++] + transYf; |
1539 | |
1540 | /* Checking SEG_MOVETO coordinates if they are out of the |
1541 | * [LOWER_BND, UPPER_BND] range. This check also handles |
1542 | * NaN and Infinity values. Skipping next path segment in |
1543 | * case of invalid data. |
1544 | */ |
1545 | |
1546 | if (tCoords[0] < UPPER_BND && |
1547 | tCoords[0] > LOWER_BND && |
1548 | tCoords[1] < UPPER_BND && |
1549 | tCoords[1] > LOWER_BND) |
1550 | { |
1551 | subpathStarted = JNI_TRUE; |
1552 | skip = JNI_FALSE; |
1553 | closeCoord[0] = tCoords[0]; |
1554 | closeCoord[1] = tCoords[1]; |
1555 | } else { |
1556 | skip = JNI_TRUE; |
1557 | } |
1558 | } else { |
1559 | return JNI_FALSE; |
1560 | } |
1561 | break; |
1562 | case java_awt_geom_PathIterator_SEG_LINETO: |
1563 | if (index + 2 <= maxCoords) { |
1564 | lastX = tCoords[2] = coords[index++] + transXf; |
1565 | lastY = tCoords[3] = coords[index++] + transYf; |
1566 | |
1567 | /* Checking SEG_LINETO coordinates if they are out of the |
1568 | * [LOWER_BND, UPPER_BND] range. This check also handles |
1569 | * NaN and Infinity values. Ignoring current path segment |
1570 | * in case of invalid data. If segment is skipped its |
1571 | * endpoint (if valid) is used to begin new subpath. |
1572 | */ |
1573 | |
1574 | if (lastX < UPPER_BND && |
1575 | lastX > LOWER_BND && |
1576 | lastY < UPPER_BND && |
1577 | lastY > LOWER_BND) |
1578 | { |
1579 | if (skip) { |
1580 | tCoords[0] = closeCoord[0] = lastX; |
1581 | tCoords[1] = closeCoord[1] = lastY; |
1582 | subpathStarted = JNI_TRUE; |
1583 | skip = JNI_FALSE; |
1584 | } else { |
1585 | ProcessLine(hnd, tCoords, tCoords + 2, |
1586 | pixelInfo); |
1587 | tCoords[0] = lastX; |
1588 | tCoords[1] = lastY; |
1589 | } |
1590 | } |
1591 | } else { |
1592 | return JNI_FALSE; |
1593 | } |
1594 | break; |
1595 | case java_awt_geom_PathIterator_SEG_QUADTO: |
1596 | if (index + 4 <= maxCoords) { |
1597 | tCoords[2] = coords[index++] + transXf; |
1598 | tCoords[3] = coords[index++] + transYf; |
1599 | lastX = tCoords[4] = coords[index++] + transXf; |
1600 | lastY = tCoords[5] = coords[index++] + transYf; |
1601 | |
1602 | /* Checking SEG_QUADTO coordinates if they are out of the |
1603 | * [LOWER_BND, UPPER_BND] range. This check also handles |
1604 | * NaN and Infinity values. Ignoring current path segment |
1605 | * in case of invalid endpoints's data. Equivalent to |
1606 | * the SEG_LINETO if endpoint coordinates are valid but |
1607 | * there are invalid data among other coordinates |
1608 | */ |
1609 | |
1610 | if (lastX < UPPER_BND && |
1611 | lastX > LOWER_BND && |
1612 | lastY < UPPER_BND && |
1613 | lastY > LOWER_BND) |
1614 | { |
1615 | if (skip) { |
1616 | tCoords[0] = closeCoord[0] = lastX; |
1617 | tCoords[1] = closeCoord[1] = lastY; |
1618 | subpathStarted = JNI_TRUE; |
1619 | skip = JNI_FALSE; |
1620 | } else { |
1621 | if (tCoords[2] < UPPER_BND && |
1622 | tCoords[2] > LOWER_BND && |
1623 | tCoords[3] < UPPER_BND && |
1624 | tCoords[3] > LOWER_BND) |
1625 | { |
1626 | ProcessQuad(hnd, tCoords, pixelInfo); |
1627 | } else { |
1628 | ProcessLine(hnd, tCoords, |
1629 | tCoords + 4, pixelInfo); |
1630 | } |
1631 | tCoords[0] = lastX; |
1632 | tCoords[1] = lastY; |
1633 | } |
1634 | } |
1635 | } else { |
1636 | return JNI_FALSE; |
1637 | } |
1638 | break; |
1639 | case java_awt_geom_PathIterator_SEG_CUBICTO: |
1640 | if (index + 6 <= maxCoords) { |
1641 | tCoords[2] = coords[index++] + transXf; |
1642 | tCoords[3] = coords[index++] + transYf; |
1643 | tCoords[4] = coords[index++] + transXf; |
1644 | tCoords[5] = coords[index++] + transYf; |
1645 | lastX = tCoords[6] = coords[index++] + transXf; |
1646 | lastY = tCoords[7] = coords[index++] + transYf; |
1647 | |
1648 | /* Checking SEG_CUBICTO coordinates if they are out of the |
1649 | * [LOWER_BND, UPPER_BND] range. This check also handles |
1650 | * NaN and Infinity values. Ignoring current path segment |
1651 | * in case of invalid endpoints's data. Equivalent to |
1652 | * the SEG_LINETO if endpoint coordinates are valid but |
1653 | * there are invalid data among other coordinates |
1654 | */ |
1655 | |
1656 | if (lastX < UPPER_BND && |
1657 | lastX > LOWER_BND && |
1658 | lastY < UPPER_BND && |
1659 | lastY > LOWER_BND) |
1660 | { |
1661 | if (skip) { |
1662 | tCoords[0] = closeCoord[0] = tCoords[6]; |
1663 | tCoords[1] = closeCoord[1] = tCoords[7]; |
1664 | subpathStarted = JNI_TRUE; |
1665 | skip = JNI_FALSE; |
1666 | } else { |
1667 | if (tCoords[2] < UPPER_BND && |
1668 | tCoords[2] > LOWER_BND && |
1669 | tCoords[3] < UPPER_BND && |
1670 | tCoords[3] > LOWER_BND && |
1671 | tCoords[4] < UPPER_BND && |
1672 | tCoords[4] > LOWER_BND && |
1673 | tCoords[5] < UPPER_BND && |
1674 | tCoords[5] > LOWER_BND) |
1675 | { |
1676 | ProcessCubic(hnd, tCoords, pixelInfo); |
1677 | } else { |
1678 | ProcessLine(hnd, tCoords, tCoords + 6, |
1679 | pixelInfo); |
1680 | } |
1681 | tCoords[0] = lastX; |
1682 | tCoords[1] = lastY; |
1683 | } |
1684 | } |
1685 | } else { |
1686 | return JNI_FALSE; |
1687 | } |
1688 | break; |
1689 | case java_awt_geom_PathIterator_SEG_CLOSE: |
1690 | if (subpathStarted && !skip) { |
1691 | skip = JNI_FALSE; |
1692 | if (tCoords[0] != closeCoord[0] || |
1693 | tCoords[1] != closeCoord[1]) |
1694 | { |
1695 | ProcessLine(hnd, tCoords, closeCoord, pixelInfo); |
1696 | /* Storing last path's point for using in |
1697 | * following segments without initial moveTo |
1698 | */ |
1699 | tCoords[0] = closeCoord[0]; |
1700 | tCoords[1] = closeCoord[1]; |
1701 | } |
1702 | |
1703 | hnd->pProcessEndSubPath(hnd); |
1704 | } |
1705 | |
1706 | break; |
1707 | } |
1708 | } |
1709 | |
1710 | /* Performing closing of the unclosed segments */ |
1711 | if (subpathStarted & !skip) { |
1712 | if (hnd->clipMode == PH_MODE_FILL_CLIP) { |
1713 | if (tCoords[0] != closeCoord[0] || |
1714 | tCoords[1] != closeCoord[1]) |
1715 | { |
1716 | ProcessLine(hnd, tCoords, closeCoord, |
1717 | pixelInfo); |
1718 | } |
1719 | } |
1720 | hnd->pProcessEndSubPath(hnd); |
1721 | } |
1722 | |
1723 | return JNI_TRUE; |
1724 | } |
1725 | |
1726 | /* TODO Add checking of the result of the malloc/realloc functions to handle |
1727 | * out of memory error and don't leak earlier allocated data |
1728 | */ |
1729 | |
1730 | |
1731 | #define ALLOC(ptr, type, n) \ |
1732 | ptr = (type *)malloc((n)*sizeof(type)) |
1733 | #define REALLOC(ptr, type, n) \ |
1734 | ptr = (type *)realloc(ptr, (n)*sizeof(type)) |
1735 | |
1736 | |
1737 | struct _Edge; |
1738 | |
1739 | typedef struct _Point { |
1740 | jint x; |
1741 | jint y; |
1742 | jboolean lastPoint; |
1743 | struct _Point* prev; |
1744 | struct _Point* next; |
1745 | struct _Point* nextByY; |
1746 | jboolean endSL; |
1747 | struct _Edge* edge; |
1748 | } Point; |
1749 | |
1750 | |
1751 | typedef struct _Edge { |
1752 | jint x; |
1753 | jint dx; |
1754 | Point* p; |
1755 | jint dir; |
1756 | struct _Edge* prev; |
1757 | struct _Edge* next; |
1758 | } Edge; |
1759 | |
1760 | /* Size of the default buffer in the FillData structure. This buffer is |
1761 | * replaced with heap allocated in case of large paths. |
1762 | */ |
1763 | #define DF_MAX_POINT 256 |
1764 | |
1765 | /* Following structure accumulates points of the non-continuous flattened |
1766 | * path during iteration through the origin path's segments . The end |
1767 | * of the each subpath is marked as lastPoint flag set at the last point |
1768 | */ |
1769 | |
1770 | typedef struct { |
1771 | Point *plgPnts; |
1772 | Point dfPlgPnts[DF_MAX_POINT]; |
1773 | jint plgSize; |
1774 | jint plgMax; |
1775 | jint plgYMin; |
1776 | jint plgYMax; |
1777 | } FillData; |
1778 | |
1779 | #define FD_INIT(PTR) \ |
1780 | do { \ |
1781 | (PTR)->plgPnts = (PTR)->dfPlgPnts; \ |
1782 | (PTR)->plgSize = 0; \ |
1783 | (PTR)->plgMax = DF_MAX_POINT; \ |
1784 | } while(0) |
1785 | |
1786 | #define FD_ADD_POINT(PTR, X, Y, LASTPT) \ |
1787 | do { \ |
1788 | Point* _pnts = (PTR)->plgPnts; \ |
1789 | jint _size = (PTR)->plgSize; \ |
1790 | if (_size >= (PTR)->plgMax) { \ |
1791 | jint newMax = (PTR)->plgMax*2; \ |
1792 | if ((PTR)->plgPnts == (PTR)->dfPlgPnts) { \ |
1793 | (PTR)->plgPnts = (Point*)malloc(newMax*sizeof(Point)); \ |
1794 | memcpy((PTR)->plgPnts, _pnts, _size*sizeof(Point)); \ |
1795 | } else { \ |
1796 | (PTR)->plgPnts = (Point*)realloc( \ |
1797 | _pnts, newMax*sizeof(Point)); \ |
1798 | } \ |
1799 | _pnts = (PTR)->plgPnts; \ |
1800 | (PTR)->plgMax = newMax; \ |
1801 | } \ |
1802 | _pnts += _size; \ |
1803 | _pnts->x = X; \ |
1804 | _pnts->y = Y; \ |
1805 | _pnts->lastPoint = LASTPT; \ |
1806 | if (_size) { \ |
1807 | if ((PTR)->plgYMin > Y) (PTR)->plgYMin = Y; \ |
1808 | if ((PTR)->plgYMax < Y) (PTR)->plgYMax = Y; \ |
1809 | } else { \ |
1810 | (PTR)->plgYMin = Y; \ |
1811 | (PTR)->plgYMax = Y; \ |
1812 | } \ |
1813 | (PTR)->plgSize = _size + 1; \ |
1814 | } while(0) |
1815 | |
1816 | |
1817 | #define FD_FREE_POINTS(PTR) \ |
1818 | do { \ |
1819 | if ((PTR)->plgPnts != (PTR)->dfPlgPnts) { \ |
1820 | free((PTR)->plgPnts); \ |
1821 | } \ |
1822 | } while(0) |
1823 | |
1824 | #define FD_IS_EMPTY(PTR) (!((PTR)->plgSize)) |
1825 | |
1826 | #define FD_IS_ENDED(PTR) ((PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint) |
1827 | |
1828 | #define FD_SET_ENDED(PTR) \ |
1829 | do { \ |
1830 | (PTR)->plgPnts[(PTR)->plgSize - 1].lastPoint = JNI_TRUE; \ |
1831 | } while(0) |
1832 | |
1833 | #define PFD(HND) ((FillData*)(HND)->pData) |
1834 | |
1835 | /* Bubble sorting in the ascending order of the linked list. This |
1836 | * implementation stops processing the list if there were no changes during the |
1837 | * previous pass. |
1838 | * |
1839 | * LIST - ptr to the ptr to the first element of the list |
1840 | * ETYPE - type of the element in the list |
1841 | * NEXT - accessor to the next field in the list element |
1842 | * GET_LKEY - accessor to the key of the list element |
1843 | */ |
1844 | #define LBUBBLE_SORT(LIST, ETYPE, NEXT, GET_LKEY) \ |
1845 | do { \ |
1846 | ETYPE *p, *q, *r, *s = NULL, *temp ; \ |
1847 | jint wasSwap = 1; \ |
1848 | /* r precedes p and s points to the node up to which comparisons \ |
1849 | * are to be made */ \ |
1850 | while ( s != NEXT(*LIST) && wasSwap) { \ |
1851 | r = p = *LIST; \ |
1852 | q = NEXT(p); \ |
1853 | wasSwap = 0; \ |
1854 | while ( p != s ) { \ |
1855 | if (GET_LKEY(p) >= GET_LKEY(q)) { \ |
1856 | wasSwap = 1; \ |
1857 | if ( p == *LIST ) { \ |
1858 | temp = NEXT(q); \ |
1859 | NEXT(q) = p ; \ |
1860 | NEXT(p) = temp ; \ |
1861 | *LIST = q ; \ |
1862 | r = q ; \ |
1863 | } else { \ |
1864 | temp = NEXT(q); \ |
1865 | NEXT(q) = p ; \ |
1866 | NEXT(p) = temp ; \ |
1867 | NEXT(r) = q ; \ |
1868 | r = q ; \ |
1869 | } \ |
1870 | } else { \ |
1871 | r = p ; \ |
1872 | p = NEXT(p); \ |
1873 | } \ |
1874 | q = NEXT(p); \ |
1875 | if ( q == s ) s = p ; \ |
1876 | } \ |
1877 | } \ |
1878 | } while(0); |
1879 | |
1880 | /* Accessors for the Edge structure to work with LBUBBLE_SORT */ |
1881 | #define GET_ACTIVE_KEY(a) (a->x) |
1882 | #define GET_ACTIVE_NEXT(a) ((a)->next) |
1883 | |
1884 | /* TODO: Implement stack/heap allocation technique for active edges |
1885 | */ |
1886 | #define DELETE_ACTIVE(head,pnt) \ |
1887 | do { \ |
1888 | Edge *prevp = pnt->prev; \ |
1889 | Edge *nextp = pnt->next; \ |
1890 | if (prevp) { \ |
1891 | prevp->next = nextp; \ |
1892 | } else { \ |
1893 | head = nextp; \ |
1894 | } \ |
1895 | if (nextp) { \ |
1896 | nextp->prev = prevp; \ |
1897 | } \ |
1898 | } while(0); |
1899 | |
1900 | #define INSERT_ACTIVE(head,pnt,cy) \ |
1901 | do { \ |
1902 | Point *np = pnt->next; \ |
1903 | Edge *ne = active + nact; \ |
1904 | if (pnt->y == np->y) { \ |
1905 | /* Skipping horizontal segments */ \ |
1906 | break; \ |
1907 | } else { \ |
1908 | jint dX = np->x - pnt->x; \ |
1909 | jint dY = np->y - pnt->y; \ |
1910 | jint dy; \ |
1911 | if (pnt->y < np->y) { \ |
1912 | ne->dir = -1; \ |
1913 | ne->p = pnt; \ |
1914 | ne->x = pnt->x; \ |
1915 | dy = cy - pnt->y; \ |
1916 | } else { /* pnt->y > np->y */ \ |
1917 | ne->dir = 1; \ |
1918 | ne->p = np; \ |
1919 | ne->x = np->x; \ |
1920 | dy = cy - np->y; \ |
1921 | } \ |
1922 | \ |
1923 | /* We need to worry only about dX because dY is in */\ |
1924 | /* denominator and abs(dy) < MDP_MULT (cy is a first */\ |
1925 | /* scanline of the scan converted segment and we subtract */\ |
1926 | /* y coordinate of the nearest segment's end from it to */\ |
1927 | /* obtain dy) */\ |
1928 | if (ABS32(dX) > CALC_BND) { \ |
1929 | ne->dx = (jint)((((jdouble)dX)*MDP_MULT)/dY); \ |
1930 | ne->x += (jint)((((jdouble)dX)*dy)/dY); \ |
1931 | } else { \ |
1932 | ne->dx = ((dX)<<MDP_PREC)/dY; \ |
1933 | ne->x += (dX*dy)/dY; \ |
1934 | } \ |
1935 | } \ |
1936 | ne->next = head; \ |
1937 | ne->prev = NULL; \ |
1938 | if (head) { \ |
1939 | head->prev = ne; \ |
1940 | } \ |
1941 | head = active + nact; \ |
1942 | pnt->edge = head; \ |
1943 | nact++; \ |
1944 | } while(0); |
1945 | |
1946 | void FillPolygon(ProcessHandler* hnd, |
1947 | jint fillRule) { |
1948 | jint k, y, xl, xr; |
1949 | jint drawing; |
1950 | Edge* activeList, *active; |
1951 | Edge* curEdge, *prevEdge; |
1952 | jint nact; |
1953 | jint n; |
1954 | Point* pt, *curpt, *ept; |
1955 | Point** yHash; |
1956 | Point** curHash; |
1957 | jint rightBnd = hnd->dhnd->xMax - 1; |
1958 | FillData* pfd = (FillData*)(hnd->pData); |
1959 | jint yMin = pfd->plgYMin; |
1960 | jint yMax = pfd->plgYMax; |
1961 | jint hashSize = ((yMax - yMin)>>MDP_PREC) + 4; |
1962 | |
1963 | /* Because of support of the KEY_STROKE_CONTROL hint we are performing |
1964 | * shift of the coordinates at the higher level |
1965 | */ |
1966 | jint hashOffset = ((yMin - 1) & MDP_W_MASK); |
1967 | |
1968 | // TODO creating lists using fake first element to avoid special casing of |
1969 | // the first element in the list (which otherwise should be performed in each |
1970 | // list operation) |
1971 | |
1972 | /* Winding counter */ |
1973 | jint counter; |
1974 | |
1975 | /* Calculating mask to be applied to the winding counter */ |
1976 | jint counterMask = |
1977 | (fillRule == java_awt_geom_PathIterator_WIND_NON_ZERO)? -1:1; |
1978 | pt = pfd->plgPnts; |
1979 | n = pfd->plgSize; |
1980 | |
1981 | if (n <=1) return; |
1982 | |
1983 | ALLOC(yHash, Point*, hashSize); |
1984 | for (k = 0; k < hashSize; k++) { |
1985 | yHash[k] = NULL; |
1986 | } |
1987 | |
1988 | ALLOC(active, Edge, n); |
1989 | |
1990 | /* Creating double linked list (prev, next links) describing path order and |
1991 | * hash table with points which fall between scanlines. nextByY link is |
1992 | * used for the points which are between same scanlines. Scanlines are |
1993 | * passed through the centers of the pixels. |
1994 | */ |
1995 | curpt = pt; |
1996 | curpt->prev = NULL; |
1997 | ept = pt + n - 1; |
1998 | for (curpt = pt; curpt != ept; curpt++) { |
1999 | Point* nextpt = curpt + 1; |
2000 | curHash = yHash + ((curpt->y - hashOffset - 1) >> MDP_PREC); |
2001 | curpt->nextByY = *curHash; |
2002 | *curHash = curpt; |
2003 | curpt->next = nextpt; |
2004 | nextpt->prev = curpt; |
2005 | curpt->edge = NULL; |
2006 | } |
2007 | |
2008 | curHash = yHash + ((ept->y - hashOffset - 1) >> MDP_PREC); |
2009 | ept->nextByY = *curHash; |
2010 | *curHash = ept; |
2011 | ept->next = NULL; |
2012 | ept->edge = NULL; |
2013 | nact = 0; |
2014 | |
2015 | activeList = NULL; |
2016 | for (y=hashOffset + MDP_MULT,k = 0; |
2017 | y<=yMax && k < hashSize; y += MDP_MULT, k++) |
2018 | { |
2019 | for(pt = yHash[k];pt; pt=pt->nextByY) { |
2020 | /* pt->y should be inside hashed interval |
2021 | * assert(y-MDP_MULT <= pt->y && pt->y < y); |
2022 | */ |
2023 | if (pt->prev && !pt->prev->lastPoint) { |
2024 | if (pt->prev->edge && pt->prev->y <= y) { |
2025 | DELETE_ACTIVE(activeList, pt->prev->edge); |
2026 | pt->prev->edge = NULL; |
2027 | } else if (pt->prev->y > y) { |
2028 | INSERT_ACTIVE(activeList, pt->prev, y); |
2029 | } |
2030 | } |
2031 | |
2032 | if (!pt->lastPoint && pt->next) { |
2033 | if (pt->edge && pt->next->y <= y) { |
2034 | DELETE_ACTIVE(activeList, pt->edge); |
2035 | pt->edge = NULL; |
2036 | } else if (pt->next->y > y) { |
2037 | INSERT_ACTIVE(activeList, pt, y); |
2038 | } |
2039 | } |
2040 | } |
2041 | |
2042 | if (!activeList) continue; |
2043 | |
2044 | /* We could not use O(N) Radix sort here because in most cases list of |
2045 | * edges almost sorted. So, bubble sort (O(N^2))is working much |
2046 | * better. Note, in case of array of edges Shell sort is more |
2047 | * efficient. |
2048 | */ |
2049 | LBUBBLE_SORT((&activeList), Edge, GET_ACTIVE_NEXT, GET_ACTIVE_KEY); |
2050 | |
2051 | /* Correction of the back links in the double linked edge list */ |
2052 | curEdge=activeList; |
2053 | prevEdge = NULL; |
2054 | while (curEdge) { |
2055 | curEdge->prev = prevEdge; |
2056 | prevEdge = curEdge; |
2057 | curEdge = curEdge->next; |
2058 | } |
2059 | |
2060 | xl = xr = hnd->dhnd->xMin; |
2061 | curEdge = activeList; |
2062 | counter = 0; |
2063 | drawing = 0; |
2064 | for(;curEdge; curEdge = curEdge->next) { |
2065 | counter += curEdge->dir; |
2066 | if ((counter & counterMask) && !drawing) { |
2067 | xl = (curEdge->x + MDP_MULT - 1)>>MDP_PREC; |
2068 | drawing = 1; |
2069 | } |
2070 | |
2071 | if (!(counter & counterMask) && drawing) { |
2072 | xr = (curEdge->x - 1)>>MDP_PREC; |
2073 | if (xl <= xr) { |
2074 | hnd->dhnd->pDrawScanline(hnd->dhnd, xl, xr, y >> MDP_PREC); |
2075 | } |
2076 | drawing = 0; |
2077 | } |
2078 | |
2079 | curEdge->x += curEdge->dx; |
2080 | } |
2081 | |
2082 | /* Performing drawing till the right boundary (for correct rendering |
2083 | * shapes clipped at the right side) |
2084 | */ |
2085 | if (drawing && xl <= rightBnd) { |
2086 | hnd->dhnd->pDrawScanline(hnd->dhnd, xl, rightBnd, y >> MDP_PREC); |
2087 | } |
2088 | } |
2089 | free(active); |
2090 | free(yHash); |
2091 | } |
2092 | |
2093 | |
2094 | |
2095 | void StoreFixedLine(ProcessHandler* hnd,jint x1,jint y1,jint x2,jint y2, |
2096 | jint* pixelInfo,jboolean checkBounds, |
2097 | jboolean endSubPath) { |
2098 | FillData* pfd; |
2099 | jint outXMin, outXMax, outYMin, outYMax; |
2100 | jint x3, y3, res; |
2101 | |
2102 | /* There is no need to round line coordinates to the forward differencing |
2103 | * precision anymore. Such a rounding was used for preventing the curve go |
2104 | * out the endpoint (this sometimes does not help). The problem was fixed |
2105 | * in the forward differencing loops. |
2106 | */ |
2107 | |
2108 | if (checkBounds) { |
2109 | jboolean lastClipped = JNI_FALSE; |
2110 | |
2111 | /* This function is used only for filling shapes, so there is no |
2112 | * check for the type of clipping |
2113 | */ |
2114 | outXMin = (jint)(hnd->dhnd->xMinf * MDP_MULT); |
2115 | outXMax = (jint)(hnd->dhnd->xMaxf * MDP_MULT); |
2116 | outYMin = (jint)(hnd->dhnd->yMinf * MDP_MULT); |
2117 | outYMax = (jint)(hnd->dhnd->yMaxf * MDP_MULT); |
2118 | |
2119 | TESTANDCLIP(outYMin, outYMax, y1, x1, y2, x2, jint, res); |
2120 | if (res == CRES_INVISIBLE) return; |
2121 | TESTANDCLIP(outYMin, outYMax, y2, x2, y1, x1, jint, res); |
2122 | if (res == CRES_INVISIBLE) return; |
2123 | lastClipped = IS_CLIPPED(res); |
2124 | |
2125 | /* Clamping starting from first vertex of the processed segment */ |
2126 | CLIPCLAMP(outXMin, outXMax, x1, y1, x2, y2, x3, y3, jint, res); |
2127 | |
2128 | /* Clamping only by left boundary */ |
2129 | if (res == CRES_MIN_CLIPPED) { |
2130 | StoreFixedLine(hnd, x3, y3, x1, y1, pixelInfo, |
2131 | JNI_FALSE, lastClipped); |
2132 | |
2133 | } else if (res == CRES_INVISIBLE) { |
2134 | return; |
2135 | } |
2136 | |
2137 | /* Clamping starting from last vertex of the processed segment */ |
2138 | CLIPCLAMP(outXMin, outXMax, x2, y2, x1, y1, x3, y3, jint, res); |
2139 | |
2140 | /* Checking if there was a clip by right boundary */ |
2141 | lastClipped = lastClipped || (res == CRES_MAX_CLIPPED); |
2142 | |
2143 | StoreFixedLine(hnd, x1, y1, x2, y2, pixelInfo, |
2144 | JNI_FALSE, lastClipped); |
2145 | |
2146 | /* Clamping only by left boundary */ |
2147 | if (res == CRES_MIN_CLIPPED) { |
2148 | StoreFixedLine(hnd, x2, y2, x3, y3, pixelInfo, |
2149 | JNI_FALSE, lastClipped); |
2150 | } |
2151 | |
2152 | return; |
2153 | } |
2154 | pfd = (FillData*)(hnd->pData); |
2155 | |
2156 | /* Adding first point of the line only in case of empty or just finished |
2157 | * path |
2158 | */ |
2159 | if (FD_IS_EMPTY(pfd) || FD_IS_ENDED(pfd)) { |
2160 | FD_ADD_POINT(pfd, x1, y1, JNI_FALSE); |
2161 | } |
2162 | |
2163 | FD_ADD_POINT(pfd, x2, y2, JNI_FALSE); |
2164 | |
2165 | if (endSubPath) { |
2166 | FD_SET_ENDED(pfd); |
2167 | } |
2168 | } |
2169 | |
2170 | |
2171 | static void endSubPath(ProcessHandler* hnd) { |
2172 | FillData* pfd = (FillData*)(hnd->pData); |
2173 | if (!FD_IS_EMPTY(pfd)) { |
2174 | FD_SET_ENDED(pfd); |
2175 | } |
2176 | } |
2177 | |
2178 | static void stubEndSubPath(ProcessHandler* hnd) { |
2179 | } |
2180 | |
2181 | JNIEXPORT jboolean JNICALL |
2182 | doFillPath(DrawHandler* dhnd, |
2183 | jint transX, jint transY, |
2184 | jfloat* coords, jint maxCoords, |
2185 | jbyte* types, jint numTypes, |
2186 | PHStroke stroke, jint fillRule) |
2187 | { |
2188 | jint res; |
2189 | |
2190 | FillData fillData; |
2191 | |
2192 | ProcessHandler hnd = |
2193 | { |
2194 | &StoreFixedLine, |
2195 | &endSubPath, |
2196 | NULL, |
2197 | PH_STROKE_DEFAULT, |
2198 | PH_MODE_FILL_CLIP, |
2199 | NULL |
2200 | }; |
2201 | |
2202 | /* Initialization of the following fields in the declaration of the hnd |
2203 | * above causes warnings on sun studio compiler with -xc99=%none option |
2204 | * applied (this option means compliance with C90 standard instead of C99) |
2205 | */ |
2206 | hnd.dhnd = dhnd; |
2207 | hnd.pData = &fillData; |
2208 | hnd.stroke = stroke; |
2209 | |
2210 | FD_INIT(&fillData); |
2211 | res = ProcessPath(&hnd, (jfloat)transX, (jfloat)transY, |
2212 | coords, maxCoords, types, numTypes); |
2213 | if (!res) { |
2214 | FD_FREE_POINTS(&fillData); |
2215 | return JNI_FALSE; |
2216 | } |
2217 | FillPolygon(&hnd, fillRule); |
2218 | FD_FREE_POINTS(&fillData); |
2219 | return JNI_TRUE; |
2220 | } |
2221 | |
2222 | JNIEXPORT jboolean JNICALL |
2223 | doDrawPath(DrawHandler* dhnd, |
2224 | void (*pProcessEndSubPath)(ProcessHandler*), |
2225 | jint transX, jint transY, |
2226 | jfloat* coords, jint maxCoords, |
2227 | jbyte* types, jint numTypes, PHStroke stroke) |
2228 | { |
2229 | ProcessHandler hnd = |
2230 | { |
2231 | &ProcessFixedLine, |
2232 | NULL, |
2233 | NULL, |
2234 | PH_STROKE_DEFAULT, |
2235 | PH_MODE_DRAW_CLIP, |
2236 | NULL |
2237 | }; |
2238 | |
2239 | /* Initialization of the following fields in the declaration of the hnd |
2240 | * above causes warnings on sun studio compiler with -xc99=%none option |
2241 | * applied (this option means compliance with C90 standard instead of C99) |
2242 | */ |
2243 | hnd.dhnd = dhnd; |
2244 | hnd.stroke = stroke; |
2245 | |
2246 | hnd.pProcessEndSubPath = (pProcessEndSubPath == NULL)? |
2247 | stubEndSubPath : pProcessEndSubPath; |
2248 | return ProcessPath(&hnd, (jfloat)transX, (jfloat)transY, coords, maxCoords, |
2249 | types, numTypes); |
2250 | } |
2251 | |