1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | |
56 | #include "lcms2_internal.h" |
57 | |
58 | |
59 | // Link several profiles to obtain a single LUT modelling the whole color transform. Intents, Black point |
60 | // compensation and Adaptation parameters may vary across profiles. BPC and Adaptation refers to the PCS |
61 | // after the profile. I.e, BPC[0] refers to connexion between profile(0) and profile(1) |
62 | cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, |
63 | cmsUInt32Number nProfiles, |
64 | cmsUInt32Number Intents[], |
65 | cmsHPROFILE hProfiles[], |
66 | cmsBool BPC[], |
67 | cmsFloat64Number AdaptationStates[], |
68 | cmsUInt32Number dwFlags); |
69 | |
70 | //--------------------------------------------------------------------------------- |
71 | |
72 | // This is the default routine for ICC-style intents. A user may decide to override it by using a plugin. |
73 | // Supported intents are perceptual, relative colorimetric, saturation and ICC-absolute colorimetric |
74 | static |
75 | cmsPipeline* DefaultICCintents(cmsContext ContextID, |
76 | cmsUInt32Number nProfiles, |
77 | cmsUInt32Number Intents[], |
78 | cmsHPROFILE hProfiles[], |
79 | cmsBool BPC[], |
80 | cmsFloat64Number AdaptationStates[], |
81 | cmsUInt32Number dwFlags); |
82 | |
83 | //--------------------------------------------------------------------------------- |
84 | |
85 | // This is the entry for black-preserving K-only intents, which are non-ICC. Last profile have to be a output profile |
86 | // to do the trick (no devicelinks allowed at that position) |
87 | static |
88 | cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, |
89 | cmsUInt32Number nProfiles, |
90 | cmsUInt32Number Intents[], |
91 | cmsHPROFILE hProfiles[], |
92 | cmsBool BPC[], |
93 | cmsFloat64Number AdaptationStates[], |
94 | cmsUInt32Number dwFlags); |
95 | |
96 | //--------------------------------------------------------------------------------- |
97 | |
98 | // This is the entry for black-plane preserving, which are non-ICC. Again, Last profile have to be a output profile |
99 | // to do the trick (no devicelinks allowed at that position) |
100 | static |
101 | cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, |
102 | cmsUInt32Number nProfiles, |
103 | cmsUInt32Number Intents[], |
104 | cmsHPROFILE hProfiles[], |
105 | cmsBool BPC[], |
106 | cmsFloat64Number AdaptationStates[], |
107 | cmsUInt32Number dwFlags); |
108 | |
109 | //--------------------------------------------------------------------------------- |
110 | |
111 | |
112 | // This is a structure holding implementations for all supported intents. |
113 | typedef struct _cms_intents_list { |
114 | |
115 | cmsUInt32Number Intent; |
116 | char Description[256]; |
117 | cmsIntentFn Link; |
118 | struct _cms_intents_list* Next; |
119 | |
120 | } cmsIntentsList; |
121 | |
122 | |
123 | // Built-in intents |
124 | static cmsIntentsList DefaultIntents[] = { |
125 | |
126 | { INTENT_PERCEPTUAL, "Perceptual" , DefaultICCintents, &DefaultIntents[1] }, |
127 | { INTENT_RELATIVE_COLORIMETRIC, "Relative colorimetric" , DefaultICCintents, &DefaultIntents[2] }, |
128 | { INTENT_SATURATION, "Saturation" , DefaultICCintents, &DefaultIntents[3] }, |
129 | { INTENT_ABSOLUTE_COLORIMETRIC, "Absolute colorimetric" , DefaultICCintents, &DefaultIntents[4] }, |
130 | { INTENT_PRESERVE_K_ONLY_PERCEPTUAL, "Perceptual preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[5] }, |
131 | { INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC, "Relative colorimetric preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[6] }, |
132 | { INTENT_PRESERVE_K_ONLY_SATURATION, "Saturation preserving black ink" , BlackPreservingKOnlyIntents, &DefaultIntents[7] }, |
133 | { INTENT_PRESERVE_K_PLANE_PERCEPTUAL, "Perceptual preserving black plane" , BlackPreservingKPlaneIntents, &DefaultIntents[8] }, |
134 | { INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC,"Relative colorimetric preserving black plane" , BlackPreservingKPlaneIntents, &DefaultIntents[9] }, |
135 | { INTENT_PRESERVE_K_PLANE_SATURATION, "Saturation preserving black plane" , BlackPreservingKPlaneIntents, NULL } |
136 | }; |
137 | |
138 | |
139 | // A pointer to the beginning of the list |
140 | _cmsIntentsPluginChunkType _cmsIntentsPluginChunk = { NULL }; |
141 | |
142 | // Duplicates the zone of memory used by the plug-in in the new context |
143 | static |
144 | void DupPluginIntentsList(struct _cmsContext_struct* ctx, |
145 | const struct _cmsContext_struct* src) |
146 | { |
147 | _cmsIntentsPluginChunkType newHead = { NULL }; |
148 | cmsIntentsList* entry; |
149 | cmsIntentsList* Anterior = NULL; |
150 | _cmsIntentsPluginChunkType* head = (_cmsIntentsPluginChunkType*) src->chunks[IntentPlugin]; |
151 | |
152 | // Walk the list copying all nodes |
153 | for (entry = head->Intents; |
154 | entry != NULL; |
155 | entry = entry ->Next) { |
156 | |
157 | cmsIntentsList *newEntry = ( cmsIntentsList *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(cmsIntentsList)); |
158 | |
159 | if (newEntry == NULL) |
160 | return; |
161 | |
162 | // We want to keep the linked list order, so this is a little bit tricky |
163 | newEntry -> Next = NULL; |
164 | if (Anterior) |
165 | Anterior -> Next = newEntry; |
166 | |
167 | Anterior = newEntry; |
168 | |
169 | if (newHead.Intents == NULL) |
170 | newHead.Intents = newEntry; |
171 | } |
172 | |
173 | ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsIntentsPluginChunkType)); |
174 | } |
175 | |
176 | void _cmsAllocIntentsPluginChunk(struct _cmsContext_struct* ctx, |
177 | const struct _cmsContext_struct* src) |
178 | { |
179 | if (src != NULL) { |
180 | |
181 | // Copy all linked list |
182 | DupPluginIntentsList(ctx, src); |
183 | } |
184 | else { |
185 | static _cmsIntentsPluginChunkType IntentsPluginChunkType = { NULL }; |
186 | ctx ->chunks[IntentPlugin] = _cmsSubAllocDup(ctx ->MemPool, &IntentsPluginChunkType, sizeof(_cmsIntentsPluginChunkType)); |
187 | } |
188 | } |
189 | |
190 | |
191 | // Search the list for a suitable intent. Returns NULL if not found |
192 | static |
193 | cmsIntentsList* SearchIntent(cmsContext ContextID, cmsUInt32Number Intent) |
194 | { |
195 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); |
196 | cmsIntentsList* pt; |
197 | |
198 | for (pt = ctx -> Intents; pt != NULL; pt = pt -> Next) |
199 | if (pt ->Intent == Intent) return pt; |
200 | |
201 | for (pt = DefaultIntents; pt != NULL; pt = pt -> Next) |
202 | if (pt ->Intent == Intent) return pt; |
203 | |
204 | return NULL; |
205 | } |
206 | |
207 | // Black point compensation. Implemented as a linear scaling in XYZ. Black points |
208 | // should come relative to the white point. Fills an matrix/offset element m |
209 | // which is organized as a 4x4 matrix. |
210 | static |
211 | void ComputeBlackPointCompensation(const cmsCIEXYZ* BlackPointIn, |
212 | const cmsCIEXYZ* BlackPointOut, |
213 | cmsMAT3* m, cmsVEC3* off) |
214 | { |
215 | cmsFloat64Number ax, ay, az, bx, by, bz, tx, ty, tz; |
216 | |
217 | // Now we need to compute a matrix plus an offset m and of such of |
218 | // [m]*bpin + off = bpout |
219 | // [m]*D50 + off = D50 |
220 | // |
221 | // This is a linear scaling in the form ax+b, where |
222 | // a = (bpout - D50) / (bpin - D50) |
223 | // b = - D50* (bpout - bpin) / (bpin - D50) |
224 | |
225 | tx = BlackPointIn->X - cmsD50_XYZ()->X; |
226 | ty = BlackPointIn->Y - cmsD50_XYZ()->Y; |
227 | tz = BlackPointIn->Z - cmsD50_XYZ()->Z; |
228 | |
229 | ax = (BlackPointOut->X - cmsD50_XYZ()->X) / tx; |
230 | ay = (BlackPointOut->Y - cmsD50_XYZ()->Y) / ty; |
231 | az = (BlackPointOut->Z - cmsD50_XYZ()->Z) / tz; |
232 | |
233 | bx = - cmsD50_XYZ()-> X * (BlackPointOut->X - BlackPointIn->X) / tx; |
234 | by = - cmsD50_XYZ()-> Y * (BlackPointOut->Y - BlackPointIn->Y) / ty; |
235 | bz = - cmsD50_XYZ()-> Z * (BlackPointOut->Z - BlackPointIn->Z) / tz; |
236 | |
237 | _cmsVEC3init(&m ->v[0], ax, 0, 0); |
238 | _cmsVEC3init(&m ->v[1], 0, ay, 0); |
239 | _cmsVEC3init(&m ->v[2], 0, 0, az); |
240 | _cmsVEC3init(off, bx, by, bz); |
241 | |
242 | } |
243 | |
244 | |
245 | // Approximate a blackbody illuminant based on CHAD information |
246 | static |
247 | cmsFloat64Number CHAD2Temp(const cmsMAT3* Chad) |
248 | { |
249 | // Convert D50 across inverse CHAD to get the absolute white point |
250 | cmsVEC3 d, s; |
251 | cmsCIEXYZ Dest; |
252 | cmsCIExyY DestChromaticity; |
253 | cmsFloat64Number TempK; |
254 | cmsMAT3 m1, m2; |
255 | |
256 | m1 = *Chad; |
257 | if (!_cmsMAT3inverse(&m1, &m2)) return FALSE; |
258 | |
259 | s.n[VX] = cmsD50_XYZ() -> X; |
260 | s.n[VY] = cmsD50_XYZ() -> Y; |
261 | s.n[VZ] = cmsD50_XYZ() -> Z; |
262 | |
263 | _cmsMAT3eval(&d, &m2, &s); |
264 | |
265 | Dest.X = d.n[VX]; |
266 | Dest.Y = d.n[VY]; |
267 | Dest.Z = d.n[VZ]; |
268 | |
269 | cmsXYZ2xyY(&DestChromaticity, &Dest); |
270 | |
271 | if (!cmsTempFromWhitePoint(&TempK, &DestChromaticity)) |
272 | return -1.0; |
273 | |
274 | return TempK; |
275 | } |
276 | |
277 | // Compute a CHAD based on a given temperature |
278 | static |
279 | void Temp2CHAD(cmsMAT3* Chad, cmsFloat64Number Temp) |
280 | { |
281 | cmsCIEXYZ White; |
282 | cmsCIExyY ChromaticityOfWhite; |
283 | |
284 | cmsWhitePointFromTemp(&ChromaticityOfWhite, Temp); |
285 | cmsxyY2XYZ(&White, &ChromaticityOfWhite); |
286 | _cmsAdaptationMatrix(Chad, NULL, &White, cmsD50_XYZ()); |
287 | } |
288 | |
289 | // Join scalings to obtain relative input to absolute and then to relative output. |
290 | // Result is stored in a 3x3 matrix |
291 | static |
292 | cmsBool ComputeAbsoluteIntent(cmsFloat64Number AdaptationState, |
293 | const cmsCIEXYZ* WhitePointIn, |
294 | const cmsMAT3* ChromaticAdaptationMatrixIn, |
295 | const cmsCIEXYZ* WhitePointOut, |
296 | const cmsMAT3* ChromaticAdaptationMatrixOut, |
297 | cmsMAT3* m) |
298 | { |
299 | cmsMAT3 Scale, m1, m2, m3, m4; |
300 | |
301 | // TODO: Follow Marc Mahy's recommendation to check if CHAD is same by using M1*M2 == M2*M1. If so, do nothing. |
302 | // TODO: Add support for ArgyllArts tag |
303 | |
304 | // Adaptation state |
305 | if (AdaptationState == 1.0) { |
306 | |
307 | // Observer is fully adapted. Keep chromatic adaptation. |
308 | // That is the standard V4 behaviour |
309 | _cmsVEC3init(&m->v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); |
310 | _cmsVEC3init(&m->v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); |
311 | _cmsVEC3init(&m->v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); |
312 | |
313 | } |
314 | else { |
315 | |
316 | // Incomplete adaptation. This is an advanced feature. |
317 | _cmsVEC3init(&Scale.v[0], WhitePointIn->X / WhitePointOut->X, 0, 0); |
318 | _cmsVEC3init(&Scale.v[1], 0, WhitePointIn->Y / WhitePointOut->Y, 0); |
319 | _cmsVEC3init(&Scale.v[2], 0, 0, WhitePointIn->Z / WhitePointOut->Z); |
320 | |
321 | |
322 | if (AdaptationState == 0.0) { |
323 | |
324 | m1 = *ChromaticAdaptationMatrixOut; |
325 | _cmsMAT3per(&m2, &m1, &Scale); |
326 | // m2 holds CHAD from output white to D50 times abs. col. scaling |
327 | |
328 | // Observer is not adapted, undo the chromatic adaptation |
329 | _cmsMAT3per(m, &m2, ChromaticAdaptationMatrixOut); |
330 | |
331 | m3 = *ChromaticAdaptationMatrixIn; |
332 | if (!_cmsMAT3inverse(&m3, &m4)) return FALSE; |
333 | _cmsMAT3per(m, &m2, &m4); |
334 | |
335 | } else { |
336 | |
337 | cmsMAT3 MixedCHAD; |
338 | cmsFloat64Number TempSrc, TempDest, Temp; |
339 | |
340 | m1 = *ChromaticAdaptationMatrixIn; |
341 | if (!_cmsMAT3inverse(&m1, &m2)) return FALSE; |
342 | _cmsMAT3per(&m3, &m2, &Scale); |
343 | // m3 holds CHAD from input white to D50 times abs. col. scaling |
344 | |
345 | TempSrc = CHAD2Temp(ChromaticAdaptationMatrixIn); |
346 | TempDest = CHAD2Temp(ChromaticAdaptationMatrixOut); |
347 | |
348 | if (TempSrc < 0.0 || TempDest < 0.0) return FALSE; // Something went wrong |
349 | |
350 | if (_cmsMAT3isIdentity(&Scale) && fabs(TempSrc - TempDest) < 0.01) { |
351 | |
352 | _cmsMAT3identity(m); |
353 | return TRUE; |
354 | } |
355 | |
356 | Temp = (1.0 - AdaptationState) * TempDest + AdaptationState * TempSrc; |
357 | |
358 | // Get a CHAD from whatever output temperature to D50. This replaces output CHAD |
359 | Temp2CHAD(&MixedCHAD, Temp); |
360 | |
361 | _cmsMAT3per(m, &m3, &MixedCHAD); |
362 | } |
363 | |
364 | } |
365 | return TRUE; |
366 | |
367 | } |
368 | |
369 | // Just to see if m matrix should be applied |
370 | static |
371 | cmsBool IsEmptyLayer(cmsMAT3* m, cmsVEC3* off) |
372 | { |
373 | cmsFloat64Number diff = 0; |
374 | cmsMAT3 Ident; |
375 | int i; |
376 | |
377 | if (m == NULL && off == NULL) return TRUE; // NULL is allowed as an empty layer |
378 | if (m == NULL && off != NULL) return FALSE; // This is an internal error |
379 | |
380 | _cmsMAT3identity(&Ident); |
381 | |
382 | for (i=0; i < 3*3; i++) |
383 | diff += fabs(((cmsFloat64Number*)m)[i] - ((cmsFloat64Number*)&Ident)[i]); |
384 | |
385 | for (i=0; i < 3; i++) |
386 | diff += fabs(((cmsFloat64Number*)off)[i]); |
387 | |
388 | |
389 | return (diff < 0.002); |
390 | } |
391 | |
392 | |
393 | // Compute the conversion layer |
394 | static |
395 | cmsBool ComputeConversion(cmsUInt32Number i, |
396 | cmsHPROFILE hProfiles[], |
397 | cmsUInt32Number Intent, |
398 | cmsBool BPC, |
399 | cmsFloat64Number AdaptationState, |
400 | cmsMAT3* m, cmsVEC3* off) |
401 | { |
402 | |
403 | int k; |
404 | |
405 | // m and off are set to identity and this is detected latter on |
406 | _cmsMAT3identity(m); |
407 | _cmsVEC3init(off, 0, 0, 0); |
408 | |
409 | // If intent is abs. colorimetric, |
410 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) { |
411 | |
412 | cmsCIEXYZ WhitePointIn, WhitePointOut; |
413 | cmsMAT3 ChromaticAdaptationMatrixIn, ChromaticAdaptationMatrixOut; |
414 | |
415 | _cmsReadMediaWhitePoint(&WhitePointIn, hProfiles[i-1]); |
416 | _cmsReadCHAD(&ChromaticAdaptationMatrixIn, hProfiles[i-1]); |
417 | |
418 | _cmsReadMediaWhitePoint(&WhitePointOut, hProfiles[i]); |
419 | _cmsReadCHAD(&ChromaticAdaptationMatrixOut, hProfiles[i]); |
420 | |
421 | if (!ComputeAbsoluteIntent(AdaptationState, |
422 | &WhitePointIn, &ChromaticAdaptationMatrixIn, |
423 | &WhitePointOut, &ChromaticAdaptationMatrixOut, m)) return FALSE; |
424 | |
425 | } |
426 | else { |
427 | // Rest of intents may apply BPC. |
428 | |
429 | if (BPC) { |
430 | |
431 | cmsCIEXYZ BlackPointIn, BlackPointOut; |
432 | |
433 | cmsDetectBlackPoint(&BlackPointIn, hProfiles[i-1], Intent, 0); |
434 | cmsDetectDestinationBlackPoint(&BlackPointOut, hProfiles[i], Intent, 0); |
435 | |
436 | // If black points are equal, then do nothing |
437 | if (BlackPointIn.X != BlackPointOut.X || |
438 | BlackPointIn.Y != BlackPointOut.Y || |
439 | BlackPointIn.Z != BlackPointOut.Z) |
440 | ComputeBlackPointCompensation(&BlackPointIn, &BlackPointOut, m, off); |
441 | } |
442 | } |
443 | |
444 | // Offset should be adjusted because the encoding. We encode XYZ normalized to 0..1.0, |
445 | // to do that, we divide by MAX_ENCODEABLE_XZY. The conversion stage goes XYZ -> XYZ so |
446 | // we have first to convert from encoded to XYZ and then convert back to encoded. |
447 | // y = Mx + Off |
448 | // x = x'c |
449 | // y = M x'c + Off |
450 | // y = y'c; y' = y / c |
451 | // y' = (Mx'c + Off) /c = Mx' + (Off / c) |
452 | |
453 | for (k=0; k < 3; k++) { |
454 | off ->n[k] /= MAX_ENCODEABLE_XYZ; |
455 | } |
456 | |
457 | return TRUE; |
458 | } |
459 | |
460 | |
461 | // Add a conversion stage if needed. If a matrix/offset m is given, it applies to XYZ space |
462 | static |
463 | cmsBool AddConversion(cmsPipeline* Result, cmsColorSpaceSignature InPCS, cmsColorSpaceSignature OutPCS, cmsMAT3* m, cmsVEC3* off) |
464 | { |
465 | cmsFloat64Number* m_as_dbl = (cmsFloat64Number*) m; |
466 | cmsFloat64Number* off_as_dbl = (cmsFloat64Number*) off; |
467 | |
468 | // Handle PCS mismatches. A specialized stage is added to the LUT in such case |
469 | switch (InPCS) { |
470 | |
471 | case cmsSigXYZData: // Input profile operates in XYZ |
472 | |
473 | switch (OutPCS) { |
474 | |
475 | case cmsSigXYZData: // XYZ -> XYZ |
476 | if (!IsEmptyLayer(m, off) && |
477 | !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
478 | return FALSE; |
479 | break; |
480 | |
481 | case cmsSigLabData: // XYZ -> Lab |
482 | if (!IsEmptyLayer(m, off) && |
483 | !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
484 | return FALSE; |
485 | if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocXYZ2Lab(Result ->ContextID))) |
486 | return FALSE; |
487 | break; |
488 | |
489 | default: |
490 | return FALSE; // Colorspace mismatch |
491 | } |
492 | break; |
493 | |
494 | case cmsSigLabData: // Input profile operates in Lab |
495 | |
496 | switch (OutPCS) { |
497 | |
498 | case cmsSigXYZData: // Lab -> XYZ |
499 | |
500 | if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocLab2XYZ(Result ->ContextID))) |
501 | return FALSE; |
502 | if (!IsEmptyLayer(m, off) && |
503 | !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl))) |
504 | return FALSE; |
505 | break; |
506 | |
507 | case cmsSigLabData: // Lab -> Lab |
508 | |
509 | if (!IsEmptyLayer(m, off)) { |
510 | if (!cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocLab2XYZ(Result ->ContextID)) || |
511 | !cmsPipelineInsertStage(Result, cmsAT_END, cmsStageAllocMatrix(Result ->ContextID, 3, 3, m_as_dbl, off_as_dbl)) || |
512 | !cmsPipelineInsertStage(Result, cmsAT_END, _cmsStageAllocXYZ2Lab(Result ->ContextID))) |
513 | return FALSE; |
514 | } |
515 | break; |
516 | |
517 | default: |
518 | return FALSE; // Mismatch |
519 | } |
520 | break; |
521 | |
522 | // On colorspaces other than PCS, check for same space |
523 | default: |
524 | if (InPCS != OutPCS) return FALSE; |
525 | break; |
526 | } |
527 | |
528 | return TRUE; |
529 | } |
530 | |
531 | |
532 | // Is a given space compatible with another? |
533 | static |
534 | cmsBool ColorSpaceIsCompatible(cmsColorSpaceSignature a, cmsColorSpaceSignature b) |
535 | { |
536 | // If they are same, they are compatible. |
537 | if (a == b) return TRUE; |
538 | |
539 | // Check for MCH4 substitution of CMYK |
540 | if ((a == cmsSig4colorData) && (b == cmsSigCmykData)) return TRUE; |
541 | if ((a == cmsSigCmykData) && (b == cmsSig4colorData)) return TRUE; |
542 | |
543 | // Check for XYZ/Lab. Those spaces are interchangeable as they can be computed one from other. |
544 | if ((a == cmsSigXYZData) && (b == cmsSigLabData)) return TRUE; |
545 | if ((a == cmsSigLabData) && (b == cmsSigXYZData)) return TRUE; |
546 | |
547 | return FALSE; |
548 | } |
549 | |
550 | |
551 | // Default handler for ICC-style intents |
552 | static |
553 | cmsPipeline* DefaultICCintents(cmsContext ContextID, |
554 | cmsUInt32Number nProfiles, |
555 | cmsUInt32Number TheIntents[], |
556 | cmsHPROFILE hProfiles[], |
557 | cmsBool BPC[], |
558 | cmsFloat64Number AdaptationStates[], |
559 | cmsUInt32Number dwFlags) |
560 | { |
561 | cmsPipeline* Lut = NULL; |
562 | cmsPipeline* Result; |
563 | cmsHPROFILE hProfile; |
564 | cmsMAT3 m; |
565 | cmsVEC3 off; |
566 | cmsColorSpaceSignature ColorSpaceIn, ColorSpaceOut = cmsSigLabData, CurrentColorSpace; |
567 | cmsProfileClassSignature ClassSig; |
568 | cmsUInt32Number i, Intent; |
569 | |
570 | // For safety |
571 | if (nProfiles == 0) return NULL; |
572 | |
573 | // Allocate an empty LUT for holding the result. 0 as channel count means 'undefined' |
574 | Result = cmsPipelineAlloc(ContextID, 0, 0); |
575 | if (Result == NULL) return NULL; |
576 | |
577 | CurrentColorSpace = cmsGetColorSpace(hProfiles[0]); |
578 | |
579 | for (i=0; i < nProfiles; i++) { |
580 | |
581 | cmsBool lIsDeviceLink, lIsInput; |
582 | |
583 | hProfile = hProfiles[i]; |
584 | ClassSig = cmsGetDeviceClass(hProfile); |
585 | lIsDeviceLink = (ClassSig == cmsSigLinkClass || ClassSig == cmsSigAbstractClass ); |
586 | |
587 | // First profile is used as input unless devicelink or abstract |
588 | if ((i == 0) && !lIsDeviceLink) { |
589 | lIsInput = TRUE; |
590 | } |
591 | else { |
592 | // Else use profile in the input direction if current space is not PCS |
593 | lIsInput = (CurrentColorSpace != cmsSigXYZData) && |
594 | (CurrentColorSpace != cmsSigLabData); |
595 | } |
596 | |
597 | Intent = TheIntents[i]; |
598 | |
599 | if (lIsInput || lIsDeviceLink) { |
600 | |
601 | ColorSpaceIn = cmsGetColorSpace(hProfile); |
602 | ColorSpaceOut = cmsGetPCS(hProfile); |
603 | } |
604 | else { |
605 | |
606 | ColorSpaceIn = cmsGetPCS(hProfile); |
607 | ColorSpaceOut = cmsGetColorSpace(hProfile); |
608 | } |
609 | |
610 | if (!ColorSpaceIsCompatible(ColorSpaceIn, CurrentColorSpace)) { |
611 | |
612 | cmsSignalError(ContextID, cmsERROR_COLORSPACE_CHECK, "ColorSpace mismatch" ); |
613 | goto Error; |
614 | } |
615 | |
616 | // If devicelink is found, then no custom intent is allowed and we can |
617 | // read the LUT to be applied. Settings don't apply here. |
618 | if (lIsDeviceLink || ((ClassSig == cmsSigNamedColorClass) && (nProfiles == 1))) { |
619 | |
620 | // Get the involved LUT from the profile |
621 | Lut = _cmsReadDevicelinkLUT(hProfile, Intent); |
622 | if (Lut == NULL) goto Error; |
623 | |
624 | // What about abstract profiles? |
625 | if (ClassSig == cmsSigAbstractClass && i > 0) { |
626 | if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; |
627 | } |
628 | else { |
629 | _cmsMAT3identity(&m); |
630 | _cmsVEC3init(&off, 0, 0, 0); |
631 | } |
632 | |
633 | |
634 | if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; |
635 | |
636 | } |
637 | else { |
638 | |
639 | if (lIsInput) { |
640 | // Input direction means non-pcs connection, so proceed like devicelinks |
641 | Lut = _cmsReadInputLUT(hProfile, Intent); |
642 | if (Lut == NULL) goto Error; |
643 | } |
644 | else { |
645 | |
646 | // Output direction means PCS connection. Intent may apply here |
647 | Lut = _cmsReadOutputLUT(hProfile, Intent); |
648 | if (Lut == NULL) goto Error; |
649 | |
650 | |
651 | if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; |
652 | if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; |
653 | |
654 | } |
655 | } |
656 | |
657 | // Concatenate to the output LUT |
658 | if (!cmsPipelineCat(Result, Lut)) |
659 | goto Error; |
660 | |
661 | cmsPipelineFree(Lut); |
662 | Lut = NULL; |
663 | |
664 | // Update current space |
665 | CurrentColorSpace = ColorSpaceOut; |
666 | } |
667 | |
668 | // Check for non-negatives clip |
669 | if (dwFlags & cmsFLAGS_NONEGATIVES) { |
670 | |
671 | if (ColorSpaceOut == cmsSigGrayData || |
672 | ColorSpaceOut == cmsSigRgbData || |
673 | ColorSpaceOut == cmsSigCmykData) { |
674 | |
675 | cmsStage* clip = _cmsStageClipNegatives(Result->ContextID, cmsChannelsOf(ColorSpaceOut)); |
676 | if (clip == NULL) goto Error; |
677 | |
678 | if (!cmsPipelineInsertStage(Result, cmsAT_END, clip)) |
679 | goto Error; |
680 | } |
681 | |
682 | } |
683 | |
684 | return Result; |
685 | |
686 | Error: |
687 | |
688 | if (Lut != NULL) cmsPipelineFree(Lut); |
689 | if (Result != NULL) cmsPipelineFree(Result); |
690 | return NULL; |
691 | |
692 | cmsUNUSED_PARAMETER(dwFlags); |
693 | } |
694 | |
695 | |
696 | // Wrapper for DLL calling convention |
697 | cmsPipeline* CMSEXPORT _cmsDefaultICCintents(cmsContext ContextID, |
698 | cmsUInt32Number nProfiles, |
699 | cmsUInt32Number TheIntents[], |
700 | cmsHPROFILE hProfiles[], |
701 | cmsBool BPC[], |
702 | cmsFloat64Number AdaptationStates[], |
703 | cmsUInt32Number dwFlags) |
704 | { |
705 | return DefaultICCintents(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
706 | } |
707 | |
708 | // Black preserving intents --------------------------------------------------------------------------------------------- |
709 | |
710 | // Translate black-preserving intents to ICC ones |
711 | static |
712 | cmsUInt32Number TranslateNonICCIntents(cmsUInt32Number Intent) |
713 | { |
714 | switch (Intent) { |
715 | case INTENT_PRESERVE_K_ONLY_PERCEPTUAL: |
716 | case INTENT_PRESERVE_K_PLANE_PERCEPTUAL: |
717 | return INTENT_PERCEPTUAL; |
718 | |
719 | case INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC: |
720 | case INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC: |
721 | return INTENT_RELATIVE_COLORIMETRIC; |
722 | |
723 | case INTENT_PRESERVE_K_ONLY_SATURATION: |
724 | case INTENT_PRESERVE_K_PLANE_SATURATION: |
725 | return INTENT_SATURATION; |
726 | |
727 | default: return Intent; |
728 | } |
729 | } |
730 | |
731 | // Sampler for Black-only preserving CMYK->CMYK transforms |
732 | |
733 | typedef struct { |
734 | cmsPipeline* cmyk2cmyk; // The original transform |
735 | cmsToneCurve* KTone; // Black-to-black tone curve |
736 | |
737 | } GrayOnlyParams; |
738 | |
739 | |
740 | // Preserve black only if that is the only ink used |
741 | static |
742 | int BlackPreservingGrayOnlySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
743 | { |
744 | GrayOnlyParams* bp = (GrayOnlyParams*) Cargo; |
745 | |
746 | // If going across black only, keep black only |
747 | if (In[0] == 0 && In[1] == 0 && In[2] == 0) { |
748 | |
749 | // TAC does not apply because it is black ink! |
750 | Out[0] = Out[1] = Out[2] = 0; |
751 | Out[3] = cmsEvalToneCurve16(bp->KTone, In[3]); |
752 | return TRUE; |
753 | } |
754 | |
755 | // Keep normal transform for other colors |
756 | bp ->cmyk2cmyk ->Eval16Fn(In, Out, bp ->cmyk2cmyk->Data); |
757 | return TRUE; |
758 | } |
759 | |
760 | // This is the entry for black-preserving K-only intents, which are non-ICC |
761 | static |
762 | cmsPipeline* BlackPreservingKOnlyIntents(cmsContext ContextID, |
763 | cmsUInt32Number nProfiles, |
764 | cmsUInt32Number TheIntents[], |
765 | cmsHPROFILE hProfiles[], |
766 | cmsBool BPC[], |
767 | cmsFloat64Number AdaptationStates[], |
768 | cmsUInt32Number dwFlags) |
769 | { |
770 | GrayOnlyParams bp; |
771 | cmsPipeline* Result; |
772 | cmsUInt32Number ICCIntents[256]; |
773 | cmsStage* CLUT; |
774 | cmsUInt32Number i, nGridPoints; |
775 | |
776 | |
777 | // Sanity check |
778 | if (nProfiles < 1 || nProfiles > 255) return NULL; |
779 | |
780 | // Translate black-preserving intents to ICC ones |
781 | for (i=0; i < nProfiles; i++) |
782 | ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); |
783 | |
784 | // Check for non-cmyk profiles |
785 | if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || |
786 | cmsGetColorSpace(hProfiles[nProfiles-1]) != cmsSigCmykData) |
787 | return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
788 | |
789 | memset(&bp, 0, sizeof(bp)); |
790 | |
791 | // Allocate an empty LUT for holding the result |
792 | Result = cmsPipelineAlloc(ContextID, 4, 4); |
793 | if (Result == NULL) return NULL; |
794 | |
795 | // Create a LUT holding normal ICC transform |
796 | bp.cmyk2cmyk = DefaultICCintents(ContextID, |
797 | nProfiles, |
798 | ICCIntents, |
799 | hProfiles, |
800 | BPC, |
801 | AdaptationStates, |
802 | dwFlags); |
803 | |
804 | if (bp.cmyk2cmyk == NULL) goto Error; |
805 | |
806 | // Now, compute the tone curve |
807 | bp.KTone = _cmsBuildKToneCurve(ContextID, |
808 | 4096, |
809 | nProfiles, |
810 | ICCIntents, |
811 | hProfiles, |
812 | BPC, |
813 | AdaptationStates, |
814 | dwFlags); |
815 | |
816 | if (bp.KTone == NULL) goto Error; |
817 | |
818 | |
819 | // How many gridpoints are we going to use? |
820 | nGridPoints = _cmsReasonableGridpointsByColorspace(cmsSigCmykData, dwFlags); |
821 | |
822 | // Create the CLUT. 16 bits |
823 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); |
824 | if (CLUT == NULL) goto Error; |
825 | |
826 | // This is the one and only MPE in this LUT |
827 | if (!cmsPipelineInsertStage(Result, cmsAT_BEGIN, CLUT)) |
828 | goto Error; |
829 | |
830 | // Sample it. We cannot afford pre/post linearization this time. |
831 | if (!cmsStageSampleCLut16bit(CLUT, BlackPreservingGrayOnlySampler, (void*) &bp, 0)) |
832 | goto Error; |
833 | |
834 | // Get rid of xform and tone curve |
835 | cmsPipelineFree(bp.cmyk2cmyk); |
836 | cmsFreeToneCurve(bp.KTone); |
837 | |
838 | return Result; |
839 | |
840 | Error: |
841 | |
842 | if (bp.cmyk2cmyk != NULL) cmsPipelineFree(bp.cmyk2cmyk); |
843 | if (bp.KTone != NULL) cmsFreeToneCurve(bp.KTone); |
844 | if (Result != NULL) cmsPipelineFree(Result); |
845 | return NULL; |
846 | |
847 | } |
848 | |
849 | // K Plane-preserving CMYK to CMYK ------------------------------------------------------------------------------------ |
850 | |
851 | typedef struct { |
852 | |
853 | cmsPipeline* cmyk2cmyk; // The original transform |
854 | cmsHTRANSFORM hProofOutput; // Output CMYK to Lab (last profile) |
855 | cmsHTRANSFORM cmyk2Lab; // The input chain |
856 | cmsToneCurve* KTone; // Black-to-black tone curve |
857 | cmsPipeline* LabK2cmyk; // The output profile |
858 | cmsFloat64Number MaxError; |
859 | |
860 | cmsHTRANSFORM hRoundTrip; |
861 | cmsFloat64Number MaxTAC; |
862 | |
863 | |
864 | } PreserveKPlaneParams; |
865 | |
866 | |
867 | // The CLUT will be stored at 16 bits, but calculations are performed at cmsFloat32Number precision |
868 | static |
869 | int BlackPreservingSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
870 | { |
871 | int i; |
872 | cmsFloat32Number Inf[4], Outf[4]; |
873 | cmsFloat32Number LabK[4]; |
874 | cmsFloat64Number SumCMY, SumCMYK, Error, Ratio; |
875 | cmsCIELab ColorimetricLab, BlackPreservingLab; |
876 | PreserveKPlaneParams* bp = (PreserveKPlaneParams*) Cargo; |
877 | |
878 | // Convert from 16 bits to floating point |
879 | for (i=0; i < 4; i++) |
880 | Inf[i] = (cmsFloat32Number) (In[i] / 65535.0); |
881 | |
882 | // Get the K across Tone curve |
883 | LabK[3] = cmsEvalToneCurveFloat(bp ->KTone, Inf[3]); |
884 | |
885 | // If going across black only, keep black only |
886 | if (In[0] == 0 && In[1] == 0 && In[2] == 0) { |
887 | |
888 | Out[0] = Out[1] = Out[2] = 0; |
889 | Out[3] = _cmsQuickSaturateWord(LabK[3] * 65535.0); |
890 | return TRUE; |
891 | } |
892 | |
893 | // Try the original transform, |
894 | cmsPipelineEvalFloat( Inf, Outf, bp ->cmyk2cmyk); |
895 | |
896 | // Store a copy of the floating point result into 16-bit |
897 | for (i=0; i < 4; i++) |
898 | Out[i] = _cmsQuickSaturateWord(Outf[i] * 65535.0); |
899 | |
900 | // Maybe K is already ok (mostly on K=0) |
901 | if ( fabs(Outf[3] - LabK[3]) < (3.0 / 65535.0) ) { |
902 | return TRUE; |
903 | } |
904 | |
905 | // K differ, mesure and keep Lab measurement for further usage |
906 | // this is done in relative colorimetric intent |
907 | cmsDoTransform(bp->hProofOutput, Out, &ColorimetricLab, 1); |
908 | |
909 | // Is not black only and the transform doesn't keep black. |
910 | // Obtain the Lab of output CMYK. After that we have Lab + K |
911 | cmsDoTransform(bp ->cmyk2Lab, Outf, LabK, 1); |
912 | |
913 | // Obtain the corresponding CMY using reverse interpolation |
914 | // (K is fixed in LabK[3]) |
915 | if (!cmsPipelineEvalReverseFloat(LabK, Outf, Outf, bp ->LabK2cmyk)) { |
916 | |
917 | // Cannot find a suitable value, so use colorimetric xform |
918 | // which is already stored in Out[] |
919 | return TRUE; |
920 | } |
921 | |
922 | // Make sure to pass through K (which now is fixed) |
923 | Outf[3] = LabK[3]; |
924 | |
925 | // Apply TAC if needed |
926 | SumCMY = Outf[0] + Outf[1] + Outf[2]; |
927 | SumCMYK = SumCMY + Outf[3]; |
928 | |
929 | if (SumCMYK > bp ->MaxTAC) { |
930 | |
931 | Ratio = 1 - ((SumCMYK - bp->MaxTAC) / SumCMY); |
932 | if (Ratio < 0) |
933 | Ratio = 0; |
934 | } |
935 | else |
936 | Ratio = 1.0; |
937 | |
938 | Out[0] = _cmsQuickSaturateWord(Outf[0] * Ratio * 65535.0); // C |
939 | Out[1] = _cmsQuickSaturateWord(Outf[1] * Ratio * 65535.0); // M |
940 | Out[2] = _cmsQuickSaturateWord(Outf[2] * Ratio * 65535.0); // Y |
941 | Out[3] = _cmsQuickSaturateWord(Outf[3] * 65535.0); |
942 | |
943 | // Estimate the error (this goes 16 bits to Lab DBL) |
944 | cmsDoTransform(bp->hProofOutput, Out, &BlackPreservingLab, 1); |
945 | Error = cmsDeltaE(&ColorimetricLab, &BlackPreservingLab); |
946 | if (Error > bp -> MaxError) |
947 | bp->MaxError = Error; |
948 | |
949 | return TRUE; |
950 | } |
951 | |
952 | // This is the entry for black-plane preserving, which are non-ICC |
953 | static |
954 | cmsPipeline* BlackPreservingKPlaneIntents(cmsContext ContextID, |
955 | cmsUInt32Number nProfiles, |
956 | cmsUInt32Number TheIntents[], |
957 | cmsHPROFILE hProfiles[], |
958 | cmsBool BPC[], |
959 | cmsFloat64Number AdaptationStates[], |
960 | cmsUInt32Number dwFlags) |
961 | { |
962 | PreserveKPlaneParams bp; |
963 | cmsPipeline* Result = NULL; |
964 | cmsUInt32Number ICCIntents[256]; |
965 | cmsStage* CLUT; |
966 | cmsUInt32Number i, nGridPoints; |
967 | cmsHPROFILE hLab; |
968 | |
969 | // Sanity check |
970 | if (nProfiles < 1 || nProfiles > 255) return NULL; |
971 | |
972 | // Translate black-preserving intents to ICC ones |
973 | for (i=0; i < nProfiles; i++) |
974 | ICCIntents[i] = TranslateNonICCIntents(TheIntents[i]); |
975 | |
976 | // Check for non-cmyk profiles |
977 | if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || |
978 | !(cmsGetColorSpace(hProfiles[nProfiles-1]) == cmsSigCmykData || |
979 | cmsGetDeviceClass(hProfiles[nProfiles-1]) == cmsSigOutputClass)) |
980 | return DefaultICCintents(ContextID, nProfiles, ICCIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
981 | |
982 | // Allocate an empty LUT for holding the result |
983 | Result = cmsPipelineAlloc(ContextID, 4, 4); |
984 | if (Result == NULL) return NULL; |
985 | |
986 | |
987 | memset(&bp, 0, sizeof(bp)); |
988 | |
989 | // We need the input LUT of the last profile, assuming this one is responsible of |
990 | // black generation. This LUT will be searched in inverse order. |
991 | bp.LabK2cmyk = _cmsReadInputLUT(hProfiles[nProfiles-1], INTENT_RELATIVE_COLORIMETRIC); |
992 | if (bp.LabK2cmyk == NULL) goto Cleanup; |
993 | |
994 | // Get total area coverage (in 0..1 domain) |
995 | bp.MaxTAC = cmsDetectTAC(hProfiles[nProfiles-1]) / 100.0; |
996 | if (bp.MaxTAC <= 0) goto Cleanup; |
997 | |
998 | |
999 | // Create a LUT holding normal ICC transform |
1000 | bp.cmyk2cmyk = DefaultICCintents(ContextID, |
1001 | nProfiles, |
1002 | ICCIntents, |
1003 | hProfiles, |
1004 | BPC, |
1005 | AdaptationStates, |
1006 | dwFlags); |
1007 | if (bp.cmyk2cmyk == NULL) goto Cleanup; |
1008 | |
1009 | // Now the tone curve |
1010 | bp.KTone = _cmsBuildKToneCurve(ContextID, 4096, nProfiles, |
1011 | ICCIntents, |
1012 | hProfiles, |
1013 | BPC, |
1014 | AdaptationStates, |
1015 | dwFlags); |
1016 | if (bp.KTone == NULL) goto Cleanup; |
1017 | |
1018 | // To measure the output, Last profile to Lab |
1019 | hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); |
1020 | bp.hProofOutput = cmsCreateTransformTHR(ContextID, hProfiles[nProfiles-1], |
1021 | CHANNELS_SH(4)|BYTES_SH(2), hLab, TYPE_Lab_DBL, |
1022 | INTENT_RELATIVE_COLORIMETRIC, |
1023 | cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); |
1024 | if ( bp.hProofOutput == NULL) goto Cleanup; |
1025 | |
1026 | // Same as anterior, but lab in the 0..1 range |
1027 | bp.cmyk2Lab = cmsCreateTransformTHR(ContextID, hProfiles[nProfiles-1], |
1028 | FLOAT_SH(1)|CHANNELS_SH(4)|BYTES_SH(4), hLab, |
1029 | FLOAT_SH(1)|CHANNELS_SH(3)|BYTES_SH(4), |
1030 | INTENT_RELATIVE_COLORIMETRIC, |
1031 | cmsFLAGS_NOCACHE|cmsFLAGS_NOOPTIMIZE); |
1032 | if (bp.cmyk2Lab == NULL) goto Cleanup; |
1033 | cmsCloseProfile(hLab); |
1034 | |
1035 | // Error estimation (for debug only) |
1036 | bp.MaxError = 0; |
1037 | |
1038 | // How many gridpoints are we going to use? |
1039 | nGridPoints = _cmsReasonableGridpointsByColorspace(cmsSigCmykData, dwFlags); |
1040 | |
1041 | |
1042 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, 4, 4, NULL); |
1043 | if (CLUT == NULL) goto Cleanup; |
1044 | |
1045 | if (!cmsPipelineInsertStage(Result, cmsAT_BEGIN, CLUT)) |
1046 | goto Cleanup; |
1047 | |
1048 | cmsStageSampleCLut16bit(CLUT, BlackPreservingSampler, (void*) &bp, 0); |
1049 | |
1050 | Cleanup: |
1051 | |
1052 | if (bp.cmyk2cmyk) cmsPipelineFree(bp.cmyk2cmyk); |
1053 | if (bp.cmyk2Lab) cmsDeleteTransform(bp.cmyk2Lab); |
1054 | if (bp.hProofOutput) cmsDeleteTransform(bp.hProofOutput); |
1055 | |
1056 | if (bp.KTone) cmsFreeToneCurve(bp.KTone); |
1057 | if (bp.LabK2cmyk) cmsPipelineFree(bp.LabK2cmyk); |
1058 | |
1059 | return Result; |
1060 | } |
1061 | |
1062 | // Link routines ------------------------------------------------------------------------------------------------------ |
1063 | |
1064 | // Chain several profiles into a single LUT. It just checks the parameters and then calls the handler |
1065 | // for the first intent in chain. The handler may be user-defined. Is up to the handler to deal with the |
1066 | // rest of intents in chain. A maximum of 255 profiles at time are supported, which is pretty reasonable. |
1067 | cmsPipeline* _cmsLinkProfiles(cmsContext ContextID, |
1068 | cmsUInt32Number nProfiles, |
1069 | cmsUInt32Number TheIntents[], |
1070 | cmsHPROFILE hProfiles[], |
1071 | cmsBool BPC[], |
1072 | cmsFloat64Number AdaptationStates[], |
1073 | cmsUInt32Number dwFlags) |
1074 | { |
1075 | cmsUInt32Number i; |
1076 | cmsIntentsList* Intent; |
1077 | |
1078 | // Make sure a reasonable number of profiles is provided |
1079 | if (nProfiles <= 0 || nProfiles > 255) { |
1080 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't link '%d' profiles" , nProfiles); |
1081 | return NULL; |
1082 | } |
1083 | |
1084 | for (i=0; i < nProfiles; i++) { |
1085 | |
1086 | // Check if black point is really needed or allowed. Note that |
1087 | // following Adobe's document: |
1088 | // BPC does not apply to devicelink profiles, nor to abs colorimetric, |
1089 | // and applies always on V4 perceptual and saturation. |
1090 | |
1091 | if (TheIntents[i] == INTENT_ABSOLUTE_COLORIMETRIC) |
1092 | BPC[i] = FALSE; |
1093 | |
1094 | if (TheIntents[i] == INTENT_PERCEPTUAL || TheIntents[i] == INTENT_SATURATION) { |
1095 | |
1096 | // Force BPC for V4 profiles in perceptual and saturation |
1097 | if (cmsGetEncodedICCversion(hProfiles[i]) >= 0x4000000) |
1098 | BPC[i] = TRUE; |
1099 | } |
1100 | } |
1101 | |
1102 | // Search for a handler. The first intent in the chain defines the handler. That would |
1103 | // prevent using multiple custom intents in a multiintent chain, but the behaviour of |
1104 | // this case would present some issues if the custom intent tries to do things like |
1105 | // preserve primaries. This solution is not perfect, but works well on most cases. |
1106 | |
1107 | Intent = SearchIntent(ContextID, TheIntents[0]); |
1108 | if (Intent == NULL) { |
1109 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported intent '%d'" , TheIntents[0]); |
1110 | return NULL; |
1111 | } |
1112 | |
1113 | // Call the handler |
1114 | return Intent ->Link(ContextID, nProfiles, TheIntents, hProfiles, BPC, AdaptationStates, dwFlags); |
1115 | } |
1116 | |
1117 | // ------------------------------------------------------------------------------------------------- |
1118 | |
1119 | // Get information about available intents. nMax is the maximum space for the supplied "Codes" |
1120 | // and "Descriptions" the function returns the total number of intents, which may be greater |
1121 | // than nMax, although the matrices are not populated beyond this level. |
1122 | cmsUInt32Number CMSEXPORT cmsGetSupportedIntentsTHR(cmsContext ContextID, cmsUInt32Number nMax, cmsUInt32Number* Codes, char** Descriptions) |
1123 | { |
1124 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(ContextID, IntentPlugin); |
1125 | cmsIntentsList* pt; |
1126 | cmsUInt32Number nIntents; |
1127 | |
1128 | |
1129 | for (nIntents=0, pt = ctx->Intents; pt != NULL; pt = pt -> Next) |
1130 | { |
1131 | if (nIntents < nMax) { |
1132 | if (Codes != NULL) |
1133 | Codes[nIntents] = pt ->Intent; |
1134 | |
1135 | if (Descriptions != NULL) |
1136 | Descriptions[nIntents] = pt ->Description; |
1137 | } |
1138 | |
1139 | nIntents++; |
1140 | } |
1141 | |
1142 | for (nIntents=0, pt = DefaultIntents; pt != NULL; pt = pt -> Next) |
1143 | { |
1144 | if (nIntents < nMax) { |
1145 | if (Codes != NULL) |
1146 | Codes[nIntents] = pt ->Intent; |
1147 | |
1148 | if (Descriptions != NULL) |
1149 | Descriptions[nIntents] = pt ->Description; |
1150 | } |
1151 | |
1152 | nIntents++; |
1153 | } |
1154 | return nIntents; |
1155 | } |
1156 | |
1157 | cmsUInt32Number CMSEXPORT cmsGetSupportedIntents(cmsUInt32Number nMax, cmsUInt32Number* Codes, char** Descriptions) |
1158 | { |
1159 | return cmsGetSupportedIntentsTHR(NULL, nMax, Codes, Descriptions); |
1160 | } |
1161 | |
1162 | // The plug-in registration. User can add new intents or override default routines |
1163 | cmsBool _cmsRegisterRenderingIntentPlugin(cmsContext id, cmsPluginBase* Data) |
1164 | { |
1165 | _cmsIntentsPluginChunkType* ctx = ( _cmsIntentsPluginChunkType*) _cmsContextGetClientChunk(id, IntentPlugin); |
1166 | cmsPluginRenderingIntent* Plugin = (cmsPluginRenderingIntent*) Data; |
1167 | cmsIntentsList* fl; |
1168 | |
1169 | // Do we have to reset the custom intents? |
1170 | if (Data == NULL) { |
1171 | |
1172 | ctx->Intents = NULL; |
1173 | return TRUE; |
1174 | } |
1175 | |
1176 | fl = (cmsIntentsList*) _cmsPluginMalloc(id, sizeof(cmsIntentsList)); |
1177 | if (fl == NULL) return FALSE; |
1178 | |
1179 | |
1180 | fl ->Intent = Plugin ->Intent; |
1181 | strncpy(fl ->Description, Plugin ->Description, sizeof(fl ->Description)-1); |
1182 | fl ->Description[sizeof(fl ->Description)-1] = 0; |
1183 | |
1184 | fl ->Link = Plugin ->Link; |
1185 | |
1186 | fl ->Next = ctx ->Intents; |
1187 | ctx ->Intents = fl; |
1188 | |
1189 | return TRUE; |
1190 | } |
1191 | |
1192 | |