1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2013 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | #include "lcms2_internal.h" |
56 | |
57 | // Tone curves are powerful constructs that can contain curves specified in diverse ways. |
58 | // The curve is stored in segments, where each segment can be sampled or specified by parameters. |
59 | // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation, |
60 | // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes, |
61 | // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function, |
62 | // the plug-in should provide the type id, how many parameters each type has, and a pointer to |
63 | // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will |
64 | // be called with the type id as a negative value, and a sampled version of the reversed curve |
65 | // will be built. |
66 | |
67 | // ----------------------------------------------------------------- Implementation |
68 | // Maxim number of nodes |
69 | #define MAX_NODES_IN_CURVE 4097 |
70 | #define MINUS_INF (-1E22F) |
71 | #define PLUS_INF (+1E22F) |
72 | |
73 | // The list of supported parametric curves |
74 | typedef struct _cmsParametricCurvesCollection_st { |
75 | |
76 | cmsUInt32Number nFunctions; // Number of supported functions in this chunk |
77 | cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types |
78 | cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function |
79 | |
80 | cmsParametricCurveEvaluator Evaluator; // The evaluator |
81 | |
82 | struct _cmsParametricCurvesCollection_st* Next; // Next in list |
83 | |
84 | } _cmsParametricCurvesCollection; |
85 | |
86 | // This is the default (built-in) evaluator |
87 | static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R); |
88 | |
89 | // The built-in list |
90 | static _cmsParametricCurvesCollection DefaultCurves = { |
91 | 9, // # of curve types |
92 | { 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID |
93 | { 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type |
94 | DefaultEvalParametricFn, // Evaluator |
95 | NULL // Next in chain |
96 | }; |
97 | |
98 | // Duplicates the zone of memory used by the plug-in in the new context |
99 | static |
100 | void DupPluginCurvesList(struct _cmsContext_struct* ctx, |
101 | const struct _cmsContext_struct* src) |
102 | { |
103 | _cmsCurvesPluginChunkType newHead = { NULL }; |
104 | _cmsParametricCurvesCollection* entry; |
105 | _cmsParametricCurvesCollection* Anterior = NULL; |
106 | _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin]; |
107 | |
108 | _cmsAssert(head != NULL); |
109 | |
110 | // Walk the list copying all nodes |
111 | for (entry = head->ParametricCurves; |
112 | entry != NULL; |
113 | entry = entry ->Next) { |
114 | |
115 | _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection)); |
116 | |
117 | if (newEntry == NULL) |
118 | return; |
119 | |
120 | // We want to keep the linked list order, so this is a little bit tricky |
121 | newEntry -> Next = NULL; |
122 | if (Anterior) |
123 | Anterior -> Next = newEntry; |
124 | |
125 | Anterior = newEntry; |
126 | |
127 | if (newHead.ParametricCurves == NULL) |
128 | newHead.ParametricCurves = newEntry; |
129 | } |
130 | |
131 | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType)); |
132 | } |
133 | |
134 | // The allocator have to follow the chain |
135 | void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx, |
136 | const struct _cmsContext_struct* src) |
137 | { |
138 | _cmsAssert(ctx != NULL); |
139 | |
140 | if (src != NULL) { |
141 | |
142 | // Copy all linked list |
143 | DupPluginCurvesList(ctx, src); |
144 | } |
145 | else { |
146 | static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL }; |
147 | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType)); |
148 | } |
149 | } |
150 | |
151 | |
152 | // The linked list head |
153 | _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL }; |
154 | |
155 | // As a way to install new parametric curves |
156 | cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data) |
157 | { |
158 | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); |
159 | cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data; |
160 | _cmsParametricCurvesCollection* fl; |
161 | |
162 | if (Data == NULL) { |
163 | |
164 | ctx -> ParametricCurves = NULL; |
165 | return TRUE; |
166 | } |
167 | |
168 | fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection)); |
169 | if (fl == NULL) return FALSE; |
170 | |
171 | // Copy the parameters |
172 | fl ->Evaluator = Plugin ->Evaluator; |
173 | fl ->nFunctions = Plugin ->nFunctions; |
174 | |
175 | // Make sure no mem overwrites |
176 | if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN) |
177 | fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN; |
178 | |
179 | // Copy the data |
180 | memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number)); |
181 | memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number)); |
182 | |
183 | // Keep linked list |
184 | fl ->Next = ctx->ParametricCurves; |
185 | ctx->ParametricCurves = fl; |
186 | |
187 | // All is ok |
188 | return TRUE; |
189 | } |
190 | |
191 | |
192 | // Search in type list, return position or -1 if not found |
193 | static |
194 | int IsInSet(int Type, _cmsParametricCurvesCollection* c) |
195 | { |
196 | int i; |
197 | |
198 | for (i=0; i < (int) c ->nFunctions; i++) |
199 | if (abs(Type) == c ->FunctionTypes[i]) return i; |
200 | |
201 | return -1; |
202 | } |
203 | |
204 | |
205 | // Search for the collection which contains a specific type |
206 | static |
207 | _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index) |
208 | { |
209 | _cmsParametricCurvesCollection* c; |
210 | int Position; |
211 | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); |
212 | |
213 | for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) { |
214 | |
215 | Position = IsInSet(Type, c); |
216 | |
217 | if (Position != -1) { |
218 | if (index != NULL) |
219 | *index = Position; |
220 | return c; |
221 | } |
222 | } |
223 | // If none found, revert for defaults |
224 | for (c = &DefaultCurves; c != NULL; c = c ->Next) { |
225 | |
226 | Position = IsInSet(Type, c); |
227 | |
228 | if (Position != -1) { |
229 | if (index != NULL) |
230 | *index = Position; |
231 | return c; |
232 | } |
233 | } |
234 | |
235 | return NULL; |
236 | } |
237 | |
238 | // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case |
239 | // no optimation curve is computed. nSegments may also be zero in the inverse case, where only the |
240 | // optimization curve is given. Both features simultaneously is an error |
241 | static |
242 | cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries, |
243 | cmsUInt32Number nSegments, const cmsCurveSegment* Segments, |
244 | const cmsUInt16Number* Values) |
245 | { |
246 | cmsToneCurve* p; |
247 | cmsUInt32Number i; |
248 | |
249 | // We allow huge tables, which are then restricted for smoothing operations |
250 | if (nEntries > 65530) { |
251 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries" ); |
252 | return NULL; |
253 | } |
254 | |
255 | if (nEntries == 0 && nSegments == 0) { |
256 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table" ); |
257 | return NULL; |
258 | } |
259 | |
260 | // Allocate all required pointers, etc. |
261 | p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve)); |
262 | if (!p) return NULL; |
263 | |
264 | // In this case, there are no segments |
265 | if (nSegments == 0) { |
266 | p ->Segments = NULL; |
267 | p ->Evals = NULL; |
268 | } |
269 | else { |
270 | p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment)); |
271 | if (p ->Segments == NULL) goto Error; |
272 | |
273 | p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator)); |
274 | if (p ->Evals == NULL) goto Error; |
275 | } |
276 | |
277 | p -> nSegments = nSegments; |
278 | |
279 | // This 16-bit table contains a limited precision representation of the whole curve and is kept for |
280 | // increasing xput on certain operations. |
281 | if (nEntries == 0) { |
282 | p ->Table16 = NULL; |
283 | } |
284 | else { |
285 | p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number)); |
286 | if (p ->Table16 == NULL) goto Error; |
287 | } |
288 | |
289 | p -> nEntries = nEntries; |
290 | |
291 | // Initialize members if requested |
292 | if (Values != NULL && (nEntries > 0)) { |
293 | |
294 | for (i=0; i < nEntries; i++) |
295 | p ->Table16[i] = Values[i]; |
296 | } |
297 | |
298 | // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it |
299 | // is placed in advance to maximize performance. |
300 | if (Segments != NULL && (nSegments > 0)) { |
301 | |
302 | _cmsParametricCurvesCollection *c; |
303 | |
304 | p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*)); |
305 | if (p ->SegInterp == NULL) goto Error; |
306 | |
307 | for (i=0; i < nSegments; i++) { |
308 | |
309 | // Type 0 is a special marker for table-based curves |
310 | if (Segments[i].Type == 0) |
311 | p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT); |
312 | |
313 | memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment)); |
314 | |
315 | if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL) |
316 | p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints); |
317 | else |
318 | p ->Segments[i].SampledPoints = NULL; |
319 | |
320 | |
321 | c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL); |
322 | if (c != NULL) |
323 | p ->Evals[i] = c ->Evaluator; |
324 | } |
325 | } |
326 | |
327 | p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS); |
328 | if (p->InterpParams != NULL) |
329 | return p; |
330 | |
331 | Error: |
332 | if (p -> Segments) _cmsFree(ContextID, p ->Segments); |
333 | if (p -> Evals) _cmsFree(ContextID, p -> Evals); |
334 | if (p ->Table16) _cmsFree(ContextID, p ->Table16); |
335 | _cmsFree(ContextID, p); |
336 | return NULL; |
337 | } |
338 | |
339 | |
340 | // Parametric Fn using floating point |
341 | static |
342 | cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R) |
343 | { |
344 | cmsFloat64Number e, Val, disc; |
345 | |
346 | switch (Type) { |
347 | |
348 | // X = Y ^ Gamma |
349 | case 1: |
350 | if (R < 0) { |
351 | |
352 | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) |
353 | Val = R; |
354 | else |
355 | Val = 0; |
356 | } |
357 | else |
358 | Val = pow(R, Params[0]); |
359 | break; |
360 | |
361 | // Type 1 Reversed: X = Y ^1/gamma |
362 | case -1: |
363 | if (R < 0) { |
364 | |
365 | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) |
366 | Val = R; |
367 | else |
368 | Val = 0; |
369 | } |
370 | else |
371 | { |
372 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) |
373 | Val = PLUS_INF; |
374 | else |
375 | Val = pow(R, 1 / Params[0]); |
376 | } |
377 | break; |
378 | |
379 | // CIE 122-1966 |
380 | // Y = (aX + b)^Gamma | X >= -b/a |
381 | // Y = 0 | else |
382 | case 2: |
383 | { |
384 | |
385 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
386 | { |
387 | Val = 0; |
388 | } |
389 | else |
390 | { |
391 | disc = -Params[2] / Params[1]; |
392 | |
393 | if (R >= disc) { |
394 | |
395 | e = Params[1] * R + Params[2]; |
396 | |
397 | if (e > 0) |
398 | Val = pow(e, Params[0]); |
399 | else |
400 | Val = 0; |
401 | } |
402 | else |
403 | Val = 0; |
404 | } |
405 | } |
406 | break; |
407 | |
408 | // Type 2 Reversed |
409 | // X = (Y ^1/g - b) / a |
410 | case -2: |
411 | { |
412 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
413 | fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
414 | { |
415 | Val = 0; |
416 | } |
417 | else |
418 | { |
419 | if (R < 0) |
420 | Val = 0; |
421 | else |
422 | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; |
423 | |
424 | if (Val < 0) |
425 | Val = 0; |
426 | } |
427 | } |
428 | break; |
429 | |
430 | |
431 | // IEC 61966-3 |
432 | // Y = (aX + b)^Gamma | X <= -b/a |
433 | // Y = c | else |
434 | case 3: |
435 | { |
436 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
437 | { |
438 | Val = 0; |
439 | } |
440 | else |
441 | { |
442 | disc = -Params[2] / Params[1]; |
443 | if (disc < 0) |
444 | disc = 0; |
445 | |
446 | if (R >= disc) { |
447 | |
448 | e = Params[1] * R + Params[2]; |
449 | |
450 | if (e > 0) |
451 | Val = pow(e, Params[0]) + Params[3]; |
452 | else |
453 | Val = 0; |
454 | } |
455 | else |
456 | Val = Params[3]; |
457 | } |
458 | } |
459 | break; |
460 | |
461 | |
462 | // Type 3 reversed |
463 | // X=((Y-c)^1/g - b)/a | (Y>=c) |
464 | // X=-b/a | (Y<c) |
465 | case -3: |
466 | { |
467 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
468 | { |
469 | Val = 0; |
470 | } |
471 | else |
472 | { |
473 | if (R >= Params[3]) { |
474 | |
475 | e = R - Params[3]; |
476 | |
477 | if (e > 0) |
478 | Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1]; |
479 | else |
480 | Val = 0; |
481 | } |
482 | else { |
483 | Val = -Params[2] / Params[1]; |
484 | } |
485 | } |
486 | } |
487 | break; |
488 | |
489 | |
490 | // IEC 61966-2.1 (sRGB) |
491 | // Y = (aX + b)^Gamma | X >= d |
492 | // Y = cX | X < d |
493 | case 4: |
494 | if (R >= Params[4]) { |
495 | |
496 | e = Params[1]*R + Params[2]; |
497 | |
498 | if (e > 0) |
499 | Val = pow(e, Params[0]); |
500 | else |
501 | Val = 0; |
502 | } |
503 | else |
504 | Val = R * Params[3]; |
505 | break; |
506 | |
507 | // Type 4 reversed |
508 | // X=((Y^1/g-b)/a) | Y >= (ad+b)^g |
509 | // X=Y/c | Y< (ad+b)^g |
510 | case -4: |
511 | { |
512 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
513 | fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
514 | fabs(Params[3]) < MATRIX_DET_TOLERANCE) |
515 | { |
516 | Val = 0; |
517 | } |
518 | else |
519 | { |
520 | e = Params[1] * Params[4] + Params[2]; |
521 | if (e < 0) |
522 | disc = 0; |
523 | else |
524 | disc = pow(e, Params[0]); |
525 | |
526 | if (R >= disc) { |
527 | |
528 | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; |
529 | } |
530 | else { |
531 | Val = R / Params[3]; |
532 | } |
533 | } |
534 | } |
535 | break; |
536 | |
537 | |
538 | // Y = (aX + b)^Gamma + e | X >= d |
539 | // Y = cX + f | X < d |
540 | case 5: |
541 | if (R >= Params[4]) { |
542 | |
543 | e = Params[1]*R + Params[2]; |
544 | |
545 | if (e > 0) |
546 | Val = pow(e, Params[0]) + Params[5]; |
547 | else |
548 | Val = Params[5]; |
549 | } |
550 | else |
551 | Val = R*Params[3] + Params[6]; |
552 | break; |
553 | |
554 | |
555 | // Reversed type 5 |
556 | // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f |
557 | // X=(Y-f)/c | else |
558 | case -5: |
559 | { |
560 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
561 | fabs(Params[3]) < MATRIX_DET_TOLERANCE) |
562 | { |
563 | Val = 0; |
564 | } |
565 | else |
566 | { |
567 | disc = Params[3] * Params[4] + Params[6]; |
568 | if (R >= disc) { |
569 | |
570 | e = R - Params[5]; |
571 | if (e < 0) |
572 | Val = 0; |
573 | else |
574 | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; |
575 | } |
576 | else { |
577 | Val = (R - Params[6]) / Params[3]; |
578 | } |
579 | } |
580 | } |
581 | break; |
582 | |
583 | |
584 | // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf |
585 | // Type 6 is basically identical to type 5 without d |
586 | |
587 | // Y = (a * X + b) ^ Gamma + c |
588 | case 6: |
589 | e = Params[1]*R + Params[2]; |
590 | |
591 | if (e < 0) |
592 | Val = Params[3]; |
593 | else |
594 | Val = pow(e, Params[0]) + Params[3]; |
595 | break; |
596 | |
597 | // ((Y - c) ^1/Gamma - b) / a |
598 | case -6: |
599 | { |
600 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
601 | { |
602 | Val = 0; |
603 | } |
604 | else |
605 | { |
606 | e = R - Params[3]; |
607 | if (e < 0) |
608 | Val = 0; |
609 | else |
610 | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; |
611 | } |
612 | } |
613 | break; |
614 | |
615 | |
616 | // Y = a * log (b * X^Gamma + c) + d |
617 | case 7: |
618 | |
619 | e = Params[2] * pow(R, Params[0]) + Params[3]; |
620 | if (e <= 0) |
621 | Val = Params[4]; |
622 | else |
623 | Val = Params[1]*log10(e) + Params[4]; |
624 | break; |
625 | |
626 | // (Y - d) / a = log(b * X ^Gamma + c) |
627 | // pow(10, (Y-d) / a) = b * X ^Gamma + c |
628 | // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X |
629 | case -7: |
630 | { |
631 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
632 | fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
633 | fabs(Params[2]) < MATRIX_DET_TOLERANCE) |
634 | { |
635 | Val = 0; |
636 | } |
637 | else |
638 | { |
639 | Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]); |
640 | } |
641 | } |
642 | break; |
643 | |
644 | |
645 | //Y = a * b^(c*X+d) + e |
646 | case 8: |
647 | Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]); |
648 | break; |
649 | |
650 | |
651 | // Y = (log((y-e) / a) / log(b) - d ) / c |
652 | // a=0, b=1, c=2, d=3, e=4, |
653 | case -8: |
654 | |
655 | disc = R - Params[4]; |
656 | if (disc < 0) Val = 0; |
657 | else |
658 | { |
659 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
660 | fabs(Params[2]) < MATRIX_DET_TOLERANCE) |
661 | { |
662 | Val = 0; |
663 | } |
664 | else |
665 | { |
666 | Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2]; |
667 | } |
668 | } |
669 | break; |
670 | |
671 | // S-Shaped: (1 - (1-x)^1/g)^1/g |
672 | case 108: |
673 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) |
674 | Val = 0; |
675 | else |
676 | Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]); |
677 | break; |
678 | |
679 | // y = (1 - (1-x)^1/g)^1/g |
680 | // y^g = (1 - (1-x)^1/g) |
681 | // 1 - y^g = (1-x)^1/g |
682 | // (1 - y^g)^g = 1 - x |
683 | // 1 - (1 - y^g)^g |
684 | case -108: |
685 | Val = 1 - pow(1 - pow(R, Params[0]), Params[0]); |
686 | break; |
687 | |
688 | default: |
689 | // Unsupported parametric curve. Should never reach here |
690 | return 0; |
691 | } |
692 | |
693 | return Val; |
694 | } |
695 | |
696 | // Evaluate a segmented function for a single value. Return -Inf if no valid segment found . |
697 | // If fn type is 0, perform an interpolation on the table |
698 | static |
699 | cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R) |
700 | { |
701 | int i; |
702 | cmsFloat32Number Out32; |
703 | cmsFloat64Number Out; |
704 | |
705 | for (i = (int) g->nSegments - 1; i >= 0; --i) { |
706 | |
707 | // Check for domain |
708 | if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) { |
709 | |
710 | // Type == 0 means segment is sampled |
711 | if (g->Segments[i].Type == 0) { |
712 | |
713 | cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0); |
714 | |
715 | // Setup the table (TODO: clean that) |
716 | g->SegInterp[i]->Table = g->Segments[i].SampledPoints; |
717 | |
718 | g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]); |
719 | Out = (cmsFloat64Number) Out32; |
720 | |
721 | } |
722 | else { |
723 | Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R); |
724 | } |
725 | |
726 | if (isinf(Out)) |
727 | return PLUS_INF; |
728 | else |
729 | { |
730 | if (isinf(-Out)) |
731 | return MINUS_INF; |
732 | } |
733 | |
734 | return Out; |
735 | } |
736 | } |
737 | |
738 | return MINUS_INF; |
739 | } |
740 | |
741 | // Access to estimated low-res table |
742 | cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t) |
743 | { |
744 | _cmsAssert(t != NULL); |
745 | return t ->nEntries; |
746 | } |
747 | |
748 | const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t) |
749 | { |
750 | _cmsAssert(t != NULL); |
751 | return t ->Table16; |
752 | } |
753 | |
754 | |
755 | // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the |
756 | // floating point description empty. |
757 | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[]) |
758 | { |
759 | return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values); |
760 | } |
761 | |
762 | static |
763 | cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma) |
764 | { |
765 | if (fabs(Gamma - 1.0) < 0.001) return 2; |
766 | return 4096; |
767 | } |
768 | |
769 | |
770 | // Create a segmented gamma, fill the table |
771 | cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID, |
772 | cmsUInt32Number nSegments, const cmsCurveSegment Segments[]) |
773 | { |
774 | cmsUInt32Number i; |
775 | cmsFloat64Number R, Val; |
776 | cmsToneCurve* g; |
777 | cmsUInt32Number nGridPoints = 4096; |
778 | |
779 | _cmsAssert(Segments != NULL); |
780 | |
781 | // Optimizatin for identity curves. |
782 | if (nSegments == 1 && Segments[0].Type == 1) { |
783 | |
784 | nGridPoints = EntriesByGamma(Segments[0].Params[0]); |
785 | } |
786 | |
787 | g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL); |
788 | if (g == NULL) return NULL; |
789 | |
790 | // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries |
791 | // for performance reasons. This table would normally not be used except on 8/16 bits transforms. |
792 | for (i = 0; i < nGridPoints; i++) { |
793 | |
794 | R = (cmsFloat64Number) i / (nGridPoints-1); |
795 | |
796 | Val = EvalSegmentedFn(g, R); |
797 | |
798 | // Round and saturate |
799 | g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0); |
800 | } |
801 | |
802 | return g; |
803 | } |
804 | |
805 | // Use a segmented curve to store the floating point table |
806 | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[]) |
807 | { |
808 | cmsCurveSegment Seg[3]; |
809 | |
810 | // A segmented tone curve should have function segments in the first and last positions |
811 | // Initialize segmented curve part up to 0 to constant value = samples[0] |
812 | Seg[0].x0 = MINUS_INF; |
813 | Seg[0].x1 = 0; |
814 | Seg[0].Type = 6; |
815 | |
816 | Seg[0].Params[0] = 1; |
817 | Seg[0].Params[1] = 0; |
818 | Seg[0].Params[2] = 0; |
819 | Seg[0].Params[3] = values[0]; |
820 | Seg[0].Params[4] = 0; |
821 | |
822 | // From zero to 1 |
823 | Seg[1].x0 = 0; |
824 | Seg[1].x1 = 1.0; |
825 | Seg[1].Type = 0; |
826 | |
827 | Seg[1].nGridPoints = nEntries; |
828 | Seg[1].SampledPoints = (cmsFloat32Number*) values; |
829 | |
830 | // Final segment is constant = lastsample |
831 | Seg[2].x0 = 1.0; |
832 | Seg[2].x1 = PLUS_INF; |
833 | Seg[2].Type = 6; |
834 | |
835 | Seg[2].Params[0] = 1; |
836 | Seg[2].Params[1] = 0; |
837 | Seg[2].Params[2] = 0; |
838 | Seg[2].Params[3] = values[nEntries-1]; |
839 | Seg[2].Params[4] = 0; |
840 | |
841 | |
842 | return cmsBuildSegmentedToneCurve(ContextID, 3, Seg); |
843 | } |
844 | |
845 | // Parametric curves |
846 | // |
847 | // Parameters goes as: Curve, a, b, c, d, e, f |
848 | // Type is the ICC type +1 |
849 | // if type is negative, then the curve is analyticaly inverted |
850 | cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[]) |
851 | { |
852 | cmsCurveSegment Seg0; |
853 | int Pos = 0; |
854 | cmsUInt32Number size; |
855 | _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos); |
856 | |
857 | _cmsAssert(Params != NULL); |
858 | |
859 | if (c == NULL) { |
860 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d" , Type); |
861 | return NULL; |
862 | } |
863 | |
864 | memset(&Seg0, 0, sizeof(Seg0)); |
865 | |
866 | Seg0.x0 = MINUS_INF; |
867 | Seg0.x1 = PLUS_INF; |
868 | Seg0.Type = Type; |
869 | |
870 | size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number); |
871 | memmove(Seg0.Params, Params, size); |
872 | |
873 | return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0); |
874 | } |
875 | |
876 | |
877 | |
878 | // Build a gamma table based on gamma constant |
879 | cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma) |
880 | { |
881 | return cmsBuildParametricToneCurve(ContextID, 1, &Gamma); |
882 | } |
883 | |
884 | |
885 | // Free all memory taken by the gamma curve |
886 | void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve) |
887 | { |
888 | cmsContext ContextID; |
889 | |
890 | if (Curve == NULL) return; |
891 | |
892 | ContextID = Curve ->InterpParams->ContextID; |
893 | |
894 | _cmsFreeInterpParams(Curve ->InterpParams); |
895 | |
896 | if (Curve -> Table16) |
897 | _cmsFree(ContextID, Curve ->Table16); |
898 | |
899 | if (Curve ->Segments) { |
900 | |
901 | cmsUInt32Number i; |
902 | |
903 | for (i=0; i < Curve ->nSegments; i++) { |
904 | |
905 | if (Curve ->Segments[i].SampledPoints) { |
906 | _cmsFree(ContextID, Curve ->Segments[i].SampledPoints); |
907 | } |
908 | |
909 | if (Curve ->SegInterp[i] != 0) |
910 | _cmsFreeInterpParams(Curve->SegInterp[i]); |
911 | } |
912 | |
913 | _cmsFree(ContextID, Curve ->Segments); |
914 | _cmsFree(ContextID, Curve ->SegInterp); |
915 | } |
916 | |
917 | if (Curve -> Evals) |
918 | _cmsFree(ContextID, Curve -> Evals); |
919 | |
920 | if (Curve) _cmsFree(ContextID, Curve); |
921 | } |
922 | |
923 | // Utility function, free 3 gamma tables |
924 | void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3]) |
925 | { |
926 | |
927 | _cmsAssert(Curve != NULL); |
928 | |
929 | if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]); |
930 | if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]); |
931 | if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]); |
932 | |
933 | Curve[0] = Curve[1] = Curve[2] = NULL; |
934 | } |
935 | |
936 | |
937 | // Duplicate a gamma table |
938 | cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In) |
939 | { |
940 | if (In == NULL) return NULL; |
941 | |
942 | return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16); |
943 | } |
944 | |
945 | // Joins two curves for X and Y. Curves should be monotonic. |
946 | // We want to get |
947 | // |
948 | // y = Y^-1(X(t)) |
949 | // |
950 | cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID, |
951 | const cmsToneCurve* X, |
952 | const cmsToneCurve* Y, cmsUInt32Number nResultingPoints) |
953 | { |
954 | cmsToneCurve* out = NULL; |
955 | cmsToneCurve* Yreversed = NULL; |
956 | cmsFloat32Number t, x; |
957 | cmsFloat32Number* Res = NULL; |
958 | cmsUInt32Number i; |
959 | |
960 | |
961 | _cmsAssert(X != NULL); |
962 | _cmsAssert(Y != NULL); |
963 | |
964 | Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y); |
965 | if (Yreversed == NULL) goto Error; |
966 | |
967 | Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number)); |
968 | if (Res == NULL) goto Error; |
969 | |
970 | //Iterate |
971 | for (i=0; i < nResultingPoints; i++) { |
972 | |
973 | t = (cmsFloat32Number) i / (nResultingPoints-1); |
974 | x = cmsEvalToneCurveFloat(X, t); |
975 | Res[i] = cmsEvalToneCurveFloat(Yreversed, x); |
976 | } |
977 | |
978 | // Allocate space for output |
979 | out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res); |
980 | |
981 | Error: |
982 | |
983 | if (Res != NULL) _cmsFree(ContextID, Res); |
984 | if (Yreversed != NULL) cmsFreeToneCurve(Yreversed); |
985 | |
986 | return out; |
987 | } |
988 | |
989 | |
990 | |
991 | // Get the surrounding nodes. This is tricky on non-monotonic tables |
992 | static |
993 | int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p) |
994 | { |
995 | int i; |
996 | int y0, y1; |
997 | |
998 | // A 1 point table is not allowed |
999 | if (p -> Domain[0] < 1) return -1; |
1000 | |
1001 | // Let's see if ascending or descending. |
1002 | if (LutTable[0] < LutTable[p ->Domain[0]]) { |
1003 | |
1004 | // Table is overall ascending |
1005 | for (i = (int) p->Domain[0] - 1; i >= 0; --i) { |
1006 | |
1007 | y0 = LutTable[i]; |
1008 | y1 = LutTable[i+1]; |
1009 | |
1010 | if (y0 <= y1) { // Increasing |
1011 | if (In >= y0 && In <= y1) return i; |
1012 | } |
1013 | else |
1014 | if (y1 < y0) { // Decreasing |
1015 | if (In >= y1 && In <= y0) return i; |
1016 | } |
1017 | } |
1018 | } |
1019 | else { |
1020 | // Table is overall descending |
1021 | for (i=0; i < (int) p -> Domain[0]; i++) { |
1022 | |
1023 | y0 = LutTable[i]; |
1024 | y1 = LutTable[i+1]; |
1025 | |
1026 | if (y0 <= y1) { // Increasing |
1027 | if (In >= y0 && In <= y1) return i; |
1028 | } |
1029 | else |
1030 | if (y1 < y0) { // Decreasing |
1031 | if (In >= y1 && In <= y0) return i; |
1032 | } |
1033 | } |
1034 | } |
1035 | |
1036 | return -1; |
1037 | } |
1038 | |
1039 | // Reverse a gamma table |
1040 | cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve) |
1041 | { |
1042 | cmsToneCurve *out; |
1043 | cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2; |
1044 | int i, j; |
1045 | int Ascending; |
1046 | |
1047 | _cmsAssert(InCurve != NULL); |
1048 | |
1049 | // Try to reverse it analytically whatever possible |
1050 | |
1051 | if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && |
1052 | /* InCurve -> Segments[0].Type <= 5 */ |
1053 | GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) { |
1054 | |
1055 | return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID, |
1056 | -(InCurve -> Segments[0].Type), |
1057 | InCurve -> Segments[0].Params); |
1058 | } |
1059 | |
1060 | // Nope, reverse the table. |
1061 | out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL); |
1062 | if (out == NULL) |
1063 | return NULL; |
1064 | |
1065 | // We want to know if this is an ascending or descending table |
1066 | Ascending = !cmsIsToneCurveDescending(InCurve); |
1067 | |
1068 | // Iterate across Y axis |
1069 | for (i=0; i < (int) nResultSamples; i++) { |
1070 | |
1071 | y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1); |
1072 | |
1073 | // Find interval in which y is within. |
1074 | j = GetInterval(y, InCurve->Table16, InCurve->InterpParams); |
1075 | if (j >= 0) { |
1076 | |
1077 | |
1078 | // Get limits of interval |
1079 | x1 = InCurve ->Table16[j]; |
1080 | x2 = InCurve ->Table16[j+1]; |
1081 | |
1082 | y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1); |
1083 | y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1); |
1084 | |
1085 | // If collapsed, then use any |
1086 | if (x1 == x2) { |
1087 | |
1088 | out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1); |
1089 | continue; |
1090 | |
1091 | } else { |
1092 | |
1093 | // Interpolate |
1094 | a = (y2 - y1) / (x2 - x1); |
1095 | b = y2 - a * x2; |
1096 | } |
1097 | } |
1098 | |
1099 | out ->Table16[i] = _cmsQuickSaturateWord(a* y + b); |
1100 | } |
1101 | |
1102 | |
1103 | return out; |
1104 | } |
1105 | |
1106 | // Reverse a gamma table |
1107 | cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma) |
1108 | { |
1109 | _cmsAssert(InGamma != NULL); |
1110 | |
1111 | return cmsReverseToneCurveEx(4096, InGamma); |
1112 | } |
1113 | |
1114 | // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite |
1115 | // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press. |
1116 | // |
1117 | // Smoothing and interpolation with second differences. |
1118 | // |
1119 | // Input: weights (w), data (y): vector from 1 to m. |
1120 | // Input: smoothing parameter (lambda), length (m). |
1121 | // Output: smoothed vector (z): vector from 1 to m. |
1122 | |
1123 | static |
1124 | cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], |
1125 | cmsFloat32Number z[], cmsFloat32Number lambda, int m) |
1126 | { |
1127 | int i, i1, i2; |
1128 | cmsFloat32Number *c, *d, *e; |
1129 | cmsBool st; |
1130 | |
1131 | |
1132 | c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1133 | d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1134 | e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1135 | |
1136 | if (c != NULL && d != NULL && e != NULL) { |
1137 | |
1138 | |
1139 | d[1] = w[1] + lambda; |
1140 | c[1] = -2 * lambda / d[1]; |
1141 | e[1] = lambda /d[1]; |
1142 | z[1] = w[1] * y[1]; |
1143 | d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1]; |
1144 | c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2]; |
1145 | e[2] = lambda / d[2]; |
1146 | z[2] = w[2] * y[2] - c[1] * z[1]; |
1147 | |
1148 | for (i = 3; i < m - 1; i++) { |
1149 | i1 = i - 1; i2 = i - 2; |
1150 | d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1151 | c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i]; |
1152 | e[i] = lambda / d[i]; |
1153 | z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2]; |
1154 | } |
1155 | |
1156 | i1 = m - 2; i2 = m - 3; |
1157 | |
1158 | d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1159 | c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1]; |
1160 | z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2]; |
1161 | i1 = m - 1; i2 = m - 2; |
1162 | |
1163 | d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1164 | z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m]; |
1165 | z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m]; |
1166 | |
1167 | for (i = m - 2; 1<= i; i--) |
1168 | z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2]; |
1169 | |
1170 | st = TRUE; |
1171 | } |
1172 | else st = FALSE; |
1173 | |
1174 | if (c != NULL) _cmsFree(ContextID, c); |
1175 | if (d != NULL) _cmsFree(ContextID, d); |
1176 | if (e != NULL) _cmsFree(ContextID, e); |
1177 | |
1178 | return st; |
1179 | } |
1180 | |
1181 | // Smooths a curve sampled at regular intervals. |
1182 | cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda) |
1183 | { |
1184 | cmsBool SuccessStatus = TRUE; |
1185 | cmsFloat32Number *w, *y, *z; |
1186 | cmsUInt32Number i, nItems, Zeros, Poles; |
1187 | |
1188 | if (Tab != NULL && Tab->InterpParams != NULL) |
1189 | { |
1190 | cmsContext ContextID = Tab->InterpParams->ContextID; |
1191 | |
1192 | if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing |
1193 | { |
1194 | nItems = Tab->nEntries; |
1195 | if (nItems < MAX_NODES_IN_CURVE) |
1196 | { |
1197 | // Allocate one more item than needed |
1198 | w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1199 | y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1200 | z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1201 | |
1202 | if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure |
1203 | { |
1204 | memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1205 | memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1206 | memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1207 | |
1208 | for (i = 0; i < nItems; i++) |
1209 | { |
1210 | y[i + 1] = (cmsFloat32Number)Tab->Table16[i]; |
1211 | w[i + 1] = 1.0; |
1212 | } |
1213 | |
1214 | if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems)) |
1215 | { |
1216 | // Do some reality - checking... |
1217 | |
1218 | Zeros = Poles = 0; |
1219 | for (i = nItems; i > 1; --i) |
1220 | { |
1221 | if (z[i] == 0.) Zeros++; |
1222 | if (z[i] >= 65535.) Poles++; |
1223 | if (z[i] < z[i - 1]) |
1224 | { |
1225 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic." ); |
1226 | SuccessStatus = FALSE; |
1227 | break; |
1228 | } |
1229 | } |
1230 | |
1231 | if (SuccessStatus && Zeros > (nItems / 3)) |
1232 | { |
1233 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros." ); |
1234 | SuccessStatus = FALSE; |
1235 | } |
1236 | |
1237 | if (SuccessStatus && Poles > (nItems / 3)) |
1238 | { |
1239 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles." ); |
1240 | SuccessStatus = FALSE; |
1241 | } |
1242 | |
1243 | if (SuccessStatus) // Seems ok |
1244 | { |
1245 | for (i = 0; i < nItems; i++) |
1246 | { |
1247 | // Clamp to cmsUInt16Number |
1248 | Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]); |
1249 | } |
1250 | } |
1251 | } |
1252 | else // Could not smooth |
1253 | { |
1254 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed." ); |
1255 | SuccessStatus = FALSE; |
1256 | } |
1257 | } |
1258 | else // One or more buffers could not be allocated |
1259 | { |
1260 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory." ); |
1261 | SuccessStatus = FALSE; |
1262 | } |
1263 | |
1264 | if (z != NULL) |
1265 | _cmsFree(ContextID, z); |
1266 | |
1267 | if (y != NULL) |
1268 | _cmsFree(ContextID, y); |
1269 | |
1270 | if (w != NULL) |
1271 | _cmsFree(ContextID, w); |
1272 | } |
1273 | else // too many items in the table |
1274 | { |
1275 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points." ); |
1276 | SuccessStatus = FALSE; |
1277 | } |
1278 | } |
1279 | } |
1280 | else // Tab parameter or Tab->InterpParams is NULL |
1281 | { |
1282 | // Can't signal an error here since the ContextID is not known at this point |
1283 | SuccessStatus = FALSE; |
1284 | } |
1285 | |
1286 | return SuccessStatus; |
1287 | } |
1288 | |
1289 | // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting |
1290 | // in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases. |
1291 | cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve) |
1292 | { |
1293 | int i; |
1294 | int diff; |
1295 | |
1296 | _cmsAssert(Curve != NULL); |
1297 | |
1298 | for (i=0; i < (int) Curve ->nEntries; i++) { |
1299 | |
1300 | diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries)); |
1301 | if (diff > 0x0f) |
1302 | return FALSE; |
1303 | } |
1304 | |
1305 | return TRUE; |
1306 | } |
1307 | |
1308 | // Same, but for monotonicity |
1309 | cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t) |
1310 | { |
1311 | cmsUInt32Number n; |
1312 | int i, last; |
1313 | cmsBool lDescending; |
1314 | |
1315 | _cmsAssert(t != NULL); |
1316 | |
1317 | // Degenerated curves are monotonic? Ok, let's pass them |
1318 | n = t ->nEntries; |
1319 | if (n < 2) return TRUE; |
1320 | |
1321 | // Curve direction |
1322 | lDescending = cmsIsToneCurveDescending(t); |
1323 | |
1324 | if (lDescending) { |
1325 | |
1326 | last = t ->Table16[0]; |
1327 | |
1328 | for (i = 1; i < (int) n; i++) { |
1329 | |
1330 | if (t ->Table16[i] - last > 2) // We allow some ripple |
1331 | return FALSE; |
1332 | else |
1333 | last = t ->Table16[i]; |
1334 | |
1335 | } |
1336 | } |
1337 | else { |
1338 | |
1339 | last = t ->Table16[n-1]; |
1340 | |
1341 | for (i = (int) n - 2; i >= 0; --i) { |
1342 | |
1343 | if (t ->Table16[i] - last > 2) |
1344 | return FALSE; |
1345 | else |
1346 | last = t ->Table16[i]; |
1347 | |
1348 | } |
1349 | } |
1350 | |
1351 | return TRUE; |
1352 | } |
1353 | |
1354 | // Same, but for descending tables |
1355 | cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t) |
1356 | { |
1357 | _cmsAssert(t != NULL); |
1358 | |
1359 | return t ->Table16[0] > t ->Table16[t ->nEntries-1]; |
1360 | } |
1361 | |
1362 | |
1363 | // Another info fn: is out gamma table multisegment? |
1364 | cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t) |
1365 | { |
1366 | _cmsAssert(t != NULL); |
1367 | |
1368 | return t -> nSegments > 1; |
1369 | } |
1370 | |
1371 | cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t) |
1372 | { |
1373 | _cmsAssert(t != NULL); |
1374 | |
1375 | if (t -> nSegments != 1) return 0; |
1376 | return t ->Segments[0].Type; |
1377 | } |
1378 | |
1379 | // We need accuracy this time |
1380 | cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v) |
1381 | { |
1382 | _cmsAssert(Curve != NULL); |
1383 | |
1384 | // Check for 16 bits table. If so, this is a limited-precision tone curve |
1385 | if (Curve ->nSegments == 0) { |
1386 | |
1387 | cmsUInt16Number In, Out; |
1388 | |
1389 | In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0); |
1390 | Out = cmsEvalToneCurve16(Curve, In); |
1391 | |
1392 | return (cmsFloat32Number) (Out / 65535.0); |
1393 | } |
1394 | |
1395 | return (cmsFloat32Number) EvalSegmentedFn(Curve, v); |
1396 | } |
1397 | |
1398 | // We need xput over here |
1399 | cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v) |
1400 | { |
1401 | cmsUInt16Number out; |
1402 | |
1403 | _cmsAssert(Curve != NULL); |
1404 | |
1405 | Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams); |
1406 | return out; |
1407 | } |
1408 | |
1409 | |
1410 | // Least squares fitting. |
1411 | // A mathematical procedure for finding the best-fitting curve to a given set of points by |
1412 | // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve. |
1413 | // The sum of the squares of the offsets is used instead of the offset absolute values because |
1414 | // this allows the residuals to be treated as a continuous differentiable quantity. |
1415 | // |
1416 | // y = f(x) = x ^ g |
1417 | // |
1418 | // R = (yi - (xi^g)) |
1419 | // R2 = (yi - (xi^g))2 |
1420 | // SUM R2 = SUM (yi - (xi^g))2 |
1421 | // |
1422 | // dR2/dg = -2 SUM x^g log(x)(y - x^g) |
1423 | // solving for dR2/dg = 0 |
1424 | // |
1425 | // g = 1/n * SUM(log(y) / log(x)) |
1426 | |
1427 | cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision) |
1428 | { |
1429 | cmsFloat64Number gamma, sum, sum2; |
1430 | cmsFloat64Number n, x, y, Std; |
1431 | cmsUInt32Number i; |
1432 | |
1433 | _cmsAssert(t != NULL); |
1434 | |
1435 | sum = sum2 = n = 0; |
1436 | |
1437 | // Excluding endpoints |
1438 | for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) { |
1439 | |
1440 | x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1); |
1441 | y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x); |
1442 | |
1443 | // Avoid 7% on lower part to prevent |
1444 | // artifacts due to linear ramps |
1445 | |
1446 | if (y > 0. && y < 1. && x > 0.07) { |
1447 | |
1448 | gamma = log(y) / log(x); |
1449 | sum += gamma; |
1450 | sum2 += gamma * gamma; |
1451 | n++; |
1452 | } |
1453 | } |
1454 | |
1455 | // Take a look on SD to see if gamma isn't exponential at all |
1456 | Std = sqrt((n * sum2 - sum * sum) / (n*(n-1))); |
1457 | |
1458 | if (Std > Precision) |
1459 | return -1.0; |
1460 | |
1461 | return (sum / n); // The mean |
1462 | } |
1463 | |