| 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | // This file is available under and governed by the GNU General Public |
| 26 | // License version 2 only, as published by the Free Software Foundation. |
| 27 | // However, the following notice accompanied the original version of this |
| 28 | // file: |
| 29 | // |
| 30 | //--------------------------------------------------------------------------------- |
| 31 | // |
| 32 | // Little Color Management System |
| 33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 34 | // |
| 35 | // Permission is hereby granted, free of charge, to any person obtaining |
| 36 | // a copy of this software and associated documentation files (the "Software"), |
| 37 | // to deal in the Software without restriction, including without limitation |
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 40 | // is furnished to do so, subject to the following conditions: |
| 41 | // |
| 42 | // The above copyright notice and this permission notice shall be included in |
| 43 | // all copies or substantial portions of the Software. |
| 44 | // |
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 52 | // |
| 53 | //--------------------------------------------------------------------------------- |
| 54 | // |
| 55 | |
| 56 | #include "lcms2_internal.h" |
| 57 | |
| 58 | |
| 59 | // Auxiliary: append a Lab identity after the given sequence of profiles |
| 60 | // and return the transform. Lab profile is closed, rest of profiles are kept open. |
| 61 | cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID, |
| 62 | cmsUInt32Number nProfiles, |
| 63 | cmsUInt32Number InputFormat, |
| 64 | cmsUInt32Number OutputFormat, |
| 65 | const cmsUInt32Number Intents[], |
| 66 | const cmsHPROFILE hProfiles[], |
| 67 | const cmsBool BPC[], |
| 68 | const cmsFloat64Number AdaptationStates[], |
| 69 | cmsUInt32Number dwFlags) |
| 70 | { |
| 71 | cmsHTRANSFORM xform; |
| 72 | cmsHPROFILE hLab; |
| 73 | cmsHPROFILE ProfileList[256]; |
| 74 | cmsBool BPCList[256]; |
| 75 | cmsFloat64Number AdaptationList[256]; |
| 76 | cmsUInt32Number IntentList[256]; |
| 77 | cmsUInt32Number i; |
| 78 | |
| 79 | // This is a rather big number and there is no need of dynamic memory |
| 80 | // since we are adding a profile, 254 + 1 = 255 and this is the limit |
| 81 | if (nProfiles > 254) return NULL; |
| 82 | |
| 83 | // The output space |
| 84 | hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); |
| 85 | if (hLab == NULL) return NULL; |
| 86 | |
| 87 | // Create a copy of parameters |
| 88 | for (i=0; i < nProfiles; i++) { |
| 89 | |
| 90 | ProfileList[i] = hProfiles[i]; |
| 91 | BPCList[i] = BPC[i]; |
| 92 | AdaptationList[i] = AdaptationStates[i]; |
| 93 | IntentList[i] = Intents[i]; |
| 94 | } |
| 95 | |
| 96 | // Place Lab identity at chain's end. |
| 97 | ProfileList[nProfiles] = hLab; |
| 98 | BPCList[nProfiles] = 0; |
| 99 | AdaptationList[nProfiles] = 1.0; |
| 100 | IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC; |
| 101 | |
| 102 | // Create the transform |
| 103 | xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList, |
| 104 | BPCList, |
| 105 | IntentList, |
| 106 | AdaptationList, |
| 107 | NULL, 0, |
| 108 | InputFormat, |
| 109 | OutputFormat, |
| 110 | dwFlags); |
| 111 | |
| 112 | cmsCloseProfile(hLab); |
| 113 | |
| 114 | return xform; |
| 115 | } |
| 116 | |
| 117 | |
| 118 | // Compute K -> L* relationship. Flags may include black point compensation. In this case, |
| 119 | // the relationship is assumed from the profile with BPC to a black point zero. |
| 120 | static |
| 121 | cmsToneCurve* ComputeKToLstar(cmsContext ContextID, |
| 122 | cmsUInt32Number nPoints, |
| 123 | cmsUInt32Number nProfiles, |
| 124 | const cmsUInt32Number Intents[], |
| 125 | const cmsHPROFILE hProfiles[], |
| 126 | const cmsBool BPC[], |
| 127 | const cmsFloat64Number AdaptationStates[], |
| 128 | cmsUInt32Number dwFlags) |
| 129 | { |
| 130 | cmsToneCurve* out = NULL; |
| 131 | cmsUInt32Number i; |
| 132 | cmsHTRANSFORM xform; |
| 133 | cmsCIELab Lab; |
| 134 | cmsFloat32Number cmyk[4]; |
| 135 | cmsFloat32Number* SampledPoints; |
| 136 | |
| 137 | xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags); |
| 138 | if (xform == NULL) return NULL; |
| 139 | |
| 140 | SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number)); |
| 141 | if (SampledPoints == NULL) goto Error; |
| 142 | |
| 143 | for (i=0; i < nPoints; i++) { |
| 144 | |
| 145 | cmyk[0] = 0; |
| 146 | cmyk[1] = 0; |
| 147 | cmyk[2] = 0; |
| 148 | cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1)); |
| 149 | |
| 150 | cmsDoTransform(xform, cmyk, &Lab, 1); |
| 151 | SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation |
| 152 | } |
| 153 | |
| 154 | out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints); |
| 155 | |
| 156 | Error: |
| 157 | |
| 158 | cmsDeleteTransform(xform); |
| 159 | if (SampledPoints) _cmsFree(ContextID, SampledPoints); |
| 160 | |
| 161 | return out; |
| 162 | } |
| 163 | |
| 164 | |
| 165 | // Compute Black tone curve on a CMYK -> CMYK transform. This is done by |
| 166 | // using the proof direction on both profiles to find K->L* relationship |
| 167 | // then joining both curves. dwFlags may include black point compensation. |
| 168 | cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID, |
| 169 | cmsUInt32Number nPoints, |
| 170 | cmsUInt32Number nProfiles, |
| 171 | const cmsUInt32Number Intents[], |
| 172 | const cmsHPROFILE hProfiles[], |
| 173 | const cmsBool BPC[], |
| 174 | const cmsFloat64Number AdaptationStates[], |
| 175 | cmsUInt32Number dwFlags) |
| 176 | { |
| 177 | cmsToneCurve *in, *out, *KTone; |
| 178 | |
| 179 | // Make sure CMYK -> CMYK |
| 180 | if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData || |
| 181 | cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL; |
| 182 | |
| 183 | |
| 184 | // Make sure last is an output profile |
| 185 | if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL; |
| 186 | |
| 187 | // Create individual curves. BPC works also as each K to L* is |
| 188 | // computed as a BPC to zero black point in case of L* |
| 189 | in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags); |
| 190 | if (in == NULL) return NULL; |
| 191 | |
| 192 | out = ComputeKToLstar(ContextID, nPoints, 1, |
| 193 | Intents + (nProfiles - 1), |
| 194 | &hProfiles [nProfiles - 1], |
| 195 | BPC + (nProfiles - 1), |
| 196 | AdaptationStates + (nProfiles - 1), |
| 197 | dwFlags); |
| 198 | if (out == NULL) { |
| 199 | cmsFreeToneCurve(in); |
| 200 | return NULL; |
| 201 | } |
| 202 | |
| 203 | // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but |
| 204 | // since this is used on black-preserving LUTs, we are not losing accuracy in any case |
| 205 | KTone = cmsJoinToneCurve(ContextID, in, out, nPoints); |
| 206 | |
| 207 | // Get rid of components |
| 208 | cmsFreeToneCurve(in); cmsFreeToneCurve(out); |
| 209 | |
| 210 | // Something went wrong... |
| 211 | if (KTone == NULL) return NULL; |
| 212 | |
| 213 | // Make sure it is monotonic |
| 214 | if (!cmsIsToneCurveMonotonic(KTone)) { |
| 215 | cmsFreeToneCurve(KTone); |
| 216 | return NULL; |
| 217 | } |
| 218 | |
| 219 | return KTone; |
| 220 | } |
| 221 | |
| 222 | |
| 223 | // Gamut LUT Creation ----------------------------------------------------------------------------------------- |
| 224 | |
| 225 | // Used by gamut & softproofing |
| 226 | |
| 227 | typedef struct { |
| 228 | |
| 229 | cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL |
| 230 | cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back |
| 231 | cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut |
| 232 | |
| 233 | } GAMUTCHAIN; |
| 234 | |
| 235 | // This sampler does compute gamut boundaries by comparing original |
| 236 | // values with a transform going back and forth. Values above ERR_THERESHOLD |
| 237 | // of maximum are considered out of gamut. |
| 238 | |
| 239 | #define ERR_THERESHOLD 5 |
| 240 | |
| 241 | |
| 242 | static |
| 243 | int GamutSampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
| 244 | { |
| 245 | GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo; |
| 246 | cmsCIELab LabIn1, LabOut1; |
| 247 | cmsCIELab LabIn2, LabOut2; |
| 248 | cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS]; |
| 249 | cmsFloat64Number dE1, dE2, ErrorRatio; |
| 250 | |
| 251 | // Assume in-gamut by default. |
| 252 | ErrorRatio = 1.0; |
| 253 | |
| 254 | // Convert input to Lab |
| 255 | cmsDoTransform(t -> hInput, In, &LabIn1, 1); |
| 256 | |
| 257 | // converts from PCS to colorant. This always |
| 258 | // does return in-gamut values, |
| 259 | cmsDoTransform(t -> hForward, &LabIn1, Proof, 1); |
| 260 | |
| 261 | // Now, do the inverse, from colorant to PCS. |
| 262 | cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1); |
| 263 | |
| 264 | memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab)); |
| 265 | |
| 266 | // Try again, but this time taking Check as input |
| 267 | cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1); |
| 268 | cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1); |
| 269 | |
| 270 | // Take difference of direct value |
| 271 | dE1 = cmsDeltaE(&LabIn1, &LabOut1); |
| 272 | |
| 273 | // Take difference of converted value |
| 274 | dE2 = cmsDeltaE(&LabIn2, &LabOut2); |
| 275 | |
| 276 | |
| 277 | // if dE1 is small and dE2 is small, value is likely to be in gamut |
| 278 | if (dE1 < t->Thereshold && dE2 < t->Thereshold) |
| 279 | Out[0] = 0; |
| 280 | else { |
| 281 | |
| 282 | // if dE1 is small and dE2 is big, undefined. Assume in gamut |
| 283 | if (dE1 < t->Thereshold && dE2 > t->Thereshold) |
| 284 | Out[0] = 0; |
| 285 | else |
| 286 | // dE1 is big and dE2 is small, clearly out of gamut |
| 287 | if (dE1 > t->Thereshold && dE2 < t->Thereshold) |
| 288 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5); |
| 289 | else { |
| 290 | |
| 291 | // dE1 is big and dE2 is also big, could be due to perceptual mapping |
| 292 | // so take error ratio |
| 293 | if (dE2 == 0.0) |
| 294 | ErrorRatio = dE1; |
| 295 | else |
| 296 | ErrorRatio = dE1 / dE2; |
| 297 | |
| 298 | if (ErrorRatio > t->Thereshold) |
| 299 | Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5); |
| 300 | else |
| 301 | Out[0] = 0; |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | |
| 306 | return TRUE; |
| 307 | } |
| 308 | |
| 309 | // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs |
| 310 | // the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE |
| 311 | // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well. |
| 312 | // |
| 313 | // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors, |
| 314 | // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should. |
| 315 | |
| 316 | cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID, |
| 317 | cmsHPROFILE hProfiles[], |
| 318 | cmsBool BPC[], |
| 319 | cmsUInt32Number Intents[], |
| 320 | cmsFloat64Number AdaptationStates[], |
| 321 | cmsUInt32Number nGamutPCSposition, |
| 322 | cmsHPROFILE hGamut) |
| 323 | { |
| 324 | cmsHPROFILE hLab; |
| 325 | cmsPipeline* Gamut; |
| 326 | cmsStage* CLUT; |
| 327 | cmsUInt32Number dwFormat; |
| 328 | GAMUTCHAIN Chain; |
| 329 | cmsUInt32Number nChannels, nGridpoints; |
| 330 | cmsColorSpaceSignature ColorSpace; |
| 331 | cmsUInt32Number i; |
| 332 | cmsHPROFILE ProfileList[256]; |
| 333 | cmsBool BPCList[256]; |
| 334 | cmsFloat64Number AdaptationList[256]; |
| 335 | cmsUInt32Number IntentList[256]; |
| 336 | |
| 337 | memset(&Chain, 0, sizeof(GAMUTCHAIN)); |
| 338 | |
| 339 | |
| 340 | if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) { |
| 341 | cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found." , nGamutPCSposition); |
| 342 | return NULL; |
| 343 | } |
| 344 | |
| 345 | hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); |
| 346 | if (hLab == NULL) return NULL; |
| 347 | |
| 348 | |
| 349 | // The figure of merit. On matrix-shaper profiles, should be almost zero as |
| 350 | // the conversion is pretty exact. On LUT based profiles, different resolutions |
| 351 | // of input and output CLUT may result in differences. |
| 352 | |
| 353 | if (cmsIsMatrixShaper(hGamut)) { |
| 354 | |
| 355 | Chain.Thereshold = 1.0; |
| 356 | } |
| 357 | else { |
| 358 | Chain.Thereshold = ERR_THERESHOLD; |
| 359 | } |
| 360 | |
| 361 | |
| 362 | // Create a copy of parameters |
| 363 | for (i=0; i < nGamutPCSposition; i++) { |
| 364 | ProfileList[i] = hProfiles[i]; |
| 365 | BPCList[i] = BPC[i]; |
| 366 | AdaptationList[i] = AdaptationStates[i]; |
| 367 | IntentList[i] = Intents[i]; |
| 368 | } |
| 369 | |
| 370 | // Fill Lab identity |
| 371 | ProfileList[nGamutPCSposition] = hLab; |
| 372 | BPCList[nGamutPCSposition] = 0; |
| 373 | AdaptationList[nGamutPCSposition] = 1.0; |
| 374 | IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC; |
| 375 | |
| 376 | |
| 377 | ColorSpace = cmsGetColorSpace(hGamut); |
| 378 | |
| 379 | nChannels = cmsChannelsOf(ColorSpace); |
| 380 | nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC); |
| 381 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2)); |
| 382 | |
| 383 | // 16 bits to Lab double |
| 384 | Chain.hInput = cmsCreateExtendedTransform(ContextID, |
| 385 | nGamutPCSposition + 1, |
| 386 | ProfileList, |
| 387 | BPCList, |
| 388 | IntentList, |
| 389 | AdaptationList, |
| 390 | NULL, 0, |
| 391 | dwFormat, TYPE_Lab_DBL, |
| 392 | cmsFLAGS_NOCACHE); |
| 393 | |
| 394 | |
| 395 | // Does create the forward step. Lab double to device |
| 396 | dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2)); |
| 397 | Chain.hForward = cmsCreateTransformTHR(ContextID, |
| 398 | hLab, TYPE_Lab_DBL, |
| 399 | hGamut, dwFormat, |
| 400 | INTENT_RELATIVE_COLORIMETRIC, |
| 401 | cmsFLAGS_NOCACHE); |
| 402 | |
| 403 | // Does create the backwards step |
| 404 | Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat, |
| 405 | hLab, TYPE_Lab_DBL, |
| 406 | INTENT_RELATIVE_COLORIMETRIC, |
| 407 | cmsFLAGS_NOCACHE); |
| 408 | |
| 409 | |
| 410 | // All ok? |
| 411 | if (Chain.hInput && Chain.hForward && Chain.hReverse) { |
| 412 | |
| 413 | // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing |
| 414 | // dE when doing a transform back and forth on the colorimetric intent. |
| 415 | |
| 416 | Gamut = cmsPipelineAlloc(ContextID, 3, 1); |
| 417 | if (Gamut != NULL) { |
| 418 | |
| 419 | CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL); |
| 420 | if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) { |
| 421 | cmsPipelineFree(Gamut); |
| 422 | Gamut = NULL; |
| 423 | } |
| 424 | else { |
| 425 | cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0); |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | else |
| 430 | Gamut = NULL; // Didn't work... |
| 431 | |
| 432 | // Free all needed stuff. |
| 433 | if (Chain.hInput) cmsDeleteTransform(Chain.hInput); |
| 434 | if (Chain.hForward) cmsDeleteTransform(Chain.hForward); |
| 435 | if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse); |
| 436 | if (hLab) cmsCloseProfile(hLab); |
| 437 | |
| 438 | // And return computed hull |
| 439 | return Gamut; |
| 440 | } |
| 441 | |
| 442 | // Total Area Coverage estimation ---------------------------------------------------------------- |
| 443 | |
| 444 | typedef struct { |
| 445 | cmsUInt32Number nOutputChans; |
| 446 | cmsHTRANSFORM hRoundTrip; |
| 447 | cmsFloat32Number MaxTAC; |
| 448 | cmsFloat32Number MaxInput[cmsMAXCHANNELS]; |
| 449 | |
| 450 | } cmsTACestimator; |
| 451 | |
| 452 | |
| 453 | // This callback just accounts the maximum ink dropped in the given node. It does not populate any |
| 454 | // memory, as the destination table is NULL. Its only purpose it to know the global maximum. |
| 455 | static |
| 456 | int EstimateTAC(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) |
| 457 | { |
| 458 | cmsTACestimator* bp = (cmsTACestimator*) Cargo; |
| 459 | cmsFloat32Number RoundTrip[cmsMAXCHANNELS]; |
| 460 | cmsUInt32Number i; |
| 461 | cmsFloat32Number Sum; |
| 462 | |
| 463 | |
| 464 | // Evaluate the xform |
| 465 | cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1); |
| 466 | |
| 467 | // All all amounts of ink |
| 468 | for (Sum=0, i=0; i < bp ->nOutputChans; i++) |
| 469 | Sum += RoundTrip[i]; |
| 470 | |
| 471 | // If above maximum, keep track of input values |
| 472 | if (Sum > bp ->MaxTAC) { |
| 473 | |
| 474 | bp ->MaxTAC = Sum; |
| 475 | |
| 476 | for (i=0; i < bp ->nOutputChans; i++) { |
| 477 | bp ->MaxInput[i] = In[i]; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | return TRUE; |
| 482 | |
| 483 | cmsUNUSED_PARAMETER(Out); |
| 484 | } |
| 485 | |
| 486 | |
| 487 | // Detect Total area coverage of the profile |
| 488 | cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile) |
| 489 | { |
| 490 | cmsTACestimator bp; |
| 491 | cmsUInt32Number dwFormatter; |
| 492 | cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS]; |
| 493 | cmsHPROFILE hLab; |
| 494 | cmsContext ContextID = cmsGetProfileContextID(hProfile); |
| 495 | |
| 496 | // TAC only works on output profiles |
| 497 | if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) { |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | // Create a fake formatter for result |
| 502 | dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE); |
| 503 | |
| 504 | bp.nOutputChans = T_CHANNELS(dwFormatter); |
| 505 | bp.MaxTAC = 0; // Initial TAC is 0 |
| 506 | |
| 507 | // for safety |
| 508 | if (bp.nOutputChans >= cmsMAXCHANNELS) return 0; |
| 509 | |
| 510 | hLab = cmsCreateLab4ProfileTHR(ContextID, NULL); |
| 511 | if (hLab == NULL) return 0; |
| 512 | // Setup a roundtrip on perceptual intent in output profile for TAC estimation |
| 513 | bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16, |
| 514 | hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE); |
| 515 | |
| 516 | cmsCloseProfile(hLab); |
| 517 | if (bp.hRoundTrip == NULL) return 0; |
| 518 | |
| 519 | // For L* we only need black and white. For C* we need many points |
| 520 | GridPoints[0] = 6; |
| 521 | GridPoints[1] = 74; |
| 522 | GridPoints[2] = 74; |
| 523 | |
| 524 | |
| 525 | if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) { |
| 526 | bp.MaxTAC = 0; |
| 527 | } |
| 528 | |
| 529 | cmsDeleteTransform(bp.hRoundTrip); |
| 530 | |
| 531 | // Results in % |
| 532 | return bp.MaxTAC; |
| 533 | } |
| 534 | |
| 535 | |
| 536 | // Carefully, clamp on CIELab space. |
| 537 | |
| 538 | cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab, |
| 539 | double amax, double amin, |
| 540 | double bmax, double bmin) |
| 541 | { |
| 542 | |
| 543 | // Whole Luma surface to zero |
| 544 | |
| 545 | if (Lab -> L < 0) { |
| 546 | |
| 547 | Lab-> L = Lab->a = Lab-> b = 0.0; |
| 548 | return FALSE; |
| 549 | } |
| 550 | |
| 551 | // Clamp white, DISCARD HIGHLIGHTS. This is done |
| 552 | // in such way because icc spec doesn't allow the |
| 553 | // use of L>100 as a highlight means. |
| 554 | |
| 555 | if (Lab->L > 100) |
| 556 | Lab -> L = 100; |
| 557 | |
| 558 | // Check out gamut prism, on a, b faces |
| 559 | |
| 560 | if (Lab -> a < amin || Lab->a > amax|| |
| 561 | Lab -> b < bmin || Lab->b > bmax) { |
| 562 | |
| 563 | cmsCIELCh LCh; |
| 564 | double h, slope; |
| 565 | |
| 566 | // Falls outside a, b limits. Transports to LCh space, |
| 567 | // and then do the clipping |
| 568 | |
| 569 | |
| 570 | if (Lab -> a == 0.0) { // Is hue exactly 90? |
| 571 | |
| 572 | // atan will not work, so clamp here |
| 573 | Lab -> b = Lab->b < 0 ? bmin : bmax; |
| 574 | return TRUE; |
| 575 | } |
| 576 | |
| 577 | cmsLab2LCh(&LCh, Lab); |
| 578 | |
| 579 | slope = Lab -> b / Lab -> a; |
| 580 | h = LCh.h; |
| 581 | |
| 582 | // There are 4 zones |
| 583 | |
| 584 | if ((h >= 0. && h < 45.) || |
| 585 | (h >= 315 && h <= 360.)) { |
| 586 | |
| 587 | // clip by amax |
| 588 | Lab -> a = amax; |
| 589 | Lab -> b = amax * slope; |
| 590 | } |
| 591 | else |
| 592 | if (h >= 45. && h < 135.) |
| 593 | { |
| 594 | // clip by bmax |
| 595 | Lab -> b = bmax; |
| 596 | Lab -> a = bmax / slope; |
| 597 | } |
| 598 | else |
| 599 | if (h >= 135. && h < 225.) { |
| 600 | // clip by amin |
| 601 | Lab -> a = amin; |
| 602 | Lab -> b = amin * slope; |
| 603 | |
| 604 | } |
| 605 | else |
| 606 | if (h >= 225. && h < 315.) { |
| 607 | // clip by bmin |
| 608 | Lab -> b = bmin; |
| 609 | Lab -> a = bmin / slope; |
| 610 | } |
| 611 | else { |
| 612 | cmsSignalError(0, cmsERROR_RANGE, "Invalid angle" ); |
| 613 | return FALSE; |
| 614 | } |
| 615 | |
| 616 | } |
| 617 | |
| 618 | return TRUE; |
| 619 | } |
| 620 | |