1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | |
56 | #include "lcms2_internal.h" |
57 | |
58 | // This module incorporates several interpolation routines, for 1 to 8 channels on input and |
59 | // up to 65535 channels on output. The user may change those by using the interpolation plug-in |
60 | |
61 | // Some people may want to compile as C++ with all warnings on, in this case make compiler silent |
62 | #ifdef _MSC_VER |
63 | # if (_MSC_VER >= 1400) |
64 | # pragma warning( disable : 4365 ) |
65 | # endif |
66 | #endif |
67 | |
68 | // Interpolation routines by default |
69 | static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); |
70 | |
71 | // This is the default factory |
72 | _cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL }; |
73 | |
74 | // The interpolation plug-in memory chunk allocator/dup |
75 | void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) |
76 | { |
77 | void* from; |
78 | |
79 | _cmsAssert(ctx != NULL); |
80 | |
81 | if (src != NULL) { |
82 | from = src ->chunks[InterpPlugin]; |
83 | } |
84 | else { |
85 | static _cmsInterpPluginChunkType InterpPluginChunk = { NULL }; |
86 | |
87 | from = &InterpPluginChunk; |
88 | } |
89 | |
90 | _cmsAssert(from != NULL); |
91 | ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); |
92 | } |
93 | |
94 | |
95 | // Main plug-in entry |
96 | cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) |
97 | { |
98 | cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; |
99 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
100 | |
101 | if (Data == NULL) { |
102 | |
103 | ptr ->Interpolators = NULL; |
104 | return TRUE; |
105 | } |
106 | |
107 | // Set replacement functions |
108 | ptr ->Interpolators = Plugin ->InterpolatorsFactory; |
109 | return TRUE; |
110 | } |
111 | |
112 | |
113 | // Set the interpolation method |
114 | cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) |
115 | { |
116 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
117 | |
118 | p ->Interpolation.Lerp16 = NULL; |
119 | |
120 | // Invoke factory, possibly in the Plug-in |
121 | if (ptr ->Interpolators != NULL) |
122 | p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags); |
123 | |
124 | // If unsupported by the plug-in, go for the LittleCMS default. |
125 | // If happens only if an extern plug-in is being used |
126 | if (p ->Interpolation.Lerp16 == NULL) |
127 | p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); |
128 | |
129 | // Check for valid interpolator (we just check one member of the union) |
130 | if (p ->Interpolation.Lerp16 == NULL) { |
131 | return FALSE; |
132 | } |
133 | |
134 | return TRUE; |
135 | } |
136 | |
137 | |
138 | // This function precalculates as many parameters as possible to speed up the interpolation. |
139 | cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, |
140 | const cmsUInt32Number nSamples[], |
141 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, |
142 | const void *Table, |
143 | cmsUInt32Number dwFlags) |
144 | { |
145 | cmsInterpParams* p; |
146 | cmsUInt32Number i; |
147 | |
148 | // Check for maximum inputs |
149 | if (InputChan > MAX_INPUT_DIMENSIONS) { |
150 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , InputChan, MAX_INPUT_DIMENSIONS); |
151 | return NULL; |
152 | } |
153 | |
154 | // Creates an empty object |
155 | p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); |
156 | if (p == NULL) return NULL; |
157 | |
158 | // Keep original parameters |
159 | p -> dwFlags = dwFlags; |
160 | p -> nInputs = InputChan; |
161 | p -> nOutputs = OutputChan; |
162 | p ->Table = Table; |
163 | p ->ContextID = ContextID; |
164 | |
165 | // Fill samples per input direction and domain (which is number of nodes minus one) |
166 | for (i=0; i < InputChan; i++) { |
167 | |
168 | p -> nSamples[i] = nSamples[i]; |
169 | p -> Domain[i] = nSamples[i] - 1; |
170 | } |
171 | |
172 | // Compute factors to apply to each component to index the grid array |
173 | p -> opta[0] = p -> nOutputs; |
174 | for (i=1; i < InputChan; i++) |
175 | p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; |
176 | |
177 | |
178 | if (!_cmsSetInterpolationRoutine(ContextID, p)) { |
179 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)" , InputChan, OutputChan); |
180 | _cmsFree(ContextID, p); |
181 | return NULL; |
182 | } |
183 | |
184 | // All seems ok |
185 | return p; |
186 | } |
187 | |
188 | |
189 | // This one is a wrapper on the anterior, but assuming all directions have same number of nodes |
190 | cmsInterpParams* CMSEXPORT _cmsComputeInterpParams(cmsContext ContextID, cmsUInt32Number nSamples, |
191 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, const void* Table, cmsUInt32Number dwFlags) |
192 | { |
193 | int i; |
194 | cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS]; |
195 | |
196 | // Fill the auxiliary array |
197 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
198 | Samples[i] = nSamples; |
199 | |
200 | // Call the extended function |
201 | return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); |
202 | } |
203 | |
204 | |
205 | // Free all associated memory |
206 | void CMSEXPORT _cmsFreeInterpParams(cmsInterpParams* p) |
207 | { |
208 | if (p != NULL) _cmsFree(p ->ContextID, p); |
209 | } |
210 | |
211 | |
212 | // Inline fixed point interpolation |
213 | cmsINLINE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) |
214 | { |
215 | cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; |
216 | dif = (dif >> 16) + l; |
217 | return (cmsUInt16Number) (dif); |
218 | } |
219 | |
220 | |
221 | // Linear interpolation (Fixed-point optimized) |
222 | static |
223 | void LinLerp1D(register const cmsUInt16Number Value[], |
224 | register cmsUInt16Number Output[], |
225 | register const cmsInterpParams* p) |
226 | { |
227 | cmsUInt16Number y1, y0; |
228 | int cell0, rest; |
229 | int val3; |
230 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
231 | |
232 | // if last value... |
233 | if (Value[0] == 0xffff) { |
234 | |
235 | Output[0] = LutTable[p -> Domain[0]]; |
236 | return; |
237 | } |
238 | |
239 | val3 = p -> Domain[0] * Value[0]; |
240 | val3 = _cmsToFixedDomain(val3); // To fixed 15.16 |
241 | |
242 | cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits |
243 | rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits |
244 | |
245 | y0 = LutTable[cell0]; |
246 | y1 = LutTable[cell0+1]; |
247 | |
248 | |
249 | Output[0] = LinearInterp(rest, y0, y1); |
250 | } |
251 | |
252 | // To prevent out of bounds indexing |
253 | cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v) |
254 | { |
255 | return ((v < 1.0e-9f) || isnan(v)) ? 0.0f : (v > 1.0f ? 1.0f : v); |
256 | } |
257 | |
258 | // Floating-point version of 1D interpolation |
259 | static |
260 | void LinLerp1Dfloat(const cmsFloat32Number Value[], |
261 | cmsFloat32Number Output[], |
262 | const cmsInterpParams* p) |
263 | { |
264 | cmsFloat32Number y1, y0; |
265 | cmsFloat32Number val2, rest; |
266 | int cell0, cell1; |
267 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
268 | |
269 | val2 = fclamp(Value[0]); |
270 | |
271 | // if last value... |
272 | if (val2 == 1.0) { |
273 | Output[0] = LutTable[p -> Domain[0]]; |
274 | return; |
275 | } |
276 | |
277 | val2 *= p -> Domain[0]; |
278 | |
279 | cell0 = (int) floor(val2); |
280 | cell1 = (int) ceil(val2); |
281 | |
282 | // Rest is 16 LSB bits |
283 | rest = val2 - cell0; |
284 | |
285 | y0 = LutTable[cell0] ; |
286 | y1 = LutTable[cell1] ; |
287 | |
288 | Output[0] = y0 + (y1 - y0) * rest; |
289 | } |
290 | |
291 | |
292 | |
293 | // Eval gray LUT having only one input channel |
294 | static |
295 | void Eval1Input(register const cmsUInt16Number Input[], |
296 | register cmsUInt16Number Output[], |
297 | register const cmsInterpParams* p16) |
298 | { |
299 | cmsS15Fixed16Number fk; |
300 | cmsS15Fixed16Number k0, k1, rk, K0, K1; |
301 | int v; |
302 | cmsUInt32Number OutChan; |
303 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
304 | |
305 | v = Input[0] * p16 -> Domain[0]; |
306 | fk = _cmsToFixedDomain(v); |
307 | |
308 | k0 = FIXED_TO_INT(fk); |
309 | rk = (cmsUInt16Number) FIXED_REST_TO_INT(fk); |
310 | |
311 | k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); |
312 | |
313 | K0 = p16 -> opta[0] * k0; |
314 | K1 = p16 -> opta[0] * k1; |
315 | |
316 | for (OutChan=0; OutChan < p16->nOutputs; OutChan++) { |
317 | |
318 | Output[OutChan] = LinearInterp(rk, LutTable[K0+OutChan], LutTable[K1+OutChan]); |
319 | } |
320 | } |
321 | |
322 | |
323 | |
324 | // Eval gray LUT having only one input channel |
325 | static |
326 | void Eval1InputFloat(const cmsFloat32Number Value[], |
327 | cmsFloat32Number Output[], |
328 | const cmsInterpParams* p) |
329 | { |
330 | cmsFloat32Number y1, y0; |
331 | cmsFloat32Number val2, rest; |
332 | int cell0, cell1; |
333 | cmsUInt32Number OutChan; |
334 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
335 | |
336 | val2 = fclamp(Value[0]); |
337 | |
338 | // if last value... |
339 | if (val2 == 1.0) { |
340 | Output[0] = LutTable[p -> Domain[0]]; |
341 | return; |
342 | } |
343 | |
344 | val2 *= p -> Domain[0]; |
345 | |
346 | cell0 = (int) floor(val2); |
347 | cell1 = (int) ceil(val2); |
348 | |
349 | // Rest is 16 LSB bits |
350 | rest = val2 - cell0; |
351 | |
352 | cell0 *= p -> opta[0]; |
353 | cell1 *= p -> opta[0]; |
354 | |
355 | for (OutChan=0; OutChan < p->nOutputs; OutChan++) { |
356 | |
357 | y0 = LutTable[cell0 + OutChan] ; |
358 | y1 = LutTable[cell1 + OutChan] ; |
359 | |
360 | Output[OutChan] = y0 + (y1 - y0) * rest; |
361 | } |
362 | } |
363 | |
364 | // Bilinear interpolation (16 bits) - cmsFloat32Number version |
365 | static |
366 | void BilinearInterpFloat(const cmsFloat32Number Input[], |
367 | cmsFloat32Number Output[], |
368 | const cmsInterpParams* p) |
369 | |
370 | { |
371 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
372 | # define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
373 | |
374 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
375 | cmsFloat32Number px, py; |
376 | int x0, y0, |
377 | X0, Y0, X1, Y1; |
378 | int TotalOut, OutChan; |
379 | cmsFloat32Number fx, fy, |
380 | d00, d01, d10, d11, |
381 | dx0, dx1, |
382 | dxy; |
383 | |
384 | TotalOut = p -> nOutputs; |
385 | px = fclamp(Input[0]) * p->Domain[0]; |
386 | py = fclamp(Input[1]) * p->Domain[1]; |
387 | |
388 | x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; |
389 | y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; |
390 | |
391 | X0 = p -> opta[1] * x0; |
392 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[1]); |
393 | |
394 | Y0 = p -> opta[0] * y0; |
395 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[0]); |
396 | |
397 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
398 | |
399 | d00 = DENS(X0, Y0); |
400 | d01 = DENS(X0, Y1); |
401 | d10 = DENS(X1, Y0); |
402 | d11 = DENS(X1, Y1); |
403 | |
404 | dx0 = LERP(fx, d00, d10); |
405 | dx1 = LERP(fx, d01, d11); |
406 | |
407 | dxy = LERP(fy, dx0, dx1); |
408 | |
409 | Output[OutChan] = dxy; |
410 | } |
411 | |
412 | |
413 | # undef LERP |
414 | # undef DENS |
415 | } |
416 | |
417 | // Bilinear interpolation (16 bits) - optimized version |
418 | static |
419 | void BilinearInterp16(register const cmsUInt16Number Input[], |
420 | register cmsUInt16Number Output[], |
421 | register const cmsInterpParams* p) |
422 | |
423 | { |
424 | #define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
425 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
426 | |
427 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
428 | int OutChan, TotalOut; |
429 | cmsS15Fixed16Number fx, fy; |
430 | register int rx, ry; |
431 | int x0, y0; |
432 | register int X0, X1, Y0, Y1; |
433 | int d00, d01, d10, d11, |
434 | dx0, dx1, |
435 | dxy; |
436 | |
437 | TotalOut = p -> nOutputs; |
438 | |
439 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
440 | x0 = FIXED_TO_INT(fx); |
441 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
442 | |
443 | |
444 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
445 | y0 = FIXED_TO_INT(fy); |
446 | ry = FIXED_REST_TO_INT(fy); |
447 | |
448 | |
449 | X0 = p -> opta[1] * x0; |
450 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); |
451 | |
452 | Y0 = p -> opta[0] * y0; |
453 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); |
454 | |
455 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
456 | |
457 | d00 = DENS(X0, Y0); |
458 | d01 = DENS(X0, Y1); |
459 | d10 = DENS(X1, Y0); |
460 | d11 = DENS(X1, Y1); |
461 | |
462 | dx0 = LERP(rx, d00, d10); |
463 | dx1 = LERP(rx, d01, d11); |
464 | |
465 | dxy = LERP(ry, dx0, dx1); |
466 | |
467 | Output[OutChan] = (cmsUInt16Number) dxy; |
468 | } |
469 | |
470 | |
471 | # undef LERP |
472 | # undef DENS |
473 | } |
474 | |
475 | |
476 | // Trilinear interpolation (16 bits) - cmsFloat32Number version |
477 | static |
478 | void TrilinearInterpFloat(const cmsFloat32Number Input[], |
479 | cmsFloat32Number Output[], |
480 | const cmsInterpParams* p) |
481 | |
482 | { |
483 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
484 | # define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
485 | |
486 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
487 | cmsFloat32Number px, py, pz; |
488 | int x0, y0, z0, |
489 | X0, Y0, Z0, X1, Y1, Z1; |
490 | int TotalOut, OutChan; |
491 | cmsFloat32Number fx, fy, fz, |
492 | d000, d001, d010, d011, |
493 | d100, d101, d110, d111, |
494 | dx00, dx01, dx10, dx11, |
495 | dxy0, dxy1, dxyz; |
496 | |
497 | TotalOut = p -> nOutputs; |
498 | |
499 | // We need some clipping here |
500 | px = fclamp(Input[0]) * p->Domain[0]; |
501 | py = fclamp(Input[1]) * p->Domain[1]; |
502 | pz = fclamp(Input[2]) * p->Domain[2]; |
503 | |
504 | x0 = (int) floor(px); fx = px - (cmsFloat32Number) x0; // We need full floor funcionality here |
505 | y0 = (int) floor(py); fy = py - (cmsFloat32Number) y0; |
506 | z0 = (int) floor(pz); fz = pz - (cmsFloat32Number) z0; |
507 | |
508 | X0 = p -> opta[2] * x0; |
509 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
510 | |
511 | Y0 = p -> opta[1] * y0; |
512 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
513 | |
514 | Z0 = p -> opta[0] * z0; |
515 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
516 | |
517 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
518 | |
519 | d000 = DENS(X0, Y0, Z0); |
520 | d001 = DENS(X0, Y0, Z1); |
521 | d010 = DENS(X0, Y1, Z0); |
522 | d011 = DENS(X0, Y1, Z1); |
523 | |
524 | d100 = DENS(X1, Y0, Z0); |
525 | d101 = DENS(X1, Y0, Z1); |
526 | d110 = DENS(X1, Y1, Z0); |
527 | d111 = DENS(X1, Y1, Z1); |
528 | |
529 | |
530 | dx00 = LERP(fx, d000, d100); |
531 | dx01 = LERP(fx, d001, d101); |
532 | dx10 = LERP(fx, d010, d110); |
533 | dx11 = LERP(fx, d011, d111); |
534 | |
535 | dxy0 = LERP(fy, dx00, dx10); |
536 | dxy1 = LERP(fy, dx01, dx11); |
537 | |
538 | dxyz = LERP(fz, dxy0, dxy1); |
539 | |
540 | Output[OutChan] = dxyz; |
541 | } |
542 | |
543 | |
544 | # undef LERP |
545 | # undef DENS |
546 | } |
547 | |
548 | // Trilinear interpolation (16 bits) - optimized version |
549 | static |
550 | void TrilinearInterp16(register const cmsUInt16Number Input[], |
551 | register cmsUInt16Number Output[], |
552 | register const cmsInterpParams* p) |
553 | |
554 | { |
555 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
556 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
557 | |
558 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
559 | int OutChan, TotalOut; |
560 | cmsS15Fixed16Number fx, fy, fz; |
561 | register int rx, ry, rz; |
562 | int x0, y0, z0; |
563 | register int X0, X1, Y0, Y1, Z0, Z1; |
564 | int d000, d001, d010, d011, |
565 | d100, d101, d110, d111, |
566 | dx00, dx01, dx10, dx11, |
567 | dxy0, dxy1, dxyz; |
568 | |
569 | TotalOut = p -> nOutputs; |
570 | |
571 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
572 | x0 = FIXED_TO_INT(fx); |
573 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
574 | |
575 | |
576 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
577 | y0 = FIXED_TO_INT(fy); |
578 | ry = FIXED_REST_TO_INT(fy); |
579 | |
580 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
581 | z0 = FIXED_TO_INT(fz); |
582 | rz = FIXED_REST_TO_INT(fz); |
583 | |
584 | |
585 | X0 = p -> opta[2] * x0; |
586 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
587 | |
588 | Y0 = p -> opta[1] * y0; |
589 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
590 | |
591 | Z0 = p -> opta[0] * z0; |
592 | Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
593 | |
594 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
595 | |
596 | d000 = DENS(X0, Y0, Z0); |
597 | d001 = DENS(X0, Y0, Z1); |
598 | d010 = DENS(X0, Y1, Z0); |
599 | d011 = DENS(X0, Y1, Z1); |
600 | |
601 | d100 = DENS(X1, Y0, Z0); |
602 | d101 = DENS(X1, Y0, Z1); |
603 | d110 = DENS(X1, Y1, Z0); |
604 | d111 = DENS(X1, Y1, Z1); |
605 | |
606 | |
607 | dx00 = LERP(rx, d000, d100); |
608 | dx01 = LERP(rx, d001, d101); |
609 | dx10 = LERP(rx, d010, d110); |
610 | dx11 = LERP(rx, d011, d111); |
611 | |
612 | dxy0 = LERP(ry, dx00, dx10); |
613 | dxy1 = LERP(ry, dx01, dx11); |
614 | |
615 | dxyz = LERP(rz, dxy0, dxy1); |
616 | |
617 | Output[OutChan] = (cmsUInt16Number) dxyz; |
618 | } |
619 | |
620 | |
621 | # undef LERP |
622 | # undef DENS |
623 | } |
624 | |
625 | |
626 | // Tetrahedral interpolation, using Sakamoto algorithm. |
627 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
628 | static |
629 | void TetrahedralInterpFloat(const cmsFloat32Number Input[], |
630 | cmsFloat32Number Output[], |
631 | const cmsInterpParams* p) |
632 | { |
633 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
634 | cmsFloat32Number px, py, pz; |
635 | int x0, y0, z0, |
636 | X0, Y0, Z0, X1, Y1, Z1; |
637 | cmsFloat32Number rx, ry, rz; |
638 | cmsFloat32Number c0, c1=0, c2=0, c3=0; |
639 | int OutChan, TotalOut; |
640 | |
641 | TotalOut = p -> nOutputs; |
642 | |
643 | // We need some clipping here |
644 | px = fclamp(Input[0]) * p->Domain[0]; |
645 | py = fclamp(Input[1]) * p->Domain[1]; |
646 | pz = fclamp(Input[2]) * p->Domain[2]; |
647 | |
648 | x0 = (int) floor(px); rx = (px - (cmsFloat32Number) x0); // We need full floor functionality here |
649 | y0 = (int) floor(py); ry = (py - (cmsFloat32Number) y0); |
650 | z0 = (int) floor(pz); rz = (pz - (cmsFloat32Number) z0); |
651 | |
652 | |
653 | X0 = p -> opta[2] * x0; |
654 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
655 | |
656 | Y0 = p -> opta[1] * y0; |
657 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
658 | |
659 | Z0 = p -> opta[0] * z0; |
660 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
661 | |
662 | for (OutChan=0; OutChan < TotalOut; OutChan++) { |
663 | |
664 | // These are the 6 Tetrahedral |
665 | |
666 | c0 = DENS(X0, Y0, Z0); |
667 | |
668 | if (rx >= ry && ry >= rz) { |
669 | |
670 | c1 = DENS(X1, Y0, Z0) - c0; |
671 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
672 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
673 | |
674 | } |
675 | else |
676 | if (rx >= rz && rz >= ry) { |
677 | |
678 | c1 = DENS(X1, Y0, Z0) - c0; |
679 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
680 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
681 | |
682 | } |
683 | else |
684 | if (rz >= rx && rx >= ry) { |
685 | |
686 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
687 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
688 | c3 = DENS(X0, Y0, Z1) - c0; |
689 | |
690 | } |
691 | else |
692 | if (ry >= rx && rx >= rz) { |
693 | |
694 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
695 | c2 = DENS(X0, Y1, Z0) - c0; |
696 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
697 | |
698 | } |
699 | else |
700 | if (ry >= rz && rz >= rx) { |
701 | |
702 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
703 | c2 = DENS(X0, Y1, Z0) - c0; |
704 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
705 | |
706 | } |
707 | else |
708 | if (rz >= ry && ry >= rx) { |
709 | |
710 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
711 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
712 | c3 = DENS(X0, Y0, Z1) - c0; |
713 | |
714 | } |
715 | else { |
716 | c1 = c2 = c3 = 0; |
717 | } |
718 | |
719 | Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; |
720 | } |
721 | |
722 | } |
723 | |
724 | #undef DENS |
725 | |
726 | |
727 | |
728 | |
729 | static |
730 | void TetrahedralInterp16(register const cmsUInt16Number Input[], |
731 | register cmsUInt16Number Output[], |
732 | register const cmsInterpParams* p) |
733 | { |
734 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; |
735 | cmsS15Fixed16Number fx, fy, fz; |
736 | cmsS15Fixed16Number rx, ry, rz; |
737 | int x0, y0, z0; |
738 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
739 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
740 | cmsUInt32Number TotalOut = p -> nOutputs; |
741 | |
742 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
743 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
744 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
745 | |
746 | x0 = FIXED_TO_INT(fx); |
747 | y0 = FIXED_TO_INT(fy); |
748 | z0 = FIXED_TO_INT(fz); |
749 | |
750 | rx = FIXED_REST_TO_INT(fx); |
751 | ry = FIXED_REST_TO_INT(fy); |
752 | rz = FIXED_REST_TO_INT(fz); |
753 | |
754 | X0 = p -> opta[2] * x0; |
755 | X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
756 | |
757 | Y0 = p -> opta[1] * y0; |
758 | Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
759 | |
760 | Z0 = p -> opta[0] * z0; |
761 | Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
762 | |
763 | LutTable = &LutTable[X0+Y0+Z0]; |
764 | |
765 | // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) |
766 | // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 |
767 | // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 |
768 | // at the cost of being off by one at 7fff and 17ffe. |
769 | |
770 | if (rx >= ry) { |
771 | if (ry >= rz) { |
772 | Y1 += X1; |
773 | Z1 += Y1; |
774 | for (; TotalOut; TotalOut--) { |
775 | c1 = LutTable[X1]; |
776 | c2 = LutTable[Y1]; |
777 | c3 = LutTable[Z1]; |
778 | c0 = *LutTable++; |
779 | c3 -= c2; |
780 | c2 -= c1; |
781 | c1 -= c0; |
782 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
783 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
784 | } |
785 | } else if (rz >= rx) { |
786 | X1 += Z1; |
787 | Y1 += X1; |
788 | for (; TotalOut; TotalOut--) { |
789 | c1 = LutTable[X1]; |
790 | c2 = LutTable[Y1]; |
791 | c3 = LutTable[Z1]; |
792 | c0 = *LutTable++; |
793 | c2 -= c1; |
794 | c1 -= c3; |
795 | c3 -= c0; |
796 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
797 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
798 | } |
799 | } else { |
800 | Z1 += X1; |
801 | Y1 += Z1; |
802 | for (; TotalOut; TotalOut--) { |
803 | c1 = LutTable[X1]; |
804 | c2 = LutTable[Y1]; |
805 | c3 = LutTable[Z1]; |
806 | c0 = *LutTable++; |
807 | c2 -= c3; |
808 | c3 -= c1; |
809 | c1 -= c0; |
810 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
811 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
812 | } |
813 | } |
814 | } else { |
815 | if (rx >= rz) { |
816 | X1 += Y1; |
817 | Z1 += X1; |
818 | for (; TotalOut; TotalOut--) { |
819 | c1 = LutTable[X1]; |
820 | c2 = LutTable[Y1]; |
821 | c3 = LutTable[Z1]; |
822 | c0 = *LutTable++; |
823 | c3 -= c1; |
824 | c1 -= c2; |
825 | c2 -= c0; |
826 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
827 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
828 | } |
829 | } else if (ry >= rz) { |
830 | Z1 += Y1; |
831 | X1 += Z1; |
832 | for (; TotalOut; TotalOut--) { |
833 | c1 = LutTable[X1]; |
834 | c2 = LutTable[Y1]; |
835 | c3 = LutTable[Z1]; |
836 | c0 = *LutTable++; |
837 | c1 -= c3; |
838 | c3 -= c2; |
839 | c2 -= c0; |
840 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
841 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
842 | } |
843 | } else { |
844 | Y1 += Z1; |
845 | X1 += Y1; |
846 | for (; TotalOut; TotalOut--) { |
847 | c1 = LutTable[X1]; |
848 | c2 = LutTable[Y1]; |
849 | c3 = LutTable[Z1]; |
850 | c0 = *LutTable++; |
851 | c1 -= c2; |
852 | c2 -= c3; |
853 | c3 -= c0; |
854 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
855 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
856 | } |
857 | } |
858 | } |
859 | } |
860 | |
861 | |
862 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
863 | static |
864 | void Eval4Inputs(register const cmsUInt16Number Input[], |
865 | register cmsUInt16Number Output[], |
866 | register const cmsInterpParams* p16) |
867 | { |
868 | const cmsUInt16Number* LutTable; |
869 | cmsS15Fixed16Number fk; |
870 | cmsS15Fixed16Number k0, rk; |
871 | int K0, K1; |
872 | cmsS15Fixed16Number fx, fy, fz; |
873 | cmsS15Fixed16Number rx, ry, rz; |
874 | int x0, y0, z0; |
875 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
876 | cmsUInt32Number i; |
877 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
878 | cmsUInt32Number OutChan; |
879 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
880 | |
881 | |
882 | fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); |
883 | fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); |
884 | fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); |
885 | fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); |
886 | |
887 | k0 = FIXED_TO_INT(fk); |
888 | x0 = FIXED_TO_INT(fx); |
889 | y0 = FIXED_TO_INT(fy); |
890 | z0 = FIXED_TO_INT(fz); |
891 | |
892 | rk = FIXED_REST_TO_INT(fk); |
893 | rx = FIXED_REST_TO_INT(fx); |
894 | ry = FIXED_REST_TO_INT(fy); |
895 | rz = FIXED_REST_TO_INT(fz); |
896 | |
897 | K0 = p16 -> opta[3] * k0; |
898 | K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); |
899 | |
900 | X0 = p16 -> opta[2] * x0; |
901 | X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); |
902 | |
903 | Y0 = p16 -> opta[1] * y0; |
904 | Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); |
905 | |
906 | Z0 = p16 -> opta[0] * z0; |
907 | Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); |
908 | |
909 | LutTable = (cmsUInt16Number*) p16 -> Table; |
910 | LutTable += K0; |
911 | |
912 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
913 | |
914 | c0 = DENS(X0, Y0, Z0); |
915 | |
916 | if (rx >= ry && ry >= rz) { |
917 | |
918 | c1 = DENS(X1, Y0, Z0) - c0; |
919 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
920 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
921 | |
922 | } |
923 | else |
924 | if (rx >= rz && rz >= ry) { |
925 | |
926 | c1 = DENS(X1, Y0, Z0) - c0; |
927 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
928 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
929 | |
930 | } |
931 | else |
932 | if (rz >= rx && rx >= ry) { |
933 | |
934 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
935 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
936 | c3 = DENS(X0, Y0, Z1) - c0; |
937 | |
938 | } |
939 | else |
940 | if (ry >= rx && rx >= rz) { |
941 | |
942 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
943 | c2 = DENS(X0, Y1, Z0) - c0; |
944 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
945 | |
946 | } |
947 | else |
948 | if (ry >= rz && rz >= rx) { |
949 | |
950 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
951 | c2 = DENS(X0, Y1, Z0) - c0; |
952 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
953 | |
954 | } |
955 | else |
956 | if (rz >= ry && ry >= rx) { |
957 | |
958 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
959 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
960 | c3 = DENS(X0, Y0, Z1) - c0; |
961 | |
962 | } |
963 | else { |
964 | c1 = c2 = c3 = 0; |
965 | } |
966 | |
967 | Rest = c1 * rx + c2 * ry + c3 * rz; |
968 | |
969 | Tmp1[OutChan] = (cmsUInt16Number)(c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
970 | } |
971 | |
972 | |
973 | LutTable = (cmsUInt16Number*) p16 -> Table; |
974 | LutTable += K1; |
975 | |
976 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
977 | |
978 | c0 = DENS(X0, Y0, Z0); |
979 | |
980 | if (rx >= ry && ry >= rz) { |
981 | |
982 | c1 = DENS(X1, Y0, Z0) - c0; |
983 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
984 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
985 | |
986 | } |
987 | else |
988 | if (rx >= rz && rz >= ry) { |
989 | |
990 | c1 = DENS(X1, Y0, Z0) - c0; |
991 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
992 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
993 | |
994 | } |
995 | else |
996 | if (rz >= rx && rx >= ry) { |
997 | |
998 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
999 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
1000 | c3 = DENS(X0, Y0, Z1) - c0; |
1001 | |
1002 | } |
1003 | else |
1004 | if (ry >= rx && rx >= rz) { |
1005 | |
1006 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
1007 | c2 = DENS(X0, Y1, Z0) - c0; |
1008 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
1009 | |
1010 | } |
1011 | else |
1012 | if (ry >= rz && rz >= rx) { |
1013 | |
1014 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
1015 | c2 = DENS(X0, Y1, Z0) - c0; |
1016 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
1017 | |
1018 | } |
1019 | else |
1020 | if (rz >= ry && ry >= rx) { |
1021 | |
1022 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
1023 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
1024 | c3 = DENS(X0, Y0, Z1) - c0; |
1025 | |
1026 | } |
1027 | else { |
1028 | c1 = c2 = c3 = 0; |
1029 | } |
1030 | |
1031 | Rest = c1 * rx + c2 * ry + c3 * rz; |
1032 | |
1033 | Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
1034 | } |
1035 | |
1036 | |
1037 | |
1038 | for (i=0; i < p16 -> nOutputs; i++) { |
1039 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1040 | } |
1041 | } |
1042 | #undef DENS |
1043 | |
1044 | |
1045 | // For more that 3 inputs (i.e., CMYK) |
1046 | // evaluate two 3-dimensional interpolations and then linearly interpolate between them. |
1047 | |
1048 | |
1049 | static |
1050 | void Eval4InputsFloat(const cmsFloat32Number Input[], |
1051 | cmsFloat32Number Output[], |
1052 | const cmsInterpParams* p) |
1053 | { |
1054 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1055 | cmsFloat32Number rest; |
1056 | cmsFloat32Number pk; |
1057 | int k0, K0, K1; |
1058 | const cmsFloat32Number* T; |
1059 | cmsUInt32Number i; |
1060 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1061 | cmsInterpParams p1; |
1062 | |
1063 | pk = fclamp(Input[0]) * p->Domain[0]; |
1064 | k0 = _cmsQuickFloor(pk); |
1065 | rest = pk - (cmsFloat32Number) k0; |
1066 | |
1067 | K0 = p -> opta[3] * k0; |
1068 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[3]); |
1069 | |
1070 | p1 = *p; |
1071 | memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); |
1072 | |
1073 | T = LutTable + K0; |
1074 | p1.Table = T; |
1075 | |
1076 | TetrahedralInterpFloat(Input + 1, Tmp1, &p1); |
1077 | |
1078 | T = LutTable + K1; |
1079 | p1.Table = T; |
1080 | TetrahedralInterpFloat(Input + 1, Tmp2, &p1); |
1081 | |
1082 | for (i=0; i < p -> nOutputs; i++) |
1083 | { |
1084 | cmsFloat32Number y0 = Tmp1[i]; |
1085 | cmsFloat32Number y1 = Tmp2[i]; |
1086 | |
1087 | Output[i] = y0 + (y1 - y0) * rest; |
1088 | } |
1089 | } |
1090 | |
1091 | |
1092 | static |
1093 | void Eval5Inputs(register const cmsUInt16Number Input[], |
1094 | register cmsUInt16Number Output[], |
1095 | |
1096 | register const cmsInterpParams* p16) |
1097 | { |
1098 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
1099 | cmsS15Fixed16Number fk; |
1100 | cmsS15Fixed16Number k0, rk; |
1101 | int K0, K1; |
1102 | const cmsUInt16Number* T; |
1103 | cmsUInt32Number i; |
1104 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1105 | cmsInterpParams p1; |
1106 | |
1107 | |
1108 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
1109 | k0 = FIXED_TO_INT(fk); |
1110 | rk = FIXED_REST_TO_INT(fk); |
1111 | |
1112 | K0 = p16 -> opta[4] * k0; |
1113 | K1 = p16 -> opta[4] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
1114 | |
1115 | p1 = *p16; |
1116 | memmove(&p1.Domain[0], &p16 ->Domain[1], 4*sizeof(cmsUInt32Number)); |
1117 | |
1118 | T = LutTable + K0; |
1119 | p1.Table = T; |
1120 | |
1121 | Eval4Inputs(Input + 1, Tmp1, &p1); |
1122 | |
1123 | T = LutTable + K1; |
1124 | p1.Table = T; |
1125 | |
1126 | Eval4Inputs(Input + 1, Tmp2, &p1); |
1127 | |
1128 | for (i=0; i < p16 -> nOutputs; i++) { |
1129 | |
1130 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1131 | } |
1132 | |
1133 | } |
1134 | |
1135 | |
1136 | static |
1137 | void Eval5InputsFloat(const cmsFloat32Number Input[], |
1138 | cmsFloat32Number Output[], |
1139 | const cmsInterpParams* p) |
1140 | { |
1141 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1142 | cmsFloat32Number rest; |
1143 | cmsFloat32Number pk; |
1144 | int k0, K0, K1; |
1145 | const cmsFloat32Number* T; |
1146 | cmsUInt32Number i; |
1147 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1148 | cmsInterpParams p1; |
1149 | |
1150 | pk = fclamp(Input[0]) * p->Domain[0]; |
1151 | k0 = _cmsQuickFloor(pk); |
1152 | rest = pk - (cmsFloat32Number) k0; |
1153 | |
1154 | K0 = p -> opta[4] * k0; |
1155 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[4]); |
1156 | |
1157 | p1 = *p; |
1158 | memmove(&p1.Domain[0], &p ->Domain[1], 4*sizeof(cmsUInt32Number)); |
1159 | |
1160 | T = LutTable + K0; |
1161 | p1.Table = T; |
1162 | |
1163 | Eval4InputsFloat(Input + 1, Tmp1, &p1); |
1164 | |
1165 | T = LutTable + K1; |
1166 | p1.Table = T; |
1167 | |
1168 | Eval4InputsFloat(Input + 1, Tmp2, &p1); |
1169 | |
1170 | for (i=0; i < p -> nOutputs; i++) { |
1171 | |
1172 | cmsFloat32Number y0 = Tmp1[i]; |
1173 | cmsFloat32Number y1 = Tmp2[i]; |
1174 | |
1175 | Output[i] = y0 + (y1 - y0) * rest; |
1176 | } |
1177 | } |
1178 | |
1179 | |
1180 | |
1181 | static |
1182 | void Eval6Inputs(register const cmsUInt16Number Input[], |
1183 | register cmsUInt16Number Output[], |
1184 | register const cmsInterpParams* p16) |
1185 | { |
1186 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
1187 | cmsS15Fixed16Number fk; |
1188 | cmsS15Fixed16Number k0, rk; |
1189 | int K0, K1; |
1190 | const cmsUInt16Number* T; |
1191 | cmsUInt32Number i; |
1192 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1193 | cmsInterpParams p1; |
1194 | |
1195 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
1196 | k0 = FIXED_TO_INT(fk); |
1197 | rk = FIXED_REST_TO_INT(fk); |
1198 | |
1199 | K0 = p16 -> opta[5] * k0; |
1200 | K1 = p16 -> opta[5] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
1201 | |
1202 | p1 = *p16; |
1203 | memmove(&p1.Domain[0], &p16 ->Domain[1], 5*sizeof(cmsUInt32Number)); |
1204 | |
1205 | T = LutTable + K0; |
1206 | p1.Table = T; |
1207 | |
1208 | Eval5Inputs(Input + 1, Tmp1, &p1); |
1209 | |
1210 | T = LutTable + K1; |
1211 | p1.Table = T; |
1212 | |
1213 | Eval5Inputs(Input + 1, Tmp2, &p1); |
1214 | |
1215 | for (i=0; i < p16 -> nOutputs; i++) { |
1216 | |
1217 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1218 | } |
1219 | |
1220 | } |
1221 | |
1222 | |
1223 | static |
1224 | void Eval6InputsFloat(const cmsFloat32Number Input[], |
1225 | cmsFloat32Number Output[], |
1226 | const cmsInterpParams* p) |
1227 | { |
1228 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1229 | cmsFloat32Number rest; |
1230 | cmsFloat32Number pk; |
1231 | int k0, K0, K1; |
1232 | const cmsFloat32Number* T; |
1233 | cmsUInt32Number i; |
1234 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1235 | cmsInterpParams p1; |
1236 | |
1237 | pk = fclamp(Input[0]) * p->Domain[0]; |
1238 | k0 = _cmsQuickFloor(pk); |
1239 | rest = pk - (cmsFloat32Number) k0; |
1240 | |
1241 | K0 = p -> opta[5] * k0; |
1242 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[5]); |
1243 | |
1244 | p1 = *p; |
1245 | memmove(&p1.Domain[0], &p ->Domain[1], 5*sizeof(cmsUInt32Number)); |
1246 | |
1247 | T = LutTable + K0; |
1248 | p1.Table = T; |
1249 | |
1250 | Eval5InputsFloat(Input + 1, Tmp1, &p1); |
1251 | |
1252 | T = LutTable + K1; |
1253 | p1.Table = T; |
1254 | |
1255 | Eval5InputsFloat(Input + 1, Tmp2, &p1); |
1256 | |
1257 | for (i=0; i < p -> nOutputs; i++) { |
1258 | |
1259 | cmsFloat32Number y0 = Tmp1[i]; |
1260 | cmsFloat32Number y1 = Tmp2[i]; |
1261 | |
1262 | Output[i] = y0 + (y1 - y0) * rest; |
1263 | } |
1264 | } |
1265 | |
1266 | |
1267 | static |
1268 | void Eval7Inputs(register const cmsUInt16Number Input[], |
1269 | register cmsUInt16Number Output[], |
1270 | register const cmsInterpParams* p16) |
1271 | { |
1272 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
1273 | cmsS15Fixed16Number fk; |
1274 | cmsS15Fixed16Number k0, rk; |
1275 | int K0, K1; |
1276 | const cmsUInt16Number* T; |
1277 | cmsUInt32Number i; |
1278 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1279 | cmsInterpParams p1; |
1280 | |
1281 | |
1282 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
1283 | k0 = FIXED_TO_INT(fk); |
1284 | rk = FIXED_REST_TO_INT(fk); |
1285 | |
1286 | K0 = p16 -> opta[6] * k0; |
1287 | K1 = p16 -> opta[6] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
1288 | |
1289 | p1 = *p16; |
1290 | memmove(&p1.Domain[0], &p16 ->Domain[1], 6*sizeof(cmsUInt32Number)); |
1291 | |
1292 | T = LutTable + K0; |
1293 | p1.Table = T; |
1294 | |
1295 | Eval6Inputs(Input + 1, Tmp1, &p1); |
1296 | |
1297 | T = LutTable + K1; |
1298 | p1.Table = T; |
1299 | |
1300 | Eval6Inputs(Input + 1, Tmp2, &p1); |
1301 | |
1302 | for (i=0; i < p16 -> nOutputs; i++) { |
1303 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1304 | } |
1305 | } |
1306 | |
1307 | |
1308 | static |
1309 | void Eval7InputsFloat(const cmsFloat32Number Input[], |
1310 | cmsFloat32Number Output[], |
1311 | const cmsInterpParams* p) |
1312 | { |
1313 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1314 | cmsFloat32Number rest; |
1315 | cmsFloat32Number pk; |
1316 | int k0, K0, K1; |
1317 | const cmsFloat32Number* T; |
1318 | cmsUInt32Number i; |
1319 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1320 | cmsInterpParams p1; |
1321 | |
1322 | pk = fclamp(Input[0]) * p->Domain[0]; |
1323 | k0 = _cmsQuickFloor(pk); |
1324 | rest = pk - (cmsFloat32Number) k0; |
1325 | |
1326 | K0 = p -> opta[6] * k0; |
1327 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[6]); |
1328 | |
1329 | p1 = *p; |
1330 | memmove(&p1.Domain[0], &p ->Domain[1], 6*sizeof(cmsUInt32Number)); |
1331 | |
1332 | T = LutTable + K0; |
1333 | p1.Table = T; |
1334 | |
1335 | Eval6InputsFloat(Input + 1, Tmp1, &p1); |
1336 | |
1337 | T = LutTable + K1; |
1338 | p1.Table = T; |
1339 | |
1340 | Eval6InputsFloat(Input + 1, Tmp2, &p1); |
1341 | |
1342 | |
1343 | for (i=0; i < p -> nOutputs; i++) { |
1344 | |
1345 | cmsFloat32Number y0 = Tmp1[i]; |
1346 | cmsFloat32Number y1 = Tmp2[i]; |
1347 | |
1348 | Output[i] = y0 + (y1 - y0) * rest; |
1349 | |
1350 | } |
1351 | } |
1352 | |
1353 | static |
1354 | void Eval8Inputs(register const cmsUInt16Number Input[], |
1355 | register cmsUInt16Number Output[], |
1356 | register const cmsInterpParams* p16) |
1357 | { |
1358 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
1359 | cmsS15Fixed16Number fk; |
1360 | cmsS15Fixed16Number k0, rk; |
1361 | int K0, K1; |
1362 | const cmsUInt16Number* T; |
1363 | cmsUInt32Number i; |
1364 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1365 | cmsInterpParams p1; |
1366 | |
1367 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
1368 | k0 = FIXED_TO_INT(fk); |
1369 | rk = FIXED_REST_TO_INT(fk); |
1370 | |
1371 | K0 = p16 -> opta[7] * k0; |
1372 | K1 = p16 -> opta[7] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
1373 | |
1374 | p1 = *p16; |
1375 | memmove(&p1.Domain[0], &p16 ->Domain[1], 7*sizeof(cmsUInt32Number)); |
1376 | |
1377 | T = LutTable + K0; |
1378 | p1.Table = T; |
1379 | |
1380 | Eval7Inputs(Input + 1, Tmp1, &p1); |
1381 | |
1382 | T = LutTable + K1; |
1383 | p1.Table = T; |
1384 | Eval7Inputs(Input + 1, Tmp2, &p1); |
1385 | |
1386 | for (i=0; i < p16 -> nOutputs; i++) { |
1387 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
1388 | } |
1389 | } |
1390 | |
1391 | |
1392 | |
1393 | static |
1394 | void Eval8InputsFloat(const cmsFloat32Number Input[], |
1395 | cmsFloat32Number Output[], |
1396 | const cmsInterpParams* p) |
1397 | { |
1398 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
1399 | cmsFloat32Number rest; |
1400 | cmsFloat32Number pk; |
1401 | int k0, K0, K1; |
1402 | const cmsFloat32Number* T; |
1403 | cmsUInt32Number i; |
1404 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
1405 | cmsInterpParams p1; |
1406 | |
1407 | pk = fclamp(Input[0]) * p->Domain[0]; |
1408 | k0 = _cmsQuickFloor(pk); |
1409 | rest = pk - (cmsFloat32Number) k0; |
1410 | |
1411 | K0 = p -> opta[7] * k0; |
1412 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[7]); |
1413 | |
1414 | p1 = *p; |
1415 | memmove(&p1.Domain[0], &p ->Domain[1], 7*sizeof(cmsUInt32Number)); |
1416 | |
1417 | T = LutTable + K0; |
1418 | p1.Table = T; |
1419 | |
1420 | Eval7InputsFloat(Input + 1, Tmp1, &p1); |
1421 | |
1422 | T = LutTable + K1; |
1423 | p1.Table = T; |
1424 | |
1425 | Eval7InputsFloat(Input + 1, Tmp2, &p1); |
1426 | |
1427 | |
1428 | for (i=0; i < p -> nOutputs; i++) { |
1429 | |
1430 | cmsFloat32Number y0 = Tmp1[i]; |
1431 | cmsFloat32Number y1 = Tmp2[i]; |
1432 | |
1433 | Output[i] = y0 + (y1 - y0) * rest; |
1434 | } |
1435 | } |
1436 | |
1437 | // The default factory |
1438 | static |
1439 | cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) |
1440 | { |
1441 | |
1442 | cmsInterpFunction Interpolation; |
1443 | cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT); |
1444 | cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR); |
1445 | |
1446 | memset(&Interpolation, 0, sizeof(Interpolation)); |
1447 | |
1448 | // Safety check |
1449 | if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS) |
1450 | return Interpolation; |
1451 | |
1452 | switch (nInputChannels) { |
1453 | |
1454 | case 1: // Gray LUT / linear |
1455 | |
1456 | if (nOutputChannels == 1) { |
1457 | |
1458 | if (IsFloat) |
1459 | Interpolation.LerpFloat = LinLerp1Dfloat; |
1460 | else |
1461 | Interpolation.Lerp16 = LinLerp1D; |
1462 | |
1463 | } |
1464 | else { |
1465 | |
1466 | if (IsFloat) |
1467 | Interpolation.LerpFloat = Eval1InputFloat; |
1468 | else |
1469 | Interpolation.Lerp16 = Eval1Input; |
1470 | } |
1471 | break; |
1472 | |
1473 | case 2: // Duotone |
1474 | if (IsFloat) |
1475 | Interpolation.LerpFloat = BilinearInterpFloat; |
1476 | else |
1477 | Interpolation.Lerp16 = BilinearInterp16; |
1478 | break; |
1479 | |
1480 | case 3: // RGB et al |
1481 | |
1482 | if (IsTrilinear) { |
1483 | |
1484 | if (IsFloat) |
1485 | Interpolation.LerpFloat = TrilinearInterpFloat; |
1486 | else |
1487 | Interpolation.Lerp16 = TrilinearInterp16; |
1488 | } |
1489 | else { |
1490 | |
1491 | if (IsFloat) |
1492 | Interpolation.LerpFloat = TetrahedralInterpFloat; |
1493 | else { |
1494 | |
1495 | Interpolation.Lerp16 = TetrahedralInterp16; |
1496 | } |
1497 | } |
1498 | break; |
1499 | |
1500 | case 4: // CMYK lut |
1501 | |
1502 | if (IsFloat) |
1503 | Interpolation.LerpFloat = Eval4InputsFloat; |
1504 | else |
1505 | Interpolation.Lerp16 = Eval4Inputs; |
1506 | break; |
1507 | |
1508 | case 5: // 5 Inks |
1509 | if (IsFloat) |
1510 | Interpolation.LerpFloat = Eval5InputsFloat; |
1511 | else |
1512 | Interpolation.Lerp16 = Eval5Inputs; |
1513 | break; |
1514 | |
1515 | case 6: // 6 Inks |
1516 | if (IsFloat) |
1517 | Interpolation.LerpFloat = Eval6InputsFloat; |
1518 | else |
1519 | Interpolation.Lerp16 = Eval6Inputs; |
1520 | break; |
1521 | |
1522 | case 7: // 7 inks |
1523 | if (IsFloat) |
1524 | Interpolation.LerpFloat = Eval7InputsFloat; |
1525 | else |
1526 | Interpolation.Lerp16 = Eval7Inputs; |
1527 | break; |
1528 | |
1529 | case 8: // 8 inks |
1530 | if (IsFloat) |
1531 | Interpolation.LerpFloat = Eval8InputsFloat; |
1532 | else |
1533 | Interpolation.Lerp16 = Eval8Inputs; |
1534 | break; |
1535 | |
1536 | break; |
1537 | |
1538 | default: |
1539 | Interpolation.Lerp16 = NULL; |
1540 | } |
1541 | |
1542 | return Interpolation; |
1543 | } |
1544 | |