| 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | // This file is available under and governed by the GNU General Public |
| 26 | // License version 2 only, as published by the Free Software Foundation. |
| 27 | // However, the following notice accompanied the original version of this |
| 28 | // file: |
| 29 | // |
| 30 | //--------------------------------------------------------------------------------- |
| 31 | // |
| 32 | // Little Color Management System |
| 33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 34 | // |
| 35 | // Permission is hereby granted, free of charge, to any person obtaining |
| 36 | // a copy of this software and associated documentation files (the "Software"), |
| 37 | // to deal in the Software without restriction, including without limitation |
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 40 | // is furnished to do so, subject to the following conditions: |
| 41 | // |
| 42 | // The above copyright notice and this permission notice shall be included in |
| 43 | // all copies or substantial portions of the Software. |
| 44 | // |
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 52 | // |
| 53 | //--------------------------------------------------------------------------------- |
| 54 | // |
| 55 | |
| 56 | #include "lcms2_internal.h" |
| 57 | |
| 58 | // This module incorporates several interpolation routines, for 1 to 8 channels on input and |
| 59 | // up to 65535 channels on output. The user may change those by using the interpolation plug-in |
| 60 | |
| 61 | // Some people may want to compile as C++ with all warnings on, in this case make compiler silent |
| 62 | #ifdef _MSC_VER |
| 63 | # if (_MSC_VER >= 1400) |
| 64 | # pragma warning( disable : 4365 ) |
| 65 | # endif |
| 66 | #endif |
| 67 | |
| 68 | // Interpolation routines by default |
| 69 | static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); |
| 70 | |
| 71 | // This is the default factory |
| 72 | _cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL }; |
| 73 | |
| 74 | // The interpolation plug-in memory chunk allocator/dup |
| 75 | void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) |
| 76 | { |
| 77 | void* from; |
| 78 | |
| 79 | _cmsAssert(ctx != NULL); |
| 80 | |
| 81 | if (src != NULL) { |
| 82 | from = src ->chunks[InterpPlugin]; |
| 83 | } |
| 84 | else { |
| 85 | static _cmsInterpPluginChunkType InterpPluginChunk = { NULL }; |
| 86 | |
| 87 | from = &InterpPluginChunk; |
| 88 | } |
| 89 | |
| 90 | _cmsAssert(from != NULL); |
| 91 | ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); |
| 92 | } |
| 93 | |
| 94 | |
| 95 | // Main plug-in entry |
| 96 | cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) |
| 97 | { |
| 98 | cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; |
| 99 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
| 100 | |
| 101 | if (Data == NULL) { |
| 102 | |
| 103 | ptr ->Interpolators = NULL; |
| 104 | return TRUE; |
| 105 | } |
| 106 | |
| 107 | // Set replacement functions |
| 108 | ptr ->Interpolators = Plugin ->InterpolatorsFactory; |
| 109 | return TRUE; |
| 110 | } |
| 111 | |
| 112 | |
| 113 | // Set the interpolation method |
| 114 | cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) |
| 115 | { |
| 116 | _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); |
| 117 | |
| 118 | p ->Interpolation.Lerp16 = NULL; |
| 119 | |
| 120 | // Invoke factory, possibly in the Plug-in |
| 121 | if (ptr ->Interpolators != NULL) |
| 122 | p ->Interpolation = ptr->Interpolators(p -> nInputs, p ->nOutputs, p ->dwFlags); |
| 123 | |
| 124 | // If unsupported by the plug-in, go for the LittleCMS default. |
| 125 | // If happens only if an extern plug-in is being used |
| 126 | if (p ->Interpolation.Lerp16 == NULL) |
| 127 | p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); |
| 128 | |
| 129 | // Check for valid interpolator (we just check one member of the union) |
| 130 | if (p ->Interpolation.Lerp16 == NULL) { |
| 131 | return FALSE; |
| 132 | } |
| 133 | |
| 134 | return TRUE; |
| 135 | } |
| 136 | |
| 137 | |
| 138 | // This function precalculates as many parameters as possible to speed up the interpolation. |
| 139 | cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, |
| 140 | const cmsUInt32Number nSamples[], |
| 141 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, |
| 142 | const void *Table, |
| 143 | cmsUInt32Number dwFlags) |
| 144 | { |
| 145 | cmsInterpParams* p; |
| 146 | cmsUInt32Number i; |
| 147 | |
| 148 | // Check for maximum inputs |
| 149 | if (InputChan > MAX_INPUT_DIMENSIONS) { |
| 150 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , InputChan, MAX_INPUT_DIMENSIONS); |
| 151 | return NULL; |
| 152 | } |
| 153 | |
| 154 | // Creates an empty object |
| 155 | p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); |
| 156 | if (p == NULL) return NULL; |
| 157 | |
| 158 | // Keep original parameters |
| 159 | p -> dwFlags = dwFlags; |
| 160 | p -> nInputs = InputChan; |
| 161 | p -> nOutputs = OutputChan; |
| 162 | p ->Table = Table; |
| 163 | p ->ContextID = ContextID; |
| 164 | |
| 165 | // Fill samples per input direction and domain (which is number of nodes minus one) |
| 166 | for (i=0; i < InputChan; i++) { |
| 167 | |
| 168 | p -> nSamples[i] = nSamples[i]; |
| 169 | p -> Domain[i] = nSamples[i] - 1; |
| 170 | } |
| 171 | |
| 172 | // Compute factors to apply to each component to index the grid array |
| 173 | p -> opta[0] = p -> nOutputs; |
| 174 | for (i=1; i < InputChan; i++) |
| 175 | p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; |
| 176 | |
| 177 | |
| 178 | if (!_cmsSetInterpolationRoutine(ContextID, p)) { |
| 179 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)" , InputChan, OutputChan); |
| 180 | _cmsFree(ContextID, p); |
| 181 | return NULL; |
| 182 | } |
| 183 | |
| 184 | // All seems ok |
| 185 | return p; |
| 186 | } |
| 187 | |
| 188 | |
| 189 | // This one is a wrapper on the anterior, but assuming all directions have same number of nodes |
| 190 | cmsInterpParams* CMSEXPORT _cmsComputeInterpParams(cmsContext ContextID, cmsUInt32Number nSamples, |
| 191 | cmsUInt32Number InputChan, cmsUInt32Number OutputChan, const void* Table, cmsUInt32Number dwFlags) |
| 192 | { |
| 193 | int i; |
| 194 | cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS]; |
| 195 | |
| 196 | // Fill the auxiliary array |
| 197 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
| 198 | Samples[i] = nSamples; |
| 199 | |
| 200 | // Call the extended function |
| 201 | return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); |
| 202 | } |
| 203 | |
| 204 | |
| 205 | // Free all associated memory |
| 206 | void CMSEXPORT _cmsFreeInterpParams(cmsInterpParams* p) |
| 207 | { |
| 208 | if (p != NULL) _cmsFree(p ->ContextID, p); |
| 209 | } |
| 210 | |
| 211 | |
| 212 | // Inline fixed point interpolation |
| 213 | cmsINLINE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) |
| 214 | { |
| 215 | cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; |
| 216 | dif = (dif >> 16) + l; |
| 217 | return (cmsUInt16Number) (dif); |
| 218 | } |
| 219 | |
| 220 | |
| 221 | // Linear interpolation (Fixed-point optimized) |
| 222 | static |
| 223 | void LinLerp1D(register const cmsUInt16Number Value[], |
| 224 | register cmsUInt16Number Output[], |
| 225 | register const cmsInterpParams* p) |
| 226 | { |
| 227 | cmsUInt16Number y1, y0; |
| 228 | int cell0, rest; |
| 229 | int val3; |
| 230 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
| 231 | |
| 232 | // if last value... |
| 233 | if (Value[0] == 0xffff) { |
| 234 | |
| 235 | Output[0] = LutTable[p -> Domain[0]]; |
| 236 | return; |
| 237 | } |
| 238 | |
| 239 | val3 = p -> Domain[0] * Value[0]; |
| 240 | val3 = _cmsToFixedDomain(val3); // To fixed 15.16 |
| 241 | |
| 242 | cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits |
| 243 | rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits |
| 244 | |
| 245 | y0 = LutTable[cell0]; |
| 246 | y1 = LutTable[cell0+1]; |
| 247 | |
| 248 | |
| 249 | Output[0] = LinearInterp(rest, y0, y1); |
| 250 | } |
| 251 | |
| 252 | // To prevent out of bounds indexing |
| 253 | cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v) |
| 254 | { |
| 255 | return ((v < 1.0e-9f) || isnan(v)) ? 0.0f : (v > 1.0f ? 1.0f : v); |
| 256 | } |
| 257 | |
| 258 | // Floating-point version of 1D interpolation |
| 259 | static |
| 260 | void LinLerp1Dfloat(const cmsFloat32Number Value[], |
| 261 | cmsFloat32Number Output[], |
| 262 | const cmsInterpParams* p) |
| 263 | { |
| 264 | cmsFloat32Number y1, y0; |
| 265 | cmsFloat32Number val2, rest; |
| 266 | int cell0, cell1; |
| 267 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
| 268 | |
| 269 | val2 = fclamp(Value[0]); |
| 270 | |
| 271 | // if last value... |
| 272 | if (val2 == 1.0) { |
| 273 | Output[0] = LutTable[p -> Domain[0]]; |
| 274 | return; |
| 275 | } |
| 276 | |
| 277 | val2 *= p -> Domain[0]; |
| 278 | |
| 279 | cell0 = (int) floor(val2); |
| 280 | cell1 = (int) ceil(val2); |
| 281 | |
| 282 | // Rest is 16 LSB bits |
| 283 | rest = val2 - cell0; |
| 284 | |
| 285 | y0 = LutTable[cell0] ; |
| 286 | y1 = LutTable[cell1] ; |
| 287 | |
| 288 | Output[0] = y0 + (y1 - y0) * rest; |
| 289 | } |
| 290 | |
| 291 | |
| 292 | |
| 293 | // Eval gray LUT having only one input channel |
| 294 | static |
| 295 | void Eval1Input(register const cmsUInt16Number Input[], |
| 296 | register cmsUInt16Number Output[], |
| 297 | register const cmsInterpParams* p16) |
| 298 | { |
| 299 | cmsS15Fixed16Number fk; |
| 300 | cmsS15Fixed16Number k0, k1, rk, K0, K1; |
| 301 | int v; |
| 302 | cmsUInt32Number OutChan; |
| 303 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
| 304 | |
| 305 | v = Input[0] * p16 -> Domain[0]; |
| 306 | fk = _cmsToFixedDomain(v); |
| 307 | |
| 308 | k0 = FIXED_TO_INT(fk); |
| 309 | rk = (cmsUInt16Number) FIXED_REST_TO_INT(fk); |
| 310 | |
| 311 | k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); |
| 312 | |
| 313 | K0 = p16 -> opta[0] * k0; |
| 314 | K1 = p16 -> opta[0] * k1; |
| 315 | |
| 316 | for (OutChan=0; OutChan < p16->nOutputs; OutChan++) { |
| 317 | |
| 318 | Output[OutChan] = LinearInterp(rk, LutTable[K0+OutChan], LutTable[K1+OutChan]); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | |
| 323 | |
| 324 | // Eval gray LUT having only one input channel |
| 325 | static |
| 326 | void Eval1InputFloat(const cmsFloat32Number Value[], |
| 327 | cmsFloat32Number Output[], |
| 328 | const cmsInterpParams* p) |
| 329 | { |
| 330 | cmsFloat32Number y1, y0; |
| 331 | cmsFloat32Number val2, rest; |
| 332 | int cell0, cell1; |
| 333 | cmsUInt32Number OutChan; |
| 334 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
| 335 | |
| 336 | val2 = fclamp(Value[0]); |
| 337 | |
| 338 | // if last value... |
| 339 | if (val2 == 1.0) { |
| 340 | Output[0] = LutTable[p -> Domain[0]]; |
| 341 | return; |
| 342 | } |
| 343 | |
| 344 | val2 *= p -> Domain[0]; |
| 345 | |
| 346 | cell0 = (int) floor(val2); |
| 347 | cell1 = (int) ceil(val2); |
| 348 | |
| 349 | // Rest is 16 LSB bits |
| 350 | rest = val2 - cell0; |
| 351 | |
| 352 | cell0 *= p -> opta[0]; |
| 353 | cell1 *= p -> opta[0]; |
| 354 | |
| 355 | for (OutChan=0; OutChan < p->nOutputs; OutChan++) { |
| 356 | |
| 357 | y0 = LutTable[cell0 + OutChan] ; |
| 358 | y1 = LutTable[cell1 + OutChan] ; |
| 359 | |
| 360 | Output[OutChan] = y0 + (y1 - y0) * rest; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | // Bilinear interpolation (16 bits) - cmsFloat32Number version |
| 365 | static |
| 366 | void BilinearInterpFloat(const cmsFloat32Number Input[], |
| 367 | cmsFloat32Number Output[], |
| 368 | const cmsInterpParams* p) |
| 369 | |
| 370 | { |
| 371 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
| 372 | # define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
| 373 | |
| 374 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
| 375 | cmsFloat32Number px, py; |
| 376 | int x0, y0, |
| 377 | X0, Y0, X1, Y1; |
| 378 | int TotalOut, OutChan; |
| 379 | cmsFloat32Number fx, fy, |
| 380 | d00, d01, d10, d11, |
| 381 | dx0, dx1, |
| 382 | dxy; |
| 383 | |
| 384 | TotalOut = p -> nOutputs; |
| 385 | px = fclamp(Input[0]) * p->Domain[0]; |
| 386 | py = fclamp(Input[1]) * p->Domain[1]; |
| 387 | |
| 388 | x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; |
| 389 | y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; |
| 390 | |
| 391 | X0 = p -> opta[1] * x0; |
| 392 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[1]); |
| 393 | |
| 394 | Y0 = p -> opta[0] * y0; |
| 395 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[0]); |
| 396 | |
| 397 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
| 398 | |
| 399 | d00 = DENS(X0, Y0); |
| 400 | d01 = DENS(X0, Y1); |
| 401 | d10 = DENS(X1, Y0); |
| 402 | d11 = DENS(X1, Y1); |
| 403 | |
| 404 | dx0 = LERP(fx, d00, d10); |
| 405 | dx1 = LERP(fx, d01, d11); |
| 406 | |
| 407 | dxy = LERP(fy, dx0, dx1); |
| 408 | |
| 409 | Output[OutChan] = dxy; |
| 410 | } |
| 411 | |
| 412 | |
| 413 | # undef LERP |
| 414 | # undef DENS |
| 415 | } |
| 416 | |
| 417 | // Bilinear interpolation (16 bits) - optimized version |
| 418 | static |
| 419 | void BilinearInterp16(register const cmsUInt16Number Input[], |
| 420 | register cmsUInt16Number Output[], |
| 421 | register const cmsInterpParams* p) |
| 422 | |
| 423 | { |
| 424 | #define DENS(i,j) (LutTable[(i)+(j)+OutChan]) |
| 425 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
| 426 | |
| 427 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
| 428 | int OutChan, TotalOut; |
| 429 | cmsS15Fixed16Number fx, fy; |
| 430 | register int rx, ry; |
| 431 | int x0, y0; |
| 432 | register int X0, X1, Y0, Y1; |
| 433 | int d00, d01, d10, d11, |
| 434 | dx0, dx1, |
| 435 | dxy; |
| 436 | |
| 437 | TotalOut = p -> nOutputs; |
| 438 | |
| 439 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
| 440 | x0 = FIXED_TO_INT(fx); |
| 441 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
| 442 | |
| 443 | |
| 444 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
| 445 | y0 = FIXED_TO_INT(fy); |
| 446 | ry = FIXED_REST_TO_INT(fy); |
| 447 | |
| 448 | |
| 449 | X0 = p -> opta[1] * x0; |
| 450 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); |
| 451 | |
| 452 | Y0 = p -> opta[0] * y0; |
| 453 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); |
| 454 | |
| 455 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
| 456 | |
| 457 | d00 = DENS(X0, Y0); |
| 458 | d01 = DENS(X0, Y1); |
| 459 | d10 = DENS(X1, Y0); |
| 460 | d11 = DENS(X1, Y1); |
| 461 | |
| 462 | dx0 = LERP(rx, d00, d10); |
| 463 | dx1 = LERP(rx, d01, d11); |
| 464 | |
| 465 | dxy = LERP(ry, dx0, dx1); |
| 466 | |
| 467 | Output[OutChan] = (cmsUInt16Number) dxy; |
| 468 | } |
| 469 | |
| 470 | |
| 471 | # undef LERP |
| 472 | # undef DENS |
| 473 | } |
| 474 | |
| 475 | |
| 476 | // Trilinear interpolation (16 bits) - cmsFloat32Number version |
| 477 | static |
| 478 | void TrilinearInterpFloat(const cmsFloat32Number Input[], |
| 479 | cmsFloat32Number Output[], |
| 480 | const cmsInterpParams* p) |
| 481 | |
| 482 | { |
| 483 | # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) |
| 484 | # define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| 485 | |
| 486 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; |
| 487 | cmsFloat32Number px, py, pz; |
| 488 | int x0, y0, z0, |
| 489 | X0, Y0, Z0, X1, Y1, Z1; |
| 490 | int TotalOut, OutChan; |
| 491 | cmsFloat32Number fx, fy, fz, |
| 492 | d000, d001, d010, d011, |
| 493 | d100, d101, d110, d111, |
| 494 | dx00, dx01, dx10, dx11, |
| 495 | dxy0, dxy1, dxyz; |
| 496 | |
| 497 | TotalOut = p -> nOutputs; |
| 498 | |
| 499 | // We need some clipping here |
| 500 | px = fclamp(Input[0]) * p->Domain[0]; |
| 501 | py = fclamp(Input[1]) * p->Domain[1]; |
| 502 | pz = fclamp(Input[2]) * p->Domain[2]; |
| 503 | |
| 504 | x0 = (int) floor(px); fx = px - (cmsFloat32Number) x0; // We need full floor funcionality here |
| 505 | y0 = (int) floor(py); fy = py - (cmsFloat32Number) y0; |
| 506 | z0 = (int) floor(pz); fz = pz - (cmsFloat32Number) z0; |
| 507 | |
| 508 | X0 = p -> opta[2] * x0; |
| 509 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
| 510 | |
| 511 | Y0 = p -> opta[1] * y0; |
| 512 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
| 513 | |
| 514 | Z0 = p -> opta[0] * z0; |
| 515 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
| 516 | |
| 517 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
| 518 | |
| 519 | d000 = DENS(X0, Y0, Z0); |
| 520 | d001 = DENS(X0, Y0, Z1); |
| 521 | d010 = DENS(X0, Y1, Z0); |
| 522 | d011 = DENS(X0, Y1, Z1); |
| 523 | |
| 524 | d100 = DENS(X1, Y0, Z0); |
| 525 | d101 = DENS(X1, Y0, Z1); |
| 526 | d110 = DENS(X1, Y1, Z0); |
| 527 | d111 = DENS(X1, Y1, Z1); |
| 528 | |
| 529 | |
| 530 | dx00 = LERP(fx, d000, d100); |
| 531 | dx01 = LERP(fx, d001, d101); |
| 532 | dx10 = LERP(fx, d010, d110); |
| 533 | dx11 = LERP(fx, d011, d111); |
| 534 | |
| 535 | dxy0 = LERP(fy, dx00, dx10); |
| 536 | dxy1 = LERP(fy, dx01, dx11); |
| 537 | |
| 538 | dxyz = LERP(fz, dxy0, dxy1); |
| 539 | |
| 540 | Output[OutChan] = dxyz; |
| 541 | } |
| 542 | |
| 543 | |
| 544 | # undef LERP |
| 545 | # undef DENS |
| 546 | } |
| 547 | |
| 548 | // Trilinear interpolation (16 bits) - optimized version |
| 549 | static |
| 550 | void TrilinearInterp16(register const cmsUInt16Number Input[], |
| 551 | register cmsUInt16Number Output[], |
| 552 | register const cmsInterpParams* p) |
| 553 | |
| 554 | { |
| 555 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| 556 | #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) |
| 557 | |
| 558 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; |
| 559 | int OutChan, TotalOut; |
| 560 | cmsS15Fixed16Number fx, fy, fz; |
| 561 | register int rx, ry, rz; |
| 562 | int x0, y0, z0; |
| 563 | register int X0, X1, Y0, Y1, Z0, Z1; |
| 564 | int d000, d001, d010, d011, |
| 565 | d100, d101, d110, d111, |
| 566 | dx00, dx01, dx10, dx11, |
| 567 | dxy0, dxy1, dxyz; |
| 568 | |
| 569 | TotalOut = p -> nOutputs; |
| 570 | |
| 571 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
| 572 | x0 = FIXED_TO_INT(fx); |
| 573 | rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain |
| 574 | |
| 575 | |
| 576 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
| 577 | y0 = FIXED_TO_INT(fy); |
| 578 | ry = FIXED_REST_TO_INT(fy); |
| 579 | |
| 580 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
| 581 | z0 = FIXED_TO_INT(fz); |
| 582 | rz = FIXED_REST_TO_INT(fz); |
| 583 | |
| 584 | |
| 585 | X0 = p -> opta[2] * x0; |
| 586 | X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
| 587 | |
| 588 | Y0 = p -> opta[1] * y0; |
| 589 | Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
| 590 | |
| 591 | Z0 = p -> opta[0] * z0; |
| 592 | Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
| 593 | |
| 594 | for (OutChan = 0; OutChan < TotalOut; OutChan++) { |
| 595 | |
| 596 | d000 = DENS(X0, Y0, Z0); |
| 597 | d001 = DENS(X0, Y0, Z1); |
| 598 | d010 = DENS(X0, Y1, Z0); |
| 599 | d011 = DENS(X0, Y1, Z1); |
| 600 | |
| 601 | d100 = DENS(X1, Y0, Z0); |
| 602 | d101 = DENS(X1, Y0, Z1); |
| 603 | d110 = DENS(X1, Y1, Z0); |
| 604 | d111 = DENS(X1, Y1, Z1); |
| 605 | |
| 606 | |
| 607 | dx00 = LERP(rx, d000, d100); |
| 608 | dx01 = LERP(rx, d001, d101); |
| 609 | dx10 = LERP(rx, d010, d110); |
| 610 | dx11 = LERP(rx, d011, d111); |
| 611 | |
| 612 | dxy0 = LERP(ry, dx00, dx10); |
| 613 | dxy1 = LERP(ry, dx01, dx11); |
| 614 | |
| 615 | dxyz = LERP(rz, dxy0, dxy1); |
| 616 | |
| 617 | Output[OutChan] = (cmsUInt16Number) dxyz; |
| 618 | } |
| 619 | |
| 620 | |
| 621 | # undef LERP |
| 622 | # undef DENS |
| 623 | } |
| 624 | |
| 625 | |
| 626 | // Tetrahedral interpolation, using Sakamoto algorithm. |
| 627 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| 628 | static |
| 629 | void TetrahedralInterpFloat(const cmsFloat32Number Input[], |
| 630 | cmsFloat32Number Output[], |
| 631 | const cmsInterpParams* p) |
| 632 | { |
| 633 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 634 | cmsFloat32Number px, py, pz; |
| 635 | int x0, y0, z0, |
| 636 | X0, Y0, Z0, X1, Y1, Z1; |
| 637 | cmsFloat32Number rx, ry, rz; |
| 638 | cmsFloat32Number c0, c1=0, c2=0, c3=0; |
| 639 | int OutChan, TotalOut; |
| 640 | |
| 641 | TotalOut = p -> nOutputs; |
| 642 | |
| 643 | // We need some clipping here |
| 644 | px = fclamp(Input[0]) * p->Domain[0]; |
| 645 | py = fclamp(Input[1]) * p->Domain[1]; |
| 646 | pz = fclamp(Input[2]) * p->Domain[2]; |
| 647 | |
| 648 | x0 = (int) floor(px); rx = (px - (cmsFloat32Number) x0); // We need full floor functionality here |
| 649 | y0 = (int) floor(py); ry = (py - (cmsFloat32Number) y0); |
| 650 | z0 = (int) floor(pz); rz = (pz - (cmsFloat32Number) z0); |
| 651 | |
| 652 | |
| 653 | X0 = p -> opta[2] * x0; |
| 654 | X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); |
| 655 | |
| 656 | Y0 = p -> opta[1] * y0; |
| 657 | Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); |
| 658 | |
| 659 | Z0 = p -> opta[0] * z0; |
| 660 | Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); |
| 661 | |
| 662 | for (OutChan=0; OutChan < TotalOut; OutChan++) { |
| 663 | |
| 664 | // These are the 6 Tetrahedral |
| 665 | |
| 666 | c0 = DENS(X0, Y0, Z0); |
| 667 | |
| 668 | if (rx >= ry && ry >= rz) { |
| 669 | |
| 670 | c1 = DENS(X1, Y0, Z0) - c0; |
| 671 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
| 672 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 673 | |
| 674 | } |
| 675 | else |
| 676 | if (rx >= rz && rz >= ry) { |
| 677 | |
| 678 | c1 = DENS(X1, Y0, Z0) - c0; |
| 679 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 680 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
| 681 | |
| 682 | } |
| 683 | else |
| 684 | if (rz >= rx && rx >= ry) { |
| 685 | |
| 686 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
| 687 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 688 | c3 = DENS(X0, Y0, Z1) - c0; |
| 689 | |
| 690 | } |
| 691 | else |
| 692 | if (ry >= rx && rx >= rz) { |
| 693 | |
| 694 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
| 695 | c2 = DENS(X0, Y1, Z0) - c0; |
| 696 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 697 | |
| 698 | } |
| 699 | else |
| 700 | if (ry >= rz && rz >= rx) { |
| 701 | |
| 702 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 703 | c2 = DENS(X0, Y1, Z0) - c0; |
| 704 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
| 705 | |
| 706 | } |
| 707 | else |
| 708 | if (rz >= ry && ry >= rx) { |
| 709 | |
| 710 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 711 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
| 712 | c3 = DENS(X0, Y0, Z1) - c0; |
| 713 | |
| 714 | } |
| 715 | else { |
| 716 | c1 = c2 = c3 = 0; |
| 717 | } |
| 718 | |
| 719 | Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; |
| 720 | } |
| 721 | |
| 722 | } |
| 723 | |
| 724 | #undef DENS |
| 725 | |
| 726 | |
| 727 | |
| 728 | |
| 729 | static |
| 730 | void TetrahedralInterp16(register const cmsUInt16Number Input[], |
| 731 | register cmsUInt16Number Output[], |
| 732 | register const cmsInterpParams* p) |
| 733 | { |
| 734 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; |
| 735 | cmsS15Fixed16Number fx, fy, fz; |
| 736 | cmsS15Fixed16Number rx, ry, rz; |
| 737 | int x0, y0, z0; |
| 738 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
| 739 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
| 740 | cmsUInt32Number TotalOut = p -> nOutputs; |
| 741 | |
| 742 | fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); |
| 743 | fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); |
| 744 | fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); |
| 745 | |
| 746 | x0 = FIXED_TO_INT(fx); |
| 747 | y0 = FIXED_TO_INT(fy); |
| 748 | z0 = FIXED_TO_INT(fz); |
| 749 | |
| 750 | rx = FIXED_REST_TO_INT(fx); |
| 751 | ry = FIXED_REST_TO_INT(fy); |
| 752 | rz = FIXED_REST_TO_INT(fz); |
| 753 | |
| 754 | X0 = p -> opta[2] * x0; |
| 755 | X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); |
| 756 | |
| 757 | Y0 = p -> opta[1] * y0; |
| 758 | Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); |
| 759 | |
| 760 | Z0 = p -> opta[0] * z0; |
| 761 | Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); |
| 762 | |
| 763 | LutTable = &LutTable[X0+Y0+Z0]; |
| 764 | |
| 765 | // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) |
| 766 | // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 |
| 767 | // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 |
| 768 | // at the cost of being off by one at 7fff and 17ffe. |
| 769 | |
| 770 | if (rx >= ry) { |
| 771 | if (ry >= rz) { |
| 772 | Y1 += X1; |
| 773 | Z1 += Y1; |
| 774 | for (; TotalOut; TotalOut--) { |
| 775 | c1 = LutTable[X1]; |
| 776 | c2 = LutTable[Y1]; |
| 777 | c3 = LutTable[Z1]; |
| 778 | c0 = *LutTable++; |
| 779 | c3 -= c2; |
| 780 | c2 -= c1; |
| 781 | c1 -= c0; |
| 782 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 783 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 784 | } |
| 785 | } else if (rz >= rx) { |
| 786 | X1 += Z1; |
| 787 | Y1 += X1; |
| 788 | for (; TotalOut; TotalOut--) { |
| 789 | c1 = LutTable[X1]; |
| 790 | c2 = LutTable[Y1]; |
| 791 | c3 = LutTable[Z1]; |
| 792 | c0 = *LutTable++; |
| 793 | c2 -= c1; |
| 794 | c1 -= c3; |
| 795 | c3 -= c0; |
| 796 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 797 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 798 | } |
| 799 | } else { |
| 800 | Z1 += X1; |
| 801 | Y1 += Z1; |
| 802 | for (; TotalOut; TotalOut--) { |
| 803 | c1 = LutTable[X1]; |
| 804 | c2 = LutTable[Y1]; |
| 805 | c3 = LutTable[Z1]; |
| 806 | c0 = *LutTable++; |
| 807 | c2 -= c3; |
| 808 | c3 -= c1; |
| 809 | c1 -= c0; |
| 810 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 811 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 812 | } |
| 813 | } |
| 814 | } else { |
| 815 | if (rx >= rz) { |
| 816 | X1 += Y1; |
| 817 | Z1 += X1; |
| 818 | for (; TotalOut; TotalOut--) { |
| 819 | c1 = LutTable[X1]; |
| 820 | c2 = LutTable[Y1]; |
| 821 | c3 = LutTable[Z1]; |
| 822 | c0 = *LutTable++; |
| 823 | c3 -= c1; |
| 824 | c1 -= c2; |
| 825 | c2 -= c0; |
| 826 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 827 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 828 | } |
| 829 | } else if (ry >= rz) { |
| 830 | Z1 += Y1; |
| 831 | X1 += Z1; |
| 832 | for (; TotalOut; TotalOut--) { |
| 833 | c1 = LutTable[X1]; |
| 834 | c2 = LutTable[Y1]; |
| 835 | c3 = LutTable[Z1]; |
| 836 | c0 = *LutTable++; |
| 837 | c1 -= c3; |
| 838 | c3 -= c2; |
| 839 | c2 -= c0; |
| 840 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 841 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 842 | } |
| 843 | } else { |
| 844 | Y1 += Z1; |
| 845 | X1 += Y1; |
| 846 | for (; TotalOut; TotalOut--) { |
| 847 | c1 = LutTable[X1]; |
| 848 | c2 = LutTable[Y1]; |
| 849 | c3 = LutTable[Z1]; |
| 850 | c0 = *LutTable++; |
| 851 | c1 -= c2; |
| 852 | c2 -= c3; |
| 853 | c3 -= c0; |
| 854 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 855 | *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); |
| 856 | } |
| 857 | } |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | |
| 862 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| 863 | static |
| 864 | void Eval4Inputs(register const cmsUInt16Number Input[], |
| 865 | register cmsUInt16Number Output[], |
| 866 | register const cmsInterpParams* p16) |
| 867 | { |
| 868 | const cmsUInt16Number* LutTable; |
| 869 | cmsS15Fixed16Number fk; |
| 870 | cmsS15Fixed16Number k0, rk; |
| 871 | int K0, K1; |
| 872 | cmsS15Fixed16Number fx, fy, fz; |
| 873 | cmsS15Fixed16Number rx, ry, rz; |
| 874 | int x0, y0, z0; |
| 875 | cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
| 876 | cmsUInt32Number i; |
| 877 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
| 878 | cmsUInt32Number OutChan; |
| 879 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 880 | |
| 881 | |
| 882 | fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); |
| 883 | fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); |
| 884 | fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); |
| 885 | fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); |
| 886 | |
| 887 | k0 = FIXED_TO_INT(fk); |
| 888 | x0 = FIXED_TO_INT(fx); |
| 889 | y0 = FIXED_TO_INT(fy); |
| 890 | z0 = FIXED_TO_INT(fz); |
| 891 | |
| 892 | rk = FIXED_REST_TO_INT(fk); |
| 893 | rx = FIXED_REST_TO_INT(fx); |
| 894 | ry = FIXED_REST_TO_INT(fy); |
| 895 | rz = FIXED_REST_TO_INT(fz); |
| 896 | |
| 897 | K0 = p16 -> opta[3] * k0; |
| 898 | K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); |
| 899 | |
| 900 | X0 = p16 -> opta[2] * x0; |
| 901 | X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); |
| 902 | |
| 903 | Y0 = p16 -> opta[1] * y0; |
| 904 | Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); |
| 905 | |
| 906 | Z0 = p16 -> opta[0] * z0; |
| 907 | Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); |
| 908 | |
| 909 | LutTable = (cmsUInt16Number*) p16 -> Table; |
| 910 | LutTable += K0; |
| 911 | |
| 912 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
| 913 | |
| 914 | c0 = DENS(X0, Y0, Z0); |
| 915 | |
| 916 | if (rx >= ry && ry >= rz) { |
| 917 | |
| 918 | c1 = DENS(X1, Y0, Z0) - c0; |
| 919 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
| 920 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 921 | |
| 922 | } |
| 923 | else |
| 924 | if (rx >= rz && rz >= ry) { |
| 925 | |
| 926 | c1 = DENS(X1, Y0, Z0) - c0; |
| 927 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 928 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
| 929 | |
| 930 | } |
| 931 | else |
| 932 | if (rz >= rx && rx >= ry) { |
| 933 | |
| 934 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
| 935 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 936 | c3 = DENS(X0, Y0, Z1) - c0; |
| 937 | |
| 938 | } |
| 939 | else |
| 940 | if (ry >= rx && rx >= rz) { |
| 941 | |
| 942 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
| 943 | c2 = DENS(X0, Y1, Z0) - c0; |
| 944 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 945 | |
| 946 | } |
| 947 | else |
| 948 | if (ry >= rz && rz >= rx) { |
| 949 | |
| 950 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 951 | c2 = DENS(X0, Y1, Z0) - c0; |
| 952 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
| 953 | |
| 954 | } |
| 955 | else |
| 956 | if (rz >= ry && ry >= rx) { |
| 957 | |
| 958 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 959 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
| 960 | c3 = DENS(X0, Y0, Z1) - c0; |
| 961 | |
| 962 | } |
| 963 | else { |
| 964 | c1 = c2 = c3 = 0; |
| 965 | } |
| 966 | |
| 967 | Rest = c1 * rx + c2 * ry + c3 * rz; |
| 968 | |
| 969 | Tmp1[OutChan] = (cmsUInt16Number)(c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
| 970 | } |
| 971 | |
| 972 | |
| 973 | LutTable = (cmsUInt16Number*) p16 -> Table; |
| 974 | LutTable += K1; |
| 975 | |
| 976 | for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { |
| 977 | |
| 978 | c0 = DENS(X0, Y0, Z0); |
| 979 | |
| 980 | if (rx >= ry && ry >= rz) { |
| 981 | |
| 982 | c1 = DENS(X1, Y0, Z0) - c0; |
| 983 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
| 984 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 985 | |
| 986 | } |
| 987 | else |
| 988 | if (rx >= rz && rz >= ry) { |
| 989 | |
| 990 | c1 = DENS(X1, Y0, Z0) - c0; |
| 991 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 992 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
| 993 | |
| 994 | } |
| 995 | else |
| 996 | if (rz >= rx && rx >= ry) { |
| 997 | |
| 998 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
| 999 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 1000 | c3 = DENS(X0, Y0, Z1) - c0; |
| 1001 | |
| 1002 | } |
| 1003 | else |
| 1004 | if (ry >= rx && rx >= rz) { |
| 1005 | |
| 1006 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
| 1007 | c2 = DENS(X0, Y1, Z0) - c0; |
| 1008 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 1009 | |
| 1010 | } |
| 1011 | else |
| 1012 | if (ry >= rz && rz >= rx) { |
| 1013 | |
| 1014 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 1015 | c2 = DENS(X0, Y1, Z0) - c0; |
| 1016 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
| 1017 | |
| 1018 | } |
| 1019 | else |
| 1020 | if (rz >= ry && ry >= rx) { |
| 1021 | |
| 1022 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 1023 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
| 1024 | c3 = DENS(X0, Y0, Z1) - c0; |
| 1025 | |
| 1026 | } |
| 1027 | else { |
| 1028 | c1 = c2 = c3 = 0; |
| 1029 | } |
| 1030 | |
| 1031 | Rest = c1 * rx + c2 * ry + c3 * rz; |
| 1032 | |
| 1033 | Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); |
| 1034 | } |
| 1035 | |
| 1036 | |
| 1037 | |
| 1038 | for (i=0; i < p16 -> nOutputs; i++) { |
| 1039 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
| 1040 | } |
| 1041 | } |
| 1042 | #undef DENS |
| 1043 | |
| 1044 | |
| 1045 | // For more that 3 inputs (i.e., CMYK) |
| 1046 | // evaluate two 3-dimensional interpolations and then linearly interpolate between them. |
| 1047 | |
| 1048 | |
| 1049 | static |
| 1050 | void Eval4InputsFloat(const cmsFloat32Number Input[], |
| 1051 | cmsFloat32Number Output[], |
| 1052 | const cmsInterpParams* p) |
| 1053 | { |
| 1054 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 1055 | cmsFloat32Number rest; |
| 1056 | cmsFloat32Number pk; |
| 1057 | int k0, K0, K1; |
| 1058 | const cmsFloat32Number* T; |
| 1059 | cmsUInt32Number i; |
| 1060 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1061 | cmsInterpParams p1; |
| 1062 | |
| 1063 | pk = fclamp(Input[0]) * p->Domain[0]; |
| 1064 | k0 = _cmsQuickFloor(pk); |
| 1065 | rest = pk - (cmsFloat32Number) k0; |
| 1066 | |
| 1067 | K0 = p -> opta[3] * k0; |
| 1068 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[3]); |
| 1069 | |
| 1070 | p1 = *p; |
| 1071 | memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); |
| 1072 | |
| 1073 | T = LutTable + K0; |
| 1074 | p1.Table = T; |
| 1075 | |
| 1076 | TetrahedralInterpFloat(Input + 1, Tmp1, &p1); |
| 1077 | |
| 1078 | T = LutTable + K1; |
| 1079 | p1.Table = T; |
| 1080 | TetrahedralInterpFloat(Input + 1, Tmp2, &p1); |
| 1081 | |
| 1082 | for (i=0; i < p -> nOutputs; i++) |
| 1083 | { |
| 1084 | cmsFloat32Number y0 = Tmp1[i]; |
| 1085 | cmsFloat32Number y1 = Tmp2[i]; |
| 1086 | |
| 1087 | Output[i] = y0 + (y1 - y0) * rest; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | |
| 1092 | static |
| 1093 | void Eval5Inputs(register const cmsUInt16Number Input[], |
| 1094 | register cmsUInt16Number Output[], |
| 1095 | |
| 1096 | register const cmsInterpParams* p16) |
| 1097 | { |
| 1098 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
| 1099 | cmsS15Fixed16Number fk; |
| 1100 | cmsS15Fixed16Number k0, rk; |
| 1101 | int K0, K1; |
| 1102 | const cmsUInt16Number* T; |
| 1103 | cmsUInt32Number i; |
| 1104 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1105 | cmsInterpParams p1; |
| 1106 | |
| 1107 | |
| 1108 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
| 1109 | k0 = FIXED_TO_INT(fk); |
| 1110 | rk = FIXED_REST_TO_INT(fk); |
| 1111 | |
| 1112 | K0 = p16 -> opta[4] * k0; |
| 1113 | K1 = p16 -> opta[4] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
| 1114 | |
| 1115 | p1 = *p16; |
| 1116 | memmove(&p1.Domain[0], &p16 ->Domain[1], 4*sizeof(cmsUInt32Number)); |
| 1117 | |
| 1118 | T = LutTable + K0; |
| 1119 | p1.Table = T; |
| 1120 | |
| 1121 | Eval4Inputs(Input + 1, Tmp1, &p1); |
| 1122 | |
| 1123 | T = LutTable + K1; |
| 1124 | p1.Table = T; |
| 1125 | |
| 1126 | Eval4Inputs(Input + 1, Tmp2, &p1); |
| 1127 | |
| 1128 | for (i=0; i < p16 -> nOutputs; i++) { |
| 1129 | |
| 1130 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
| 1131 | } |
| 1132 | |
| 1133 | } |
| 1134 | |
| 1135 | |
| 1136 | static |
| 1137 | void Eval5InputsFloat(const cmsFloat32Number Input[], |
| 1138 | cmsFloat32Number Output[], |
| 1139 | const cmsInterpParams* p) |
| 1140 | { |
| 1141 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 1142 | cmsFloat32Number rest; |
| 1143 | cmsFloat32Number pk; |
| 1144 | int k0, K0, K1; |
| 1145 | const cmsFloat32Number* T; |
| 1146 | cmsUInt32Number i; |
| 1147 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1148 | cmsInterpParams p1; |
| 1149 | |
| 1150 | pk = fclamp(Input[0]) * p->Domain[0]; |
| 1151 | k0 = _cmsQuickFloor(pk); |
| 1152 | rest = pk - (cmsFloat32Number) k0; |
| 1153 | |
| 1154 | K0 = p -> opta[4] * k0; |
| 1155 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[4]); |
| 1156 | |
| 1157 | p1 = *p; |
| 1158 | memmove(&p1.Domain[0], &p ->Domain[1], 4*sizeof(cmsUInt32Number)); |
| 1159 | |
| 1160 | T = LutTable + K0; |
| 1161 | p1.Table = T; |
| 1162 | |
| 1163 | Eval4InputsFloat(Input + 1, Tmp1, &p1); |
| 1164 | |
| 1165 | T = LutTable + K1; |
| 1166 | p1.Table = T; |
| 1167 | |
| 1168 | Eval4InputsFloat(Input + 1, Tmp2, &p1); |
| 1169 | |
| 1170 | for (i=0; i < p -> nOutputs; i++) { |
| 1171 | |
| 1172 | cmsFloat32Number y0 = Tmp1[i]; |
| 1173 | cmsFloat32Number y1 = Tmp2[i]; |
| 1174 | |
| 1175 | Output[i] = y0 + (y1 - y0) * rest; |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | |
| 1181 | static |
| 1182 | void Eval6Inputs(register const cmsUInt16Number Input[], |
| 1183 | register cmsUInt16Number Output[], |
| 1184 | register const cmsInterpParams* p16) |
| 1185 | { |
| 1186 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
| 1187 | cmsS15Fixed16Number fk; |
| 1188 | cmsS15Fixed16Number k0, rk; |
| 1189 | int K0, K1; |
| 1190 | const cmsUInt16Number* T; |
| 1191 | cmsUInt32Number i; |
| 1192 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1193 | cmsInterpParams p1; |
| 1194 | |
| 1195 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
| 1196 | k0 = FIXED_TO_INT(fk); |
| 1197 | rk = FIXED_REST_TO_INT(fk); |
| 1198 | |
| 1199 | K0 = p16 -> opta[5] * k0; |
| 1200 | K1 = p16 -> opta[5] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
| 1201 | |
| 1202 | p1 = *p16; |
| 1203 | memmove(&p1.Domain[0], &p16 ->Domain[1], 5*sizeof(cmsUInt32Number)); |
| 1204 | |
| 1205 | T = LutTable + K0; |
| 1206 | p1.Table = T; |
| 1207 | |
| 1208 | Eval5Inputs(Input + 1, Tmp1, &p1); |
| 1209 | |
| 1210 | T = LutTable + K1; |
| 1211 | p1.Table = T; |
| 1212 | |
| 1213 | Eval5Inputs(Input + 1, Tmp2, &p1); |
| 1214 | |
| 1215 | for (i=0; i < p16 -> nOutputs; i++) { |
| 1216 | |
| 1217 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
| 1218 | } |
| 1219 | |
| 1220 | } |
| 1221 | |
| 1222 | |
| 1223 | static |
| 1224 | void Eval6InputsFloat(const cmsFloat32Number Input[], |
| 1225 | cmsFloat32Number Output[], |
| 1226 | const cmsInterpParams* p) |
| 1227 | { |
| 1228 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 1229 | cmsFloat32Number rest; |
| 1230 | cmsFloat32Number pk; |
| 1231 | int k0, K0, K1; |
| 1232 | const cmsFloat32Number* T; |
| 1233 | cmsUInt32Number i; |
| 1234 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1235 | cmsInterpParams p1; |
| 1236 | |
| 1237 | pk = fclamp(Input[0]) * p->Domain[0]; |
| 1238 | k0 = _cmsQuickFloor(pk); |
| 1239 | rest = pk - (cmsFloat32Number) k0; |
| 1240 | |
| 1241 | K0 = p -> opta[5] * k0; |
| 1242 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[5]); |
| 1243 | |
| 1244 | p1 = *p; |
| 1245 | memmove(&p1.Domain[0], &p ->Domain[1], 5*sizeof(cmsUInt32Number)); |
| 1246 | |
| 1247 | T = LutTable + K0; |
| 1248 | p1.Table = T; |
| 1249 | |
| 1250 | Eval5InputsFloat(Input + 1, Tmp1, &p1); |
| 1251 | |
| 1252 | T = LutTable + K1; |
| 1253 | p1.Table = T; |
| 1254 | |
| 1255 | Eval5InputsFloat(Input + 1, Tmp2, &p1); |
| 1256 | |
| 1257 | for (i=0; i < p -> nOutputs; i++) { |
| 1258 | |
| 1259 | cmsFloat32Number y0 = Tmp1[i]; |
| 1260 | cmsFloat32Number y1 = Tmp2[i]; |
| 1261 | |
| 1262 | Output[i] = y0 + (y1 - y0) * rest; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | |
| 1267 | static |
| 1268 | void Eval7Inputs(register const cmsUInt16Number Input[], |
| 1269 | register cmsUInt16Number Output[], |
| 1270 | register const cmsInterpParams* p16) |
| 1271 | { |
| 1272 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
| 1273 | cmsS15Fixed16Number fk; |
| 1274 | cmsS15Fixed16Number k0, rk; |
| 1275 | int K0, K1; |
| 1276 | const cmsUInt16Number* T; |
| 1277 | cmsUInt32Number i; |
| 1278 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1279 | cmsInterpParams p1; |
| 1280 | |
| 1281 | |
| 1282 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
| 1283 | k0 = FIXED_TO_INT(fk); |
| 1284 | rk = FIXED_REST_TO_INT(fk); |
| 1285 | |
| 1286 | K0 = p16 -> opta[6] * k0; |
| 1287 | K1 = p16 -> opta[6] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
| 1288 | |
| 1289 | p1 = *p16; |
| 1290 | memmove(&p1.Domain[0], &p16 ->Domain[1], 6*sizeof(cmsUInt32Number)); |
| 1291 | |
| 1292 | T = LutTable + K0; |
| 1293 | p1.Table = T; |
| 1294 | |
| 1295 | Eval6Inputs(Input + 1, Tmp1, &p1); |
| 1296 | |
| 1297 | T = LutTable + K1; |
| 1298 | p1.Table = T; |
| 1299 | |
| 1300 | Eval6Inputs(Input + 1, Tmp2, &p1); |
| 1301 | |
| 1302 | for (i=0; i < p16 -> nOutputs; i++) { |
| 1303 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | |
| 1308 | static |
| 1309 | void Eval7InputsFloat(const cmsFloat32Number Input[], |
| 1310 | cmsFloat32Number Output[], |
| 1311 | const cmsInterpParams* p) |
| 1312 | { |
| 1313 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 1314 | cmsFloat32Number rest; |
| 1315 | cmsFloat32Number pk; |
| 1316 | int k0, K0, K1; |
| 1317 | const cmsFloat32Number* T; |
| 1318 | cmsUInt32Number i; |
| 1319 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1320 | cmsInterpParams p1; |
| 1321 | |
| 1322 | pk = fclamp(Input[0]) * p->Domain[0]; |
| 1323 | k0 = _cmsQuickFloor(pk); |
| 1324 | rest = pk - (cmsFloat32Number) k0; |
| 1325 | |
| 1326 | K0 = p -> opta[6] * k0; |
| 1327 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[6]); |
| 1328 | |
| 1329 | p1 = *p; |
| 1330 | memmove(&p1.Domain[0], &p ->Domain[1], 6*sizeof(cmsUInt32Number)); |
| 1331 | |
| 1332 | T = LutTable + K0; |
| 1333 | p1.Table = T; |
| 1334 | |
| 1335 | Eval6InputsFloat(Input + 1, Tmp1, &p1); |
| 1336 | |
| 1337 | T = LutTable + K1; |
| 1338 | p1.Table = T; |
| 1339 | |
| 1340 | Eval6InputsFloat(Input + 1, Tmp2, &p1); |
| 1341 | |
| 1342 | |
| 1343 | for (i=0; i < p -> nOutputs; i++) { |
| 1344 | |
| 1345 | cmsFloat32Number y0 = Tmp1[i]; |
| 1346 | cmsFloat32Number y1 = Tmp2[i]; |
| 1347 | |
| 1348 | Output[i] = y0 + (y1 - y0) * rest; |
| 1349 | |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | static |
| 1354 | void Eval8Inputs(register const cmsUInt16Number Input[], |
| 1355 | register cmsUInt16Number Output[], |
| 1356 | register const cmsInterpParams* p16) |
| 1357 | { |
| 1358 | const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; |
| 1359 | cmsS15Fixed16Number fk; |
| 1360 | cmsS15Fixed16Number k0, rk; |
| 1361 | int K0, K1; |
| 1362 | const cmsUInt16Number* T; |
| 1363 | cmsUInt32Number i; |
| 1364 | cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1365 | cmsInterpParams p1; |
| 1366 | |
| 1367 | fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]); |
| 1368 | k0 = FIXED_TO_INT(fk); |
| 1369 | rk = FIXED_REST_TO_INT(fk); |
| 1370 | |
| 1371 | K0 = p16 -> opta[7] * k0; |
| 1372 | K1 = p16 -> opta[7] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0)); |
| 1373 | |
| 1374 | p1 = *p16; |
| 1375 | memmove(&p1.Domain[0], &p16 ->Domain[1], 7*sizeof(cmsUInt32Number)); |
| 1376 | |
| 1377 | T = LutTable + K0; |
| 1378 | p1.Table = T; |
| 1379 | |
| 1380 | Eval7Inputs(Input + 1, Tmp1, &p1); |
| 1381 | |
| 1382 | T = LutTable + K1; |
| 1383 | p1.Table = T; |
| 1384 | Eval7Inputs(Input + 1, Tmp2, &p1); |
| 1385 | |
| 1386 | for (i=0; i < p16 -> nOutputs; i++) { |
| 1387 | Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | |
| 1392 | |
| 1393 | static |
| 1394 | void Eval8InputsFloat(const cmsFloat32Number Input[], |
| 1395 | cmsFloat32Number Output[], |
| 1396 | const cmsInterpParams* p) |
| 1397 | { |
| 1398 | const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; |
| 1399 | cmsFloat32Number rest; |
| 1400 | cmsFloat32Number pk; |
| 1401 | int k0, K0, K1; |
| 1402 | const cmsFloat32Number* T; |
| 1403 | cmsUInt32Number i; |
| 1404 | cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; |
| 1405 | cmsInterpParams p1; |
| 1406 | |
| 1407 | pk = fclamp(Input[0]) * p->Domain[0]; |
| 1408 | k0 = _cmsQuickFloor(pk); |
| 1409 | rest = pk - (cmsFloat32Number) k0; |
| 1410 | |
| 1411 | K0 = p -> opta[7] * k0; |
| 1412 | K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[7]); |
| 1413 | |
| 1414 | p1 = *p; |
| 1415 | memmove(&p1.Domain[0], &p ->Domain[1], 7*sizeof(cmsUInt32Number)); |
| 1416 | |
| 1417 | T = LutTable + K0; |
| 1418 | p1.Table = T; |
| 1419 | |
| 1420 | Eval7InputsFloat(Input + 1, Tmp1, &p1); |
| 1421 | |
| 1422 | T = LutTable + K1; |
| 1423 | p1.Table = T; |
| 1424 | |
| 1425 | Eval7InputsFloat(Input + 1, Tmp2, &p1); |
| 1426 | |
| 1427 | |
| 1428 | for (i=0; i < p -> nOutputs; i++) { |
| 1429 | |
| 1430 | cmsFloat32Number y0 = Tmp1[i]; |
| 1431 | cmsFloat32Number y1 = Tmp2[i]; |
| 1432 | |
| 1433 | Output[i] = y0 + (y1 - y0) * rest; |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | // The default factory |
| 1438 | static |
| 1439 | cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) |
| 1440 | { |
| 1441 | |
| 1442 | cmsInterpFunction Interpolation; |
| 1443 | cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT); |
| 1444 | cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR); |
| 1445 | |
| 1446 | memset(&Interpolation, 0, sizeof(Interpolation)); |
| 1447 | |
| 1448 | // Safety check |
| 1449 | if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS) |
| 1450 | return Interpolation; |
| 1451 | |
| 1452 | switch (nInputChannels) { |
| 1453 | |
| 1454 | case 1: // Gray LUT / linear |
| 1455 | |
| 1456 | if (nOutputChannels == 1) { |
| 1457 | |
| 1458 | if (IsFloat) |
| 1459 | Interpolation.LerpFloat = LinLerp1Dfloat; |
| 1460 | else |
| 1461 | Interpolation.Lerp16 = LinLerp1D; |
| 1462 | |
| 1463 | } |
| 1464 | else { |
| 1465 | |
| 1466 | if (IsFloat) |
| 1467 | Interpolation.LerpFloat = Eval1InputFloat; |
| 1468 | else |
| 1469 | Interpolation.Lerp16 = Eval1Input; |
| 1470 | } |
| 1471 | break; |
| 1472 | |
| 1473 | case 2: // Duotone |
| 1474 | if (IsFloat) |
| 1475 | Interpolation.LerpFloat = BilinearInterpFloat; |
| 1476 | else |
| 1477 | Interpolation.Lerp16 = BilinearInterp16; |
| 1478 | break; |
| 1479 | |
| 1480 | case 3: // RGB et al |
| 1481 | |
| 1482 | if (IsTrilinear) { |
| 1483 | |
| 1484 | if (IsFloat) |
| 1485 | Interpolation.LerpFloat = TrilinearInterpFloat; |
| 1486 | else |
| 1487 | Interpolation.Lerp16 = TrilinearInterp16; |
| 1488 | } |
| 1489 | else { |
| 1490 | |
| 1491 | if (IsFloat) |
| 1492 | Interpolation.LerpFloat = TetrahedralInterpFloat; |
| 1493 | else { |
| 1494 | |
| 1495 | Interpolation.Lerp16 = TetrahedralInterp16; |
| 1496 | } |
| 1497 | } |
| 1498 | break; |
| 1499 | |
| 1500 | case 4: // CMYK lut |
| 1501 | |
| 1502 | if (IsFloat) |
| 1503 | Interpolation.LerpFloat = Eval4InputsFloat; |
| 1504 | else |
| 1505 | Interpolation.Lerp16 = Eval4Inputs; |
| 1506 | break; |
| 1507 | |
| 1508 | case 5: // 5 Inks |
| 1509 | if (IsFloat) |
| 1510 | Interpolation.LerpFloat = Eval5InputsFloat; |
| 1511 | else |
| 1512 | Interpolation.Lerp16 = Eval5Inputs; |
| 1513 | break; |
| 1514 | |
| 1515 | case 6: // 6 Inks |
| 1516 | if (IsFloat) |
| 1517 | Interpolation.LerpFloat = Eval6InputsFloat; |
| 1518 | else |
| 1519 | Interpolation.Lerp16 = Eval6Inputs; |
| 1520 | break; |
| 1521 | |
| 1522 | case 7: // 7 inks |
| 1523 | if (IsFloat) |
| 1524 | Interpolation.LerpFloat = Eval7InputsFloat; |
| 1525 | else |
| 1526 | Interpolation.Lerp16 = Eval7Inputs; |
| 1527 | break; |
| 1528 | |
| 1529 | case 8: // 8 inks |
| 1530 | if (IsFloat) |
| 1531 | Interpolation.LerpFloat = Eval8InputsFloat; |
| 1532 | else |
| 1533 | Interpolation.Lerp16 = Eval8Inputs; |
| 1534 | break; |
| 1535 | |
| 1536 | break; |
| 1537 | |
| 1538 | default: |
| 1539 | Interpolation.Lerp16 = NULL; |
| 1540 | } |
| 1541 | |
| 1542 | return Interpolation; |
| 1543 | } |
| 1544 | |