1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation. Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25// This file is available under and governed by the GNU General Public
26// License version 2 only, as published by the Free Software Foundation.
27// However, the following notice accompanied the original version of this
28// file:
29//
30//---------------------------------------------------------------------------------
31//
32// Little Color Management System
33// Copyright (c) 1998-2017 Marti Maria Saguer
34//
35// Permission is hereby granted, free of charge, to any person obtaining
36// a copy of this software and associated documentation files (the "Software"),
37// to deal in the Software without restriction, including without limitation
38// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39// and/or sell copies of the Software, and to permit persons to whom the Software
40// is furnished to do so, subject to the following conditions:
41//
42// The above copyright notice and this permission notice shall be included in
43// all copies or substantial portions of the Software.
44//
45// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52//
53//---------------------------------------------------------------------------------
54//
55
56#include "lcms2_internal.h"
57
58
59// Allocates an empty multi profile element
60cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
61 cmsStageSignature Type,
62 cmsUInt32Number InputChannels,
63 cmsUInt32Number OutputChannels,
64 _cmsStageEvalFn EvalPtr,
65 _cmsStageDupElemFn DupElemPtr,
66 _cmsStageFreeElemFn FreePtr,
67 void* Data)
68{
69 cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
70
71 if (ph == NULL) return NULL;
72
73
74 ph ->ContextID = ContextID;
75
76 ph ->Type = Type;
77 ph ->Implements = Type; // By default, no clue on what is implementing
78
79 ph ->InputChannels = InputChannels;
80 ph ->OutputChannels = OutputChannels;
81 ph ->EvalPtr = EvalPtr;
82 ph ->DupElemPtr = DupElemPtr;
83 ph ->FreePtr = FreePtr;
84 ph ->Data = Data;
85
86 return ph;
87}
88
89
90static
91void EvaluateIdentity(const cmsFloat32Number In[],
92 cmsFloat32Number Out[],
93 const cmsStage *mpe)
94{
95 memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
96}
97
98
99cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
100{
101 return _cmsStageAllocPlaceholder(ContextID,
102 cmsSigIdentityElemType,
103 nChannels, nChannels,
104 EvaluateIdentity,
105 NULL,
106 NULL,
107 NULL);
108 }
109
110// Conversion functions. From floating point to 16 bits
111static
112void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
113{
114 cmsUInt32Number i;
115
116 for (i=0; i < n; i++) {
117 Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
118 }
119}
120
121// From 16 bits to floating point
122static
123void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
124{
125 cmsUInt32Number i;
126
127 for (i=0; i < n; i++) {
128 Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
129 }
130}
131
132
133// This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
134// that conform the LUT. It should be called with the LUT, the number of expected elements and
135// then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
136// the function founds a match with current pipeline, it fills the pointers and returns TRUE
137// if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
138// the storage process.
139cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
140{
141 va_list args;
142 cmsUInt32Number i;
143 cmsStage* mpe;
144 cmsStageSignature Type;
145 void** ElemPtr;
146
147 // Make sure same number of elements
148 if (cmsPipelineStageCount(Lut) != n) return FALSE;
149
150 va_start(args, n);
151
152 // Iterate across asked types
153 mpe = Lut ->Elements;
154 for (i=0; i < n; i++) {
155
156 // Get asked type. cmsStageSignature is promoted to int by compiler
157 Type = (cmsStageSignature)va_arg(args, int);
158 if (mpe ->Type != Type) {
159
160 va_end(args); // Mismatch. We are done.
161 return FALSE;
162 }
163 mpe = mpe ->Next;
164 }
165
166 // Found a combination, fill pointers if not NULL
167 mpe = Lut ->Elements;
168 for (i=0; i < n; i++) {
169
170 ElemPtr = va_arg(args, void**);
171 if (ElemPtr != NULL)
172 *ElemPtr = mpe;
173
174 mpe = mpe ->Next;
175 }
176
177 va_end(args);
178 return TRUE;
179}
180
181// Below there are implementations for several types of elements. Each type may be implemented by a
182// evaluation function, a duplication function, a function to free resources and a constructor.
183
184// *************************************************************************************************
185// Type cmsSigCurveSetElemType (curves)
186// *************************************************************************************************
187
188cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
189{
190 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
191
192 return Data ->TheCurves;
193}
194
195static
196void EvaluateCurves(const cmsFloat32Number In[],
197 cmsFloat32Number Out[],
198 const cmsStage *mpe)
199{
200 _cmsStageToneCurvesData* Data;
201 cmsUInt32Number i;
202
203 _cmsAssert(mpe != NULL);
204
205 Data = (_cmsStageToneCurvesData*) mpe ->Data;
206 if (Data == NULL) return;
207
208 if (Data ->TheCurves == NULL) return;
209
210 for (i=0; i < Data ->nCurves; i++) {
211 Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
212 }
213}
214
215static
216void CurveSetElemTypeFree(cmsStage* mpe)
217{
218 _cmsStageToneCurvesData* Data;
219 cmsUInt32Number i;
220
221 _cmsAssert(mpe != NULL);
222
223 Data = (_cmsStageToneCurvesData*) mpe ->Data;
224 if (Data == NULL) return;
225
226 if (Data ->TheCurves != NULL) {
227 for (i=0; i < Data ->nCurves; i++) {
228 if (Data ->TheCurves[i] != NULL)
229 cmsFreeToneCurve(Data ->TheCurves[i]);
230 }
231 }
232 _cmsFree(mpe ->ContextID, Data ->TheCurves);
233 _cmsFree(mpe ->ContextID, Data);
234}
235
236
237static
238void* CurveSetDup(cmsStage* mpe)
239{
240 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
241 _cmsStageToneCurvesData* NewElem;
242 cmsUInt32Number i;
243
244 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
245 if (NewElem == NULL) return NULL;
246
247 NewElem ->nCurves = Data ->nCurves;
248 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
249
250 if (NewElem ->TheCurves == NULL) goto Error;
251
252 for (i=0; i < NewElem ->nCurves; i++) {
253
254 // Duplicate each curve. It may fail.
255 NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
256 if (NewElem ->TheCurves[i] == NULL) goto Error;
257
258
259 }
260 return (void*) NewElem;
261
262Error:
263
264 if (NewElem ->TheCurves != NULL) {
265 for (i=0; i < NewElem ->nCurves; i++) {
266 if (NewElem ->TheCurves[i])
267 cmsFreeToneCurve(NewElem ->TheCurves[i]);
268 }
269 }
270 _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
271 _cmsFree(mpe ->ContextID, NewElem);
272 return NULL;
273}
274
275
276// Curves == NULL forces identity curves
277cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
278{
279 cmsUInt32Number i;
280 _cmsStageToneCurvesData* NewElem;
281 cmsStage* NewMPE;
282
283
284 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
285 EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
286 if (NewMPE == NULL) return NULL;
287
288 NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
289 if (NewElem == NULL) {
290 cmsStageFree(NewMPE);
291 return NULL;
292 }
293
294 NewMPE ->Data = (void*) NewElem;
295
296 NewElem ->nCurves = nChannels;
297 NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
298 if (NewElem ->TheCurves == NULL) {
299 cmsStageFree(NewMPE);
300 return NULL;
301 }
302
303 for (i=0; i < nChannels; i++) {
304
305 if (Curves == NULL) {
306 NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
307 }
308 else {
309 NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
310 }
311
312 if (NewElem ->TheCurves[i] == NULL) {
313 cmsStageFree(NewMPE);
314 return NULL;
315 }
316
317 }
318
319 return NewMPE;
320}
321
322
323// Create a bunch of identity curves
324cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels)
325{
326 cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
327
328 if (mpe == NULL) return NULL;
329 mpe ->Implements = cmsSigIdentityElemType;
330 return mpe;
331}
332
333
334// *************************************************************************************************
335// Type cmsSigMatrixElemType (Matrices)
336// *************************************************************************************************
337
338
339// Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
340static
341void EvaluateMatrix(const cmsFloat32Number In[],
342 cmsFloat32Number Out[],
343 const cmsStage *mpe)
344{
345 cmsUInt32Number i, j;
346 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
347 cmsFloat64Number Tmp;
348
349 // Input is already in 0..1.0 notation
350 for (i=0; i < mpe ->OutputChannels; i++) {
351
352 Tmp = 0;
353 for (j=0; j < mpe->InputChannels; j++) {
354 Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
355 }
356
357 if (Data ->Offset != NULL)
358 Tmp += Data->Offset[i];
359
360 Out[i] = (cmsFloat32Number) Tmp;
361 }
362
363
364 // Output in 0..1.0 domain
365}
366
367
368// Duplicate a yet-existing matrix element
369static
370void* MatrixElemDup(cmsStage* mpe)
371{
372 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
373 _cmsStageMatrixData* NewElem;
374 cmsUInt32Number sz;
375
376 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
377 if (NewElem == NULL) return NULL;
378
379 sz = mpe ->InputChannels * mpe ->OutputChannels;
380
381 NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
382
383 if (Data ->Offset)
384 NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
385 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
386
387 return (void*) NewElem;
388}
389
390
391static
392void MatrixElemTypeFree(cmsStage* mpe)
393{
394 _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
395 if (Data == NULL)
396 return;
397 if (Data ->Double)
398 _cmsFree(mpe ->ContextID, Data ->Double);
399
400 if (Data ->Offset)
401 _cmsFree(mpe ->ContextID, Data ->Offset);
402
403 _cmsFree(mpe ->ContextID, mpe ->Data);
404}
405
406
407
408cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
409 const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
410{
411 cmsUInt32Number i, n;
412 _cmsStageMatrixData* NewElem;
413 cmsStage* NewMPE;
414
415 n = Rows * Cols;
416
417 // Check for overflow
418 if (n == 0) return NULL;
419 if (n >= UINT_MAX / Cols) return NULL;
420 if (n >= UINT_MAX / Rows) return NULL;
421 if (n < Rows || n < Cols) return NULL;
422
423 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
424 EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
425 if (NewMPE == NULL) return NULL;
426
427
428 NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
429 if (NewElem == NULL) return NULL;
430
431
432 NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
433
434 if (NewElem->Double == NULL) {
435 MatrixElemTypeFree(NewMPE);
436 return NULL;
437 }
438
439 for (i=0; i < n; i++) {
440 NewElem ->Double[i] = Matrix[i];
441 }
442
443
444 if (Offset != NULL) {
445
446 NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
447 if (NewElem->Offset == NULL) {
448 MatrixElemTypeFree(NewMPE);
449 return NULL;
450 }
451
452 for (i=0; i < Rows; i++) {
453 NewElem ->Offset[i] = Offset[i];
454 }
455
456 }
457
458 NewMPE ->Data = (void*) NewElem;
459 return NewMPE;
460}
461
462
463// *************************************************************************************************
464// Type cmsSigCLutElemType
465// *************************************************************************************************
466
467
468// Evaluate in true floating point
469static
470void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
471{
472 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
473
474 Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
475}
476
477
478// Convert to 16 bits, evaluate, and back to floating point
479static
480void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
481{
482 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
483 cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
484
485 _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
486 _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
487
488 FromFloatTo16(In, In16, mpe ->InputChannels);
489 Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
490 From16ToFloat(Out16, Out, mpe ->OutputChannels);
491}
492
493
494// Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
495static
496cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
497{
498 cmsUInt32Number rv, dim;
499
500 _cmsAssert(Dims != NULL);
501
502 for (rv = 1; b > 0; b--) {
503
504 dim = Dims[b-1];
505 if (dim == 0) return 0; // Error
506
507 rv *= dim;
508
509 // Check for overflow
510 if (rv > UINT_MAX / dim) return 0;
511 }
512
513 return rv;
514}
515
516static
517void* CLUTElemDup(cmsStage* mpe)
518{
519 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
520 _cmsStageCLutData* NewElem;
521
522
523 NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
524 if (NewElem == NULL) return NULL;
525
526 NewElem ->nEntries = Data ->nEntries;
527 NewElem ->HasFloatValues = Data ->HasFloatValues;
528
529 if (Data ->Tab.T) {
530
531 if (Data ->HasFloatValues) {
532 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
533 if (NewElem ->Tab.TFloat == NULL)
534 goto Error;
535 } else {
536 NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
537 if (NewElem ->Tab.T == NULL)
538 goto Error;
539 }
540 }
541
542 NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
543 Data ->Params ->nSamples,
544 Data ->Params ->nInputs,
545 Data ->Params ->nOutputs,
546 NewElem ->Tab.T,
547 Data ->Params ->dwFlags);
548 if (NewElem->Params != NULL)
549 return (void*) NewElem;
550 Error:
551 if (NewElem->Tab.T)
552 // This works for both types
553 _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
554 _cmsFree(mpe ->ContextID, NewElem);
555 return NULL;
556}
557
558
559static
560void CLutElemTypeFree(cmsStage* mpe)
561{
562
563 _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
564
565 // Already empty
566 if (Data == NULL) return;
567
568 // This works for both types
569 if (Data -> Tab.T)
570 _cmsFree(mpe ->ContextID, Data -> Tab.T);
571
572 _cmsFreeInterpParams(Data ->Params);
573 _cmsFree(mpe ->ContextID, mpe ->Data);
574}
575
576
577// Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
578// granularity on each dimension.
579cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
580 const cmsUInt32Number clutPoints[],
581 cmsUInt32Number inputChan,
582 cmsUInt32Number outputChan,
583 const cmsUInt16Number* Table)
584{
585 cmsUInt32Number i, n;
586 _cmsStageCLutData* NewElem;
587 cmsStage* NewMPE;
588
589 _cmsAssert(clutPoints != NULL);
590
591 if (inputChan > MAX_INPUT_DIMENSIONS) {
592 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
593 return NULL;
594 }
595
596 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
597 EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
598
599 if (NewMPE == NULL) return NULL;
600
601 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
602 if (NewElem == NULL) {
603 cmsStageFree(NewMPE);
604 return NULL;
605 }
606
607 NewMPE ->Data = (void*) NewElem;
608
609 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
610 NewElem -> HasFloatValues = FALSE;
611
612 if (n == 0) {
613 cmsStageFree(NewMPE);
614 return NULL;
615 }
616
617
618 NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
619 if (NewElem ->Tab.T == NULL) {
620 cmsStageFree(NewMPE);
621 return NULL;
622 }
623
624 if (Table != NULL) {
625 for (i=0; i < n; i++) {
626 NewElem ->Tab.T[i] = Table[i];
627 }
628 }
629
630 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
631 if (NewElem ->Params == NULL) {
632 cmsStageFree(NewMPE);
633 return NULL;
634 }
635
636 return NewMPE;
637}
638
639cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
640 cmsUInt32Number nGridPoints,
641 cmsUInt32Number inputChan,
642 cmsUInt32Number outputChan,
643 const cmsUInt16Number* Table)
644{
645 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
646 int i;
647
648 // Our resulting LUT would be same gridpoints on all dimensions
649 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
650 Dimensions[i] = nGridPoints;
651
652 return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
653}
654
655
656cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
657 cmsUInt32Number nGridPoints,
658 cmsUInt32Number inputChan,
659 cmsUInt32Number outputChan,
660 const cmsFloat32Number* Table)
661{
662 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
663 int i;
664
665 // Our resulting LUT would be same gridpoints on all dimensions
666 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
667 Dimensions[i] = nGridPoints;
668
669 return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
670}
671
672
673
674cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
675{
676 cmsUInt32Number i, n;
677 _cmsStageCLutData* NewElem;
678 cmsStage* NewMPE;
679
680 _cmsAssert(clutPoints != NULL);
681
682 if (inputChan > MAX_INPUT_DIMENSIONS) {
683 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
684 return NULL;
685 }
686
687 NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
688 EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
689 if (NewMPE == NULL) return NULL;
690
691
692 NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
693 if (NewElem == NULL) {
694 cmsStageFree(NewMPE);
695 return NULL;
696 }
697
698 NewMPE ->Data = (void*) NewElem;
699
700 // There is a potential integer overflow on conputing n and nEntries.
701 NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
702 NewElem -> HasFloatValues = TRUE;
703
704 if (n == 0) {
705 cmsStageFree(NewMPE);
706 return NULL;
707 }
708
709 NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
710 if (NewElem ->Tab.TFloat == NULL) {
711 cmsStageFree(NewMPE);
712 return NULL;
713 }
714
715 if (Table != NULL) {
716 for (i=0; i < n; i++) {
717 NewElem ->Tab.TFloat[i] = Table[i];
718 }
719 }
720
721 NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
722 if (NewElem ->Params == NULL) {
723 cmsStageFree(NewMPE);
724 return NULL;
725 }
726
727 return NewMPE;
728}
729
730
731static
732int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
733{
734 int nChan = *(int*) Cargo;
735 int i;
736
737 for (i=0; i < nChan; i++)
738 Out[i] = In[i];
739
740 return 1;
741}
742
743// Creates an MPE that just copies input to output
744cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan)
745{
746 cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
747 cmsStage* mpe ;
748 int i;
749
750 for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
751 Dimensions[i] = 2;
752
753 mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
754 if (mpe == NULL) return NULL;
755
756 if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
757 cmsStageFree(mpe);
758 return NULL;
759 }
760
761 mpe ->Implements = cmsSigIdentityElemType;
762 return mpe;
763}
764
765
766
767// Quantize a value 0 <= i < MaxSamples to 0..0xffff
768cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples)
769{
770 cmsFloat64Number x;
771
772 x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
773 return _cmsQuickSaturateWord(x);
774}
775
776
777// This routine does a sweep on whole input space, and calls its callback
778// function on knots. returns TRUE if all ok, FALSE otherwise.
779cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
780{
781 int i, t, index, rest;
782 cmsUInt32Number nTotalPoints;
783 cmsUInt32Number nInputs, nOutputs;
784 cmsUInt32Number* nSamples;
785 cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
786 _cmsStageCLutData* clut;
787
788 if (mpe == NULL) return FALSE;
789
790 clut = (_cmsStageCLutData*) mpe->Data;
791
792 if (clut == NULL) return FALSE;
793
794 nSamples = clut->Params ->nSamples;
795 nInputs = clut->Params ->nInputs;
796 nOutputs = clut->Params ->nOutputs;
797
798 if (nInputs <= 0) return FALSE;
799 if (nOutputs <= 0) return FALSE;
800 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
801 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
802
803 memset(In, 0, sizeof(In));
804 memset(Out, 0, sizeof(Out));
805
806 nTotalPoints = CubeSize(nSamples, nInputs);
807 if (nTotalPoints == 0) return FALSE;
808
809 index = 0;
810 for (i = 0; i < (int) nTotalPoints; i++) {
811
812 rest = i;
813 for (t = (int)nInputs - 1; t >= 0; --t) {
814
815 cmsUInt32Number Colorant = rest % nSamples[t];
816
817 rest /= nSamples[t];
818
819 In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
820 }
821
822 if (clut ->Tab.T != NULL) {
823 for (t = 0; t < (int)nOutputs; t++)
824 Out[t] = clut->Tab.T[index + t];
825 }
826
827 if (!Sampler(In, Out, Cargo))
828 return FALSE;
829
830 if (!(dwFlags & SAMPLER_INSPECT)) {
831
832 if (clut ->Tab.T != NULL) {
833 for (t=0; t < (int) nOutputs; t++)
834 clut->Tab.T[index + t] = Out[t];
835 }
836 }
837
838 index += nOutputs;
839 }
840
841 return TRUE;
842}
843
844// Same as anterior, but for floating point
845cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
846{
847 int i, t, index, rest;
848 cmsUInt32Number nTotalPoints;
849 cmsUInt32Number nInputs, nOutputs;
850 cmsUInt32Number* nSamples;
851 cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
852 _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
853
854 nSamples = clut->Params ->nSamples;
855 nInputs = clut->Params ->nInputs;
856 nOutputs = clut->Params ->nOutputs;
857
858 if (nInputs <= 0) return FALSE;
859 if (nOutputs <= 0) return FALSE;
860 if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
861 if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
862
863 nTotalPoints = CubeSize(nSamples, nInputs);
864 if (nTotalPoints == 0) return FALSE;
865
866 index = 0;
867 for (i = 0; i < (int)nTotalPoints; i++) {
868
869 rest = i;
870 for (t = (int) nInputs-1; t >=0; --t) {
871
872 cmsUInt32Number Colorant = rest % nSamples[t];
873
874 rest /= nSamples[t];
875
876 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
877 }
878
879 if (clut ->Tab.TFloat != NULL) {
880 for (t=0; t < (int) nOutputs; t++)
881 Out[t] = clut->Tab.TFloat[index + t];
882 }
883
884 if (!Sampler(In, Out, Cargo))
885 return FALSE;
886
887 if (!(dwFlags & SAMPLER_INSPECT)) {
888
889 if (clut ->Tab.TFloat != NULL) {
890 for (t=0; t < (int) nOutputs; t++)
891 clut->Tab.TFloat[index + t] = Out[t];
892 }
893 }
894
895 index += nOutputs;
896 }
897
898 return TRUE;
899}
900
901
902
903// This routine does a sweep on whole input space, and calls its callback
904// function on knots. returns TRUE if all ok, FALSE otherwise.
905cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
906 cmsSAMPLER16 Sampler, void * Cargo)
907{
908 int i, t, rest;
909 cmsUInt32Number nTotalPoints;
910 cmsUInt16Number In[cmsMAXCHANNELS];
911
912 if (nInputs >= cmsMAXCHANNELS) return FALSE;
913
914 nTotalPoints = CubeSize(clutPoints, nInputs);
915 if (nTotalPoints == 0) return FALSE;
916
917 for (i = 0; i < (int) nTotalPoints; i++) {
918
919 rest = i;
920 for (t = (int) nInputs-1; t >=0; --t) {
921
922 cmsUInt32Number Colorant = rest % clutPoints[t];
923
924 rest /= clutPoints[t];
925 In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
926
927 }
928
929 if (!Sampler(In, NULL, Cargo))
930 return FALSE;
931 }
932
933 return TRUE;
934}
935
936cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
937 cmsSAMPLERFLOAT Sampler, void * Cargo)
938{
939 int i, t, rest;
940 cmsUInt32Number nTotalPoints;
941 cmsFloat32Number In[cmsMAXCHANNELS];
942
943 if (nInputs >= cmsMAXCHANNELS) return FALSE;
944
945 nTotalPoints = CubeSize(clutPoints, nInputs);
946 if (nTotalPoints == 0) return FALSE;
947
948 for (i = 0; i < (int) nTotalPoints; i++) {
949
950 rest = i;
951 for (t = (int) nInputs-1; t >=0; --t) {
952
953 cmsUInt32Number Colorant = rest % clutPoints[t];
954
955 rest /= clutPoints[t];
956 In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
957
958 }
959
960 if (!Sampler(In, NULL, Cargo))
961 return FALSE;
962 }
963
964 return TRUE;
965}
966
967// ********************************************************************************
968// Type cmsSigLab2XYZElemType
969// ********************************************************************************
970
971
972static
973void EvaluateLab2XYZ(const cmsFloat32Number In[],
974 cmsFloat32Number Out[],
975 const cmsStage *mpe)
976{
977 cmsCIELab Lab;
978 cmsCIEXYZ XYZ;
979 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
980
981 // V4 rules
982 Lab.L = In[0] * 100.0;
983 Lab.a = In[1] * 255.0 - 128.0;
984 Lab.b = In[2] * 255.0 - 128.0;
985
986 cmsLab2XYZ(NULL, &XYZ, &Lab);
987
988 // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
989 // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
990
991 Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
992 Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
993 Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
994 return;
995
996 cmsUNUSED_PARAMETER(mpe);
997}
998
999
1000// No dup or free routines needed, as the structure has no pointers in it.
1001cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID)
1002{
1003 return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
1004}
1005
1006// ********************************************************************************
1007
1008// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
1009// number of gridpoints that would make exact match. However, a prelinearization
1010// of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
1011// Almost all what we need but unfortunately, the rest of entries should be scaled by
1012// (255*257/256) and this is not exact.
1013
1014cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
1015{
1016 cmsStage* mpe;
1017 cmsToneCurve* LabTable[3];
1018 int i, j;
1019
1020 LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1021 LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1022 LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1023
1024 for (j=0; j < 3; j++) {
1025
1026 if (LabTable[j] == NULL) {
1027 cmsFreeToneCurveTriple(LabTable);
1028 return NULL;
1029 }
1030
1031 // We need to map * (0xffff / 0xff00), that's same as (257 / 256)
1032 // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
1033 for (i=0; i < 257; i++) {
1034
1035 LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1036 }
1037
1038 LabTable[j] ->Table16[257] = 0xffff;
1039 }
1040
1041 mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1042 cmsFreeToneCurveTriple(LabTable);
1043
1044 if (mpe == NULL) return NULL;
1045 mpe ->Implements = cmsSigLabV2toV4;
1046 return mpe;
1047}
1048
1049// ********************************************************************************
1050
1051// Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
1052cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1053{
1054 static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1055 0, 65535.0/65280.0, 0,
1056 0, 0, 65535.0/65280.0
1057 };
1058
1059 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1060
1061 if (mpe == NULL) return mpe;
1062 mpe ->Implements = cmsSigLabV2toV4;
1063 return mpe;
1064}
1065
1066
1067// Reverse direction
1068cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1069{
1070 static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1071 0, 65280.0/65535.0, 0,
1072 0, 0, 65280.0/65535.0
1073 };
1074
1075 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1076
1077 if (mpe == NULL) return mpe;
1078 mpe ->Implements = cmsSigLabV4toV2;
1079 return mpe;
1080}
1081
1082
1083// To Lab to float. Note that the MPE gives numbers in normal Lab range
1084// and we need 0..1.0 range for the formatters
1085// L* : 0...100 => 0...1.0 (L* / 100)
1086// ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
1087
1088cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1089{
1090 static const cmsFloat64Number a1[] = {
1091 1.0/100.0, 0, 0,
1092 0, 1.0/255.0, 0,
1093 0, 0, 1.0/255.0
1094 };
1095
1096 static const cmsFloat64Number o1[] = {
1097 0,
1098 128.0/255.0,
1099 128.0/255.0
1100 };
1101
1102 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1103
1104 if (mpe == NULL) return mpe;
1105 mpe ->Implements = cmsSigLab2FloatPCS;
1106 return mpe;
1107}
1108
1109// Fom XYZ to floating point PCS
1110cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1111{
1112#define n (32768.0/65535.0)
1113 static const cmsFloat64Number a1[] = {
1114 n, 0, 0,
1115 0, n, 0,
1116 0, 0, n
1117 };
1118#undef n
1119
1120 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1121
1122 if (mpe == NULL) return mpe;
1123 mpe ->Implements = cmsSigXYZ2FloatPCS;
1124 return mpe;
1125}
1126
1127cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1128{
1129 static const cmsFloat64Number a1[] = {
1130 100.0, 0, 0,
1131 0, 255.0, 0,
1132 0, 0, 255.0
1133 };
1134
1135 static const cmsFloat64Number o1[] = {
1136 0,
1137 -128.0,
1138 -128.0
1139 };
1140
1141 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1142 if (mpe == NULL) return mpe;
1143 mpe ->Implements = cmsSigFloatPCS2Lab;
1144 return mpe;
1145}
1146
1147cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1148{
1149#define n (65535.0/32768.0)
1150
1151 static const cmsFloat64Number a1[] = {
1152 n, 0, 0,
1153 0, n, 0,
1154 0, 0, n
1155 };
1156#undef n
1157
1158 cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1159 if (mpe == NULL) return mpe;
1160 mpe ->Implements = cmsSigFloatPCS2XYZ;
1161 return mpe;
1162}
1163
1164// Clips values smaller than zero
1165static
1166void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1167{
1168 cmsUInt32Number i;
1169 for (i = 0; i < mpe->InputChannels; i++) {
1170
1171 cmsFloat32Number n = In[i];
1172 Out[i] = n < 0 ? 0 : n;
1173 }
1174}
1175
1176cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels)
1177{
1178 return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType,
1179 nChannels, nChannels, Clipper, NULL, NULL, NULL);
1180}
1181
1182// ********************************************************************************
1183// Type cmsSigXYZ2LabElemType
1184// ********************************************************************************
1185
1186static
1187void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1188{
1189 cmsCIELab Lab;
1190 cmsCIEXYZ XYZ;
1191 const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1192
1193 // From 0..1.0 to XYZ
1194
1195 XYZ.X = In[0] * XYZadj;
1196 XYZ.Y = In[1] * XYZadj;
1197 XYZ.Z = In[2] * XYZadj;
1198
1199 cmsXYZ2Lab(NULL, &Lab, &XYZ);
1200
1201 // From V4 Lab to 0..1.0
1202
1203 Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1204 Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1205 Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1206 return;
1207
1208 cmsUNUSED_PARAMETER(mpe);
1209}
1210
1211cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1212{
1213 return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1214
1215}
1216
1217// ********************************************************************************
1218
1219// For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1220
1221cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1222{
1223 cmsToneCurve* LabTable[3];
1224 cmsFloat64Number Params[1] = {2.4} ;
1225
1226 LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1227 LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1228 LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1229
1230 return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1231}
1232
1233
1234// Free a single MPE
1235void CMSEXPORT cmsStageFree(cmsStage* mpe)
1236{
1237 if (mpe ->FreePtr)
1238 mpe ->FreePtr(mpe);
1239
1240 _cmsFree(mpe ->ContextID, mpe);
1241}
1242
1243
1244cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1245{
1246 return mpe ->InputChannels;
1247}
1248
1249cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1250{
1251 return mpe ->OutputChannels;
1252}
1253
1254cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1255{
1256 return mpe -> Type;
1257}
1258
1259void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1260{
1261 return mpe -> Data;
1262}
1263
1264cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
1265{
1266 return mpe -> Next;
1267}
1268
1269
1270// Duplicates an MPE
1271cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1272{
1273 cmsStage* NewMPE;
1274
1275 if (mpe == NULL) return NULL;
1276 NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1277 mpe ->Type,
1278 mpe ->InputChannels,
1279 mpe ->OutputChannels,
1280 mpe ->EvalPtr,
1281 mpe ->DupElemPtr,
1282 mpe ->FreePtr,
1283 NULL);
1284 if (NewMPE == NULL) return NULL;
1285
1286 NewMPE ->Implements = mpe ->Implements;
1287
1288 if (mpe ->DupElemPtr) {
1289
1290 NewMPE ->Data = mpe ->DupElemPtr(mpe);
1291
1292 if (NewMPE->Data == NULL) {
1293
1294 cmsStageFree(NewMPE);
1295 return NULL;
1296 }
1297
1298 } else {
1299
1300 NewMPE ->Data = NULL;
1301 }
1302
1303 return NewMPE;
1304}
1305
1306
1307// ***********************************************************************************************************
1308
1309// This function sets up the channel count
1310static
1311cmsBool BlessLUT(cmsPipeline* lut)
1312{
1313 // We can set the input/output channels only if we have elements.
1314 if (lut ->Elements != NULL) {
1315
1316 cmsStage* prev;
1317 cmsStage* next;
1318 cmsStage* First;
1319 cmsStage* Last;
1320
1321 First = cmsPipelineGetPtrToFirstStage(lut);
1322 Last = cmsPipelineGetPtrToLastStage(lut);
1323
1324 if (First == NULL || Last == NULL) return FALSE;
1325
1326 lut->InputChannels = First->InputChannels;
1327 lut->OutputChannels = Last->OutputChannels;
1328
1329 // Check chain consistency
1330 prev = First;
1331 next = prev->Next;
1332
1333 while (next != NULL)
1334 {
1335 if (next->InputChannels != prev->OutputChannels)
1336 return FALSE;
1337
1338 next = next->Next;
1339 prev = prev->Next;
1340 }
1341}
1342
1343 return TRUE;
1344}
1345
1346
1347// Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1348static
1349void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D)
1350{
1351 cmsPipeline* lut = (cmsPipeline*) D;
1352 cmsStage *mpe;
1353 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1354 int Phase = 0, NextPhase;
1355
1356 From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1357
1358 for (mpe = lut ->Elements;
1359 mpe != NULL;
1360 mpe = mpe ->Next) {
1361
1362 NextPhase = Phase ^ 1;
1363 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1364 Phase = NextPhase;
1365 }
1366
1367
1368 FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1369}
1370
1371
1372
1373// Does evaluate the LUT on cmsFloat32Number-basis.
1374static
1375void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
1376{
1377 cmsPipeline* lut = (cmsPipeline*) D;
1378 cmsStage *mpe;
1379 cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1380 int Phase = 0, NextPhase;
1381
1382 memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
1383
1384 for (mpe = lut ->Elements;
1385 mpe != NULL;
1386 mpe = mpe ->Next) {
1387
1388 NextPhase = Phase ^ 1;
1389 mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1390 Phase = NextPhase;
1391 }
1392
1393 memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1394}
1395
1396
1397// LUT Creation & Destruction
1398cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1399{
1400 cmsPipeline* NewLUT;
1401
1402 // A value of zero in channels is allowed as placeholder
1403 if (InputChannels >= cmsMAXCHANNELS ||
1404 OutputChannels >= cmsMAXCHANNELS) return NULL;
1405
1406 NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1407 if (NewLUT == NULL) return NULL;
1408
1409 NewLUT -> InputChannels = InputChannels;
1410 NewLUT -> OutputChannels = OutputChannels;
1411
1412 NewLUT ->Eval16Fn = _LUTeval16;
1413 NewLUT ->EvalFloatFn = _LUTevalFloat;
1414 NewLUT ->DupDataFn = NULL;
1415 NewLUT ->FreeDataFn = NULL;
1416 NewLUT ->Data = NewLUT;
1417 NewLUT ->ContextID = ContextID;
1418
1419 if (!BlessLUT(NewLUT))
1420 {
1421 _cmsFree(ContextID, NewLUT);
1422 return NULL;
1423 }
1424
1425 return NewLUT;
1426}
1427
1428cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1429{
1430 _cmsAssert(lut != NULL);
1431 return lut ->ContextID;
1432}
1433
1434cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1435{
1436 _cmsAssert(lut != NULL);
1437 return lut ->InputChannels;
1438}
1439
1440cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1441{
1442 _cmsAssert(lut != NULL);
1443 return lut ->OutputChannels;
1444}
1445
1446// Free a profile elements LUT
1447void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1448{
1449 cmsStage *mpe, *Next;
1450
1451 if (lut == NULL) return;
1452
1453 for (mpe = lut ->Elements;
1454 mpe != NULL;
1455 mpe = Next) {
1456
1457 Next = mpe ->Next;
1458 cmsStageFree(mpe);
1459 }
1460
1461 if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1462
1463 _cmsFree(lut ->ContextID, lut);
1464}
1465
1466
1467// Default to evaluate the LUT on 16 bit-basis.
1468void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
1469{
1470 _cmsAssert(lut != NULL);
1471 lut ->Eval16Fn(In, Out, lut->Data);
1472}
1473
1474
1475// Does evaluate the LUT on cmsFloat32Number-basis.
1476void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1477{
1478 _cmsAssert(lut != NULL);
1479 lut ->EvalFloatFn(In, Out, lut);
1480}
1481
1482
1483
1484// Duplicates a LUT
1485cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1486{
1487 cmsPipeline* NewLUT;
1488 cmsStage *NewMPE, *Anterior = NULL, *mpe;
1489 cmsBool First = TRUE;
1490
1491 if (lut == NULL) return NULL;
1492
1493 NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1494 if (NewLUT == NULL) return NULL;
1495
1496 for (mpe = lut ->Elements;
1497 mpe != NULL;
1498 mpe = mpe ->Next) {
1499
1500 NewMPE = cmsStageDup(mpe);
1501
1502 if (NewMPE == NULL) {
1503 cmsPipelineFree(NewLUT);
1504 return NULL;
1505 }
1506
1507 if (First) {
1508 NewLUT ->Elements = NewMPE;
1509 First = FALSE;
1510 }
1511 else {
1512 if (Anterior != NULL)
1513 Anterior ->Next = NewMPE;
1514 }
1515
1516 Anterior = NewMPE;
1517 }
1518
1519 NewLUT ->Eval16Fn = lut ->Eval16Fn;
1520 NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1521 NewLUT ->DupDataFn = lut ->DupDataFn;
1522 NewLUT ->FreeDataFn = lut ->FreeDataFn;
1523
1524 if (NewLUT ->DupDataFn != NULL)
1525 NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1526
1527
1528 NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
1529
1530 if (!BlessLUT(NewLUT))
1531 {
1532 _cmsFree(lut->ContextID, NewLUT);
1533 return NULL;
1534 }
1535
1536 return NewLUT;
1537}
1538
1539
1540int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1541{
1542 cmsStage* Anterior = NULL, *pt;
1543
1544 if (lut == NULL || mpe == NULL)
1545 return FALSE;
1546
1547 switch (loc) {
1548
1549 case cmsAT_BEGIN:
1550 mpe ->Next = lut ->Elements;
1551 lut ->Elements = mpe;
1552 break;
1553
1554 case cmsAT_END:
1555
1556 if (lut ->Elements == NULL)
1557 lut ->Elements = mpe;
1558 else {
1559
1560 for (pt = lut ->Elements;
1561 pt != NULL;
1562 pt = pt -> Next) Anterior = pt;
1563
1564 Anterior ->Next = mpe;
1565 mpe ->Next = NULL;
1566 }
1567 break;
1568 default:;
1569 return FALSE;
1570 }
1571
1572 return BlessLUT(lut);
1573}
1574
1575// Unlink an element and return the pointer to it
1576void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1577{
1578 cmsStage *Anterior, *pt, *Last;
1579 cmsStage *Unlinked = NULL;
1580
1581
1582 // If empty LUT, there is nothing to remove
1583 if (lut ->Elements == NULL) {
1584 if (mpe) *mpe = NULL;
1585 return;
1586 }
1587
1588 // On depending on the strategy...
1589 switch (loc) {
1590
1591 case cmsAT_BEGIN:
1592 {
1593 cmsStage* elem = lut ->Elements;
1594
1595 lut ->Elements = elem -> Next;
1596 elem ->Next = NULL;
1597 Unlinked = elem;
1598
1599 }
1600 break;
1601
1602 case cmsAT_END:
1603 Anterior = Last = NULL;
1604 for (pt = lut ->Elements;
1605 pt != NULL;
1606 pt = pt -> Next) {
1607 Anterior = Last;
1608 Last = pt;
1609 }
1610
1611 Unlinked = Last; // Next already points to NULL
1612
1613 // Truncate the chain
1614 if (Anterior)
1615 Anterior ->Next = NULL;
1616 else
1617 lut ->Elements = NULL;
1618 break;
1619 default:;
1620 }
1621
1622 if (mpe)
1623 *mpe = Unlinked;
1624 else
1625 cmsStageFree(Unlinked);
1626
1627 // May fail, but we ignore it
1628 BlessLUT(lut);
1629}
1630
1631
1632// Concatenate two LUT into a new single one
1633cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1634{
1635 cmsStage* mpe;
1636
1637 // If both LUTS does not have elements, we need to inherit
1638 // the number of channels
1639 if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1640 l1 ->InputChannels = l2 ->InputChannels;
1641 l1 ->OutputChannels = l2 ->OutputChannels;
1642 }
1643
1644 // Cat second
1645 for (mpe = l2 ->Elements;
1646 mpe != NULL;
1647 mpe = mpe ->Next) {
1648
1649 // We have to dup each element
1650 if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1651 return FALSE;
1652 }
1653
1654 return BlessLUT(l1);
1655}
1656
1657
1658cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1659{
1660 cmsBool Anterior = lut ->SaveAs8Bits;
1661
1662 lut ->SaveAs8Bits = On;
1663 return Anterior;
1664}
1665
1666
1667cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1668{
1669 return lut ->Elements;
1670}
1671
1672cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1673{
1674 cmsStage *mpe, *Anterior = NULL;
1675
1676 for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1677 Anterior = mpe;
1678
1679 return Anterior;
1680}
1681
1682cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1683{
1684 cmsStage *mpe;
1685 cmsUInt32Number n;
1686
1687 for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1688 n++;
1689
1690 return n;
1691}
1692
1693// This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1694// duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
1695void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1696 _cmsOPTeval16Fn Eval16,
1697 void* PrivateData,
1698 _cmsFreeUserDataFn FreePrivateDataFn,
1699 _cmsDupUserDataFn DupPrivateDataFn)
1700{
1701
1702 Lut ->Eval16Fn = Eval16;
1703 Lut ->DupDataFn = DupPrivateDataFn;
1704 Lut ->FreeDataFn = FreePrivateDataFn;
1705 Lut ->Data = PrivateData;
1706}
1707
1708
1709// ----------------------------------------------------------- Reverse interpolation
1710// Here's how it goes. The derivative Df(x) of the function f is the linear
1711// transformation that best approximates f near the point x. It can be represented
1712// by a matrix A whose entries are the partial derivatives of the components of f
1713// with respect to all the coordinates. This is know as the Jacobian
1714//
1715// The best linear approximation to f is given by the matrix equation:
1716//
1717// y-y0 = A (x-x0)
1718//
1719// So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1720// linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1721// and since y0=f(x0) one can solve the above equation for x. This leads to the
1722// Newton's method formula:
1723//
1724// xn+1 = xn - A-1 f(xn)
1725//
1726// where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1727// fashion described above. Iterating this will give better and better approximations
1728// if you have a "good enough" initial guess.
1729
1730
1731#define JACOBIAN_EPSILON 0.001f
1732#define INVERSION_MAX_ITERATIONS 30
1733
1734// Increment with reflexion on boundary
1735static
1736void IncDelta(cmsFloat32Number *Val)
1737{
1738 if (*Val < (1.0 - JACOBIAN_EPSILON))
1739
1740 *Val += JACOBIAN_EPSILON;
1741
1742 else
1743 *Val -= JACOBIAN_EPSILON;
1744
1745}
1746
1747
1748
1749// Euclidean distance between two vectors of n elements each one
1750static
1751cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1752{
1753 cmsFloat32Number sum = 0;
1754 int i;
1755
1756 for (i=0; i < n; i++) {
1757 cmsFloat32Number dif = b[i] - a[i];
1758 sum += dif * dif;
1759 }
1760
1761 return sqrtf(sum);
1762}
1763
1764
1765// Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1766//
1767// x1 <- x - [J(x)]^-1 * f(x)
1768//
1769// lut: The LUT on where to do the search
1770// Target: LabK, 3 values of Lab plus destination K which is fixed
1771// Result: The obtained CMYK
1772// Hint: Location where begin the search
1773
1774cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1775 cmsFloat32Number Result[],
1776 cmsFloat32Number Hint[],
1777 const cmsPipeline* lut)
1778{
1779 cmsUInt32Number i, j;
1780 cmsFloat64Number error, LastError = 1E20;
1781 cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
1782 cmsVEC3 tmp, tmp2;
1783 cmsMAT3 Jacobian;
1784
1785 // Only 3->3 and 4->3 are supported
1786 if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1787 if (lut ->OutputChannels != 3) return FALSE;
1788
1789 // Take the hint as starting point if specified
1790 if (Hint == NULL) {
1791
1792 // Begin at any point, we choose 1/3 of CMY axis
1793 x[0] = x[1] = x[2] = 0.3f;
1794 }
1795 else {
1796
1797 // Only copy 3 channels from hint...
1798 for (j=0; j < 3; j++)
1799 x[j] = Hint[j];
1800 }
1801
1802 // If Lut is 4-dimensions, then grab target[3], which is fixed
1803 if (lut ->InputChannels == 4) {
1804 x[3] = Target[3];
1805 }
1806 else x[3] = 0; // To keep lint happy
1807
1808
1809 // Iterate
1810 for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1811
1812 // Get beginning fx
1813 cmsPipelineEvalFloat(x, fx, lut);
1814
1815 // Compute error
1816 error = EuclideanDistance(fx, Target, 3);
1817
1818 // If not convergent, return last safe value
1819 if (error >= LastError)
1820 break;
1821
1822 // Keep latest values
1823 LastError = error;
1824 for (j=0; j < lut ->InputChannels; j++)
1825 Result[j] = x[j];
1826
1827 // Found an exact match?
1828 if (error <= 0)
1829 break;
1830
1831 // Obtain slope (the Jacobian)
1832 for (j = 0; j < 3; j++) {
1833
1834 xd[0] = x[0];
1835 xd[1] = x[1];
1836 xd[2] = x[2];
1837 xd[3] = x[3]; // Keep fixed channel
1838
1839 IncDelta(&xd[j]);
1840
1841 cmsPipelineEvalFloat(xd, fxd, lut);
1842
1843 Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1844 Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1845 Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1846 }
1847
1848 // Solve system
1849 tmp2.n[0] = fx[0] - Target[0];
1850 tmp2.n[1] = fx[1] - Target[1];
1851 tmp2.n[2] = fx[2] - Target[2];
1852
1853 if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1854 return FALSE;
1855
1856 // Move our guess
1857 x[0] -= (cmsFloat32Number) tmp.n[0];
1858 x[1] -= (cmsFloat32Number) tmp.n[1];
1859 x[2] -= (cmsFloat32Number) tmp.n[2];
1860
1861 // Some clipping....
1862 for (j=0; j < 3; j++) {
1863 if (x[j] < 0) x[j] = 0;
1864 else
1865 if (x[j] > 1.0) x[j] = 1.0;
1866 }
1867 }
1868
1869 return TRUE;
1870}
1871
1872
1873