1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | |
56 | #include "lcms2_internal.h" |
57 | |
58 | |
59 | // Allocates an empty multi profile element |
60 | cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, |
61 | cmsStageSignature Type, |
62 | cmsUInt32Number InputChannels, |
63 | cmsUInt32Number OutputChannels, |
64 | _cmsStageEvalFn EvalPtr, |
65 | _cmsStageDupElemFn DupElemPtr, |
66 | _cmsStageFreeElemFn FreePtr, |
67 | void* Data) |
68 | { |
69 | cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); |
70 | |
71 | if (ph == NULL) return NULL; |
72 | |
73 | |
74 | ph ->ContextID = ContextID; |
75 | |
76 | ph ->Type = Type; |
77 | ph ->Implements = Type; // By default, no clue on what is implementing |
78 | |
79 | ph ->InputChannels = InputChannels; |
80 | ph ->OutputChannels = OutputChannels; |
81 | ph ->EvalPtr = EvalPtr; |
82 | ph ->DupElemPtr = DupElemPtr; |
83 | ph ->FreePtr = FreePtr; |
84 | ph ->Data = Data; |
85 | |
86 | return ph; |
87 | } |
88 | |
89 | |
90 | static |
91 | void EvaluateIdentity(const cmsFloat32Number In[], |
92 | cmsFloat32Number Out[], |
93 | const cmsStage *mpe) |
94 | { |
95 | memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); |
96 | } |
97 | |
98 | |
99 | cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) |
100 | { |
101 | return _cmsStageAllocPlaceholder(ContextID, |
102 | cmsSigIdentityElemType, |
103 | nChannels, nChannels, |
104 | EvaluateIdentity, |
105 | NULL, |
106 | NULL, |
107 | NULL); |
108 | } |
109 | |
110 | // Conversion functions. From floating point to 16 bits |
111 | static |
112 | void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) |
113 | { |
114 | cmsUInt32Number i; |
115 | |
116 | for (i=0; i < n; i++) { |
117 | Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); |
118 | } |
119 | } |
120 | |
121 | // From 16 bits to floating point |
122 | static |
123 | void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) |
124 | { |
125 | cmsUInt32Number i; |
126 | |
127 | for (i=0; i < n; i++) { |
128 | Out[i] = (cmsFloat32Number) In[i] / 65535.0F; |
129 | } |
130 | } |
131 | |
132 | |
133 | // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements |
134 | // that conform the LUT. It should be called with the LUT, the number of expected elements and |
135 | // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If |
136 | // the function founds a match with current pipeline, it fills the pointers and returns TRUE |
137 | // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass |
138 | // the storage process. |
139 | cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...) |
140 | { |
141 | va_list args; |
142 | cmsUInt32Number i; |
143 | cmsStage* mpe; |
144 | cmsStageSignature Type; |
145 | void** ElemPtr; |
146 | |
147 | // Make sure same number of elements |
148 | if (cmsPipelineStageCount(Lut) != n) return FALSE; |
149 | |
150 | va_start(args, n); |
151 | |
152 | // Iterate across asked types |
153 | mpe = Lut ->Elements; |
154 | for (i=0; i < n; i++) { |
155 | |
156 | // Get asked type. cmsStageSignature is promoted to int by compiler |
157 | Type = (cmsStageSignature)va_arg(args, int); |
158 | if (mpe ->Type != Type) { |
159 | |
160 | va_end(args); // Mismatch. We are done. |
161 | return FALSE; |
162 | } |
163 | mpe = mpe ->Next; |
164 | } |
165 | |
166 | // Found a combination, fill pointers if not NULL |
167 | mpe = Lut ->Elements; |
168 | for (i=0; i < n; i++) { |
169 | |
170 | ElemPtr = va_arg(args, void**); |
171 | if (ElemPtr != NULL) |
172 | *ElemPtr = mpe; |
173 | |
174 | mpe = mpe ->Next; |
175 | } |
176 | |
177 | va_end(args); |
178 | return TRUE; |
179 | } |
180 | |
181 | // Below there are implementations for several types of elements. Each type may be implemented by a |
182 | // evaluation function, a duplication function, a function to free resources and a constructor. |
183 | |
184 | // ************************************************************************************************* |
185 | // Type cmsSigCurveSetElemType (curves) |
186 | // ************************************************************************************************* |
187 | |
188 | cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) |
189 | { |
190 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
191 | |
192 | return Data ->TheCurves; |
193 | } |
194 | |
195 | static |
196 | void EvaluateCurves(const cmsFloat32Number In[], |
197 | cmsFloat32Number Out[], |
198 | const cmsStage *mpe) |
199 | { |
200 | _cmsStageToneCurvesData* Data; |
201 | cmsUInt32Number i; |
202 | |
203 | _cmsAssert(mpe != NULL); |
204 | |
205 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
206 | if (Data == NULL) return; |
207 | |
208 | if (Data ->TheCurves == NULL) return; |
209 | |
210 | for (i=0; i < Data ->nCurves; i++) { |
211 | Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]); |
212 | } |
213 | } |
214 | |
215 | static |
216 | void CurveSetElemTypeFree(cmsStage* mpe) |
217 | { |
218 | _cmsStageToneCurvesData* Data; |
219 | cmsUInt32Number i; |
220 | |
221 | _cmsAssert(mpe != NULL); |
222 | |
223 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
224 | if (Data == NULL) return; |
225 | |
226 | if (Data ->TheCurves != NULL) { |
227 | for (i=0; i < Data ->nCurves; i++) { |
228 | if (Data ->TheCurves[i] != NULL) |
229 | cmsFreeToneCurve(Data ->TheCurves[i]); |
230 | } |
231 | } |
232 | _cmsFree(mpe ->ContextID, Data ->TheCurves); |
233 | _cmsFree(mpe ->ContextID, Data); |
234 | } |
235 | |
236 | |
237 | static |
238 | void* CurveSetDup(cmsStage* mpe) |
239 | { |
240 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
241 | _cmsStageToneCurvesData* NewElem; |
242 | cmsUInt32Number i; |
243 | |
244 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData)); |
245 | if (NewElem == NULL) return NULL; |
246 | |
247 | NewElem ->nCurves = Data ->nCurves; |
248 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); |
249 | |
250 | if (NewElem ->TheCurves == NULL) goto Error; |
251 | |
252 | for (i=0; i < NewElem ->nCurves; i++) { |
253 | |
254 | // Duplicate each curve. It may fail. |
255 | NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]); |
256 | if (NewElem ->TheCurves[i] == NULL) goto Error; |
257 | |
258 | |
259 | } |
260 | return (void*) NewElem; |
261 | |
262 | Error: |
263 | |
264 | if (NewElem ->TheCurves != NULL) { |
265 | for (i=0; i < NewElem ->nCurves; i++) { |
266 | if (NewElem ->TheCurves[i]) |
267 | cmsFreeToneCurve(NewElem ->TheCurves[i]); |
268 | } |
269 | } |
270 | _cmsFree(mpe ->ContextID, NewElem ->TheCurves); |
271 | _cmsFree(mpe ->ContextID, NewElem); |
272 | return NULL; |
273 | } |
274 | |
275 | |
276 | // Curves == NULL forces identity curves |
277 | cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) |
278 | { |
279 | cmsUInt32Number i; |
280 | _cmsStageToneCurvesData* NewElem; |
281 | cmsStage* NewMPE; |
282 | |
283 | |
284 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, |
285 | EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL ); |
286 | if (NewMPE == NULL) return NULL; |
287 | |
288 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); |
289 | if (NewElem == NULL) { |
290 | cmsStageFree(NewMPE); |
291 | return NULL; |
292 | } |
293 | |
294 | NewMPE ->Data = (void*) NewElem; |
295 | |
296 | NewElem ->nCurves = nChannels; |
297 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); |
298 | if (NewElem ->TheCurves == NULL) { |
299 | cmsStageFree(NewMPE); |
300 | return NULL; |
301 | } |
302 | |
303 | for (i=0; i < nChannels; i++) { |
304 | |
305 | if (Curves == NULL) { |
306 | NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); |
307 | } |
308 | else { |
309 | NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]); |
310 | } |
311 | |
312 | if (NewElem ->TheCurves[i] == NULL) { |
313 | cmsStageFree(NewMPE); |
314 | return NULL; |
315 | } |
316 | |
317 | } |
318 | |
319 | return NewMPE; |
320 | } |
321 | |
322 | |
323 | // Create a bunch of identity curves |
324 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels) |
325 | { |
326 | cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL); |
327 | |
328 | if (mpe == NULL) return NULL; |
329 | mpe ->Implements = cmsSigIdentityElemType; |
330 | return mpe; |
331 | } |
332 | |
333 | |
334 | // ************************************************************************************************* |
335 | // Type cmsSigMatrixElemType (Matrices) |
336 | // ************************************************************************************************* |
337 | |
338 | |
339 | // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used |
340 | static |
341 | void EvaluateMatrix(const cmsFloat32Number In[], |
342 | cmsFloat32Number Out[], |
343 | const cmsStage *mpe) |
344 | { |
345 | cmsUInt32Number i, j; |
346 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
347 | cmsFloat64Number Tmp; |
348 | |
349 | // Input is already in 0..1.0 notation |
350 | for (i=0; i < mpe ->OutputChannels; i++) { |
351 | |
352 | Tmp = 0; |
353 | for (j=0; j < mpe->InputChannels; j++) { |
354 | Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; |
355 | } |
356 | |
357 | if (Data ->Offset != NULL) |
358 | Tmp += Data->Offset[i]; |
359 | |
360 | Out[i] = (cmsFloat32Number) Tmp; |
361 | } |
362 | |
363 | |
364 | // Output in 0..1.0 domain |
365 | } |
366 | |
367 | |
368 | // Duplicate a yet-existing matrix element |
369 | static |
370 | void* MatrixElemDup(cmsStage* mpe) |
371 | { |
372 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
373 | _cmsStageMatrixData* NewElem; |
374 | cmsUInt32Number sz; |
375 | |
376 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData)); |
377 | if (NewElem == NULL) return NULL; |
378 | |
379 | sz = mpe ->InputChannels * mpe ->OutputChannels; |
380 | |
381 | NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; |
382 | |
383 | if (Data ->Offset) |
384 | NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, |
385 | Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; |
386 | |
387 | return (void*) NewElem; |
388 | } |
389 | |
390 | |
391 | static |
392 | void MatrixElemTypeFree(cmsStage* mpe) |
393 | { |
394 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
395 | if (Data == NULL) |
396 | return; |
397 | if (Data ->Double) |
398 | _cmsFree(mpe ->ContextID, Data ->Double); |
399 | |
400 | if (Data ->Offset) |
401 | _cmsFree(mpe ->ContextID, Data ->Offset); |
402 | |
403 | _cmsFree(mpe ->ContextID, mpe ->Data); |
404 | } |
405 | |
406 | |
407 | |
408 | cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, |
409 | const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) |
410 | { |
411 | cmsUInt32Number i, n; |
412 | _cmsStageMatrixData* NewElem; |
413 | cmsStage* NewMPE; |
414 | |
415 | n = Rows * Cols; |
416 | |
417 | // Check for overflow |
418 | if (n == 0) return NULL; |
419 | if (n >= UINT_MAX / Cols) return NULL; |
420 | if (n >= UINT_MAX / Rows) return NULL; |
421 | if (n < Rows || n < Cols) return NULL; |
422 | |
423 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, |
424 | EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL ); |
425 | if (NewMPE == NULL) return NULL; |
426 | |
427 | |
428 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); |
429 | if (NewElem == NULL) return NULL; |
430 | |
431 | |
432 | NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); |
433 | |
434 | if (NewElem->Double == NULL) { |
435 | MatrixElemTypeFree(NewMPE); |
436 | return NULL; |
437 | } |
438 | |
439 | for (i=0; i < n; i++) { |
440 | NewElem ->Double[i] = Matrix[i]; |
441 | } |
442 | |
443 | |
444 | if (Offset != NULL) { |
445 | |
446 | NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number)); |
447 | if (NewElem->Offset == NULL) { |
448 | MatrixElemTypeFree(NewMPE); |
449 | return NULL; |
450 | } |
451 | |
452 | for (i=0; i < Rows; i++) { |
453 | NewElem ->Offset[i] = Offset[i]; |
454 | } |
455 | |
456 | } |
457 | |
458 | NewMPE ->Data = (void*) NewElem; |
459 | return NewMPE; |
460 | } |
461 | |
462 | |
463 | // ************************************************************************************************* |
464 | // Type cmsSigCLutElemType |
465 | // ************************************************************************************************* |
466 | |
467 | |
468 | // Evaluate in true floating point |
469 | static |
470 | void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
471 | { |
472 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
473 | |
474 | Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params); |
475 | } |
476 | |
477 | |
478 | // Convert to 16 bits, evaluate, and back to floating point |
479 | static |
480 | void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
481 | { |
482 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
483 | cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS]; |
484 | |
485 | _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS); |
486 | _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS); |
487 | |
488 | FromFloatTo16(In, In16, mpe ->InputChannels); |
489 | Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params); |
490 | From16ToFloat(Out16, Out, mpe ->OutputChannels); |
491 | } |
492 | |
493 | |
494 | // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes |
495 | static |
496 | cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) |
497 | { |
498 | cmsUInt32Number rv, dim; |
499 | |
500 | _cmsAssert(Dims != NULL); |
501 | |
502 | for (rv = 1; b > 0; b--) { |
503 | |
504 | dim = Dims[b-1]; |
505 | if (dim == 0) return 0; // Error |
506 | |
507 | rv *= dim; |
508 | |
509 | // Check for overflow |
510 | if (rv > UINT_MAX / dim) return 0; |
511 | } |
512 | |
513 | return rv; |
514 | } |
515 | |
516 | static |
517 | void* CLUTElemDup(cmsStage* mpe) |
518 | { |
519 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
520 | _cmsStageCLutData* NewElem; |
521 | |
522 | |
523 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData)); |
524 | if (NewElem == NULL) return NULL; |
525 | |
526 | NewElem ->nEntries = Data ->nEntries; |
527 | NewElem ->HasFloatValues = Data ->HasFloatValues; |
528 | |
529 | if (Data ->Tab.T) { |
530 | |
531 | if (Data ->HasFloatValues) { |
532 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); |
533 | if (NewElem ->Tab.TFloat == NULL) |
534 | goto Error; |
535 | } else { |
536 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); |
537 | if (NewElem ->Tab.T == NULL) |
538 | goto Error; |
539 | } |
540 | } |
541 | |
542 | NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID, |
543 | Data ->Params ->nSamples, |
544 | Data ->Params ->nInputs, |
545 | Data ->Params ->nOutputs, |
546 | NewElem ->Tab.T, |
547 | Data ->Params ->dwFlags); |
548 | if (NewElem->Params != NULL) |
549 | return (void*) NewElem; |
550 | Error: |
551 | if (NewElem->Tab.T) |
552 | // This works for both types |
553 | _cmsFree(mpe ->ContextID, NewElem -> Tab.T); |
554 | _cmsFree(mpe ->ContextID, NewElem); |
555 | return NULL; |
556 | } |
557 | |
558 | |
559 | static |
560 | void CLutElemTypeFree(cmsStage* mpe) |
561 | { |
562 | |
563 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
564 | |
565 | // Already empty |
566 | if (Data == NULL) return; |
567 | |
568 | // This works for both types |
569 | if (Data -> Tab.T) |
570 | _cmsFree(mpe ->ContextID, Data -> Tab.T); |
571 | |
572 | _cmsFreeInterpParams(Data ->Params); |
573 | _cmsFree(mpe ->ContextID, mpe ->Data); |
574 | } |
575 | |
576 | |
577 | // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different |
578 | // granularity on each dimension. |
579 | cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, |
580 | const cmsUInt32Number clutPoints[], |
581 | cmsUInt32Number inputChan, |
582 | cmsUInt32Number outputChan, |
583 | const cmsUInt16Number* Table) |
584 | { |
585 | cmsUInt32Number i, n; |
586 | _cmsStageCLutData* NewElem; |
587 | cmsStage* NewMPE; |
588 | |
589 | _cmsAssert(clutPoints != NULL); |
590 | |
591 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
592 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
593 | return NULL; |
594 | } |
595 | |
596 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
597 | EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL ); |
598 | |
599 | if (NewMPE == NULL) return NULL; |
600 | |
601 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
602 | if (NewElem == NULL) { |
603 | cmsStageFree(NewMPE); |
604 | return NULL; |
605 | } |
606 | |
607 | NewMPE ->Data = (void*) NewElem; |
608 | |
609 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
610 | NewElem -> HasFloatValues = FALSE; |
611 | |
612 | if (n == 0) { |
613 | cmsStageFree(NewMPE); |
614 | return NULL; |
615 | } |
616 | |
617 | |
618 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); |
619 | if (NewElem ->Tab.T == NULL) { |
620 | cmsStageFree(NewMPE); |
621 | return NULL; |
622 | } |
623 | |
624 | if (Table != NULL) { |
625 | for (i=0; i < n; i++) { |
626 | NewElem ->Tab.T[i] = Table[i]; |
627 | } |
628 | } |
629 | |
630 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS); |
631 | if (NewElem ->Params == NULL) { |
632 | cmsStageFree(NewMPE); |
633 | return NULL; |
634 | } |
635 | |
636 | return NewMPE; |
637 | } |
638 | |
639 | cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, |
640 | cmsUInt32Number nGridPoints, |
641 | cmsUInt32Number inputChan, |
642 | cmsUInt32Number outputChan, |
643 | const cmsUInt16Number* Table) |
644 | { |
645 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
646 | int i; |
647 | |
648 | // Our resulting LUT would be same gridpoints on all dimensions |
649 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
650 | Dimensions[i] = nGridPoints; |
651 | |
652 | return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
653 | } |
654 | |
655 | |
656 | cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, |
657 | cmsUInt32Number nGridPoints, |
658 | cmsUInt32Number inputChan, |
659 | cmsUInt32Number outputChan, |
660 | const cmsFloat32Number* Table) |
661 | { |
662 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
663 | int i; |
664 | |
665 | // Our resulting LUT would be same gridpoints on all dimensions |
666 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
667 | Dimensions[i] = nGridPoints; |
668 | |
669 | return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
670 | } |
671 | |
672 | |
673 | |
674 | cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) |
675 | { |
676 | cmsUInt32Number i, n; |
677 | _cmsStageCLutData* NewElem; |
678 | cmsStage* NewMPE; |
679 | |
680 | _cmsAssert(clutPoints != NULL); |
681 | |
682 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
683 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
684 | return NULL; |
685 | } |
686 | |
687 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
688 | EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL); |
689 | if (NewMPE == NULL) return NULL; |
690 | |
691 | |
692 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
693 | if (NewElem == NULL) { |
694 | cmsStageFree(NewMPE); |
695 | return NULL; |
696 | } |
697 | |
698 | NewMPE ->Data = (void*) NewElem; |
699 | |
700 | // There is a potential integer overflow on conputing n and nEntries. |
701 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
702 | NewElem -> HasFloatValues = TRUE; |
703 | |
704 | if (n == 0) { |
705 | cmsStageFree(NewMPE); |
706 | return NULL; |
707 | } |
708 | |
709 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); |
710 | if (NewElem ->Tab.TFloat == NULL) { |
711 | cmsStageFree(NewMPE); |
712 | return NULL; |
713 | } |
714 | |
715 | if (Table != NULL) { |
716 | for (i=0; i < n; i++) { |
717 | NewElem ->Tab.TFloat[i] = Table[i]; |
718 | } |
719 | } |
720 | |
721 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT); |
722 | if (NewElem ->Params == NULL) { |
723 | cmsStageFree(NewMPE); |
724 | return NULL; |
725 | } |
726 | |
727 | return NewMPE; |
728 | } |
729 | |
730 | |
731 | static |
732 | int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) |
733 | { |
734 | int nChan = *(int*) Cargo; |
735 | int i; |
736 | |
737 | for (i=0; i < nChan; i++) |
738 | Out[i] = In[i]; |
739 | |
740 | return 1; |
741 | } |
742 | |
743 | // Creates an MPE that just copies input to output |
744 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan) |
745 | { |
746 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
747 | cmsStage* mpe ; |
748 | int i; |
749 | |
750 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
751 | Dimensions[i] = 2; |
752 | |
753 | mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL); |
754 | if (mpe == NULL) return NULL; |
755 | |
756 | if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) { |
757 | cmsStageFree(mpe); |
758 | return NULL; |
759 | } |
760 | |
761 | mpe ->Implements = cmsSigIdentityElemType; |
762 | return mpe; |
763 | } |
764 | |
765 | |
766 | |
767 | // Quantize a value 0 <= i < MaxSamples to 0..0xffff |
768 | cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples) |
769 | { |
770 | cmsFloat64Number x; |
771 | |
772 | x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); |
773 | return _cmsQuickSaturateWord(x); |
774 | } |
775 | |
776 | |
777 | // This routine does a sweep on whole input space, and calls its callback |
778 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
779 | cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) |
780 | { |
781 | int i, t, index, rest; |
782 | cmsUInt32Number nTotalPoints; |
783 | cmsUInt32Number nInputs, nOutputs; |
784 | cmsUInt32Number* nSamples; |
785 | cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
786 | _cmsStageCLutData* clut; |
787 | |
788 | if (mpe == NULL) return FALSE; |
789 | |
790 | clut = (_cmsStageCLutData*) mpe->Data; |
791 | |
792 | if (clut == NULL) return FALSE; |
793 | |
794 | nSamples = clut->Params ->nSamples; |
795 | nInputs = clut->Params ->nInputs; |
796 | nOutputs = clut->Params ->nOutputs; |
797 | |
798 | if (nInputs <= 0) return FALSE; |
799 | if (nOutputs <= 0) return FALSE; |
800 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
801 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
802 | |
803 | memset(In, 0, sizeof(In)); |
804 | memset(Out, 0, sizeof(Out)); |
805 | |
806 | nTotalPoints = CubeSize(nSamples, nInputs); |
807 | if (nTotalPoints == 0) return FALSE; |
808 | |
809 | index = 0; |
810 | for (i = 0; i < (int) nTotalPoints; i++) { |
811 | |
812 | rest = i; |
813 | for (t = (int)nInputs - 1; t >= 0; --t) { |
814 | |
815 | cmsUInt32Number Colorant = rest % nSamples[t]; |
816 | |
817 | rest /= nSamples[t]; |
818 | |
819 | In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); |
820 | } |
821 | |
822 | if (clut ->Tab.T != NULL) { |
823 | for (t = 0; t < (int)nOutputs; t++) |
824 | Out[t] = clut->Tab.T[index + t]; |
825 | } |
826 | |
827 | if (!Sampler(In, Out, Cargo)) |
828 | return FALSE; |
829 | |
830 | if (!(dwFlags & SAMPLER_INSPECT)) { |
831 | |
832 | if (clut ->Tab.T != NULL) { |
833 | for (t=0; t < (int) nOutputs; t++) |
834 | clut->Tab.T[index + t] = Out[t]; |
835 | } |
836 | } |
837 | |
838 | index += nOutputs; |
839 | } |
840 | |
841 | return TRUE; |
842 | } |
843 | |
844 | // Same as anterior, but for floating point |
845 | cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) |
846 | { |
847 | int i, t, index, rest; |
848 | cmsUInt32Number nTotalPoints; |
849 | cmsUInt32Number nInputs, nOutputs; |
850 | cmsUInt32Number* nSamples; |
851 | cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
852 | _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; |
853 | |
854 | nSamples = clut->Params ->nSamples; |
855 | nInputs = clut->Params ->nInputs; |
856 | nOutputs = clut->Params ->nOutputs; |
857 | |
858 | if (nInputs <= 0) return FALSE; |
859 | if (nOutputs <= 0) return FALSE; |
860 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
861 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
862 | |
863 | nTotalPoints = CubeSize(nSamples, nInputs); |
864 | if (nTotalPoints == 0) return FALSE; |
865 | |
866 | index = 0; |
867 | for (i = 0; i < (int)nTotalPoints; i++) { |
868 | |
869 | rest = i; |
870 | for (t = (int) nInputs-1; t >=0; --t) { |
871 | |
872 | cmsUInt32Number Colorant = rest % nSamples[t]; |
873 | |
874 | rest /= nSamples[t]; |
875 | |
876 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); |
877 | } |
878 | |
879 | if (clut ->Tab.TFloat != NULL) { |
880 | for (t=0; t < (int) nOutputs; t++) |
881 | Out[t] = clut->Tab.TFloat[index + t]; |
882 | } |
883 | |
884 | if (!Sampler(In, Out, Cargo)) |
885 | return FALSE; |
886 | |
887 | if (!(dwFlags & SAMPLER_INSPECT)) { |
888 | |
889 | if (clut ->Tab.TFloat != NULL) { |
890 | for (t=0; t < (int) nOutputs; t++) |
891 | clut->Tab.TFloat[index + t] = Out[t]; |
892 | } |
893 | } |
894 | |
895 | index += nOutputs; |
896 | } |
897 | |
898 | return TRUE; |
899 | } |
900 | |
901 | |
902 | |
903 | // This routine does a sweep on whole input space, and calls its callback |
904 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
905 | cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
906 | cmsSAMPLER16 Sampler, void * Cargo) |
907 | { |
908 | int i, t, rest; |
909 | cmsUInt32Number nTotalPoints; |
910 | cmsUInt16Number In[cmsMAXCHANNELS]; |
911 | |
912 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
913 | |
914 | nTotalPoints = CubeSize(clutPoints, nInputs); |
915 | if (nTotalPoints == 0) return FALSE; |
916 | |
917 | for (i = 0; i < (int) nTotalPoints; i++) { |
918 | |
919 | rest = i; |
920 | for (t = (int) nInputs-1; t >=0; --t) { |
921 | |
922 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
923 | |
924 | rest /= clutPoints[t]; |
925 | In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); |
926 | |
927 | } |
928 | |
929 | if (!Sampler(In, NULL, Cargo)) |
930 | return FALSE; |
931 | } |
932 | |
933 | return TRUE; |
934 | } |
935 | |
936 | cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
937 | cmsSAMPLERFLOAT Sampler, void * Cargo) |
938 | { |
939 | int i, t, rest; |
940 | cmsUInt32Number nTotalPoints; |
941 | cmsFloat32Number In[cmsMAXCHANNELS]; |
942 | |
943 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
944 | |
945 | nTotalPoints = CubeSize(clutPoints, nInputs); |
946 | if (nTotalPoints == 0) return FALSE; |
947 | |
948 | for (i = 0; i < (int) nTotalPoints; i++) { |
949 | |
950 | rest = i; |
951 | for (t = (int) nInputs-1; t >=0; --t) { |
952 | |
953 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
954 | |
955 | rest /= clutPoints[t]; |
956 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); |
957 | |
958 | } |
959 | |
960 | if (!Sampler(In, NULL, Cargo)) |
961 | return FALSE; |
962 | } |
963 | |
964 | return TRUE; |
965 | } |
966 | |
967 | // ******************************************************************************** |
968 | // Type cmsSigLab2XYZElemType |
969 | // ******************************************************************************** |
970 | |
971 | |
972 | static |
973 | void EvaluateLab2XYZ(const cmsFloat32Number In[], |
974 | cmsFloat32Number Out[], |
975 | const cmsStage *mpe) |
976 | { |
977 | cmsCIELab Lab; |
978 | cmsCIEXYZ XYZ; |
979 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
980 | |
981 | // V4 rules |
982 | Lab.L = In[0] * 100.0; |
983 | Lab.a = In[1] * 255.0 - 128.0; |
984 | Lab.b = In[2] * 255.0 - 128.0; |
985 | |
986 | cmsLab2XYZ(NULL, &XYZ, &Lab); |
987 | |
988 | // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff |
989 | // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) |
990 | |
991 | Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); |
992 | Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); |
993 | Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); |
994 | return; |
995 | |
996 | cmsUNUSED_PARAMETER(mpe); |
997 | } |
998 | |
999 | |
1000 | // No dup or free routines needed, as the structure has no pointers in it. |
1001 | cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID) |
1002 | { |
1003 | return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL); |
1004 | } |
1005 | |
1006 | // ******************************************************************************** |
1007 | |
1008 | // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable |
1009 | // number of gridpoints that would make exact match. However, a prelinearization |
1010 | // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. |
1011 | // Almost all what we need but unfortunately, the rest of entries should be scaled by |
1012 | // (255*257/256) and this is not exact. |
1013 | |
1014 | cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) |
1015 | { |
1016 | cmsStage* mpe; |
1017 | cmsToneCurve* LabTable[3]; |
1018 | int i, j; |
1019 | |
1020 | LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
1021 | LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
1022 | LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
1023 | |
1024 | for (j=0; j < 3; j++) { |
1025 | |
1026 | if (LabTable[j] == NULL) { |
1027 | cmsFreeToneCurveTriple(LabTable); |
1028 | return NULL; |
1029 | } |
1030 | |
1031 | // We need to map * (0xffff / 0xff00), that's same as (257 / 256) |
1032 | // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); |
1033 | for (i=0; i < 257; i++) { |
1034 | |
1035 | LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); |
1036 | } |
1037 | |
1038 | LabTable[j] ->Table16[257] = 0xffff; |
1039 | } |
1040 | |
1041 | mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); |
1042 | cmsFreeToneCurveTriple(LabTable); |
1043 | |
1044 | if (mpe == NULL) return NULL; |
1045 | mpe ->Implements = cmsSigLabV2toV4; |
1046 | return mpe; |
1047 | } |
1048 | |
1049 | // ******************************************************************************** |
1050 | |
1051 | // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles |
1052 | cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID) |
1053 | { |
1054 | static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, |
1055 | 0, 65535.0/65280.0, 0, |
1056 | 0, 0, 65535.0/65280.0 |
1057 | }; |
1058 | |
1059 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL); |
1060 | |
1061 | if (mpe == NULL) return mpe; |
1062 | mpe ->Implements = cmsSigLabV2toV4; |
1063 | return mpe; |
1064 | } |
1065 | |
1066 | |
1067 | // Reverse direction |
1068 | cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID) |
1069 | { |
1070 | static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, |
1071 | 0, 65280.0/65535.0, 0, |
1072 | 0, 0, 65280.0/65535.0 |
1073 | }; |
1074 | |
1075 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL); |
1076 | |
1077 | if (mpe == NULL) return mpe; |
1078 | mpe ->Implements = cmsSigLabV4toV2; |
1079 | return mpe; |
1080 | } |
1081 | |
1082 | |
1083 | // To Lab to float. Note that the MPE gives numbers in normal Lab range |
1084 | // and we need 0..1.0 range for the formatters |
1085 | // L* : 0...100 => 0...1.0 (L* / 100) |
1086 | // ab* : -128..+127 to 0..1 ((ab* + 128) / 255) |
1087 | |
1088 | cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) |
1089 | { |
1090 | static const cmsFloat64Number a1[] = { |
1091 | 1.0/100.0, 0, 0, |
1092 | 0, 1.0/255.0, 0, |
1093 | 0, 0, 1.0/255.0 |
1094 | }; |
1095 | |
1096 | static const cmsFloat64Number o1[] = { |
1097 | 0, |
1098 | 128.0/255.0, |
1099 | 128.0/255.0 |
1100 | }; |
1101 | |
1102 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
1103 | |
1104 | if (mpe == NULL) return mpe; |
1105 | mpe ->Implements = cmsSigLab2FloatPCS; |
1106 | return mpe; |
1107 | } |
1108 | |
1109 | // Fom XYZ to floating point PCS |
1110 | cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) |
1111 | { |
1112 | #define n (32768.0/65535.0) |
1113 | static const cmsFloat64Number a1[] = { |
1114 | n, 0, 0, |
1115 | 0, n, 0, |
1116 | 0, 0, n |
1117 | }; |
1118 | #undef n |
1119 | |
1120 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
1121 | |
1122 | if (mpe == NULL) return mpe; |
1123 | mpe ->Implements = cmsSigXYZ2FloatPCS; |
1124 | return mpe; |
1125 | } |
1126 | |
1127 | cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) |
1128 | { |
1129 | static const cmsFloat64Number a1[] = { |
1130 | 100.0, 0, 0, |
1131 | 0, 255.0, 0, |
1132 | 0, 0, 255.0 |
1133 | }; |
1134 | |
1135 | static const cmsFloat64Number o1[] = { |
1136 | 0, |
1137 | -128.0, |
1138 | -128.0 |
1139 | }; |
1140 | |
1141 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
1142 | if (mpe == NULL) return mpe; |
1143 | mpe ->Implements = cmsSigFloatPCS2Lab; |
1144 | return mpe; |
1145 | } |
1146 | |
1147 | cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) |
1148 | { |
1149 | #define n (65535.0/32768.0) |
1150 | |
1151 | static const cmsFloat64Number a1[] = { |
1152 | n, 0, 0, |
1153 | 0, n, 0, |
1154 | 0, 0, n |
1155 | }; |
1156 | #undef n |
1157 | |
1158 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
1159 | if (mpe == NULL) return mpe; |
1160 | mpe ->Implements = cmsSigFloatPCS2XYZ; |
1161 | return mpe; |
1162 | } |
1163 | |
1164 | // Clips values smaller than zero |
1165 | static |
1166 | void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
1167 | { |
1168 | cmsUInt32Number i; |
1169 | for (i = 0; i < mpe->InputChannels; i++) { |
1170 | |
1171 | cmsFloat32Number n = In[i]; |
1172 | Out[i] = n < 0 ? 0 : n; |
1173 | } |
1174 | } |
1175 | |
1176 | cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels) |
1177 | { |
1178 | return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType, |
1179 | nChannels, nChannels, Clipper, NULL, NULL, NULL); |
1180 | } |
1181 | |
1182 | // ******************************************************************************** |
1183 | // Type cmsSigXYZ2LabElemType |
1184 | // ******************************************************************************** |
1185 | |
1186 | static |
1187 | void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
1188 | { |
1189 | cmsCIELab Lab; |
1190 | cmsCIEXYZ XYZ; |
1191 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
1192 | |
1193 | // From 0..1.0 to XYZ |
1194 | |
1195 | XYZ.X = In[0] * XYZadj; |
1196 | XYZ.Y = In[1] * XYZadj; |
1197 | XYZ.Z = In[2] * XYZadj; |
1198 | |
1199 | cmsXYZ2Lab(NULL, &Lab, &XYZ); |
1200 | |
1201 | // From V4 Lab to 0..1.0 |
1202 | |
1203 | Out[0] = (cmsFloat32Number) (Lab.L / 100.0); |
1204 | Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); |
1205 | Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); |
1206 | return; |
1207 | |
1208 | cmsUNUSED_PARAMETER(mpe); |
1209 | } |
1210 | |
1211 | cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID) |
1212 | { |
1213 | return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL); |
1214 | |
1215 | } |
1216 | |
1217 | // ******************************************************************************** |
1218 | |
1219 | // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray |
1220 | |
1221 | cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) |
1222 | { |
1223 | cmsToneCurve* LabTable[3]; |
1224 | cmsFloat64Number Params[1] = {2.4} ; |
1225 | |
1226 | LabTable[0] = cmsBuildGamma(ContextID, 1.0); |
1227 | LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
1228 | LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
1229 | |
1230 | return cmsStageAllocToneCurves(ContextID, 3, LabTable); |
1231 | } |
1232 | |
1233 | |
1234 | // Free a single MPE |
1235 | void CMSEXPORT cmsStageFree(cmsStage* mpe) |
1236 | { |
1237 | if (mpe ->FreePtr) |
1238 | mpe ->FreePtr(mpe); |
1239 | |
1240 | _cmsFree(mpe ->ContextID, mpe); |
1241 | } |
1242 | |
1243 | |
1244 | cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe) |
1245 | { |
1246 | return mpe ->InputChannels; |
1247 | } |
1248 | |
1249 | cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe) |
1250 | { |
1251 | return mpe ->OutputChannels; |
1252 | } |
1253 | |
1254 | cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe) |
1255 | { |
1256 | return mpe -> Type; |
1257 | } |
1258 | |
1259 | void* CMSEXPORT cmsStageData(const cmsStage* mpe) |
1260 | { |
1261 | return mpe -> Data; |
1262 | } |
1263 | |
1264 | cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe) |
1265 | { |
1266 | return mpe -> Next; |
1267 | } |
1268 | |
1269 | |
1270 | // Duplicates an MPE |
1271 | cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe) |
1272 | { |
1273 | cmsStage* NewMPE; |
1274 | |
1275 | if (mpe == NULL) return NULL; |
1276 | NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID, |
1277 | mpe ->Type, |
1278 | mpe ->InputChannels, |
1279 | mpe ->OutputChannels, |
1280 | mpe ->EvalPtr, |
1281 | mpe ->DupElemPtr, |
1282 | mpe ->FreePtr, |
1283 | NULL); |
1284 | if (NewMPE == NULL) return NULL; |
1285 | |
1286 | NewMPE ->Implements = mpe ->Implements; |
1287 | |
1288 | if (mpe ->DupElemPtr) { |
1289 | |
1290 | NewMPE ->Data = mpe ->DupElemPtr(mpe); |
1291 | |
1292 | if (NewMPE->Data == NULL) { |
1293 | |
1294 | cmsStageFree(NewMPE); |
1295 | return NULL; |
1296 | } |
1297 | |
1298 | } else { |
1299 | |
1300 | NewMPE ->Data = NULL; |
1301 | } |
1302 | |
1303 | return NewMPE; |
1304 | } |
1305 | |
1306 | |
1307 | // *********************************************************************************************************** |
1308 | |
1309 | // This function sets up the channel count |
1310 | static |
1311 | cmsBool BlessLUT(cmsPipeline* lut) |
1312 | { |
1313 | // We can set the input/output channels only if we have elements. |
1314 | if (lut ->Elements != NULL) { |
1315 | |
1316 | cmsStage* prev; |
1317 | cmsStage* next; |
1318 | cmsStage* First; |
1319 | cmsStage* Last; |
1320 | |
1321 | First = cmsPipelineGetPtrToFirstStage(lut); |
1322 | Last = cmsPipelineGetPtrToLastStage(lut); |
1323 | |
1324 | if (First == NULL || Last == NULL) return FALSE; |
1325 | |
1326 | lut->InputChannels = First->InputChannels; |
1327 | lut->OutputChannels = Last->OutputChannels; |
1328 | |
1329 | // Check chain consistency |
1330 | prev = First; |
1331 | next = prev->Next; |
1332 | |
1333 | while (next != NULL) |
1334 | { |
1335 | if (next->InputChannels != prev->OutputChannels) |
1336 | return FALSE; |
1337 | |
1338 | next = next->Next; |
1339 | prev = prev->Next; |
1340 | } |
1341 | } |
1342 | |
1343 | return TRUE; |
1344 | } |
1345 | |
1346 | |
1347 | // Default to evaluate the LUT on 16 bit-basis. Precision is retained. |
1348 | static |
1349 | void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D) |
1350 | { |
1351 | cmsPipeline* lut = (cmsPipeline*) D; |
1352 | cmsStage *mpe; |
1353 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
1354 | int Phase = 0, NextPhase; |
1355 | |
1356 | From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); |
1357 | |
1358 | for (mpe = lut ->Elements; |
1359 | mpe != NULL; |
1360 | mpe = mpe ->Next) { |
1361 | |
1362 | NextPhase = Phase ^ 1; |
1363 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); |
1364 | Phase = NextPhase; |
1365 | } |
1366 | |
1367 | |
1368 | FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); |
1369 | } |
1370 | |
1371 | |
1372 | |
1373 | // Does evaluate the LUT on cmsFloat32Number-basis. |
1374 | static |
1375 | void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D) |
1376 | { |
1377 | cmsPipeline* lut = (cmsPipeline*) D; |
1378 | cmsStage *mpe; |
1379 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
1380 | int Phase = 0, NextPhase; |
1381 | |
1382 | memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); |
1383 | |
1384 | for (mpe = lut ->Elements; |
1385 | mpe != NULL; |
1386 | mpe = mpe ->Next) { |
1387 | |
1388 | NextPhase = Phase ^ 1; |
1389 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); |
1390 | Phase = NextPhase; |
1391 | } |
1392 | |
1393 | memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); |
1394 | } |
1395 | |
1396 | |
1397 | // LUT Creation & Destruction |
1398 | cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) |
1399 | { |
1400 | cmsPipeline* NewLUT; |
1401 | |
1402 | // A value of zero in channels is allowed as placeholder |
1403 | if (InputChannels >= cmsMAXCHANNELS || |
1404 | OutputChannels >= cmsMAXCHANNELS) return NULL; |
1405 | |
1406 | NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); |
1407 | if (NewLUT == NULL) return NULL; |
1408 | |
1409 | NewLUT -> InputChannels = InputChannels; |
1410 | NewLUT -> OutputChannels = OutputChannels; |
1411 | |
1412 | NewLUT ->Eval16Fn = _LUTeval16; |
1413 | NewLUT ->EvalFloatFn = _LUTevalFloat; |
1414 | NewLUT ->DupDataFn = NULL; |
1415 | NewLUT ->FreeDataFn = NULL; |
1416 | NewLUT ->Data = NewLUT; |
1417 | NewLUT ->ContextID = ContextID; |
1418 | |
1419 | if (!BlessLUT(NewLUT)) |
1420 | { |
1421 | _cmsFree(ContextID, NewLUT); |
1422 | return NULL; |
1423 | } |
1424 | |
1425 | return NewLUT; |
1426 | } |
1427 | |
1428 | cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut) |
1429 | { |
1430 | _cmsAssert(lut != NULL); |
1431 | return lut ->ContextID; |
1432 | } |
1433 | |
1434 | cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut) |
1435 | { |
1436 | _cmsAssert(lut != NULL); |
1437 | return lut ->InputChannels; |
1438 | } |
1439 | |
1440 | cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut) |
1441 | { |
1442 | _cmsAssert(lut != NULL); |
1443 | return lut ->OutputChannels; |
1444 | } |
1445 | |
1446 | // Free a profile elements LUT |
1447 | void CMSEXPORT cmsPipelineFree(cmsPipeline* lut) |
1448 | { |
1449 | cmsStage *mpe, *Next; |
1450 | |
1451 | if (lut == NULL) return; |
1452 | |
1453 | for (mpe = lut ->Elements; |
1454 | mpe != NULL; |
1455 | mpe = Next) { |
1456 | |
1457 | Next = mpe ->Next; |
1458 | cmsStageFree(mpe); |
1459 | } |
1460 | |
1461 | if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data); |
1462 | |
1463 | _cmsFree(lut ->ContextID, lut); |
1464 | } |
1465 | |
1466 | |
1467 | // Default to evaluate the LUT on 16 bit-basis. |
1468 | void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) |
1469 | { |
1470 | _cmsAssert(lut != NULL); |
1471 | lut ->Eval16Fn(In, Out, lut->Data); |
1472 | } |
1473 | |
1474 | |
1475 | // Does evaluate the LUT on cmsFloat32Number-basis. |
1476 | void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) |
1477 | { |
1478 | _cmsAssert(lut != NULL); |
1479 | lut ->EvalFloatFn(In, Out, lut); |
1480 | } |
1481 | |
1482 | |
1483 | |
1484 | // Duplicates a LUT |
1485 | cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut) |
1486 | { |
1487 | cmsPipeline* NewLUT; |
1488 | cmsStage *NewMPE, *Anterior = NULL, *mpe; |
1489 | cmsBool First = TRUE; |
1490 | |
1491 | if (lut == NULL) return NULL; |
1492 | |
1493 | NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels); |
1494 | if (NewLUT == NULL) return NULL; |
1495 | |
1496 | for (mpe = lut ->Elements; |
1497 | mpe != NULL; |
1498 | mpe = mpe ->Next) { |
1499 | |
1500 | NewMPE = cmsStageDup(mpe); |
1501 | |
1502 | if (NewMPE == NULL) { |
1503 | cmsPipelineFree(NewLUT); |
1504 | return NULL; |
1505 | } |
1506 | |
1507 | if (First) { |
1508 | NewLUT ->Elements = NewMPE; |
1509 | First = FALSE; |
1510 | } |
1511 | else { |
1512 | if (Anterior != NULL) |
1513 | Anterior ->Next = NewMPE; |
1514 | } |
1515 | |
1516 | Anterior = NewMPE; |
1517 | } |
1518 | |
1519 | NewLUT ->Eval16Fn = lut ->Eval16Fn; |
1520 | NewLUT ->EvalFloatFn = lut ->EvalFloatFn; |
1521 | NewLUT ->DupDataFn = lut ->DupDataFn; |
1522 | NewLUT ->FreeDataFn = lut ->FreeDataFn; |
1523 | |
1524 | if (NewLUT ->DupDataFn != NULL) |
1525 | NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data); |
1526 | |
1527 | |
1528 | NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; |
1529 | |
1530 | if (!BlessLUT(NewLUT)) |
1531 | { |
1532 | _cmsFree(lut->ContextID, NewLUT); |
1533 | return NULL; |
1534 | } |
1535 | |
1536 | return NewLUT; |
1537 | } |
1538 | |
1539 | |
1540 | int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) |
1541 | { |
1542 | cmsStage* Anterior = NULL, *pt; |
1543 | |
1544 | if (lut == NULL || mpe == NULL) |
1545 | return FALSE; |
1546 | |
1547 | switch (loc) { |
1548 | |
1549 | case cmsAT_BEGIN: |
1550 | mpe ->Next = lut ->Elements; |
1551 | lut ->Elements = mpe; |
1552 | break; |
1553 | |
1554 | case cmsAT_END: |
1555 | |
1556 | if (lut ->Elements == NULL) |
1557 | lut ->Elements = mpe; |
1558 | else { |
1559 | |
1560 | for (pt = lut ->Elements; |
1561 | pt != NULL; |
1562 | pt = pt -> Next) Anterior = pt; |
1563 | |
1564 | Anterior ->Next = mpe; |
1565 | mpe ->Next = NULL; |
1566 | } |
1567 | break; |
1568 | default:; |
1569 | return FALSE; |
1570 | } |
1571 | |
1572 | return BlessLUT(lut); |
1573 | } |
1574 | |
1575 | // Unlink an element and return the pointer to it |
1576 | void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) |
1577 | { |
1578 | cmsStage *Anterior, *pt, *Last; |
1579 | cmsStage *Unlinked = NULL; |
1580 | |
1581 | |
1582 | // If empty LUT, there is nothing to remove |
1583 | if (lut ->Elements == NULL) { |
1584 | if (mpe) *mpe = NULL; |
1585 | return; |
1586 | } |
1587 | |
1588 | // On depending on the strategy... |
1589 | switch (loc) { |
1590 | |
1591 | case cmsAT_BEGIN: |
1592 | { |
1593 | cmsStage* elem = lut ->Elements; |
1594 | |
1595 | lut ->Elements = elem -> Next; |
1596 | elem ->Next = NULL; |
1597 | Unlinked = elem; |
1598 | |
1599 | } |
1600 | break; |
1601 | |
1602 | case cmsAT_END: |
1603 | Anterior = Last = NULL; |
1604 | for (pt = lut ->Elements; |
1605 | pt != NULL; |
1606 | pt = pt -> Next) { |
1607 | Anterior = Last; |
1608 | Last = pt; |
1609 | } |
1610 | |
1611 | Unlinked = Last; // Next already points to NULL |
1612 | |
1613 | // Truncate the chain |
1614 | if (Anterior) |
1615 | Anterior ->Next = NULL; |
1616 | else |
1617 | lut ->Elements = NULL; |
1618 | break; |
1619 | default:; |
1620 | } |
1621 | |
1622 | if (mpe) |
1623 | *mpe = Unlinked; |
1624 | else |
1625 | cmsStageFree(Unlinked); |
1626 | |
1627 | // May fail, but we ignore it |
1628 | BlessLUT(lut); |
1629 | } |
1630 | |
1631 | |
1632 | // Concatenate two LUT into a new single one |
1633 | cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2) |
1634 | { |
1635 | cmsStage* mpe; |
1636 | |
1637 | // If both LUTS does not have elements, we need to inherit |
1638 | // the number of channels |
1639 | if (l1 ->Elements == NULL && l2 ->Elements == NULL) { |
1640 | l1 ->InputChannels = l2 ->InputChannels; |
1641 | l1 ->OutputChannels = l2 ->OutputChannels; |
1642 | } |
1643 | |
1644 | // Cat second |
1645 | for (mpe = l2 ->Elements; |
1646 | mpe != NULL; |
1647 | mpe = mpe ->Next) { |
1648 | |
1649 | // We have to dup each element |
1650 | if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe))) |
1651 | return FALSE; |
1652 | } |
1653 | |
1654 | return BlessLUT(l1); |
1655 | } |
1656 | |
1657 | |
1658 | cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On) |
1659 | { |
1660 | cmsBool Anterior = lut ->SaveAs8Bits; |
1661 | |
1662 | lut ->SaveAs8Bits = On; |
1663 | return Anterior; |
1664 | } |
1665 | |
1666 | |
1667 | cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut) |
1668 | { |
1669 | return lut ->Elements; |
1670 | } |
1671 | |
1672 | cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut) |
1673 | { |
1674 | cmsStage *mpe, *Anterior = NULL; |
1675 | |
1676 | for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
1677 | Anterior = mpe; |
1678 | |
1679 | return Anterior; |
1680 | } |
1681 | |
1682 | cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut) |
1683 | { |
1684 | cmsStage *mpe; |
1685 | cmsUInt32Number n; |
1686 | |
1687 | for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
1688 | n++; |
1689 | |
1690 | return n; |
1691 | } |
1692 | |
1693 | // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional |
1694 | // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. |
1695 | void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut, |
1696 | _cmsOPTeval16Fn Eval16, |
1697 | void* PrivateData, |
1698 | _cmsFreeUserDataFn FreePrivateDataFn, |
1699 | _cmsDupUserDataFn DupPrivateDataFn) |
1700 | { |
1701 | |
1702 | Lut ->Eval16Fn = Eval16; |
1703 | Lut ->DupDataFn = DupPrivateDataFn; |
1704 | Lut ->FreeDataFn = FreePrivateDataFn; |
1705 | Lut ->Data = PrivateData; |
1706 | } |
1707 | |
1708 | |
1709 | // ----------------------------------------------------------- Reverse interpolation |
1710 | // Here's how it goes. The derivative Df(x) of the function f is the linear |
1711 | // transformation that best approximates f near the point x. It can be represented |
1712 | // by a matrix A whose entries are the partial derivatives of the components of f |
1713 | // with respect to all the coordinates. This is know as the Jacobian |
1714 | // |
1715 | // The best linear approximation to f is given by the matrix equation: |
1716 | // |
1717 | // y-y0 = A (x-x0) |
1718 | // |
1719 | // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this |
1720 | // linear approximation will give a "better guess" for the zero of f. Thus let y=0, |
1721 | // and since y0=f(x0) one can solve the above equation for x. This leads to the |
1722 | // Newton's method formula: |
1723 | // |
1724 | // xn+1 = xn - A-1 f(xn) |
1725 | // |
1726 | // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the |
1727 | // fashion described above. Iterating this will give better and better approximations |
1728 | // if you have a "good enough" initial guess. |
1729 | |
1730 | |
1731 | #define JACOBIAN_EPSILON 0.001f |
1732 | #define INVERSION_MAX_ITERATIONS 30 |
1733 | |
1734 | // Increment with reflexion on boundary |
1735 | static |
1736 | void IncDelta(cmsFloat32Number *Val) |
1737 | { |
1738 | if (*Val < (1.0 - JACOBIAN_EPSILON)) |
1739 | |
1740 | *Val += JACOBIAN_EPSILON; |
1741 | |
1742 | else |
1743 | *Val -= JACOBIAN_EPSILON; |
1744 | |
1745 | } |
1746 | |
1747 | |
1748 | |
1749 | // Euclidean distance between two vectors of n elements each one |
1750 | static |
1751 | cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) |
1752 | { |
1753 | cmsFloat32Number sum = 0; |
1754 | int i; |
1755 | |
1756 | for (i=0; i < n; i++) { |
1757 | cmsFloat32Number dif = b[i] - a[i]; |
1758 | sum += dif * dif; |
1759 | } |
1760 | |
1761 | return sqrtf(sum); |
1762 | } |
1763 | |
1764 | |
1765 | // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method |
1766 | // |
1767 | // x1 <- x - [J(x)]^-1 * f(x) |
1768 | // |
1769 | // lut: The LUT on where to do the search |
1770 | // Target: LabK, 3 values of Lab plus destination K which is fixed |
1771 | // Result: The obtained CMYK |
1772 | // Hint: Location where begin the search |
1773 | |
1774 | cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[], |
1775 | cmsFloat32Number Result[], |
1776 | cmsFloat32Number Hint[], |
1777 | const cmsPipeline* lut) |
1778 | { |
1779 | cmsUInt32Number i, j; |
1780 | cmsFloat64Number error, LastError = 1E20; |
1781 | cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; |
1782 | cmsVEC3 tmp, tmp2; |
1783 | cmsMAT3 Jacobian; |
1784 | |
1785 | // Only 3->3 and 4->3 are supported |
1786 | if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE; |
1787 | if (lut ->OutputChannels != 3) return FALSE; |
1788 | |
1789 | // Take the hint as starting point if specified |
1790 | if (Hint == NULL) { |
1791 | |
1792 | // Begin at any point, we choose 1/3 of CMY axis |
1793 | x[0] = x[1] = x[2] = 0.3f; |
1794 | } |
1795 | else { |
1796 | |
1797 | // Only copy 3 channels from hint... |
1798 | for (j=0; j < 3; j++) |
1799 | x[j] = Hint[j]; |
1800 | } |
1801 | |
1802 | // If Lut is 4-dimensions, then grab target[3], which is fixed |
1803 | if (lut ->InputChannels == 4) { |
1804 | x[3] = Target[3]; |
1805 | } |
1806 | else x[3] = 0; // To keep lint happy |
1807 | |
1808 | |
1809 | // Iterate |
1810 | for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) { |
1811 | |
1812 | // Get beginning fx |
1813 | cmsPipelineEvalFloat(x, fx, lut); |
1814 | |
1815 | // Compute error |
1816 | error = EuclideanDistance(fx, Target, 3); |
1817 | |
1818 | // If not convergent, return last safe value |
1819 | if (error >= LastError) |
1820 | break; |
1821 | |
1822 | // Keep latest values |
1823 | LastError = error; |
1824 | for (j=0; j < lut ->InputChannels; j++) |
1825 | Result[j] = x[j]; |
1826 | |
1827 | // Found an exact match? |
1828 | if (error <= 0) |
1829 | break; |
1830 | |
1831 | // Obtain slope (the Jacobian) |
1832 | for (j = 0; j < 3; j++) { |
1833 | |
1834 | xd[0] = x[0]; |
1835 | xd[1] = x[1]; |
1836 | xd[2] = x[2]; |
1837 | xd[3] = x[3]; // Keep fixed channel |
1838 | |
1839 | IncDelta(&xd[j]); |
1840 | |
1841 | cmsPipelineEvalFloat(xd, fxd, lut); |
1842 | |
1843 | Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); |
1844 | Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); |
1845 | Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); |
1846 | } |
1847 | |
1848 | // Solve system |
1849 | tmp2.n[0] = fx[0] - Target[0]; |
1850 | tmp2.n[1] = fx[1] - Target[1]; |
1851 | tmp2.n[2] = fx[2] - Target[2]; |
1852 | |
1853 | if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) |
1854 | return FALSE; |
1855 | |
1856 | // Move our guess |
1857 | x[0] -= (cmsFloat32Number) tmp.n[0]; |
1858 | x[1] -= (cmsFloat32Number) tmp.n[1]; |
1859 | x[2] -= (cmsFloat32Number) tmp.n[2]; |
1860 | |
1861 | // Some clipping.... |
1862 | for (j=0; j < 3; j++) { |
1863 | if (x[j] < 0) x[j] = 0; |
1864 | else |
1865 | if (x[j] > 1.0) x[j] = 1.0; |
1866 | } |
1867 | } |
1868 | |
1869 | return TRUE; |
1870 | } |
1871 | |
1872 | |
1873 | |