| 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | // This file is available under and governed by the GNU General Public |
| 26 | // License version 2 only, as published by the Free Software Foundation. |
| 27 | // However, the following notice accompanied the original version of this |
| 28 | // file: |
| 29 | // |
| 30 | //--------------------------------------------------------------------------------- |
| 31 | // |
| 32 | // Little Color Management System |
| 33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 34 | // |
| 35 | // Permission is hereby granted, free of charge, to any person obtaining |
| 36 | // a copy of this software and associated documentation files (the "Software"), |
| 37 | // to deal in the Software without restriction, including without limitation |
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 40 | // is furnished to do so, subject to the following conditions: |
| 41 | // |
| 42 | // The above copyright notice and this permission notice shall be included in |
| 43 | // all copies or substantial portions of the Software. |
| 44 | // |
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 52 | // |
| 53 | //--------------------------------------------------------------------------------- |
| 54 | // |
| 55 | |
| 56 | #include "lcms2_internal.h" |
| 57 | |
| 58 | |
| 59 | // Allocates an empty multi profile element |
| 60 | cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID, |
| 61 | cmsStageSignature Type, |
| 62 | cmsUInt32Number InputChannels, |
| 63 | cmsUInt32Number OutputChannels, |
| 64 | _cmsStageEvalFn EvalPtr, |
| 65 | _cmsStageDupElemFn DupElemPtr, |
| 66 | _cmsStageFreeElemFn FreePtr, |
| 67 | void* Data) |
| 68 | { |
| 69 | cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage)); |
| 70 | |
| 71 | if (ph == NULL) return NULL; |
| 72 | |
| 73 | |
| 74 | ph ->ContextID = ContextID; |
| 75 | |
| 76 | ph ->Type = Type; |
| 77 | ph ->Implements = Type; // By default, no clue on what is implementing |
| 78 | |
| 79 | ph ->InputChannels = InputChannels; |
| 80 | ph ->OutputChannels = OutputChannels; |
| 81 | ph ->EvalPtr = EvalPtr; |
| 82 | ph ->DupElemPtr = DupElemPtr; |
| 83 | ph ->FreePtr = FreePtr; |
| 84 | ph ->Data = Data; |
| 85 | |
| 86 | return ph; |
| 87 | } |
| 88 | |
| 89 | |
| 90 | static |
| 91 | void EvaluateIdentity(const cmsFloat32Number In[], |
| 92 | cmsFloat32Number Out[], |
| 93 | const cmsStage *mpe) |
| 94 | { |
| 95 | memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number)); |
| 96 | } |
| 97 | |
| 98 | |
| 99 | cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels) |
| 100 | { |
| 101 | return _cmsStageAllocPlaceholder(ContextID, |
| 102 | cmsSigIdentityElemType, |
| 103 | nChannels, nChannels, |
| 104 | EvaluateIdentity, |
| 105 | NULL, |
| 106 | NULL, |
| 107 | NULL); |
| 108 | } |
| 109 | |
| 110 | // Conversion functions. From floating point to 16 bits |
| 111 | static |
| 112 | void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n) |
| 113 | { |
| 114 | cmsUInt32Number i; |
| 115 | |
| 116 | for (i=0; i < n; i++) { |
| 117 | Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | // From 16 bits to floating point |
| 122 | static |
| 123 | void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n) |
| 124 | { |
| 125 | cmsUInt32Number i; |
| 126 | |
| 127 | for (i=0; i < n; i++) { |
| 128 | Out[i] = (cmsFloat32Number) In[i] / 65535.0F; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | |
| 133 | // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements |
| 134 | // that conform the LUT. It should be called with the LUT, the number of expected elements and |
| 135 | // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If |
| 136 | // the function founds a match with current pipeline, it fills the pointers and returns TRUE |
| 137 | // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass |
| 138 | // the storage process. |
| 139 | cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...) |
| 140 | { |
| 141 | va_list args; |
| 142 | cmsUInt32Number i; |
| 143 | cmsStage* mpe; |
| 144 | cmsStageSignature Type; |
| 145 | void** ElemPtr; |
| 146 | |
| 147 | // Make sure same number of elements |
| 148 | if (cmsPipelineStageCount(Lut) != n) return FALSE; |
| 149 | |
| 150 | va_start(args, n); |
| 151 | |
| 152 | // Iterate across asked types |
| 153 | mpe = Lut ->Elements; |
| 154 | for (i=0; i < n; i++) { |
| 155 | |
| 156 | // Get asked type. cmsStageSignature is promoted to int by compiler |
| 157 | Type = (cmsStageSignature)va_arg(args, int); |
| 158 | if (mpe ->Type != Type) { |
| 159 | |
| 160 | va_end(args); // Mismatch. We are done. |
| 161 | return FALSE; |
| 162 | } |
| 163 | mpe = mpe ->Next; |
| 164 | } |
| 165 | |
| 166 | // Found a combination, fill pointers if not NULL |
| 167 | mpe = Lut ->Elements; |
| 168 | for (i=0; i < n; i++) { |
| 169 | |
| 170 | ElemPtr = va_arg(args, void**); |
| 171 | if (ElemPtr != NULL) |
| 172 | *ElemPtr = mpe; |
| 173 | |
| 174 | mpe = mpe ->Next; |
| 175 | } |
| 176 | |
| 177 | va_end(args); |
| 178 | return TRUE; |
| 179 | } |
| 180 | |
| 181 | // Below there are implementations for several types of elements. Each type may be implemented by a |
| 182 | // evaluation function, a duplication function, a function to free resources and a constructor. |
| 183 | |
| 184 | // ************************************************************************************************* |
| 185 | // Type cmsSigCurveSetElemType (curves) |
| 186 | // ************************************************************************************************* |
| 187 | |
| 188 | cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe) |
| 189 | { |
| 190 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
| 191 | |
| 192 | return Data ->TheCurves; |
| 193 | } |
| 194 | |
| 195 | static |
| 196 | void EvaluateCurves(const cmsFloat32Number In[], |
| 197 | cmsFloat32Number Out[], |
| 198 | const cmsStage *mpe) |
| 199 | { |
| 200 | _cmsStageToneCurvesData* Data; |
| 201 | cmsUInt32Number i; |
| 202 | |
| 203 | _cmsAssert(mpe != NULL); |
| 204 | |
| 205 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
| 206 | if (Data == NULL) return; |
| 207 | |
| 208 | if (Data ->TheCurves == NULL) return; |
| 209 | |
| 210 | for (i=0; i < Data ->nCurves; i++) { |
| 211 | Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | static |
| 216 | void CurveSetElemTypeFree(cmsStage* mpe) |
| 217 | { |
| 218 | _cmsStageToneCurvesData* Data; |
| 219 | cmsUInt32Number i; |
| 220 | |
| 221 | _cmsAssert(mpe != NULL); |
| 222 | |
| 223 | Data = (_cmsStageToneCurvesData*) mpe ->Data; |
| 224 | if (Data == NULL) return; |
| 225 | |
| 226 | if (Data ->TheCurves != NULL) { |
| 227 | for (i=0; i < Data ->nCurves; i++) { |
| 228 | if (Data ->TheCurves[i] != NULL) |
| 229 | cmsFreeToneCurve(Data ->TheCurves[i]); |
| 230 | } |
| 231 | } |
| 232 | _cmsFree(mpe ->ContextID, Data ->TheCurves); |
| 233 | _cmsFree(mpe ->ContextID, Data); |
| 234 | } |
| 235 | |
| 236 | |
| 237 | static |
| 238 | void* CurveSetDup(cmsStage* mpe) |
| 239 | { |
| 240 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data; |
| 241 | _cmsStageToneCurvesData* NewElem; |
| 242 | cmsUInt32Number i; |
| 243 | |
| 244 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData)); |
| 245 | if (NewElem == NULL) return NULL; |
| 246 | |
| 247 | NewElem ->nCurves = Data ->nCurves; |
| 248 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*)); |
| 249 | |
| 250 | if (NewElem ->TheCurves == NULL) goto Error; |
| 251 | |
| 252 | for (i=0; i < NewElem ->nCurves; i++) { |
| 253 | |
| 254 | // Duplicate each curve. It may fail. |
| 255 | NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]); |
| 256 | if (NewElem ->TheCurves[i] == NULL) goto Error; |
| 257 | |
| 258 | |
| 259 | } |
| 260 | return (void*) NewElem; |
| 261 | |
| 262 | Error: |
| 263 | |
| 264 | if (NewElem ->TheCurves != NULL) { |
| 265 | for (i=0; i < NewElem ->nCurves; i++) { |
| 266 | if (NewElem ->TheCurves[i]) |
| 267 | cmsFreeToneCurve(NewElem ->TheCurves[i]); |
| 268 | } |
| 269 | } |
| 270 | _cmsFree(mpe ->ContextID, NewElem ->TheCurves); |
| 271 | _cmsFree(mpe ->ContextID, NewElem); |
| 272 | return NULL; |
| 273 | } |
| 274 | |
| 275 | |
| 276 | // Curves == NULL forces identity curves |
| 277 | cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[]) |
| 278 | { |
| 279 | cmsUInt32Number i; |
| 280 | _cmsStageToneCurvesData* NewElem; |
| 281 | cmsStage* NewMPE; |
| 282 | |
| 283 | |
| 284 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels, |
| 285 | EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL ); |
| 286 | if (NewMPE == NULL) return NULL; |
| 287 | |
| 288 | NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData)); |
| 289 | if (NewElem == NULL) { |
| 290 | cmsStageFree(NewMPE); |
| 291 | return NULL; |
| 292 | } |
| 293 | |
| 294 | NewMPE ->Data = (void*) NewElem; |
| 295 | |
| 296 | NewElem ->nCurves = nChannels; |
| 297 | NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*)); |
| 298 | if (NewElem ->TheCurves == NULL) { |
| 299 | cmsStageFree(NewMPE); |
| 300 | return NULL; |
| 301 | } |
| 302 | |
| 303 | for (i=0; i < nChannels; i++) { |
| 304 | |
| 305 | if (Curves == NULL) { |
| 306 | NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0); |
| 307 | } |
| 308 | else { |
| 309 | NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]); |
| 310 | } |
| 311 | |
| 312 | if (NewElem ->TheCurves[i] == NULL) { |
| 313 | cmsStageFree(NewMPE); |
| 314 | return NULL; |
| 315 | } |
| 316 | |
| 317 | } |
| 318 | |
| 319 | return NewMPE; |
| 320 | } |
| 321 | |
| 322 | |
| 323 | // Create a bunch of identity curves |
| 324 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels) |
| 325 | { |
| 326 | cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL); |
| 327 | |
| 328 | if (mpe == NULL) return NULL; |
| 329 | mpe ->Implements = cmsSigIdentityElemType; |
| 330 | return mpe; |
| 331 | } |
| 332 | |
| 333 | |
| 334 | // ************************************************************************************************* |
| 335 | // Type cmsSigMatrixElemType (Matrices) |
| 336 | // ************************************************************************************************* |
| 337 | |
| 338 | |
| 339 | // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used |
| 340 | static |
| 341 | void EvaluateMatrix(const cmsFloat32Number In[], |
| 342 | cmsFloat32Number Out[], |
| 343 | const cmsStage *mpe) |
| 344 | { |
| 345 | cmsUInt32Number i, j; |
| 346 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
| 347 | cmsFloat64Number Tmp; |
| 348 | |
| 349 | // Input is already in 0..1.0 notation |
| 350 | for (i=0; i < mpe ->OutputChannels; i++) { |
| 351 | |
| 352 | Tmp = 0; |
| 353 | for (j=0; j < mpe->InputChannels; j++) { |
| 354 | Tmp += In[j] * Data->Double[i*mpe->InputChannels + j]; |
| 355 | } |
| 356 | |
| 357 | if (Data ->Offset != NULL) |
| 358 | Tmp += Data->Offset[i]; |
| 359 | |
| 360 | Out[i] = (cmsFloat32Number) Tmp; |
| 361 | } |
| 362 | |
| 363 | |
| 364 | // Output in 0..1.0 domain |
| 365 | } |
| 366 | |
| 367 | |
| 368 | // Duplicate a yet-existing matrix element |
| 369 | static |
| 370 | void* MatrixElemDup(cmsStage* mpe) |
| 371 | { |
| 372 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
| 373 | _cmsStageMatrixData* NewElem; |
| 374 | cmsUInt32Number sz; |
| 375 | |
| 376 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData)); |
| 377 | if (NewElem == NULL) return NULL; |
| 378 | |
| 379 | sz = mpe ->InputChannels * mpe ->OutputChannels; |
| 380 | |
| 381 | NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ; |
| 382 | |
| 383 | if (Data ->Offset) |
| 384 | NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, |
| 385 | Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ; |
| 386 | |
| 387 | return (void*) NewElem; |
| 388 | } |
| 389 | |
| 390 | |
| 391 | static |
| 392 | void MatrixElemTypeFree(cmsStage* mpe) |
| 393 | { |
| 394 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data; |
| 395 | if (Data == NULL) |
| 396 | return; |
| 397 | if (Data ->Double) |
| 398 | _cmsFree(mpe ->ContextID, Data ->Double); |
| 399 | |
| 400 | if (Data ->Offset) |
| 401 | _cmsFree(mpe ->ContextID, Data ->Offset); |
| 402 | |
| 403 | _cmsFree(mpe ->ContextID, mpe ->Data); |
| 404 | } |
| 405 | |
| 406 | |
| 407 | |
| 408 | cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols, |
| 409 | const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset) |
| 410 | { |
| 411 | cmsUInt32Number i, n; |
| 412 | _cmsStageMatrixData* NewElem; |
| 413 | cmsStage* NewMPE; |
| 414 | |
| 415 | n = Rows * Cols; |
| 416 | |
| 417 | // Check for overflow |
| 418 | if (n == 0) return NULL; |
| 419 | if (n >= UINT_MAX / Cols) return NULL; |
| 420 | if (n >= UINT_MAX / Rows) return NULL; |
| 421 | if (n < Rows || n < Cols) return NULL; |
| 422 | |
| 423 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows, |
| 424 | EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL ); |
| 425 | if (NewMPE == NULL) return NULL; |
| 426 | |
| 427 | |
| 428 | NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData)); |
| 429 | if (NewElem == NULL) return NULL; |
| 430 | |
| 431 | |
| 432 | NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number)); |
| 433 | |
| 434 | if (NewElem->Double == NULL) { |
| 435 | MatrixElemTypeFree(NewMPE); |
| 436 | return NULL; |
| 437 | } |
| 438 | |
| 439 | for (i=0; i < n; i++) { |
| 440 | NewElem ->Double[i] = Matrix[i]; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | if (Offset != NULL) { |
| 445 | |
| 446 | NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number)); |
| 447 | if (NewElem->Offset == NULL) { |
| 448 | MatrixElemTypeFree(NewMPE); |
| 449 | return NULL; |
| 450 | } |
| 451 | |
| 452 | for (i=0; i < Rows; i++) { |
| 453 | NewElem ->Offset[i] = Offset[i]; |
| 454 | } |
| 455 | |
| 456 | } |
| 457 | |
| 458 | NewMPE ->Data = (void*) NewElem; |
| 459 | return NewMPE; |
| 460 | } |
| 461 | |
| 462 | |
| 463 | // ************************************************************************************************* |
| 464 | // Type cmsSigCLutElemType |
| 465 | // ************************************************************************************************* |
| 466 | |
| 467 | |
| 468 | // Evaluate in true floating point |
| 469 | static |
| 470 | void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
| 471 | { |
| 472 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
| 473 | |
| 474 | Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params); |
| 475 | } |
| 476 | |
| 477 | |
| 478 | // Convert to 16 bits, evaluate, and back to floating point |
| 479 | static |
| 480 | void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
| 481 | { |
| 482 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
| 483 | cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS]; |
| 484 | |
| 485 | _cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS); |
| 486 | _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS); |
| 487 | |
| 488 | FromFloatTo16(In, In16, mpe ->InputChannels); |
| 489 | Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params); |
| 490 | From16ToFloat(Out16, Out, mpe ->OutputChannels); |
| 491 | } |
| 492 | |
| 493 | |
| 494 | // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes |
| 495 | static |
| 496 | cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b) |
| 497 | { |
| 498 | cmsUInt32Number rv, dim; |
| 499 | |
| 500 | _cmsAssert(Dims != NULL); |
| 501 | |
| 502 | for (rv = 1; b > 0; b--) { |
| 503 | |
| 504 | dim = Dims[b-1]; |
| 505 | if (dim == 0) return 0; // Error |
| 506 | |
| 507 | rv *= dim; |
| 508 | |
| 509 | // Check for overflow |
| 510 | if (rv > UINT_MAX / dim) return 0; |
| 511 | } |
| 512 | |
| 513 | return rv; |
| 514 | } |
| 515 | |
| 516 | static |
| 517 | void* CLUTElemDup(cmsStage* mpe) |
| 518 | { |
| 519 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
| 520 | _cmsStageCLutData* NewElem; |
| 521 | |
| 522 | |
| 523 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData)); |
| 524 | if (NewElem == NULL) return NULL; |
| 525 | |
| 526 | NewElem ->nEntries = Data ->nEntries; |
| 527 | NewElem ->HasFloatValues = Data ->HasFloatValues; |
| 528 | |
| 529 | if (Data ->Tab.T) { |
| 530 | |
| 531 | if (Data ->HasFloatValues) { |
| 532 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number)); |
| 533 | if (NewElem ->Tab.TFloat == NULL) |
| 534 | goto Error; |
| 535 | } else { |
| 536 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number)); |
| 537 | if (NewElem ->Tab.T == NULL) |
| 538 | goto Error; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID, |
| 543 | Data ->Params ->nSamples, |
| 544 | Data ->Params ->nInputs, |
| 545 | Data ->Params ->nOutputs, |
| 546 | NewElem ->Tab.T, |
| 547 | Data ->Params ->dwFlags); |
| 548 | if (NewElem->Params != NULL) |
| 549 | return (void*) NewElem; |
| 550 | Error: |
| 551 | if (NewElem->Tab.T) |
| 552 | // This works for both types |
| 553 | _cmsFree(mpe ->ContextID, NewElem -> Tab.T); |
| 554 | _cmsFree(mpe ->ContextID, NewElem); |
| 555 | return NULL; |
| 556 | } |
| 557 | |
| 558 | |
| 559 | static |
| 560 | void CLutElemTypeFree(cmsStage* mpe) |
| 561 | { |
| 562 | |
| 563 | _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data; |
| 564 | |
| 565 | // Already empty |
| 566 | if (Data == NULL) return; |
| 567 | |
| 568 | // This works for both types |
| 569 | if (Data -> Tab.T) |
| 570 | _cmsFree(mpe ->ContextID, Data -> Tab.T); |
| 571 | |
| 572 | _cmsFreeInterpParams(Data ->Params); |
| 573 | _cmsFree(mpe ->ContextID, mpe ->Data); |
| 574 | } |
| 575 | |
| 576 | |
| 577 | // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different |
| 578 | // granularity on each dimension. |
| 579 | cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID, |
| 580 | const cmsUInt32Number clutPoints[], |
| 581 | cmsUInt32Number inputChan, |
| 582 | cmsUInt32Number outputChan, |
| 583 | const cmsUInt16Number* Table) |
| 584 | { |
| 585 | cmsUInt32Number i, n; |
| 586 | _cmsStageCLutData* NewElem; |
| 587 | cmsStage* NewMPE; |
| 588 | |
| 589 | _cmsAssert(clutPoints != NULL); |
| 590 | |
| 591 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
| 592 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
| 593 | return NULL; |
| 594 | } |
| 595 | |
| 596 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
| 597 | EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL ); |
| 598 | |
| 599 | if (NewMPE == NULL) return NULL; |
| 600 | |
| 601 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
| 602 | if (NewElem == NULL) { |
| 603 | cmsStageFree(NewMPE); |
| 604 | return NULL; |
| 605 | } |
| 606 | |
| 607 | NewMPE ->Data = (void*) NewElem; |
| 608 | |
| 609 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
| 610 | NewElem -> HasFloatValues = FALSE; |
| 611 | |
| 612 | if (n == 0) { |
| 613 | cmsStageFree(NewMPE); |
| 614 | return NULL; |
| 615 | } |
| 616 | |
| 617 | |
| 618 | NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number)); |
| 619 | if (NewElem ->Tab.T == NULL) { |
| 620 | cmsStageFree(NewMPE); |
| 621 | return NULL; |
| 622 | } |
| 623 | |
| 624 | if (Table != NULL) { |
| 625 | for (i=0; i < n; i++) { |
| 626 | NewElem ->Tab.T[i] = Table[i]; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS); |
| 631 | if (NewElem ->Params == NULL) { |
| 632 | cmsStageFree(NewMPE); |
| 633 | return NULL; |
| 634 | } |
| 635 | |
| 636 | return NewMPE; |
| 637 | } |
| 638 | |
| 639 | cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID, |
| 640 | cmsUInt32Number nGridPoints, |
| 641 | cmsUInt32Number inputChan, |
| 642 | cmsUInt32Number outputChan, |
| 643 | const cmsUInt16Number* Table) |
| 644 | { |
| 645 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
| 646 | int i; |
| 647 | |
| 648 | // Our resulting LUT would be same gridpoints on all dimensions |
| 649 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
| 650 | Dimensions[i] = nGridPoints; |
| 651 | |
| 652 | return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
| 653 | } |
| 654 | |
| 655 | |
| 656 | cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID, |
| 657 | cmsUInt32Number nGridPoints, |
| 658 | cmsUInt32Number inputChan, |
| 659 | cmsUInt32Number outputChan, |
| 660 | const cmsFloat32Number* Table) |
| 661 | { |
| 662 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
| 663 | int i; |
| 664 | |
| 665 | // Our resulting LUT would be same gridpoints on all dimensions |
| 666 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
| 667 | Dimensions[i] = nGridPoints; |
| 668 | |
| 669 | return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table); |
| 670 | } |
| 671 | |
| 672 | |
| 673 | |
| 674 | cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table) |
| 675 | { |
| 676 | cmsUInt32Number i, n; |
| 677 | _cmsStageCLutData* NewElem; |
| 678 | cmsStage* NewMPE; |
| 679 | |
| 680 | _cmsAssert(clutPoints != NULL); |
| 681 | |
| 682 | if (inputChan > MAX_INPUT_DIMENSIONS) { |
| 683 | cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)" , inputChan, MAX_INPUT_DIMENSIONS); |
| 684 | return NULL; |
| 685 | } |
| 686 | |
| 687 | NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan, |
| 688 | EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL); |
| 689 | if (NewMPE == NULL) return NULL; |
| 690 | |
| 691 | |
| 692 | NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData)); |
| 693 | if (NewElem == NULL) { |
| 694 | cmsStageFree(NewMPE); |
| 695 | return NULL; |
| 696 | } |
| 697 | |
| 698 | NewMPE ->Data = (void*) NewElem; |
| 699 | |
| 700 | // There is a potential integer overflow on conputing n and nEntries. |
| 701 | NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan); |
| 702 | NewElem -> HasFloatValues = TRUE; |
| 703 | |
| 704 | if (n == 0) { |
| 705 | cmsStageFree(NewMPE); |
| 706 | return NULL; |
| 707 | } |
| 708 | |
| 709 | NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number)); |
| 710 | if (NewElem ->Tab.TFloat == NULL) { |
| 711 | cmsStageFree(NewMPE); |
| 712 | return NULL; |
| 713 | } |
| 714 | |
| 715 | if (Table != NULL) { |
| 716 | for (i=0; i < n; i++) { |
| 717 | NewElem ->Tab.TFloat[i] = Table[i]; |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT); |
| 722 | if (NewElem ->Params == NULL) { |
| 723 | cmsStageFree(NewMPE); |
| 724 | return NULL; |
| 725 | } |
| 726 | |
| 727 | return NewMPE; |
| 728 | } |
| 729 | |
| 730 | |
| 731 | static |
| 732 | int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo) |
| 733 | { |
| 734 | int nChan = *(int*) Cargo; |
| 735 | int i; |
| 736 | |
| 737 | for (i=0; i < nChan; i++) |
| 738 | Out[i] = In[i]; |
| 739 | |
| 740 | return 1; |
| 741 | } |
| 742 | |
| 743 | // Creates an MPE that just copies input to output |
| 744 | cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan) |
| 745 | { |
| 746 | cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS]; |
| 747 | cmsStage* mpe ; |
| 748 | int i; |
| 749 | |
| 750 | for (i=0; i < MAX_INPUT_DIMENSIONS; i++) |
| 751 | Dimensions[i] = 2; |
| 752 | |
| 753 | mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL); |
| 754 | if (mpe == NULL) return NULL; |
| 755 | |
| 756 | if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) { |
| 757 | cmsStageFree(mpe); |
| 758 | return NULL; |
| 759 | } |
| 760 | |
| 761 | mpe ->Implements = cmsSigIdentityElemType; |
| 762 | return mpe; |
| 763 | } |
| 764 | |
| 765 | |
| 766 | |
| 767 | // Quantize a value 0 <= i < MaxSamples to 0..0xffff |
| 768 | cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples) |
| 769 | { |
| 770 | cmsFloat64Number x; |
| 771 | |
| 772 | x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1); |
| 773 | return _cmsQuickSaturateWord(x); |
| 774 | } |
| 775 | |
| 776 | |
| 777 | // This routine does a sweep on whole input space, and calls its callback |
| 778 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
| 779 | cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags) |
| 780 | { |
| 781 | int i, t, index, rest; |
| 782 | cmsUInt32Number nTotalPoints; |
| 783 | cmsUInt32Number nInputs, nOutputs; |
| 784 | cmsUInt32Number* nSamples; |
| 785 | cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
| 786 | _cmsStageCLutData* clut; |
| 787 | |
| 788 | if (mpe == NULL) return FALSE; |
| 789 | |
| 790 | clut = (_cmsStageCLutData*) mpe->Data; |
| 791 | |
| 792 | if (clut == NULL) return FALSE; |
| 793 | |
| 794 | nSamples = clut->Params ->nSamples; |
| 795 | nInputs = clut->Params ->nInputs; |
| 796 | nOutputs = clut->Params ->nOutputs; |
| 797 | |
| 798 | if (nInputs <= 0) return FALSE; |
| 799 | if (nOutputs <= 0) return FALSE; |
| 800 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
| 801 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
| 802 | |
| 803 | memset(In, 0, sizeof(In)); |
| 804 | memset(Out, 0, sizeof(Out)); |
| 805 | |
| 806 | nTotalPoints = CubeSize(nSamples, nInputs); |
| 807 | if (nTotalPoints == 0) return FALSE; |
| 808 | |
| 809 | index = 0; |
| 810 | for (i = 0; i < (int) nTotalPoints; i++) { |
| 811 | |
| 812 | rest = i; |
| 813 | for (t = (int)nInputs - 1; t >= 0; --t) { |
| 814 | |
| 815 | cmsUInt32Number Colorant = rest % nSamples[t]; |
| 816 | |
| 817 | rest /= nSamples[t]; |
| 818 | |
| 819 | In[t] = _cmsQuantizeVal(Colorant, nSamples[t]); |
| 820 | } |
| 821 | |
| 822 | if (clut ->Tab.T != NULL) { |
| 823 | for (t = 0; t < (int)nOutputs; t++) |
| 824 | Out[t] = clut->Tab.T[index + t]; |
| 825 | } |
| 826 | |
| 827 | if (!Sampler(In, Out, Cargo)) |
| 828 | return FALSE; |
| 829 | |
| 830 | if (!(dwFlags & SAMPLER_INSPECT)) { |
| 831 | |
| 832 | if (clut ->Tab.T != NULL) { |
| 833 | for (t=0; t < (int) nOutputs; t++) |
| 834 | clut->Tab.T[index + t] = Out[t]; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | index += nOutputs; |
| 839 | } |
| 840 | |
| 841 | return TRUE; |
| 842 | } |
| 843 | |
| 844 | // Same as anterior, but for floating point |
| 845 | cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags) |
| 846 | { |
| 847 | int i, t, index, rest; |
| 848 | cmsUInt32Number nTotalPoints; |
| 849 | cmsUInt32Number nInputs, nOutputs; |
| 850 | cmsUInt32Number* nSamples; |
| 851 | cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS]; |
| 852 | _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data; |
| 853 | |
| 854 | nSamples = clut->Params ->nSamples; |
| 855 | nInputs = clut->Params ->nInputs; |
| 856 | nOutputs = clut->Params ->nOutputs; |
| 857 | |
| 858 | if (nInputs <= 0) return FALSE; |
| 859 | if (nOutputs <= 0) return FALSE; |
| 860 | if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE; |
| 861 | if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE; |
| 862 | |
| 863 | nTotalPoints = CubeSize(nSamples, nInputs); |
| 864 | if (nTotalPoints == 0) return FALSE; |
| 865 | |
| 866 | index = 0; |
| 867 | for (i = 0; i < (int)nTotalPoints; i++) { |
| 868 | |
| 869 | rest = i; |
| 870 | for (t = (int) nInputs-1; t >=0; --t) { |
| 871 | |
| 872 | cmsUInt32Number Colorant = rest % nSamples[t]; |
| 873 | |
| 874 | rest /= nSamples[t]; |
| 875 | |
| 876 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0); |
| 877 | } |
| 878 | |
| 879 | if (clut ->Tab.TFloat != NULL) { |
| 880 | for (t=0; t < (int) nOutputs; t++) |
| 881 | Out[t] = clut->Tab.TFloat[index + t]; |
| 882 | } |
| 883 | |
| 884 | if (!Sampler(In, Out, Cargo)) |
| 885 | return FALSE; |
| 886 | |
| 887 | if (!(dwFlags & SAMPLER_INSPECT)) { |
| 888 | |
| 889 | if (clut ->Tab.TFloat != NULL) { |
| 890 | for (t=0; t < (int) nOutputs; t++) |
| 891 | clut->Tab.TFloat[index + t] = Out[t]; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | index += nOutputs; |
| 896 | } |
| 897 | |
| 898 | return TRUE; |
| 899 | } |
| 900 | |
| 901 | |
| 902 | |
| 903 | // This routine does a sweep on whole input space, and calls its callback |
| 904 | // function on knots. returns TRUE if all ok, FALSE otherwise. |
| 905 | cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
| 906 | cmsSAMPLER16 Sampler, void * Cargo) |
| 907 | { |
| 908 | int i, t, rest; |
| 909 | cmsUInt32Number nTotalPoints; |
| 910 | cmsUInt16Number In[cmsMAXCHANNELS]; |
| 911 | |
| 912 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
| 913 | |
| 914 | nTotalPoints = CubeSize(clutPoints, nInputs); |
| 915 | if (nTotalPoints == 0) return FALSE; |
| 916 | |
| 917 | for (i = 0; i < (int) nTotalPoints; i++) { |
| 918 | |
| 919 | rest = i; |
| 920 | for (t = (int) nInputs-1; t >=0; --t) { |
| 921 | |
| 922 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
| 923 | |
| 924 | rest /= clutPoints[t]; |
| 925 | In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]); |
| 926 | |
| 927 | } |
| 928 | |
| 929 | if (!Sampler(In, NULL, Cargo)) |
| 930 | return FALSE; |
| 931 | } |
| 932 | |
| 933 | return TRUE; |
| 934 | } |
| 935 | |
| 936 | cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[], |
| 937 | cmsSAMPLERFLOAT Sampler, void * Cargo) |
| 938 | { |
| 939 | int i, t, rest; |
| 940 | cmsUInt32Number nTotalPoints; |
| 941 | cmsFloat32Number In[cmsMAXCHANNELS]; |
| 942 | |
| 943 | if (nInputs >= cmsMAXCHANNELS) return FALSE; |
| 944 | |
| 945 | nTotalPoints = CubeSize(clutPoints, nInputs); |
| 946 | if (nTotalPoints == 0) return FALSE; |
| 947 | |
| 948 | for (i = 0; i < (int) nTotalPoints; i++) { |
| 949 | |
| 950 | rest = i; |
| 951 | for (t = (int) nInputs-1; t >=0; --t) { |
| 952 | |
| 953 | cmsUInt32Number Colorant = rest % clutPoints[t]; |
| 954 | |
| 955 | rest /= clutPoints[t]; |
| 956 | In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0); |
| 957 | |
| 958 | } |
| 959 | |
| 960 | if (!Sampler(In, NULL, Cargo)) |
| 961 | return FALSE; |
| 962 | } |
| 963 | |
| 964 | return TRUE; |
| 965 | } |
| 966 | |
| 967 | // ******************************************************************************** |
| 968 | // Type cmsSigLab2XYZElemType |
| 969 | // ******************************************************************************** |
| 970 | |
| 971 | |
| 972 | static |
| 973 | void EvaluateLab2XYZ(const cmsFloat32Number In[], |
| 974 | cmsFloat32Number Out[], |
| 975 | const cmsStage *mpe) |
| 976 | { |
| 977 | cmsCIELab Lab; |
| 978 | cmsCIEXYZ XYZ; |
| 979 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
| 980 | |
| 981 | // V4 rules |
| 982 | Lab.L = In[0] * 100.0; |
| 983 | Lab.a = In[1] * 255.0 - 128.0; |
| 984 | Lab.b = In[2] * 255.0 - 128.0; |
| 985 | |
| 986 | cmsLab2XYZ(NULL, &XYZ, &Lab); |
| 987 | |
| 988 | // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff |
| 989 | // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0) |
| 990 | |
| 991 | Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj); |
| 992 | Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj); |
| 993 | Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj); |
| 994 | return; |
| 995 | |
| 996 | cmsUNUSED_PARAMETER(mpe); |
| 997 | } |
| 998 | |
| 999 | |
| 1000 | // No dup or free routines needed, as the structure has no pointers in it. |
| 1001 | cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID) |
| 1002 | { |
| 1003 | return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL); |
| 1004 | } |
| 1005 | |
| 1006 | // ******************************************************************************** |
| 1007 | |
| 1008 | // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable |
| 1009 | // number of gridpoints that would make exact match. However, a prelinearization |
| 1010 | // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot. |
| 1011 | // Almost all what we need but unfortunately, the rest of entries should be scaled by |
| 1012 | // (255*257/256) and this is not exact. |
| 1013 | |
| 1014 | cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID) |
| 1015 | { |
| 1016 | cmsStage* mpe; |
| 1017 | cmsToneCurve* LabTable[3]; |
| 1018 | int i, j; |
| 1019 | |
| 1020 | LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
| 1021 | LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
| 1022 | LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL); |
| 1023 | |
| 1024 | for (j=0; j < 3; j++) { |
| 1025 | |
| 1026 | if (LabTable[j] == NULL) { |
| 1027 | cmsFreeToneCurveTriple(LabTable); |
| 1028 | return NULL; |
| 1029 | } |
| 1030 | |
| 1031 | // We need to map * (0xffff / 0xff00), that's same as (257 / 256) |
| 1032 | // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256); |
| 1033 | for (i=0; i < 257; i++) { |
| 1034 | |
| 1035 | LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8); |
| 1036 | } |
| 1037 | |
| 1038 | LabTable[j] ->Table16[257] = 0xffff; |
| 1039 | } |
| 1040 | |
| 1041 | mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable); |
| 1042 | cmsFreeToneCurveTriple(LabTable); |
| 1043 | |
| 1044 | if (mpe == NULL) return NULL; |
| 1045 | mpe ->Implements = cmsSigLabV2toV4; |
| 1046 | return mpe; |
| 1047 | } |
| 1048 | |
| 1049 | // ******************************************************************************** |
| 1050 | |
| 1051 | // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles |
| 1052 | cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID) |
| 1053 | { |
| 1054 | static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0, |
| 1055 | 0, 65535.0/65280.0, 0, |
| 1056 | 0, 0, 65535.0/65280.0 |
| 1057 | }; |
| 1058 | |
| 1059 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL); |
| 1060 | |
| 1061 | if (mpe == NULL) return mpe; |
| 1062 | mpe ->Implements = cmsSigLabV2toV4; |
| 1063 | return mpe; |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | // Reverse direction |
| 1068 | cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID) |
| 1069 | { |
| 1070 | static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0, |
| 1071 | 0, 65280.0/65535.0, 0, |
| 1072 | 0, 0, 65280.0/65535.0 |
| 1073 | }; |
| 1074 | |
| 1075 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL); |
| 1076 | |
| 1077 | if (mpe == NULL) return mpe; |
| 1078 | mpe ->Implements = cmsSigLabV4toV2; |
| 1079 | return mpe; |
| 1080 | } |
| 1081 | |
| 1082 | |
| 1083 | // To Lab to float. Note that the MPE gives numbers in normal Lab range |
| 1084 | // and we need 0..1.0 range for the formatters |
| 1085 | // L* : 0...100 => 0...1.0 (L* / 100) |
| 1086 | // ab* : -128..+127 to 0..1 ((ab* + 128) / 255) |
| 1087 | |
| 1088 | cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID) |
| 1089 | { |
| 1090 | static const cmsFloat64Number a1[] = { |
| 1091 | 1.0/100.0, 0, 0, |
| 1092 | 0, 1.0/255.0, 0, |
| 1093 | 0, 0, 1.0/255.0 |
| 1094 | }; |
| 1095 | |
| 1096 | static const cmsFloat64Number o1[] = { |
| 1097 | 0, |
| 1098 | 128.0/255.0, |
| 1099 | 128.0/255.0 |
| 1100 | }; |
| 1101 | |
| 1102 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
| 1103 | |
| 1104 | if (mpe == NULL) return mpe; |
| 1105 | mpe ->Implements = cmsSigLab2FloatPCS; |
| 1106 | return mpe; |
| 1107 | } |
| 1108 | |
| 1109 | // Fom XYZ to floating point PCS |
| 1110 | cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID) |
| 1111 | { |
| 1112 | #define n (32768.0/65535.0) |
| 1113 | static const cmsFloat64Number a1[] = { |
| 1114 | n, 0, 0, |
| 1115 | 0, n, 0, |
| 1116 | 0, 0, n |
| 1117 | }; |
| 1118 | #undef n |
| 1119 | |
| 1120 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
| 1121 | |
| 1122 | if (mpe == NULL) return mpe; |
| 1123 | mpe ->Implements = cmsSigXYZ2FloatPCS; |
| 1124 | return mpe; |
| 1125 | } |
| 1126 | |
| 1127 | cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID) |
| 1128 | { |
| 1129 | static const cmsFloat64Number a1[] = { |
| 1130 | 100.0, 0, 0, |
| 1131 | 0, 255.0, 0, |
| 1132 | 0, 0, 255.0 |
| 1133 | }; |
| 1134 | |
| 1135 | static const cmsFloat64Number o1[] = { |
| 1136 | 0, |
| 1137 | -128.0, |
| 1138 | -128.0 |
| 1139 | }; |
| 1140 | |
| 1141 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1); |
| 1142 | if (mpe == NULL) return mpe; |
| 1143 | mpe ->Implements = cmsSigFloatPCS2Lab; |
| 1144 | return mpe; |
| 1145 | } |
| 1146 | |
| 1147 | cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID) |
| 1148 | { |
| 1149 | #define n (65535.0/32768.0) |
| 1150 | |
| 1151 | static const cmsFloat64Number a1[] = { |
| 1152 | n, 0, 0, |
| 1153 | 0, n, 0, |
| 1154 | 0, 0, n |
| 1155 | }; |
| 1156 | #undef n |
| 1157 | |
| 1158 | cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL); |
| 1159 | if (mpe == NULL) return mpe; |
| 1160 | mpe ->Implements = cmsSigFloatPCS2XYZ; |
| 1161 | return mpe; |
| 1162 | } |
| 1163 | |
| 1164 | // Clips values smaller than zero |
| 1165 | static |
| 1166 | void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
| 1167 | { |
| 1168 | cmsUInt32Number i; |
| 1169 | for (i = 0; i < mpe->InputChannels; i++) { |
| 1170 | |
| 1171 | cmsFloat32Number n = In[i]; |
| 1172 | Out[i] = n < 0 ? 0 : n; |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels) |
| 1177 | { |
| 1178 | return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType, |
| 1179 | nChannels, nChannels, Clipper, NULL, NULL, NULL); |
| 1180 | } |
| 1181 | |
| 1182 | // ******************************************************************************** |
| 1183 | // Type cmsSigXYZ2LabElemType |
| 1184 | // ******************************************************************************** |
| 1185 | |
| 1186 | static |
| 1187 | void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe) |
| 1188 | { |
| 1189 | cmsCIELab Lab; |
| 1190 | cmsCIEXYZ XYZ; |
| 1191 | const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ; |
| 1192 | |
| 1193 | // From 0..1.0 to XYZ |
| 1194 | |
| 1195 | XYZ.X = In[0] * XYZadj; |
| 1196 | XYZ.Y = In[1] * XYZadj; |
| 1197 | XYZ.Z = In[2] * XYZadj; |
| 1198 | |
| 1199 | cmsXYZ2Lab(NULL, &Lab, &XYZ); |
| 1200 | |
| 1201 | // From V4 Lab to 0..1.0 |
| 1202 | |
| 1203 | Out[0] = (cmsFloat32Number) (Lab.L / 100.0); |
| 1204 | Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0); |
| 1205 | Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0); |
| 1206 | return; |
| 1207 | |
| 1208 | cmsUNUSED_PARAMETER(mpe); |
| 1209 | } |
| 1210 | |
| 1211 | cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID) |
| 1212 | { |
| 1213 | return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL); |
| 1214 | |
| 1215 | } |
| 1216 | |
| 1217 | // ******************************************************************************** |
| 1218 | |
| 1219 | // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray |
| 1220 | |
| 1221 | cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID) |
| 1222 | { |
| 1223 | cmsToneCurve* LabTable[3]; |
| 1224 | cmsFloat64Number Params[1] = {2.4} ; |
| 1225 | |
| 1226 | LabTable[0] = cmsBuildGamma(ContextID, 1.0); |
| 1227 | LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
| 1228 | LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params); |
| 1229 | |
| 1230 | return cmsStageAllocToneCurves(ContextID, 3, LabTable); |
| 1231 | } |
| 1232 | |
| 1233 | |
| 1234 | // Free a single MPE |
| 1235 | void CMSEXPORT cmsStageFree(cmsStage* mpe) |
| 1236 | { |
| 1237 | if (mpe ->FreePtr) |
| 1238 | mpe ->FreePtr(mpe); |
| 1239 | |
| 1240 | _cmsFree(mpe ->ContextID, mpe); |
| 1241 | } |
| 1242 | |
| 1243 | |
| 1244 | cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe) |
| 1245 | { |
| 1246 | return mpe ->InputChannels; |
| 1247 | } |
| 1248 | |
| 1249 | cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe) |
| 1250 | { |
| 1251 | return mpe ->OutputChannels; |
| 1252 | } |
| 1253 | |
| 1254 | cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe) |
| 1255 | { |
| 1256 | return mpe -> Type; |
| 1257 | } |
| 1258 | |
| 1259 | void* CMSEXPORT cmsStageData(const cmsStage* mpe) |
| 1260 | { |
| 1261 | return mpe -> Data; |
| 1262 | } |
| 1263 | |
| 1264 | cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe) |
| 1265 | { |
| 1266 | return mpe -> Next; |
| 1267 | } |
| 1268 | |
| 1269 | |
| 1270 | // Duplicates an MPE |
| 1271 | cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe) |
| 1272 | { |
| 1273 | cmsStage* NewMPE; |
| 1274 | |
| 1275 | if (mpe == NULL) return NULL; |
| 1276 | NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID, |
| 1277 | mpe ->Type, |
| 1278 | mpe ->InputChannels, |
| 1279 | mpe ->OutputChannels, |
| 1280 | mpe ->EvalPtr, |
| 1281 | mpe ->DupElemPtr, |
| 1282 | mpe ->FreePtr, |
| 1283 | NULL); |
| 1284 | if (NewMPE == NULL) return NULL; |
| 1285 | |
| 1286 | NewMPE ->Implements = mpe ->Implements; |
| 1287 | |
| 1288 | if (mpe ->DupElemPtr) { |
| 1289 | |
| 1290 | NewMPE ->Data = mpe ->DupElemPtr(mpe); |
| 1291 | |
| 1292 | if (NewMPE->Data == NULL) { |
| 1293 | |
| 1294 | cmsStageFree(NewMPE); |
| 1295 | return NULL; |
| 1296 | } |
| 1297 | |
| 1298 | } else { |
| 1299 | |
| 1300 | NewMPE ->Data = NULL; |
| 1301 | } |
| 1302 | |
| 1303 | return NewMPE; |
| 1304 | } |
| 1305 | |
| 1306 | |
| 1307 | // *********************************************************************************************************** |
| 1308 | |
| 1309 | // This function sets up the channel count |
| 1310 | static |
| 1311 | cmsBool BlessLUT(cmsPipeline* lut) |
| 1312 | { |
| 1313 | // We can set the input/output channels only if we have elements. |
| 1314 | if (lut ->Elements != NULL) { |
| 1315 | |
| 1316 | cmsStage* prev; |
| 1317 | cmsStage* next; |
| 1318 | cmsStage* First; |
| 1319 | cmsStage* Last; |
| 1320 | |
| 1321 | First = cmsPipelineGetPtrToFirstStage(lut); |
| 1322 | Last = cmsPipelineGetPtrToLastStage(lut); |
| 1323 | |
| 1324 | if (First == NULL || Last == NULL) return FALSE; |
| 1325 | |
| 1326 | lut->InputChannels = First->InputChannels; |
| 1327 | lut->OutputChannels = Last->OutputChannels; |
| 1328 | |
| 1329 | // Check chain consistency |
| 1330 | prev = First; |
| 1331 | next = prev->Next; |
| 1332 | |
| 1333 | while (next != NULL) |
| 1334 | { |
| 1335 | if (next->InputChannels != prev->OutputChannels) |
| 1336 | return FALSE; |
| 1337 | |
| 1338 | next = next->Next; |
| 1339 | prev = prev->Next; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | return TRUE; |
| 1344 | } |
| 1345 | |
| 1346 | |
| 1347 | // Default to evaluate the LUT on 16 bit-basis. Precision is retained. |
| 1348 | static |
| 1349 | void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D) |
| 1350 | { |
| 1351 | cmsPipeline* lut = (cmsPipeline*) D; |
| 1352 | cmsStage *mpe; |
| 1353 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
| 1354 | int Phase = 0, NextPhase; |
| 1355 | |
| 1356 | From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels); |
| 1357 | |
| 1358 | for (mpe = lut ->Elements; |
| 1359 | mpe != NULL; |
| 1360 | mpe = mpe ->Next) { |
| 1361 | |
| 1362 | NextPhase = Phase ^ 1; |
| 1363 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); |
| 1364 | Phase = NextPhase; |
| 1365 | } |
| 1366 | |
| 1367 | |
| 1368 | FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels); |
| 1369 | } |
| 1370 | |
| 1371 | |
| 1372 | |
| 1373 | // Does evaluate the LUT on cmsFloat32Number-basis. |
| 1374 | static |
| 1375 | void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D) |
| 1376 | { |
| 1377 | cmsPipeline* lut = (cmsPipeline*) D; |
| 1378 | cmsStage *mpe; |
| 1379 | cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS]; |
| 1380 | int Phase = 0, NextPhase; |
| 1381 | |
| 1382 | memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number)); |
| 1383 | |
| 1384 | for (mpe = lut ->Elements; |
| 1385 | mpe != NULL; |
| 1386 | mpe = mpe ->Next) { |
| 1387 | |
| 1388 | NextPhase = Phase ^ 1; |
| 1389 | mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe); |
| 1390 | Phase = NextPhase; |
| 1391 | } |
| 1392 | |
| 1393 | memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number)); |
| 1394 | } |
| 1395 | |
| 1396 | |
| 1397 | // LUT Creation & Destruction |
| 1398 | cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels) |
| 1399 | { |
| 1400 | cmsPipeline* NewLUT; |
| 1401 | |
| 1402 | // A value of zero in channels is allowed as placeholder |
| 1403 | if (InputChannels >= cmsMAXCHANNELS || |
| 1404 | OutputChannels >= cmsMAXCHANNELS) return NULL; |
| 1405 | |
| 1406 | NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline)); |
| 1407 | if (NewLUT == NULL) return NULL; |
| 1408 | |
| 1409 | NewLUT -> InputChannels = InputChannels; |
| 1410 | NewLUT -> OutputChannels = OutputChannels; |
| 1411 | |
| 1412 | NewLUT ->Eval16Fn = _LUTeval16; |
| 1413 | NewLUT ->EvalFloatFn = _LUTevalFloat; |
| 1414 | NewLUT ->DupDataFn = NULL; |
| 1415 | NewLUT ->FreeDataFn = NULL; |
| 1416 | NewLUT ->Data = NewLUT; |
| 1417 | NewLUT ->ContextID = ContextID; |
| 1418 | |
| 1419 | if (!BlessLUT(NewLUT)) |
| 1420 | { |
| 1421 | _cmsFree(ContextID, NewLUT); |
| 1422 | return NULL; |
| 1423 | } |
| 1424 | |
| 1425 | return NewLUT; |
| 1426 | } |
| 1427 | |
| 1428 | cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut) |
| 1429 | { |
| 1430 | _cmsAssert(lut != NULL); |
| 1431 | return lut ->ContextID; |
| 1432 | } |
| 1433 | |
| 1434 | cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut) |
| 1435 | { |
| 1436 | _cmsAssert(lut != NULL); |
| 1437 | return lut ->InputChannels; |
| 1438 | } |
| 1439 | |
| 1440 | cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut) |
| 1441 | { |
| 1442 | _cmsAssert(lut != NULL); |
| 1443 | return lut ->OutputChannels; |
| 1444 | } |
| 1445 | |
| 1446 | // Free a profile elements LUT |
| 1447 | void CMSEXPORT cmsPipelineFree(cmsPipeline* lut) |
| 1448 | { |
| 1449 | cmsStage *mpe, *Next; |
| 1450 | |
| 1451 | if (lut == NULL) return; |
| 1452 | |
| 1453 | for (mpe = lut ->Elements; |
| 1454 | mpe != NULL; |
| 1455 | mpe = Next) { |
| 1456 | |
| 1457 | Next = mpe ->Next; |
| 1458 | cmsStageFree(mpe); |
| 1459 | } |
| 1460 | |
| 1461 | if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data); |
| 1462 | |
| 1463 | _cmsFree(lut ->ContextID, lut); |
| 1464 | } |
| 1465 | |
| 1466 | |
| 1467 | // Default to evaluate the LUT on 16 bit-basis. |
| 1468 | void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut) |
| 1469 | { |
| 1470 | _cmsAssert(lut != NULL); |
| 1471 | lut ->Eval16Fn(In, Out, lut->Data); |
| 1472 | } |
| 1473 | |
| 1474 | |
| 1475 | // Does evaluate the LUT on cmsFloat32Number-basis. |
| 1476 | void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut) |
| 1477 | { |
| 1478 | _cmsAssert(lut != NULL); |
| 1479 | lut ->EvalFloatFn(In, Out, lut); |
| 1480 | } |
| 1481 | |
| 1482 | |
| 1483 | |
| 1484 | // Duplicates a LUT |
| 1485 | cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut) |
| 1486 | { |
| 1487 | cmsPipeline* NewLUT; |
| 1488 | cmsStage *NewMPE, *Anterior = NULL, *mpe; |
| 1489 | cmsBool First = TRUE; |
| 1490 | |
| 1491 | if (lut == NULL) return NULL; |
| 1492 | |
| 1493 | NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels); |
| 1494 | if (NewLUT == NULL) return NULL; |
| 1495 | |
| 1496 | for (mpe = lut ->Elements; |
| 1497 | mpe != NULL; |
| 1498 | mpe = mpe ->Next) { |
| 1499 | |
| 1500 | NewMPE = cmsStageDup(mpe); |
| 1501 | |
| 1502 | if (NewMPE == NULL) { |
| 1503 | cmsPipelineFree(NewLUT); |
| 1504 | return NULL; |
| 1505 | } |
| 1506 | |
| 1507 | if (First) { |
| 1508 | NewLUT ->Elements = NewMPE; |
| 1509 | First = FALSE; |
| 1510 | } |
| 1511 | else { |
| 1512 | if (Anterior != NULL) |
| 1513 | Anterior ->Next = NewMPE; |
| 1514 | } |
| 1515 | |
| 1516 | Anterior = NewMPE; |
| 1517 | } |
| 1518 | |
| 1519 | NewLUT ->Eval16Fn = lut ->Eval16Fn; |
| 1520 | NewLUT ->EvalFloatFn = lut ->EvalFloatFn; |
| 1521 | NewLUT ->DupDataFn = lut ->DupDataFn; |
| 1522 | NewLUT ->FreeDataFn = lut ->FreeDataFn; |
| 1523 | |
| 1524 | if (NewLUT ->DupDataFn != NULL) |
| 1525 | NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data); |
| 1526 | |
| 1527 | |
| 1528 | NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits; |
| 1529 | |
| 1530 | if (!BlessLUT(NewLUT)) |
| 1531 | { |
| 1532 | _cmsFree(lut->ContextID, NewLUT); |
| 1533 | return NULL; |
| 1534 | } |
| 1535 | |
| 1536 | return NewLUT; |
| 1537 | } |
| 1538 | |
| 1539 | |
| 1540 | int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe) |
| 1541 | { |
| 1542 | cmsStage* Anterior = NULL, *pt; |
| 1543 | |
| 1544 | if (lut == NULL || mpe == NULL) |
| 1545 | return FALSE; |
| 1546 | |
| 1547 | switch (loc) { |
| 1548 | |
| 1549 | case cmsAT_BEGIN: |
| 1550 | mpe ->Next = lut ->Elements; |
| 1551 | lut ->Elements = mpe; |
| 1552 | break; |
| 1553 | |
| 1554 | case cmsAT_END: |
| 1555 | |
| 1556 | if (lut ->Elements == NULL) |
| 1557 | lut ->Elements = mpe; |
| 1558 | else { |
| 1559 | |
| 1560 | for (pt = lut ->Elements; |
| 1561 | pt != NULL; |
| 1562 | pt = pt -> Next) Anterior = pt; |
| 1563 | |
| 1564 | Anterior ->Next = mpe; |
| 1565 | mpe ->Next = NULL; |
| 1566 | } |
| 1567 | break; |
| 1568 | default:; |
| 1569 | return FALSE; |
| 1570 | } |
| 1571 | |
| 1572 | return BlessLUT(lut); |
| 1573 | } |
| 1574 | |
| 1575 | // Unlink an element and return the pointer to it |
| 1576 | void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe) |
| 1577 | { |
| 1578 | cmsStage *Anterior, *pt, *Last; |
| 1579 | cmsStage *Unlinked = NULL; |
| 1580 | |
| 1581 | |
| 1582 | // If empty LUT, there is nothing to remove |
| 1583 | if (lut ->Elements == NULL) { |
| 1584 | if (mpe) *mpe = NULL; |
| 1585 | return; |
| 1586 | } |
| 1587 | |
| 1588 | // On depending on the strategy... |
| 1589 | switch (loc) { |
| 1590 | |
| 1591 | case cmsAT_BEGIN: |
| 1592 | { |
| 1593 | cmsStage* elem = lut ->Elements; |
| 1594 | |
| 1595 | lut ->Elements = elem -> Next; |
| 1596 | elem ->Next = NULL; |
| 1597 | Unlinked = elem; |
| 1598 | |
| 1599 | } |
| 1600 | break; |
| 1601 | |
| 1602 | case cmsAT_END: |
| 1603 | Anterior = Last = NULL; |
| 1604 | for (pt = lut ->Elements; |
| 1605 | pt != NULL; |
| 1606 | pt = pt -> Next) { |
| 1607 | Anterior = Last; |
| 1608 | Last = pt; |
| 1609 | } |
| 1610 | |
| 1611 | Unlinked = Last; // Next already points to NULL |
| 1612 | |
| 1613 | // Truncate the chain |
| 1614 | if (Anterior) |
| 1615 | Anterior ->Next = NULL; |
| 1616 | else |
| 1617 | lut ->Elements = NULL; |
| 1618 | break; |
| 1619 | default:; |
| 1620 | } |
| 1621 | |
| 1622 | if (mpe) |
| 1623 | *mpe = Unlinked; |
| 1624 | else |
| 1625 | cmsStageFree(Unlinked); |
| 1626 | |
| 1627 | // May fail, but we ignore it |
| 1628 | BlessLUT(lut); |
| 1629 | } |
| 1630 | |
| 1631 | |
| 1632 | // Concatenate two LUT into a new single one |
| 1633 | cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2) |
| 1634 | { |
| 1635 | cmsStage* mpe; |
| 1636 | |
| 1637 | // If both LUTS does not have elements, we need to inherit |
| 1638 | // the number of channels |
| 1639 | if (l1 ->Elements == NULL && l2 ->Elements == NULL) { |
| 1640 | l1 ->InputChannels = l2 ->InputChannels; |
| 1641 | l1 ->OutputChannels = l2 ->OutputChannels; |
| 1642 | } |
| 1643 | |
| 1644 | // Cat second |
| 1645 | for (mpe = l2 ->Elements; |
| 1646 | mpe != NULL; |
| 1647 | mpe = mpe ->Next) { |
| 1648 | |
| 1649 | // We have to dup each element |
| 1650 | if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe))) |
| 1651 | return FALSE; |
| 1652 | } |
| 1653 | |
| 1654 | return BlessLUT(l1); |
| 1655 | } |
| 1656 | |
| 1657 | |
| 1658 | cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On) |
| 1659 | { |
| 1660 | cmsBool Anterior = lut ->SaveAs8Bits; |
| 1661 | |
| 1662 | lut ->SaveAs8Bits = On; |
| 1663 | return Anterior; |
| 1664 | } |
| 1665 | |
| 1666 | |
| 1667 | cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut) |
| 1668 | { |
| 1669 | return lut ->Elements; |
| 1670 | } |
| 1671 | |
| 1672 | cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut) |
| 1673 | { |
| 1674 | cmsStage *mpe, *Anterior = NULL; |
| 1675 | |
| 1676 | for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
| 1677 | Anterior = mpe; |
| 1678 | |
| 1679 | return Anterior; |
| 1680 | } |
| 1681 | |
| 1682 | cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut) |
| 1683 | { |
| 1684 | cmsStage *mpe; |
| 1685 | cmsUInt32Number n; |
| 1686 | |
| 1687 | for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next) |
| 1688 | n++; |
| 1689 | |
| 1690 | return n; |
| 1691 | } |
| 1692 | |
| 1693 | // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional |
| 1694 | // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality. |
| 1695 | void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut, |
| 1696 | _cmsOPTeval16Fn Eval16, |
| 1697 | void* PrivateData, |
| 1698 | _cmsFreeUserDataFn FreePrivateDataFn, |
| 1699 | _cmsDupUserDataFn DupPrivateDataFn) |
| 1700 | { |
| 1701 | |
| 1702 | Lut ->Eval16Fn = Eval16; |
| 1703 | Lut ->DupDataFn = DupPrivateDataFn; |
| 1704 | Lut ->FreeDataFn = FreePrivateDataFn; |
| 1705 | Lut ->Data = PrivateData; |
| 1706 | } |
| 1707 | |
| 1708 | |
| 1709 | // ----------------------------------------------------------- Reverse interpolation |
| 1710 | // Here's how it goes. The derivative Df(x) of the function f is the linear |
| 1711 | // transformation that best approximates f near the point x. It can be represented |
| 1712 | // by a matrix A whose entries are the partial derivatives of the components of f |
| 1713 | // with respect to all the coordinates. This is know as the Jacobian |
| 1714 | // |
| 1715 | // The best linear approximation to f is given by the matrix equation: |
| 1716 | // |
| 1717 | // y-y0 = A (x-x0) |
| 1718 | // |
| 1719 | // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this |
| 1720 | // linear approximation will give a "better guess" for the zero of f. Thus let y=0, |
| 1721 | // and since y0=f(x0) one can solve the above equation for x. This leads to the |
| 1722 | // Newton's method formula: |
| 1723 | // |
| 1724 | // xn+1 = xn - A-1 f(xn) |
| 1725 | // |
| 1726 | // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the |
| 1727 | // fashion described above. Iterating this will give better and better approximations |
| 1728 | // if you have a "good enough" initial guess. |
| 1729 | |
| 1730 | |
| 1731 | #define JACOBIAN_EPSILON 0.001f |
| 1732 | #define INVERSION_MAX_ITERATIONS 30 |
| 1733 | |
| 1734 | // Increment with reflexion on boundary |
| 1735 | static |
| 1736 | void IncDelta(cmsFloat32Number *Val) |
| 1737 | { |
| 1738 | if (*Val < (1.0 - JACOBIAN_EPSILON)) |
| 1739 | |
| 1740 | *Val += JACOBIAN_EPSILON; |
| 1741 | |
| 1742 | else |
| 1743 | *Val -= JACOBIAN_EPSILON; |
| 1744 | |
| 1745 | } |
| 1746 | |
| 1747 | |
| 1748 | |
| 1749 | // Euclidean distance between two vectors of n elements each one |
| 1750 | static |
| 1751 | cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n) |
| 1752 | { |
| 1753 | cmsFloat32Number sum = 0; |
| 1754 | int i; |
| 1755 | |
| 1756 | for (i=0; i < n; i++) { |
| 1757 | cmsFloat32Number dif = b[i] - a[i]; |
| 1758 | sum += dif * dif; |
| 1759 | } |
| 1760 | |
| 1761 | return sqrtf(sum); |
| 1762 | } |
| 1763 | |
| 1764 | |
| 1765 | // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method |
| 1766 | // |
| 1767 | // x1 <- x - [J(x)]^-1 * f(x) |
| 1768 | // |
| 1769 | // lut: The LUT on where to do the search |
| 1770 | // Target: LabK, 3 values of Lab plus destination K which is fixed |
| 1771 | // Result: The obtained CMYK |
| 1772 | // Hint: Location where begin the search |
| 1773 | |
| 1774 | cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[], |
| 1775 | cmsFloat32Number Result[], |
| 1776 | cmsFloat32Number Hint[], |
| 1777 | const cmsPipeline* lut) |
| 1778 | { |
| 1779 | cmsUInt32Number i, j; |
| 1780 | cmsFloat64Number error, LastError = 1E20; |
| 1781 | cmsFloat32Number fx[4], x[4], xd[4], fxd[4]; |
| 1782 | cmsVEC3 tmp, tmp2; |
| 1783 | cmsMAT3 Jacobian; |
| 1784 | |
| 1785 | // Only 3->3 and 4->3 are supported |
| 1786 | if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE; |
| 1787 | if (lut ->OutputChannels != 3) return FALSE; |
| 1788 | |
| 1789 | // Take the hint as starting point if specified |
| 1790 | if (Hint == NULL) { |
| 1791 | |
| 1792 | // Begin at any point, we choose 1/3 of CMY axis |
| 1793 | x[0] = x[1] = x[2] = 0.3f; |
| 1794 | } |
| 1795 | else { |
| 1796 | |
| 1797 | // Only copy 3 channels from hint... |
| 1798 | for (j=0; j < 3; j++) |
| 1799 | x[j] = Hint[j]; |
| 1800 | } |
| 1801 | |
| 1802 | // If Lut is 4-dimensions, then grab target[3], which is fixed |
| 1803 | if (lut ->InputChannels == 4) { |
| 1804 | x[3] = Target[3]; |
| 1805 | } |
| 1806 | else x[3] = 0; // To keep lint happy |
| 1807 | |
| 1808 | |
| 1809 | // Iterate |
| 1810 | for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) { |
| 1811 | |
| 1812 | // Get beginning fx |
| 1813 | cmsPipelineEvalFloat(x, fx, lut); |
| 1814 | |
| 1815 | // Compute error |
| 1816 | error = EuclideanDistance(fx, Target, 3); |
| 1817 | |
| 1818 | // If not convergent, return last safe value |
| 1819 | if (error >= LastError) |
| 1820 | break; |
| 1821 | |
| 1822 | // Keep latest values |
| 1823 | LastError = error; |
| 1824 | for (j=0; j < lut ->InputChannels; j++) |
| 1825 | Result[j] = x[j]; |
| 1826 | |
| 1827 | // Found an exact match? |
| 1828 | if (error <= 0) |
| 1829 | break; |
| 1830 | |
| 1831 | // Obtain slope (the Jacobian) |
| 1832 | for (j = 0; j < 3; j++) { |
| 1833 | |
| 1834 | xd[0] = x[0]; |
| 1835 | xd[1] = x[1]; |
| 1836 | xd[2] = x[2]; |
| 1837 | xd[3] = x[3]; // Keep fixed channel |
| 1838 | |
| 1839 | IncDelta(&xd[j]); |
| 1840 | |
| 1841 | cmsPipelineEvalFloat(xd, fxd, lut); |
| 1842 | |
| 1843 | Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); |
| 1844 | Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); |
| 1845 | Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); |
| 1846 | } |
| 1847 | |
| 1848 | // Solve system |
| 1849 | tmp2.n[0] = fx[0] - Target[0]; |
| 1850 | tmp2.n[1] = fx[1] - Target[1]; |
| 1851 | tmp2.n[2] = fx[2] - Target[2]; |
| 1852 | |
| 1853 | if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) |
| 1854 | return FALSE; |
| 1855 | |
| 1856 | // Move our guess |
| 1857 | x[0] -= (cmsFloat32Number) tmp.n[0]; |
| 1858 | x[1] -= (cmsFloat32Number) tmp.n[1]; |
| 1859 | x[2] -= (cmsFloat32Number) tmp.n[2]; |
| 1860 | |
| 1861 | // Some clipping.... |
| 1862 | for (j=0; j < 3; j++) { |
| 1863 | if (x[j] < 0) x[j] = 0; |
| 1864 | else |
| 1865 | if (x[j] > 1.0) x[j] = 1.0; |
| 1866 | } |
| 1867 | } |
| 1868 | |
| 1869 | return TRUE; |
| 1870 | } |
| 1871 | |
| 1872 | |
| 1873 | |