1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation. Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25// This file is available under and governed by the GNU General Public
26// License version 2 only, as published by the Free Software Foundation.
27// However, the following notice accompanied the original version of this
28// file:
29//
30//---------------------------------------------------------------------------------
31//
32// Little Color Management System
33// Copyright (c) 1998-2017 Marti Maria Saguer
34//
35// Permission is hereby granted, free of charge, to any person obtaining
36// a copy of this software and associated documentation files (the "Software"),
37// to deal in the Software without restriction, including without limitation
38// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39// and/or sell copies of the Software, and to permit persons to whom the Software
40// is furnished to do so, subject to the following conditions:
41//
42// The above copyright notice and this permission notice shall be included in
43// all copies or substantial portions of the Software.
44//
45// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52//
53//---------------------------------------------------------------------------------
54//
55
56#include "lcms2_internal.h"
57
58
59#define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}
60
61
62// Initiate a vector
63void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
64{
65 r -> n[VX] = x;
66 r -> n[VY] = y;
67 r -> n[VZ] = z;
68}
69
70// Vector subtraction
71void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
72{
73 r -> n[VX] = a -> n[VX] - b -> n[VX];
74 r -> n[VY] = a -> n[VY] - b -> n[VY];
75 r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
76}
77
78// Vector cross product
79void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
80{
81 r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
82 r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
83 r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
84}
85
86// Vector dot product
87cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
88{
89 return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
90}
91
92// Euclidean length
93cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
94{
95 return sqrt(a ->n[VX] * a ->n[VX] +
96 a ->n[VY] * a ->n[VY] +
97 a ->n[VZ] * a ->n[VZ]);
98}
99
100// Euclidean distance
101cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
102{
103 cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
104 cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
105 cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];
106
107 return sqrt(d1*d1 + d2*d2 + d3*d3);
108}
109
110
111
112// 3x3 Identity
113void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
114{
115 _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
116 _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
117 _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
118}
119
120static
121cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
122{
123 return fabs(b - a) < (1.0 / 65535.0);
124}
125
126
127cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
128{
129 cmsMAT3 Identity;
130 int i, j;
131
132 _cmsMAT3identity(&Identity);
133
134 for (i=0; i < 3; i++)
135 for (j=0; j < 3; j++)
136 if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;
137
138 return TRUE;
139}
140
141
142// Multiply two matrices
143void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
144{
145#define ROWCOL(i, j) \
146 a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]
147
148 _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
149 _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
150 _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));
151
152#undef ROWCOL //(i, j)
153}
154
155
156
157// Inverse of a matrix b = a^(-1)
158cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
159{
160 cmsFloat64Number det, c0, c1, c2;
161
162 c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
163 c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
164 c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];
165
166 det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;
167
168 if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert
169
170 b -> v[0].n[0] = c0/det;
171 b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
172 b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
173 b -> v[1].n[0] = c1/det;
174 b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
175 b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
176 b -> v[2].n[0] = c2/det;
177 b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
178 b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;
179
180 return TRUE;
181}
182
183
184// Solve a system in the form Ax = b
185cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
186{
187 cmsMAT3 m, a_1;
188
189 memmove(&m, a, sizeof(cmsMAT3));
190
191 if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix
192
193 _cmsMAT3eval(x, &a_1, b);
194 return TRUE;
195}
196
197// Evaluate a vector across a matrix
198void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
199{
200 r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
201 r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
202 r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
203}
204
205
206