| 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | // This file is available under and governed by the GNU General Public |
| 26 | // License version 2 only, as published by the Free Software Foundation. |
| 27 | // However, the following notice accompanied the original version of this |
| 28 | // file: |
| 29 | // |
| 30 | //--------------------------------------------------------------------------------- |
| 31 | // |
| 32 | // Little Color Management System |
| 33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 34 | // |
| 35 | // Permission is hereby granted, free of charge, to any person obtaining |
| 36 | // a copy of this software and associated documentation files (the "Software"), |
| 37 | // to deal in the Software without restriction, including without limitation |
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 40 | // is furnished to do so, subject to the following conditions: |
| 41 | // |
| 42 | // The above copyright notice and this permission notice shall be included in |
| 43 | // all copies or substantial portions of the Software. |
| 44 | // |
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 52 | // |
| 53 | //--------------------------------------------------------------------------------- |
| 54 | // |
| 55 | |
| 56 | #include "lcms2_internal.h" |
| 57 | |
| 58 | |
| 59 | //---------------------------------------------------------------------------------- |
| 60 | |
| 61 | // Optimization for 8 bits, Shaper-CLUT (3 inputs only) |
| 62 | typedef struct { |
| 63 | |
| 64 | cmsContext ContextID; |
| 65 | |
| 66 | const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. |
| 67 | |
| 68 | cmsUInt16Number rx[256], ry[256], rz[256]; |
| 69 | cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data |
| 70 | |
| 71 | |
| 72 | } Prelin8Data; |
| 73 | |
| 74 | |
| 75 | // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) |
| 76 | typedef struct { |
| 77 | |
| 78 | cmsContext ContextID; |
| 79 | |
| 80 | // Number of channels |
| 81 | cmsUInt32Number nInputs; |
| 82 | cmsUInt32Number nOutputs; |
| 83 | |
| 84 | _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance |
| 85 | cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; |
| 86 | |
| 87 | _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid |
| 88 | const cmsInterpParams* CLUTparams; // (not-owned pointer) |
| 89 | |
| 90 | |
| 91 | _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) |
| 92 | cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) |
| 93 | |
| 94 | |
| 95 | } Prelin16Data; |
| 96 | |
| 97 | |
| 98 | // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed |
| 99 | |
| 100 | typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! |
| 101 | |
| 102 | #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) |
| 103 | |
| 104 | typedef struct { |
| 105 | |
| 106 | cmsContext ContextID; |
| 107 | |
| 108 | cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) |
| 109 | cmsS1Fixed14Number Shaper1G[256]; |
| 110 | cmsS1Fixed14Number Shaper1B[256]; |
| 111 | |
| 112 | cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) |
| 113 | cmsS1Fixed14Number Off[3]; |
| 114 | |
| 115 | cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 |
| 116 | cmsUInt16Number Shaper2G[16385]; |
| 117 | cmsUInt16Number Shaper2B[16385]; |
| 118 | |
| 119 | } MatShaper8Data; |
| 120 | |
| 121 | // Curves, optimization is shared between 8 and 16 bits |
| 122 | typedef struct { |
| 123 | |
| 124 | cmsContext ContextID; |
| 125 | |
| 126 | cmsUInt32Number nCurves; // Number of curves |
| 127 | cmsUInt32Number nElements; // Elements in curves |
| 128 | cmsUInt16Number** Curves; // Points to a dynamically allocated array |
| 129 | |
| 130 | } Curves16Data; |
| 131 | |
| 132 | |
| 133 | // Simple optimizations ---------------------------------------------------------------------------------------------------------- |
| 134 | |
| 135 | |
| 136 | // Remove an element in linked chain |
| 137 | static |
| 138 | void _RemoveElement(cmsStage** head) |
| 139 | { |
| 140 | cmsStage* mpe = *head; |
| 141 | cmsStage* next = mpe ->Next; |
| 142 | *head = next; |
| 143 | cmsStageFree(mpe); |
| 144 | } |
| 145 | |
| 146 | // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. |
| 147 | static |
| 148 | cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp) |
| 149 | { |
| 150 | cmsStage** pt = &Lut ->Elements; |
| 151 | cmsBool AnyOpt = FALSE; |
| 152 | |
| 153 | while (*pt != NULL) { |
| 154 | |
| 155 | if ((*pt) ->Implements == UnaryOp) { |
| 156 | _RemoveElement(pt); |
| 157 | AnyOpt = TRUE; |
| 158 | } |
| 159 | else |
| 160 | pt = &((*pt) -> Next); |
| 161 | } |
| 162 | |
| 163 | return AnyOpt; |
| 164 | } |
| 165 | |
| 166 | // Same, but only if two adjacent elements are found |
| 167 | static |
| 168 | cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) |
| 169 | { |
| 170 | cmsStage** pt1; |
| 171 | cmsStage** pt2; |
| 172 | cmsBool AnyOpt = FALSE; |
| 173 | |
| 174 | pt1 = &Lut ->Elements; |
| 175 | if (*pt1 == NULL) return AnyOpt; |
| 176 | |
| 177 | while (*pt1 != NULL) { |
| 178 | |
| 179 | pt2 = &((*pt1) -> Next); |
| 180 | if (*pt2 == NULL) return AnyOpt; |
| 181 | |
| 182 | if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { |
| 183 | _RemoveElement(pt2); |
| 184 | _RemoveElement(pt1); |
| 185 | AnyOpt = TRUE; |
| 186 | } |
| 187 | else |
| 188 | pt1 = &((*pt1) -> Next); |
| 189 | } |
| 190 | |
| 191 | return AnyOpt; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | static |
| 196 | cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) |
| 197 | { |
| 198 | return fabs(b - a) < 0.00001f; |
| 199 | } |
| 200 | |
| 201 | static |
| 202 | cmsBool isFloatMatrixIdentity(const cmsMAT3* a) |
| 203 | { |
| 204 | cmsMAT3 Identity; |
| 205 | int i, j; |
| 206 | |
| 207 | _cmsMAT3identity(&Identity); |
| 208 | |
| 209 | for (i = 0; i < 3; i++) |
| 210 | for (j = 0; j < 3; j++) |
| 211 | if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE; |
| 212 | |
| 213 | return TRUE; |
| 214 | } |
| 215 | // if two adjacent matrices are found, multiply them. |
| 216 | static |
| 217 | cmsBool _MultiplyMatrix(cmsPipeline* Lut) |
| 218 | { |
| 219 | cmsStage** pt1; |
| 220 | cmsStage** pt2; |
| 221 | cmsStage* chain; |
| 222 | cmsBool AnyOpt = FALSE; |
| 223 | |
| 224 | pt1 = &Lut->Elements; |
| 225 | if (*pt1 == NULL) return AnyOpt; |
| 226 | |
| 227 | while (*pt1 != NULL) { |
| 228 | |
| 229 | pt2 = &((*pt1)->Next); |
| 230 | if (*pt2 == NULL) return AnyOpt; |
| 231 | |
| 232 | if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { |
| 233 | |
| 234 | // Get both matrices |
| 235 | _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1); |
| 236 | _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2); |
| 237 | cmsMAT3 res; |
| 238 | |
| 239 | // Input offset and output offset should be zero to use this optimization |
| 240 | if (m1->Offset != NULL || m2 ->Offset != NULL || |
| 241 | cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 || |
| 242 | cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3) |
| 243 | return FALSE; |
| 244 | |
| 245 | // Multiply both matrices to get the result |
| 246 | _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); |
| 247 | |
| 248 | // Get the next in chain after the matrices |
| 249 | chain = (*pt2)->Next; |
| 250 | |
| 251 | // Remove both matrices |
| 252 | _RemoveElement(pt2); |
| 253 | _RemoveElement(pt1); |
| 254 | |
| 255 | // Now what if the result is a plain identity? |
| 256 | if (!isFloatMatrixIdentity(&res)) { |
| 257 | |
| 258 | // We can not get rid of full matrix |
| 259 | cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL); |
| 260 | if (Multmat == NULL) return FALSE; // Should never happen |
| 261 | |
| 262 | // Recover the chain |
| 263 | Multmat->Next = chain; |
| 264 | *pt1 = Multmat; |
| 265 | } |
| 266 | |
| 267 | AnyOpt = TRUE; |
| 268 | } |
| 269 | else |
| 270 | pt1 = &((*pt1)->Next); |
| 271 | } |
| 272 | |
| 273 | return AnyOpt; |
| 274 | } |
| 275 | |
| 276 | |
| 277 | // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed |
| 278 | // by a v4 to v2 and vice-versa. The elements are then discarded. |
| 279 | static |
| 280 | cmsBool PreOptimize(cmsPipeline* Lut) |
| 281 | { |
| 282 | cmsBool AnyOpt = FALSE, Opt; |
| 283 | |
| 284 | do { |
| 285 | |
| 286 | Opt = FALSE; |
| 287 | |
| 288 | // Remove all identities |
| 289 | Opt |= _Remove1Op(Lut, cmsSigIdentityElemType); |
| 290 | |
| 291 | // Remove XYZ2Lab followed by Lab2XYZ |
| 292 | Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); |
| 293 | |
| 294 | // Remove Lab2XYZ followed by XYZ2Lab |
| 295 | Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); |
| 296 | |
| 297 | // Remove V4 to V2 followed by V2 to V4 |
| 298 | Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); |
| 299 | |
| 300 | // Remove V2 to V4 followed by V4 to V2 |
| 301 | Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); |
| 302 | |
| 303 | // Remove float pcs Lab conversions |
| 304 | Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); |
| 305 | |
| 306 | // Remove float pcs Lab conversions |
| 307 | Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); |
| 308 | |
| 309 | // Simplify matrix. |
| 310 | Opt |= _MultiplyMatrix(Lut); |
| 311 | |
| 312 | if (Opt) AnyOpt = TRUE; |
| 313 | |
| 314 | } while (Opt); |
| 315 | |
| 316 | return AnyOpt; |
| 317 | } |
| 318 | |
| 319 | static |
| 320 | void Eval16nop1D(register const cmsUInt16Number Input[], |
| 321 | register cmsUInt16Number Output[], |
| 322 | register const struct _cms_interp_struc* p) |
| 323 | { |
| 324 | Output[0] = Input[0]; |
| 325 | |
| 326 | cmsUNUSED_PARAMETER(p); |
| 327 | } |
| 328 | |
| 329 | static |
| 330 | void PrelinEval16(register const cmsUInt16Number Input[], |
| 331 | register cmsUInt16Number Output[], |
| 332 | register const void* D) |
| 333 | { |
| 334 | Prelin16Data* p16 = (Prelin16Data*) D; |
| 335 | cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS]; |
| 336 | cmsUInt16Number StageDEF[cmsMAXCHANNELS]; |
| 337 | cmsUInt32Number i; |
| 338 | |
| 339 | for (i=0; i < p16 ->nInputs; i++) { |
| 340 | |
| 341 | p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); |
| 342 | } |
| 343 | |
| 344 | p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams); |
| 345 | |
| 346 | for (i=0; i < p16 ->nOutputs; i++) { |
| 347 | |
| 348 | p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | |
| 353 | static |
| 354 | void PrelinOpt16free(cmsContext ContextID, void* ptr) |
| 355 | { |
| 356 | Prelin16Data* p16 = (Prelin16Data*) ptr; |
| 357 | |
| 358 | _cmsFree(ContextID, p16 ->EvalCurveOut16); |
| 359 | _cmsFree(ContextID, p16 ->ParamsCurveOut16); |
| 360 | |
| 361 | _cmsFree(ContextID, p16); |
| 362 | } |
| 363 | |
| 364 | static |
| 365 | void* Prelin16dup(cmsContext ContextID, const void* ptr) |
| 366 | { |
| 367 | Prelin16Data* p16 = (Prelin16Data*) ptr; |
| 368 | Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); |
| 369 | |
| 370 | if (Duped == NULL) return NULL; |
| 371 | |
| 372 | Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); |
| 373 | Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); |
| 374 | |
| 375 | return Duped; |
| 376 | } |
| 377 | |
| 378 | |
| 379 | static |
| 380 | Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, |
| 381 | const cmsInterpParams* ColorMap, |
| 382 | cmsUInt32Number nInputs, cmsToneCurve** In, |
| 383 | cmsUInt32Number nOutputs, cmsToneCurve** Out ) |
| 384 | { |
| 385 | cmsUInt32Number i; |
| 386 | Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); |
| 387 | if (p16 == NULL) return NULL; |
| 388 | |
| 389 | p16 ->nInputs = nInputs; |
| 390 | p16 ->nOutputs = nOutputs; |
| 391 | |
| 392 | |
| 393 | for (i=0; i < nInputs; i++) { |
| 394 | |
| 395 | if (In == NULL) { |
| 396 | p16 -> ParamsCurveIn16[i] = NULL; |
| 397 | p16 -> EvalCurveIn16[i] = Eval16nop1D; |
| 398 | |
| 399 | } |
| 400 | else { |
| 401 | p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; |
| 402 | p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | p16 ->CLUTparams = ColorMap; |
| 407 | p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; |
| 408 | |
| 409 | |
| 410 | p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); |
| 411 | p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); |
| 412 | |
| 413 | for (i=0; i < nOutputs; i++) { |
| 414 | |
| 415 | if (Out == NULL) { |
| 416 | p16 ->ParamsCurveOut16[i] = NULL; |
| 417 | p16 -> EvalCurveOut16[i] = Eval16nop1D; |
| 418 | } |
| 419 | else { |
| 420 | |
| 421 | p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; |
| 422 | p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | return p16; |
| 427 | } |
| 428 | |
| 429 | |
| 430 | |
| 431 | // Resampling --------------------------------------------------------------------------------- |
| 432 | |
| 433 | #define PRELINEARIZATION_POINTS 4096 |
| 434 | |
| 435 | // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for |
| 436 | // almost any transform. We use floating point precision and then convert from floating point to 16 bits. |
| 437 | static |
| 438 | cmsInt32Number XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo) |
| 439 | { |
| 440 | cmsPipeline* Lut = (cmsPipeline*) Cargo; |
| 441 | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
| 442 | cmsUInt32Number i; |
| 443 | |
| 444 | _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); |
| 445 | _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); |
| 446 | |
| 447 | // From 16 bit to floating point |
| 448 | for (i=0; i < Lut ->InputChannels; i++) |
| 449 | InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); |
| 450 | |
| 451 | // Evaluate in floating point |
| 452 | cmsPipelineEvalFloat(InFloat, OutFloat, Lut); |
| 453 | |
| 454 | // Back to 16 bits representation |
| 455 | for (i=0; i < Lut ->OutputChannels; i++) |
| 456 | Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); |
| 457 | |
| 458 | // Always succeed |
| 459 | return TRUE; |
| 460 | } |
| 461 | |
| 462 | // Try to see if the curves of a given MPE are linear |
| 463 | static |
| 464 | cmsBool AllCurvesAreLinear(cmsStage* mpe) |
| 465 | { |
| 466 | cmsToneCurve** Curves; |
| 467 | cmsUInt32Number i, n; |
| 468 | |
| 469 | Curves = _cmsStageGetPtrToCurveSet(mpe); |
| 470 | if (Curves == NULL) return FALSE; |
| 471 | |
| 472 | n = cmsStageOutputChannels(mpe); |
| 473 | |
| 474 | for (i=0; i < n; i++) { |
| 475 | if (!cmsIsToneCurveLinear(Curves[i])) return FALSE; |
| 476 | } |
| 477 | |
| 478 | return TRUE; |
| 479 | } |
| 480 | |
| 481 | // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose |
| 482 | // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels |
| 483 | static |
| 484 | cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], |
| 485 | cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) |
| 486 | { |
| 487 | _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; |
| 488 | cmsInterpParams* p16 = Grid ->Params; |
| 489 | cmsFloat64Number px, py, pz, pw; |
| 490 | int x0, y0, z0, w0; |
| 491 | int i, index; |
| 492 | |
| 493 | if (CLUT -> Type != cmsSigCLutElemType) { |
| 494 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage" ); |
| 495 | return FALSE; |
| 496 | } |
| 497 | |
| 498 | if (nChannelsIn == 4) { |
| 499 | |
| 500 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| 501 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
| 502 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
| 503 | pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; |
| 504 | |
| 505 | x0 = (int) floor(px); |
| 506 | y0 = (int) floor(py); |
| 507 | z0 = (int) floor(pz); |
| 508 | w0 = (int) floor(pw); |
| 509 | |
| 510 | if (((px - x0) != 0) || |
| 511 | ((py - y0) != 0) || |
| 512 | ((pz - z0) != 0) || |
| 513 | ((pw - w0) != 0)) return FALSE; // Not on exact node |
| 514 | |
| 515 | index = (int) p16 -> opta[3] * x0 + |
| 516 | (int) p16 -> opta[2] * y0 + |
| 517 | (int) p16 -> opta[1] * z0 + |
| 518 | (int) p16 -> opta[0] * w0; |
| 519 | } |
| 520 | else |
| 521 | if (nChannelsIn == 3) { |
| 522 | |
| 523 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| 524 | py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; |
| 525 | pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; |
| 526 | |
| 527 | x0 = (int) floor(px); |
| 528 | y0 = (int) floor(py); |
| 529 | z0 = (int) floor(pz); |
| 530 | |
| 531 | if (((px - x0) != 0) || |
| 532 | ((py - y0) != 0) || |
| 533 | ((pz - z0) != 0)) return FALSE; // Not on exact node |
| 534 | |
| 535 | index = (int) p16 -> opta[2] * x0 + |
| 536 | (int) p16 -> opta[1] * y0 + |
| 537 | (int) p16 -> opta[0] * z0; |
| 538 | } |
| 539 | else |
| 540 | if (nChannelsIn == 1) { |
| 541 | |
| 542 | px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; |
| 543 | |
| 544 | x0 = (int) floor(px); |
| 545 | |
| 546 | if (((px - x0) != 0)) return FALSE; // Not on exact node |
| 547 | |
| 548 | index = (int) p16 -> opta[0] * x0; |
| 549 | } |
| 550 | else { |
| 551 | cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT" , nChannelsIn); |
| 552 | return FALSE; |
| 553 | } |
| 554 | |
| 555 | for (i = 0; i < (int) nChannelsOut; i++) |
| 556 | Grid->Tab.T[index + i] = Value[i]; |
| 557 | |
| 558 | return TRUE; |
| 559 | } |
| 560 | |
| 561 | // Auxiliary, to see if two values are equal or very different |
| 562 | static |
| 563 | cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) |
| 564 | { |
| 565 | cmsUInt32Number i; |
| 566 | |
| 567 | for (i=0; i < n; i++) { |
| 568 | |
| 569 | if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided |
| 570 | if (White1[i] != White2[i]) return FALSE; |
| 571 | } |
| 572 | return TRUE; |
| 573 | } |
| 574 | |
| 575 | |
| 576 | // Locate the node for the white point and fix it to pure white in order to avoid scum dot. |
| 577 | static |
| 578 | cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) |
| 579 | { |
| 580 | cmsUInt16Number *WhitePointIn, *WhitePointOut; |
| 581 | cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; |
| 582 | cmsUInt32Number i, nOuts, nIns; |
| 583 | cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; |
| 584 | |
| 585 | if (!_cmsEndPointsBySpace(EntryColorSpace, |
| 586 | &WhitePointIn, NULL, &nIns)) return FALSE; |
| 587 | |
| 588 | if (!_cmsEndPointsBySpace(ExitColorSpace, |
| 589 | &WhitePointOut, NULL, &nOuts)) return FALSE; |
| 590 | |
| 591 | // It needs to be fixed? |
| 592 | if (Lut ->InputChannels != nIns) return FALSE; |
| 593 | if (Lut ->OutputChannels != nOuts) return FALSE; |
| 594 | |
| 595 | cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut); |
| 596 | |
| 597 | if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match |
| 598 | |
| 599 | // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations |
| 600 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) |
| 601 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) |
| 602 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) |
| 603 | if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT)) |
| 604 | return FALSE; |
| 605 | |
| 606 | // We need to interpolate white points of both, pre and post curves |
| 607 | if (PreLin) { |
| 608 | |
| 609 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); |
| 610 | |
| 611 | for (i=0; i < nIns; i++) { |
| 612 | WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]); |
| 613 | } |
| 614 | } |
| 615 | else { |
| 616 | for (i=0; i < nIns; i++) |
| 617 | WhiteIn[i] = WhitePointIn[i]; |
| 618 | } |
| 619 | |
| 620 | // If any post-linearization, we need to find how is represented white before the curve, do |
| 621 | // a reverse interpolation in this case. |
| 622 | if (PostLin) { |
| 623 | |
| 624 | cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); |
| 625 | |
| 626 | for (i=0; i < nOuts; i++) { |
| 627 | |
| 628 | cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]); |
| 629 | if (InversePostLin == NULL) { |
| 630 | WhiteOut[i] = WhitePointOut[i]; |
| 631 | |
| 632 | } else { |
| 633 | |
| 634 | WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]); |
| 635 | cmsFreeToneCurve(InversePostLin); |
| 636 | } |
| 637 | } |
| 638 | } |
| 639 | else { |
| 640 | for (i=0; i < nOuts; i++) |
| 641 | WhiteOut[i] = WhitePointOut[i]; |
| 642 | } |
| 643 | |
| 644 | // Ok, proceed with patching. May fail and we don't care if it fails |
| 645 | PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns); |
| 646 | |
| 647 | return TRUE; |
| 648 | } |
| 649 | |
| 650 | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| 651 | // This function creates simple LUT from complex ones. The generated LUT has an optional set of |
| 652 | // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. |
| 653 | // These curves have to exist in the original LUT in order to be used in the simplified output. |
| 654 | // Caller may also use the flags to allow this feature. |
| 655 | // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. |
| 656 | // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified |
| 657 | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| 658 | |
| 659 | static |
| 660 | cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| 661 | { |
| 662 | cmsPipeline* Src = NULL; |
| 663 | cmsPipeline* Dest = NULL; |
| 664 | cmsStage* mpe; |
| 665 | cmsStage* CLUT; |
| 666 | cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; |
| 667 | cmsUInt32Number nGridPoints; |
| 668 | cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
| 669 | cmsStage *NewPreLin = NULL; |
| 670 | cmsStage *NewPostLin = NULL; |
| 671 | _cmsStageCLutData* DataCLUT; |
| 672 | cmsToneCurve** DataSetIn; |
| 673 | cmsToneCurve** DataSetOut; |
| 674 | Prelin16Data* p16; |
| 675 | |
| 676 | // This is a loosy optimization! does not apply in floating-point cases |
| 677 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| 678 | |
| 679 | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
| 680 | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
| 681 | |
| 682 | // Color space must be specified |
| 683 | if (ColorSpace == (cmsColorSpaceSignature)0 || |
| 684 | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
| 685 | |
| 686 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
| 687 | |
| 688 | // For empty LUTs, 2 points are enough |
| 689 | if (cmsPipelineStageCount(*Lut) == 0) |
| 690 | nGridPoints = 2; |
| 691 | |
| 692 | Src = *Lut; |
| 693 | |
| 694 | // Named color pipelines cannot be optimized either |
| 695 | for (mpe = cmsPipelineGetPtrToFirstStage(Src); |
| 696 | mpe != NULL; |
| 697 | mpe = cmsStageNext(mpe)) { |
| 698 | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; |
| 699 | } |
| 700 | |
| 701 | // Allocate an empty LUT |
| 702 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| 703 | if (!Dest) return FALSE; |
| 704 | |
| 705 | // Prelinearization tables are kept unless indicated by flags |
| 706 | if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { |
| 707 | |
| 708 | // Get a pointer to the prelinearization element |
| 709 | cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src); |
| 710 | |
| 711 | // Check if suitable |
| 712 | if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { |
| 713 | |
| 714 | // Maybe this is a linear tram, so we can avoid the whole stuff |
| 715 | if (!AllCurvesAreLinear(PreLin)) { |
| 716 | |
| 717 | // All seems ok, proceed. |
| 718 | NewPreLin = cmsStageDup(PreLin); |
| 719 | if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin)) |
| 720 | goto Error; |
| 721 | |
| 722 | // Remove prelinearization. Since we have duplicated the curve |
| 723 | // in destination LUT, the sampling should be applied after this stage. |
| 724 | cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin); |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | // Allocate the CLUT |
| 730 | CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); |
| 731 | if (CLUT == NULL) goto Error; |
| 732 | |
| 733 | // Add the CLUT to the destination LUT |
| 734 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) { |
| 735 | goto Error; |
| 736 | } |
| 737 | |
| 738 | // Postlinearization tables are kept unless indicated by flags |
| 739 | if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { |
| 740 | |
| 741 | // Get a pointer to the postlinearization if present |
| 742 | cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src); |
| 743 | |
| 744 | // Check if suitable |
| 745 | if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) { |
| 746 | |
| 747 | // Maybe this is a linear tram, so we can avoid the whole stuff |
| 748 | if (!AllCurvesAreLinear(PostLin)) { |
| 749 | |
| 750 | // All seems ok, proceed. |
| 751 | NewPostLin = cmsStageDup(PostLin); |
| 752 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin)) |
| 753 | goto Error; |
| 754 | |
| 755 | // In destination LUT, the sampling should be applied after this stage. |
| 756 | cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin); |
| 757 | } |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | // Now its time to do the sampling. We have to ignore pre/post linearization |
| 762 | // The source LUT without pre/post curves is passed as parameter. |
| 763 | if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) { |
| 764 | Error: |
| 765 | // Ops, something went wrong, Restore stages |
| 766 | if (KeepPreLin != NULL) { |
| 767 | if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) { |
| 768 | _cmsAssert(0); // This never happens |
| 769 | } |
| 770 | } |
| 771 | if (KeepPostLin != NULL) { |
| 772 | if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) { |
| 773 | _cmsAssert(0); // This never happens |
| 774 | } |
| 775 | } |
| 776 | cmsPipelineFree(Dest); |
| 777 | return FALSE; |
| 778 | } |
| 779 | |
| 780 | // Done. |
| 781 | |
| 782 | if (KeepPreLin != NULL) cmsStageFree(KeepPreLin); |
| 783 | if (KeepPostLin != NULL) cmsStageFree(KeepPostLin); |
| 784 | cmsPipelineFree(Src); |
| 785 | |
| 786 | DataCLUT = (_cmsStageCLutData*) CLUT ->Data; |
| 787 | |
| 788 | if (NewPreLin == NULL) DataSetIn = NULL; |
| 789 | else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; |
| 790 | |
| 791 | if (NewPostLin == NULL) DataSetOut = NULL; |
| 792 | else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; |
| 793 | |
| 794 | |
| 795 | if (DataSetIn == NULL && DataSetOut == NULL) { |
| 796 | |
| 797 | _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL); |
| 798 | } |
| 799 | else { |
| 800 | |
| 801 | p16 = PrelinOpt16alloc(Dest ->ContextID, |
| 802 | DataCLUT ->Params, |
| 803 | Dest ->InputChannels, |
| 804 | DataSetIn, |
| 805 | Dest ->OutputChannels, |
| 806 | DataSetOut); |
| 807 | |
| 808 | _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
| 809 | } |
| 810 | |
| 811 | |
| 812 | // Don't fix white on absolute colorimetric |
| 813 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
| 814 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
| 815 | |
| 816 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
| 817 | |
| 818 | FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace); |
| 819 | } |
| 820 | |
| 821 | *Lut = Dest; |
| 822 | return TRUE; |
| 823 | |
| 824 | cmsUNUSED_PARAMETER(Intent); |
| 825 | } |
| 826 | |
| 827 | |
| 828 | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| 829 | // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on |
| 830 | // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works |
| 831 | // for RGB transforms. See the paper for more details |
| 832 | // ----------------------------------------------------------------------------------------------------------------------------------------------- |
| 833 | |
| 834 | |
| 835 | // Normalize endpoints by slope limiting max and min. This assures endpoints as well. |
| 836 | // Descending curves are handled as well. |
| 837 | static |
| 838 | void SlopeLimiting(cmsToneCurve* g) |
| 839 | { |
| 840 | int BeginVal, EndVal; |
| 841 | int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% |
| 842 | int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98% |
| 843 | cmsFloat64Number Val, Slope, beta; |
| 844 | int i; |
| 845 | |
| 846 | if (cmsIsToneCurveDescending(g)) { |
| 847 | BeginVal = 0xffff; EndVal = 0; |
| 848 | } |
| 849 | else { |
| 850 | BeginVal = 0; EndVal = 0xffff; |
| 851 | } |
| 852 | |
| 853 | // Compute slope and offset for begin of curve |
| 854 | Val = g ->Table16[AtBegin]; |
| 855 | Slope = (Val - BeginVal) / AtBegin; |
| 856 | beta = Val - Slope * AtBegin; |
| 857 | |
| 858 | for (i=0; i < AtBegin; i++) |
| 859 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
| 860 | |
| 861 | // Compute slope and offset for the end |
| 862 | Val = g ->Table16[AtEnd]; |
| 863 | Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases |
| 864 | beta = Val - Slope * AtEnd; |
| 865 | |
| 866 | for (i = AtEnd; i < (int) g ->nEntries; i++) |
| 867 | g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); |
| 868 | } |
| 869 | |
| 870 | |
| 871 | // Precomputes tables for 8-bit on input devicelink. |
| 872 | static |
| 873 | Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) |
| 874 | { |
| 875 | int i; |
| 876 | cmsUInt16Number Input[3]; |
| 877 | cmsS15Fixed16Number v1, v2, v3; |
| 878 | Prelin8Data* p8; |
| 879 | |
| 880 | p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); |
| 881 | if (p8 == NULL) return NULL; |
| 882 | |
| 883 | // Since this only works for 8 bit input, values comes always as x * 257, |
| 884 | // we can safely take msb byte (x << 8 + x) |
| 885 | |
| 886 | for (i=0; i < 256; i++) { |
| 887 | |
| 888 | if (G != NULL) { |
| 889 | |
| 890 | // Get 16-bit representation |
| 891 | Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i)); |
| 892 | Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i)); |
| 893 | Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i)); |
| 894 | } |
| 895 | else { |
| 896 | Input[0] = FROM_8_TO_16(i); |
| 897 | Input[1] = FROM_8_TO_16(i); |
| 898 | Input[2] = FROM_8_TO_16(i); |
| 899 | } |
| 900 | |
| 901 | |
| 902 | // Move to 0..1.0 in fixed domain |
| 903 | v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); |
| 904 | v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); |
| 905 | v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); |
| 906 | |
| 907 | // Store the precalculated table of nodes |
| 908 | p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); |
| 909 | p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); |
| 910 | p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); |
| 911 | |
| 912 | // Store the precalculated table of offsets |
| 913 | p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); |
| 914 | p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); |
| 915 | p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); |
| 916 | } |
| 917 | |
| 918 | p8 ->ContextID = ContextID; |
| 919 | p8 ->p = p; |
| 920 | |
| 921 | return p8; |
| 922 | } |
| 923 | |
| 924 | static |
| 925 | void Prelin8free(cmsContext ContextID, void* ptr) |
| 926 | { |
| 927 | _cmsFree(ContextID, ptr); |
| 928 | } |
| 929 | |
| 930 | static |
| 931 | void* Prelin8dup(cmsContext ContextID, const void* ptr) |
| 932 | { |
| 933 | return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); |
| 934 | } |
| 935 | |
| 936 | |
| 937 | |
| 938 | // A optimized interpolation for 8-bit input. |
| 939 | #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) |
| 940 | static |
| 941 | void PrelinEval8(register const cmsUInt16Number Input[], |
| 942 | register cmsUInt16Number Output[], |
| 943 | register const void* D) |
| 944 | { |
| 945 | |
| 946 | cmsUInt8Number r, g, b; |
| 947 | cmsS15Fixed16Number rx, ry, rz; |
| 948 | cmsS15Fixed16Number c0, c1, c2, c3, Rest; |
| 949 | int OutChan; |
| 950 | register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; |
| 951 | Prelin8Data* p8 = (Prelin8Data*) D; |
| 952 | register const cmsInterpParams* p = p8 ->p; |
| 953 | int TotalOut = (int) p -> nOutputs; |
| 954 | const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; |
| 955 | |
| 956 | r = (cmsUInt8Number) (Input[0] >> 8); |
| 957 | g = (cmsUInt8Number) (Input[1] >> 8); |
| 958 | b = (cmsUInt8Number) (Input[2] >> 8); |
| 959 | |
| 960 | X0 = X1 = (cmsS15Fixed16Number) p8->X0[r]; |
| 961 | Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g]; |
| 962 | Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b]; |
| 963 | |
| 964 | rx = p8 ->rx[r]; |
| 965 | ry = p8 ->ry[g]; |
| 966 | rz = p8 ->rz[b]; |
| 967 | |
| 968 | X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]); |
| 969 | Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]); |
| 970 | Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]); |
| 971 | |
| 972 | |
| 973 | // These are the 6 Tetrahedral |
| 974 | for (OutChan=0; OutChan < TotalOut; OutChan++) { |
| 975 | |
| 976 | c0 = DENS(X0, Y0, Z0); |
| 977 | |
| 978 | if (rx >= ry && ry >= rz) |
| 979 | { |
| 980 | c1 = DENS(X1, Y0, Z0) - c0; |
| 981 | c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); |
| 982 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 983 | } |
| 984 | else |
| 985 | if (rx >= rz && rz >= ry) |
| 986 | { |
| 987 | c1 = DENS(X1, Y0, Z0) - c0; |
| 988 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 989 | c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); |
| 990 | } |
| 991 | else |
| 992 | if (rz >= rx && rx >= ry) |
| 993 | { |
| 994 | c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); |
| 995 | c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); |
| 996 | c3 = DENS(X0, Y0, Z1) - c0; |
| 997 | } |
| 998 | else |
| 999 | if (ry >= rx && rx >= rz) |
| 1000 | { |
| 1001 | c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); |
| 1002 | c2 = DENS(X0, Y1, Z0) - c0; |
| 1003 | c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); |
| 1004 | } |
| 1005 | else |
| 1006 | if (ry >= rz && rz >= rx) |
| 1007 | { |
| 1008 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 1009 | c2 = DENS(X0, Y1, Z0) - c0; |
| 1010 | c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); |
| 1011 | } |
| 1012 | else |
| 1013 | if (rz >= ry && ry >= rx) |
| 1014 | { |
| 1015 | c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); |
| 1016 | c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); |
| 1017 | c3 = DENS(X0, Y0, Z1) - c0; |
| 1018 | } |
| 1019 | else { |
| 1020 | c1 = c2 = c3 = 0; |
| 1021 | } |
| 1022 | |
| 1023 | Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; |
| 1024 | Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); |
| 1025 | |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | #undef DENS |
| 1030 | |
| 1031 | |
| 1032 | // Curves that contain wide empty areas are not optimizeable |
| 1033 | static |
| 1034 | cmsBool IsDegenerated(const cmsToneCurve* g) |
| 1035 | { |
| 1036 | cmsUInt32Number i, Zeros = 0, Poles = 0; |
| 1037 | cmsUInt32Number nEntries = g ->nEntries; |
| 1038 | |
| 1039 | for (i=0; i < nEntries; i++) { |
| 1040 | |
| 1041 | if (g ->Table16[i] == 0x0000) Zeros++; |
| 1042 | if (g ->Table16[i] == 0xffff) Poles++; |
| 1043 | } |
| 1044 | |
| 1045 | if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables |
| 1046 | if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros |
| 1047 | if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles |
| 1048 | |
| 1049 | return FALSE; |
| 1050 | } |
| 1051 | |
| 1052 | // -------------------------------------------------------------------------------------------------------------- |
| 1053 | // We need xput over here |
| 1054 | |
| 1055 | static |
| 1056 | cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| 1057 | { |
| 1058 | cmsPipeline* OriginalLut; |
| 1059 | cmsUInt32Number nGridPoints; |
| 1060 | cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; |
| 1061 | cmsUInt32Number t, i; |
| 1062 | cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; |
| 1063 | cmsBool lIsSuitable, lIsLinear; |
| 1064 | cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; |
| 1065 | cmsStage* OptimizedCLUTmpe; |
| 1066 | cmsColorSpaceSignature ColorSpace, OutputColorSpace; |
| 1067 | cmsStage* OptimizedPrelinMpe; |
| 1068 | cmsStage* mpe; |
| 1069 | cmsToneCurve** OptimizedPrelinCurves; |
| 1070 | _cmsStageCLutData* OptimizedPrelinCLUT; |
| 1071 | |
| 1072 | |
| 1073 | // This is a loosy optimization! does not apply in floating-point cases |
| 1074 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| 1075 | |
| 1076 | // Only on chunky RGB |
| 1077 | if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE; |
| 1078 | if (T_PLANAR(*InputFormat)) return FALSE; |
| 1079 | |
| 1080 | if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; |
| 1081 | if (T_PLANAR(*OutputFormat)) return FALSE; |
| 1082 | |
| 1083 | // On 16 bits, user has to specify the feature |
| 1084 | if (!_cmsFormatterIs8bit(*InputFormat)) { |
| 1085 | if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; |
| 1086 | } |
| 1087 | |
| 1088 | OriginalLut = *Lut; |
| 1089 | |
| 1090 | // Named color pipelines cannot be optimized either |
| 1091 | for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut); |
| 1092 | mpe != NULL; |
| 1093 | mpe = cmsStageNext(mpe)) { |
| 1094 | if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE; |
| 1095 | } |
| 1096 | |
| 1097 | ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat)); |
| 1098 | OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat)); |
| 1099 | |
| 1100 | // Color space must be specified |
| 1101 | if (ColorSpace == (cmsColorSpaceSignature)0 || |
| 1102 | OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; |
| 1103 | |
| 1104 | nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags); |
| 1105 | |
| 1106 | // Empty gamma containers |
| 1107 | memset(Trans, 0, sizeof(Trans)); |
| 1108 | memset(TransReverse, 0, sizeof(TransReverse)); |
| 1109 | |
| 1110 | // If the last stage of the original lut are curves, and those curves are |
| 1111 | // degenerated, it is likely the transform is squeezing and clipping |
| 1112 | // the output from previous CLUT. We cannot optimize this case |
| 1113 | { |
| 1114 | cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut); |
| 1115 | |
| 1116 | if (cmsStageType(last) == cmsSigCurveSetElemType) { |
| 1117 | |
| 1118 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last); |
| 1119 | for (i = 0; i < Data->nCurves; i++) { |
| 1120 | if (IsDegenerated(Data->TheCurves[i])) |
| 1121 | goto Error; |
| 1122 | } |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| 1127 | Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL); |
| 1128 | if (Trans[t] == NULL) goto Error; |
| 1129 | } |
| 1130 | |
| 1131 | // Populate the curves |
| 1132 | for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
| 1133 | |
| 1134 | v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
| 1135 | |
| 1136 | // Feed input with a gray ramp |
| 1137 | for (t=0; t < OriginalLut ->InputChannels; t++) |
| 1138 | In[t] = v; |
| 1139 | |
| 1140 | // Evaluate the gray value |
| 1141 | cmsPipelineEvalFloat(In, Out, OriginalLut); |
| 1142 | |
| 1143 | // Store result in curve |
| 1144 | for (t=0; t < OriginalLut ->InputChannels; t++) |
| 1145 | Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); |
| 1146 | } |
| 1147 | |
| 1148 | // Slope-limit the obtained curves |
| 1149 | for (t = 0; t < OriginalLut ->InputChannels; t++) |
| 1150 | SlopeLimiting(Trans[t]); |
| 1151 | |
| 1152 | // Check for validity |
| 1153 | lIsSuitable = TRUE; |
| 1154 | lIsLinear = TRUE; |
| 1155 | for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { |
| 1156 | |
| 1157 | // Exclude if already linear |
| 1158 | if (!cmsIsToneCurveLinear(Trans[t])) |
| 1159 | lIsLinear = FALSE; |
| 1160 | |
| 1161 | // Exclude if non-monotonic |
| 1162 | if (!cmsIsToneCurveMonotonic(Trans[t])) |
| 1163 | lIsSuitable = FALSE; |
| 1164 | |
| 1165 | if (IsDegenerated(Trans[t])) |
| 1166 | lIsSuitable = FALSE; |
| 1167 | } |
| 1168 | |
| 1169 | // If it is not suitable, just quit |
| 1170 | if (!lIsSuitable) goto Error; |
| 1171 | |
| 1172 | // Invert curves if possible |
| 1173 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| 1174 | TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]); |
| 1175 | if (TransReverse[t] == NULL) goto Error; |
| 1176 | } |
| 1177 | |
| 1178 | // Now inset the reversed curves at the begin of transform |
| 1179 | LutPlusCurves = cmsPipelineDup(OriginalLut); |
| 1180 | if (LutPlusCurves == NULL) goto Error; |
| 1181 | |
| 1182 | if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse))) |
| 1183 | goto Error; |
| 1184 | |
| 1185 | // Create the result LUT |
| 1186 | OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); |
| 1187 | if (OptimizedLUT == NULL) goto Error; |
| 1188 | |
| 1189 | OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans); |
| 1190 | |
| 1191 | // Create and insert the curves at the beginning |
| 1192 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) |
| 1193 | goto Error; |
| 1194 | |
| 1195 | // Allocate the CLUT for result |
| 1196 | OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); |
| 1197 | |
| 1198 | // Add the CLUT to the destination LUT |
| 1199 | if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) |
| 1200 | goto Error; |
| 1201 | |
| 1202 | // Resample the LUT |
| 1203 | if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; |
| 1204 | |
| 1205 | // Free resources |
| 1206 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| 1207 | |
| 1208 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
| 1209 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
| 1210 | } |
| 1211 | |
| 1212 | cmsPipelineFree(LutPlusCurves); |
| 1213 | |
| 1214 | |
| 1215 | OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); |
| 1216 | OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; |
| 1217 | |
| 1218 | // Set the evaluator if 8-bit |
| 1219 | if (_cmsFormatterIs8bit(*InputFormat)) { |
| 1220 | |
| 1221 | Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID, |
| 1222 | OptimizedPrelinCLUT ->Params, |
| 1223 | OptimizedPrelinCurves); |
| 1224 | if (p8 == NULL) { |
| 1225 | cmsPipelineFree(OptimizedLUT); |
| 1226 | return FALSE; |
| 1227 | } |
| 1228 | |
| 1229 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); |
| 1230 | |
| 1231 | } |
| 1232 | else |
| 1233 | { |
| 1234 | Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID, |
| 1235 | OptimizedPrelinCLUT ->Params, |
| 1236 | 3, OptimizedPrelinCurves, 3, NULL); |
| 1237 | if (p16 == NULL) { |
| 1238 | cmsPipelineFree(OptimizedLUT); |
| 1239 | return FALSE; |
| 1240 | } |
| 1241 | |
| 1242 | _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); |
| 1243 | |
| 1244 | } |
| 1245 | |
| 1246 | // Don't fix white on absolute colorimetric |
| 1247 | if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) |
| 1248 | *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; |
| 1249 | |
| 1250 | if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { |
| 1251 | |
| 1252 | if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) { |
| 1253 | |
| 1254 | return FALSE; |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | // And return the obtained LUT |
| 1259 | |
| 1260 | cmsPipelineFree(OriginalLut); |
| 1261 | *Lut = OptimizedLUT; |
| 1262 | return TRUE; |
| 1263 | |
| 1264 | Error: |
| 1265 | |
| 1266 | for (t = 0; t < OriginalLut ->InputChannels; t++) { |
| 1267 | |
| 1268 | if (Trans[t]) cmsFreeToneCurve(Trans[t]); |
| 1269 | if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]); |
| 1270 | } |
| 1271 | |
| 1272 | if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves); |
| 1273 | if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT); |
| 1274 | |
| 1275 | return FALSE; |
| 1276 | |
| 1277 | cmsUNUSED_PARAMETER(Intent); |
| 1278 | cmsUNUSED_PARAMETER(lIsLinear); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | // Curves optimizer ------------------------------------------------------------------------------------------------------------------ |
| 1283 | |
| 1284 | static |
| 1285 | void CurvesFree(cmsContext ContextID, void* ptr) |
| 1286 | { |
| 1287 | Curves16Data* Data = (Curves16Data*) ptr; |
| 1288 | cmsUInt32Number i; |
| 1289 | |
| 1290 | for (i=0; i < Data -> nCurves; i++) { |
| 1291 | |
| 1292 | _cmsFree(ContextID, Data ->Curves[i]); |
| 1293 | } |
| 1294 | |
| 1295 | _cmsFree(ContextID, Data ->Curves); |
| 1296 | _cmsFree(ContextID, ptr); |
| 1297 | } |
| 1298 | |
| 1299 | static |
| 1300 | void* CurvesDup(cmsContext ContextID, const void* ptr) |
| 1301 | { |
| 1302 | Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); |
| 1303 | cmsUInt32Number i; |
| 1304 | |
| 1305 | if (Data == NULL) return NULL; |
| 1306 | |
| 1307 | Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); |
| 1308 | |
| 1309 | for (i=0; i < Data -> nCurves; i++) { |
| 1310 | Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); |
| 1311 | } |
| 1312 | |
| 1313 | return (void*) Data; |
| 1314 | } |
| 1315 | |
| 1316 | // Precomputes tables for 8-bit on input devicelink. |
| 1317 | static |
| 1318 | Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) |
| 1319 | { |
| 1320 | cmsUInt32Number i, j; |
| 1321 | Curves16Data* c16; |
| 1322 | |
| 1323 | c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); |
| 1324 | if (c16 == NULL) return NULL; |
| 1325 | |
| 1326 | c16 ->nCurves = nCurves; |
| 1327 | c16 ->nElements = nElements; |
| 1328 | |
| 1329 | c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); |
| 1330 | if (c16->Curves == NULL) { |
| 1331 | _cmsFree(ContextID, c16); |
| 1332 | return NULL; |
| 1333 | } |
| 1334 | |
| 1335 | for (i=0; i < nCurves; i++) { |
| 1336 | |
| 1337 | c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); |
| 1338 | |
| 1339 | if (c16->Curves[i] == NULL) { |
| 1340 | |
| 1341 | for (j=0; j < i; j++) { |
| 1342 | _cmsFree(ContextID, c16->Curves[j]); |
| 1343 | } |
| 1344 | _cmsFree(ContextID, c16->Curves); |
| 1345 | _cmsFree(ContextID, c16); |
| 1346 | return NULL; |
| 1347 | } |
| 1348 | |
| 1349 | if (nElements == 256U) { |
| 1350 | |
| 1351 | for (j=0; j < nElements; j++) { |
| 1352 | |
| 1353 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j)); |
| 1354 | } |
| 1355 | } |
| 1356 | else { |
| 1357 | |
| 1358 | for (j=0; j < nElements; j++) { |
| 1359 | c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j); |
| 1360 | } |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | return c16; |
| 1365 | } |
| 1366 | |
| 1367 | static |
| 1368 | void FastEvaluateCurves8(register const cmsUInt16Number In[], |
| 1369 | register cmsUInt16Number Out[], |
| 1370 | register const void* D) |
| 1371 | { |
| 1372 | Curves16Data* Data = (Curves16Data*) D; |
| 1373 | int x; |
| 1374 | cmsUInt32Number i; |
| 1375 | |
| 1376 | for (i=0; i < Data ->nCurves; i++) { |
| 1377 | |
| 1378 | x = (In[i] >> 8); |
| 1379 | Out[i] = Data -> Curves[i][x]; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | |
| 1384 | static |
| 1385 | void FastEvaluateCurves16(register const cmsUInt16Number In[], |
| 1386 | register cmsUInt16Number Out[], |
| 1387 | register const void* D) |
| 1388 | { |
| 1389 | Curves16Data* Data = (Curves16Data*) D; |
| 1390 | cmsUInt32Number i; |
| 1391 | |
| 1392 | for (i=0; i < Data ->nCurves; i++) { |
| 1393 | Out[i] = Data -> Curves[i][In[i]]; |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | |
| 1398 | static |
| 1399 | void FastIdentity16(register const cmsUInt16Number In[], |
| 1400 | register cmsUInt16Number Out[], |
| 1401 | register const void* D) |
| 1402 | { |
| 1403 | cmsPipeline* Lut = (cmsPipeline*) D; |
| 1404 | cmsUInt32Number i; |
| 1405 | |
| 1406 | for (i=0; i < Lut ->InputChannels; i++) { |
| 1407 | Out[i] = In[i]; |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | |
| 1412 | // If the target LUT holds only curves, the optimization procedure is to join all those |
| 1413 | // curves together. That only works on curves and does not work on matrices. |
| 1414 | static |
| 1415 | cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| 1416 | { |
| 1417 | cmsToneCurve** GammaTables = NULL; |
| 1418 | cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; |
| 1419 | cmsUInt32Number i, j; |
| 1420 | cmsPipeline* Src = *Lut; |
| 1421 | cmsPipeline* Dest = NULL; |
| 1422 | cmsStage* mpe; |
| 1423 | cmsStage* ObtainedCurves = NULL; |
| 1424 | |
| 1425 | |
| 1426 | // This is a loosy optimization! does not apply in floating-point cases |
| 1427 | if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; |
| 1428 | |
| 1429 | // Only curves in this LUT? |
| 1430 | for (mpe = cmsPipelineGetPtrToFirstStage(Src); |
| 1431 | mpe != NULL; |
| 1432 | mpe = cmsStageNext(mpe)) { |
| 1433 | if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE; |
| 1434 | } |
| 1435 | |
| 1436 | // Allocate an empty LUT |
| 1437 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| 1438 | if (Dest == NULL) return FALSE; |
| 1439 | |
| 1440 | // Create target curves |
| 1441 | GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); |
| 1442 | if (GammaTables == NULL) goto Error; |
| 1443 | |
| 1444 | for (i=0; i < Src ->InputChannels; i++) { |
| 1445 | GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL); |
| 1446 | if (GammaTables[i] == NULL) goto Error; |
| 1447 | } |
| 1448 | |
| 1449 | // Compute 16 bit result by using floating point |
| 1450 | for (i=0; i < PRELINEARIZATION_POINTS; i++) { |
| 1451 | |
| 1452 | for (j=0; j < Src ->InputChannels; j++) |
| 1453 | InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); |
| 1454 | |
| 1455 | cmsPipelineEvalFloat(InFloat, OutFloat, Src); |
| 1456 | |
| 1457 | for (j=0; j < Src ->InputChannels; j++) |
| 1458 | GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); |
| 1459 | } |
| 1460 | |
| 1461 | ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables); |
| 1462 | if (ObtainedCurves == NULL) goto Error; |
| 1463 | |
| 1464 | for (i=0; i < Src ->InputChannels; i++) { |
| 1465 | cmsFreeToneCurve(GammaTables[i]); |
| 1466 | GammaTables[i] = NULL; |
| 1467 | } |
| 1468 | |
| 1469 | if (GammaTables != NULL) { |
| 1470 | _cmsFree(Src->ContextID, GammaTables); |
| 1471 | GammaTables = NULL; |
| 1472 | } |
| 1473 | |
| 1474 | // Maybe the curves are linear at the end |
| 1475 | if (!AllCurvesAreLinear(ObtainedCurves)) { |
| 1476 | |
| 1477 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves)) |
| 1478 | goto Error; |
| 1479 | |
| 1480 | // If the curves are to be applied in 8 bits, we can save memory |
| 1481 | if (_cmsFormatterIs8bit(*InputFormat)) { |
| 1482 | |
| 1483 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data; |
| 1484 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves); |
| 1485 | |
| 1486 | if (c16 == NULL) goto Error; |
| 1487 | *dwFlags |= cmsFLAGS_NOCACHE; |
| 1488 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); |
| 1489 | |
| 1490 | } |
| 1491 | else { |
| 1492 | |
| 1493 | _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves); |
| 1494 | Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves); |
| 1495 | |
| 1496 | if (c16 == NULL) goto Error; |
| 1497 | *dwFlags |= cmsFLAGS_NOCACHE; |
| 1498 | _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); |
| 1499 | } |
| 1500 | } |
| 1501 | else { |
| 1502 | |
| 1503 | // LUT optimizes to nothing. Set the identity LUT |
| 1504 | cmsStageFree(ObtainedCurves); |
| 1505 | ObtainedCurves = NULL; |
| 1506 | |
| 1507 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels))) |
| 1508 | goto Error; |
| 1509 | |
| 1510 | *dwFlags |= cmsFLAGS_NOCACHE; |
| 1511 | _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL); |
| 1512 | } |
| 1513 | |
| 1514 | // We are done. |
| 1515 | cmsPipelineFree(Src); |
| 1516 | *Lut = Dest; |
| 1517 | return TRUE; |
| 1518 | |
| 1519 | Error: |
| 1520 | |
| 1521 | if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves); |
| 1522 | if (GammaTables != NULL) { |
| 1523 | for (i=0; i < Src ->InputChannels; i++) { |
| 1524 | if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]); |
| 1525 | } |
| 1526 | |
| 1527 | _cmsFree(Src ->ContextID, GammaTables); |
| 1528 | } |
| 1529 | |
| 1530 | if (Dest != NULL) cmsPipelineFree(Dest); |
| 1531 | return FALSE; |
| 1532 | |
| 1533 | cmsUNUSED_PARAMETER(Intent); |
| 1534 | cmsUNUSED_PARAMETER(InputFormat); |
| 1535 | cmsUNUSED_PARAMETER(OutputFormat); |
| 1536 | cmsUNUSED_PARAMETER(dwFlags); |
| 1537 | } |
| 1538 | |
| 1539 | // ------------------------------------------------------------------------------------------------------------------------------------- |
| 1540 | // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles |
| 1541 | |
| 1542 | |
| 1543 | static |
| 1544 | void FreeMatShaper(cmsContext ContextID, void* Data) |
| 1545 | { |
| 1546 | if (Data != NULL) _cmsFree(ContextID, Data); |
| 1547 | } |
| 1548 | |
| 1549 | static |
| 1550 | void* DupMatShaper(cmsContext ContextID, const void* Data) |
| 1551 | { |
| 1552 | return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); |
| 1553 | } |
| 1554 | |
| 1555 | |
| 1556 | // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point |
| 1557 | // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, |
| 1558 | // in total about 50K, and the performance boost is huge! |
| 1559 | static |
| 1560 | void MatShaperEval16(register const cmsUInt16Number In[], |
| 1561 | register cmsUInt16Number Out[], |
| 1562 | register const void* D) |
| 1563 | { |
| 1564 | MatShaper8Data* p = (MatShaper8Data*) D; |
| 1565 | cmsS1Fixed14Number l1, l2, l3, r, g, b; |
| 1566 | cmsUInt32Number ri, gi, bi; |
| 1567 | |
| 1568 | // In this case (and only in this case!) we can use this simplification since |
| 1569 | // In[] is assured to come from a 8 bit number. (a << 8 | a) |
| 1570 | ri = In[0] & 0xFFU; |
| 1571 | gi = In[1] & 0xFFU; |
| 1572 | bi = In[2] & 0xFFU; |
| 1573 | |
| 1574 | // Across first shaper, which also converts to 1.14 fixed point |
| 1575 | r = p->Shaper1R[ri]; |
| 1576 | g = p->Shaper1G[gi]; |
| 1577 | b = p->Shaper1B[bi]; |
| 1578 | |
| 1579 | // Evaluate the matrix in 1.14 fixed point |
| 1580 | l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14; |
| 1581 | l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14; |
| 1582 | l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14; |
| 1583 | |
| 1584 | // Now we have to clip to 0..1.0 range |
| 1585 | ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); |
| 1586 | gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); |
| 1587 | bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); |
| 1588 | |
| 1589 | // And across second shaper, |
| 1590 | Out[0] = p->Shaper2R[ri]; |
| 1591 | Out[1] = p->Shaper2G[gi]; |
| 1592 | Out[2] = p->Shaper2B[bi]; |
| 1593 | |
| 1594 | } |
| 1595 | |
| 1596 | // This table converts from 8 bits to 1.14 after applying the curve |
| 1597 | static |
| 1598 | void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve) |
| 1599 | { |
| 1600 | int i; |
| 1601 | cmsFloat32Number R, y; |
| 1602 | |
| 1603 | for (i=0; i < 256; i++) { |
| 1604 | |
| 1605 | R = (cmsFloat32Number) (i / 255.0); |
| 1606 | y = cmsEvalToneCurveFloat(Curve, R); |
| 1607 | |
| 1608 | if (y < 131072.0) |
| 1609 | Table[i] = DOUBLE_TO_1FIXED14(y); |
| 1610 | else |
| 1611 | Table[i] = 0x7fffffff; |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve |
| 1616 | static |
| 1617 | void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) |
| 1618 | { |
| 1619 | int i; |
| 1620 | cmsFloat32Number R, Val; |
| 1621 | |
| 1622 | for (i=0; i < 16385; i++) { |
| 1623 | |
| 1624 | R = (cmsFloat32Number) (i / 16384.0); |
| 1625 | Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0 |
| 1626 | |
| 1627 | if (Val < 0) |
| 1628 | Val = 0; |
| 1629 | |
| 1630 | if (Val > 1.0) |
| 1631 | Val = 1.0; |
| 1632 | |
| 1633 | if (Is8BitsOutput) { |
| 1634 | |
| 1635 | // If 8 bits output, we can optimize further by computing the / 257 part. |
| 1636 | // first we compute the resulting byte and then we store the byte times |
| 1637 | // 257. This quantization allows to round very quick by doing a >> 8, but |
| 1638 | // since the low byte is always equal to msb, we can do a & 0xff and this works! |
| 1639 | cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); |
| 1640 | cmsUInt8Number b = FROM_16_TO_8(w); |
| 1641 | |
| 1642 | Table[i] = FROM_8_TO_16(b); |
| 1643 | } |
| 1644 | else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | // Compute the matrix-shaper structure |
| 1649 | static |
| 1650 | cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) |
| 1651 | { |
| 1652 | MatShaper8Data* p; |
| 1653 | int i, j; |
| 1654 | cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); |
| 1655 | |
| 1656 | // Allocate a big chuck of memory to store precomputed tables |
| 1657 | p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data)); |
| 1658 | if (p == NULL) return FALSE; |
| 1659 | |
| 1660 | p -> ContextID = Dest -> ContextID; |
| 1661 | |
| 1662 | // Precompute tables |
| 1663 | FillFirstShaper(p ->Shaper1R, Curve1[0]); |
| 1664 | FillFirstShaper(p ->Shaper1G, Curve1[1]); |
| 1665 | FillFirstShaper(p ->Shaper1B, Curve1[2]); |
| 1666 | |
| 1667 | FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits); |
| 1668 | FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits); |
| 1669 | FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits); |
| 1670 | |
| 1671 | // Convert matrix to nFixed14. Note that those values may take more than 16 bits |
| 1672 | for (i=0; i < 3; i++) { |
| 1673 | for (j=0; j < 3; j++) { |
| 1674 | p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); |
| 1675 | } |
| 1676 | } |
| 1677 | |
| 1678 | for (i=0; i < 3; i++) { |
| 1679 | |
| 1680 | if (Off == NULL) { |
| 1681 | p ->Off[i] = 0; |
| 1682 | } |
| 1683 | else { |
| 1684 | p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | // Mark as optimized for faster formatter |
| 1689 | if (Is8Bits) |
| 1690 | *OutputFormat |= OPTIMIZED_SH(1); |
| 1691 | |
| 1692 | // Fill function pointers |
| 1693 | _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); |
| 1694 | return TRUE; |
| 1695 | } |
| 1696 | |
| 1697 | // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! |
| 1698 | static |
| 1699 | cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) |
| 1700 | { |
| 1701 | cmsStage* Curve1, *Curve2; |
| 1702 | cmsStage* Matrix1, *Matrix2; |
| 1703 | cmsMAT3 res; |
| 1704 | cmsBool IdentityMat; |
| 1705 | cmsPipeline* Dest, *Src; |
| 1706 | cmsFloat64Number* Offset; |
| 1707 | |
| 1708 | // Only works on RGB to RGB |
| 1709 | if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; |
| 1710 | |
| 1711 | // Only works on 8 bit input |
| 1712 | if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; |
| 1713 | |
| 1714 | // Seems suitable, proceed |
| 1715 | Src = *Lut; |
| 1716 | |
| 1717 | // Check for: |
| 1718 | // |
| 1719 | // shaper-matrix-matrix-shaper |
| 1720 | // shaper-matrix-shaper |
| 1721 | // |
| 1722 | // Both of those constructs are possible (first because abs. colorimetric). |
| 1723 | // additionally, In the first case, the input matrix offset should be zero. |
| 1724 | |
| 1725 | IdentityMat = FALSE; |
| 1726 | if (cmsPipelineCheckAndRetreiveStages(Src, 4, |
| 1727 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
| 1728 | &Curve1, &Matrix1, &Matrix2, &Curve2)) { |
| 1729 | |
| 1730 | // Get both matrices |
| 1731 | _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
| 1732 | _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2); |
| 1733 | |
| 1734 | // Input offset should be zero |
| 1735 | if (Data1->Offset != NULL) return FALSE; |
| 1736 | |
| 1737 | // Multiply both matrices to get the result |
| 1738 | _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); |
| 1739 | |
| 1740 | // Only 2nd matrix has offset, or it is zero |
| 1741 | Offset = Data2->Offset; |
| 1742 | |
| 1743 | // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? |
| 1744 | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
| 1745 | |
| 1746 | // We can get rid of full matrix |
| 1747 | IdentityMat = TRUE; |
| 1748 | } |
| 1749 | |
| 1750 | } |
| 1751 | else { |
| 1752 | |
| 1753 | if (cmsPipelineCheckAndRetreiveStages(Src, 3, |
| 1754 | cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, |
| 1755 | &Curve1, &Matrix1, &Curve2)) { |
| 1756 | |
| 1757 | _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1); |
| 1758 | |
| 1759 | // Copy the matrix to our result |
| 1760 | memcpy(&res, Data->Double, sizeof(res)); |
| 1761 | |
| 1762 | // Preserve the Odffset (may be NULL as a zero offset) |
| 1763 | Offset = Data->Offset; |
| 1764 | |
| 1765 | if (_cmsMAT3isIdentity(&res) && Offset == NULL) { |
| 1766 | |
| 1767 | // We can get rid of full matrix |
| 1768 | IdentityMat = TRUE; |
| 1769 | } |
| 1770 | } |
| 1771 | else |
| 1772 | return FALSE; // Not optimizeable this time |
| 1773 | |
| 1774 | } |
| 1775 | |
| 1776 | // Allocate an empty LUT |
| 1777 | Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels); |
| 1778 | if (!Dest) return FALSE; |
| 1779 | |
| 1780 | // Assamble the new LUT |
| 1781 | if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1))) |
| 1782 | goto Error; |
| 1783 | |
| 1784 | if (!IdentityMat) { |
| 1785 | |
| 1786 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) |
| 1787 | goto Error; |
| 1788 | } |
| 1789 | |
| 1790 | if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2))) |
| 1791 | goto Error; |
| 1792 | |
| 1793 | // If identity on matrix, we can further optimize the curves, so call the join curves routine |
| 1794 | if (IdentityMat) { |
| 1795 | |
| 1796 | OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags); |
| 1797 | } |
| 1798 | else { |
| 1799 | _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1); |
| 1800 | _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2); |
| 1801 | |
| 1802 | // In this particular optimization, caché does not help as it takes more time to deal with |
| 1803 | // the caché that with the pixel handling |
| 1804 | *dwFlags |= cmsFLAGS_NOCACHE; |
| 1805 | |
| 1806 | // Setup the optimizarion routines |
| 1807 | SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); |
| 1808 | } |
| 1809 | |
| 1810 | cmsPipelineFree(Src); |
| 1811 | *Lut = Dest; |
| 1812 | return TRUE; |
| 1813 | Error: |
| 1814 | // Leave Src unchanged |
| 1815 | cmsPipelineFree(Dest); |
| 1816 | return FALSE; |
| 1817 | } |
| 1818 | |
| 1819 | |
| 1820 | // ------------------------------------------------------------------------------------------------------------------------------------- |
| 1821 | // Optimization plug-ins |
| 1822 | |
| 1823 | // List of optimizations |
| 1824 | typedef struct _cmsOptimizationCollection_st { |
| 1825 | |
| 1826 | _cmsOPToptimizeFn OptimizePtr; |
| 1827 | |
| 1828 | struct _cmsOptimizationCollection_st *Next; |
| 1829 | |
| 1830 | } _cmsOptimizationCollection; |
| 1831 | |
| 1832 | |
| 1833 | // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling |
| 1834 | static _cmsOptimizationCollection DefaultOptimization[] = { |
| 1835 | |
| 1836 | { OptimizeByJoiningCurves, &DefaultOptimization[1] }, |
| 1837 | { OptimizeMatrixShaper, &DefaultOptimization[2] }, |
| 1838 | { OptimizeByComputingLinearization, &DefaultOptimization[3] }, |
| 1839 | { OptimizeByResampling, NULL } |
| 1840 | }; |
| 1841 | |
| 1842 | // The linked list head |
| 1843 | _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; |
| 1844 | |
| 1845 | |
| 1846 | // Duplicates the zone of memory used by the plug-in in the new context |
| 1847 | static |
| 1848 | void DupPluginOptimizationList(struct _cmsContext_struct* ctx, |
| 1849 | const struct _cmsContext_struct* src) |
| 1850 | { |
| 1851 | _cmsOptimizationPluginChunkType newHead = { NULL }; |
| 1852 | _cmsOptimizationCollection* entry; |
| 1853 | _cmsOptimizationCollection* Anterior = NULL; |
| 1854 | _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; |
| 1855 | |
| 1856 | _cmsAssert(ctx != NULL); |
| 1857 | _cmsAssert(head != NULL); |
| 1858 | |
| 1859 | // Walk the list copying all nodes |
| 1860 | for (entry = head->OptimizationCollection; |
| 1861 | entry != NULL; |
| 1862 | entry = entry ->Next) { |
| 1863 | |
| 1864 | _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); |
| 1865 | |
| 1866 | if (newEntry == NULL) |
| 1867 | return; |
| 1868 | |
| 1869 | // We want to keep the linked list order, so this is a little bit tricky |
| 1870 | newEntry -> Next = NULL; |
| 1871 | if (Anterior) |
| 1872 | Anterior -> Next = newEntry; |
| 1873 | |
| 1874 | Anterior = newEntry; |
| 1875 | |
| 1876 | if (newHead.OptimizationCollection == NULL) |
| 1877 | newHead.OptimizationCollection = newEntry; |
| 1878 | } |
| 1879 | |
| 1880 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); |
| 1881 | } |
| 1882 | |
| 1883 | void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, |
| 1884 | const struct _cmsContext_struct* src) |
| 1885 | { |
| 1886 | if (src != NULL) { |
| 1887 | |
| 1888 | // Copy all linked list |
| 1889 | DupPluginOptimizationList(ctx, src); |
| 1890 | } |
| 1891 | else { |
| 1892 | static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; |
| 1893 | ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | |
| 1898 | // Register new ways to optimize |
| 1899 | cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) |
| 1900 | { |
| 1901 | cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; |
| 1902 | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
| 1903 | _cmsOptimizationCollection* fl; |
| 1904 | |
| 1905 | if (Data == NULL) { |
| 1906 | |
| 1907 | ctx->OptimizationCollection = NULL; |
| 1908 | return TRUE; |
| 1909 | } |
| 1910 | |
| 1911 | // Optimizer callback is required |
| 1912 | if (Plugin ->OptimizePtr == NULL) return FALSE; |
| 1913 | |
| 1914 | fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); |
| 1915 | if (fl == NULL) return FALSE; |
| 1916 | |
| 1917 | // Copy the parameters |
| 1918 | fl ->OptimizePtr = Plugin ->OptimizePtr; |
| 1919 | |
| 1920 | // Keep linked list |
| 1921 | fl ->Next = ctx->OptimizationCollection; |
| 1922 | |
| 1923 | // Set the head |
| 1924 | ctx ->OptimizationCollection = fl; |
| 1925 | |
| 1926 | // All is ok |
| 1927 | return TRUE; |
| 1928 | } |
| 1929 | |
| 1930 | // The entry point for LUT optimization |
| 1931 | cmsBool _cmsOptimizePipeline(cmsContext ContextID, |
| 1932 | cmsPipeline** PtrLut, |
| 1933 | cmsUInt32Number Intent, |
| 1934 | cmsUInt32Number* InputFormat, |
| 1935 | cmsUInt32Number* OutputFormat, |
| 1936 | cmsUInt32Number* dwFlags) |
| 1937 | { |
| 1938 | _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); |
| 1939 | _cmsOptimizationCollection* Opts; |
| 1940 | cmsBool AnySuccess = FALSE; |
| 1941 | |
| 1942 | // A CLUT is being asked, so force this specific optimization |
| 1943 | if (*dwFlags & cmsFLAGS_FORCE_CLUT) { |
| 1944 | |
| 1945 | PreOptimize(*PtrLut); |
| 1946 | return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags); |
| 1947 | } |
| 1948 | |
| 1949 | // Anything to optimize? |
| 1950 | if ((*PtrLut) ->Elements == NULL) { |
| 1951 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
| 1952 | return TRUE; |
| 1953 | } |
| 1954 | |
| 1955 | // Try to get rid of identities and trivial conversions. |
| 1956 | AnySuccess = PreOptimize(*PtrLut); |
| 1957 | |
| 1958 | // After removal do we end with an identity? |
| 1959 | if ((*PtrLut) ->Elements == NULL) { |
| 1960 | _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); |
| 1961 | return TRUE; |
| 1962 | } |
| 1963 | |
| 1964 | // Do not optimize, keep all precision |
| 1965 | if (*dwFlags & cmsFLAGS_NOOPTIMIZE) |
| 1966 | return FALSE; |
| 1967 | |
| 1968 | // Try plug-in optimizations |
| 1969 | for (Opts = ctx->OptimizationCollection; |
| 1970 | Opts != NULL; |
| 1971 | Opts = Opts ->Next) { |
| 1972 | |
| 1973 | // If one schema succeeded, we are done |
| 1974 | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
| 1975 | |
| 1976 | return TRUE; // Optimized! |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | // Try built-in optimizations |
| 1981 | for (Opts = DefaultOptimization; |
| 1982 | Opts != NULL; |
| 1983 | Opts = Opts ->Next) { |
| 1984 | |
| 1985 | if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { |
| 1986 | |
| 1987 | return TRUE; |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | // Only simple optimizations succeeded |
| 1992 | return AnySuccess; |
| 1993 | } |
| 1994 | |
| 1995 | |
| 1996 | |
| 1997 | |