1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation. Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25// This file is available under and governed by the GNU General Public
26// License version 2 only, as published by the Free Software Foundation.
27// However, the following notice accompanied the original version of this
28// file:
29//
30//---------------------------------------------------------------------------------
31//
32// Little Color Management System
33// Copyright (c) 1998-2017 Marti Maria Saguer
34//
35// Permission is hereby granted, free of charge, to any person obtaining
36// a copy of this software and associated documentation files (the "Software"),
37// to deal in the Software without restriction, including without limitation
38// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39// and/or sell copies of the Software, and to permit persons to whom the Software
40// is furnished to do so, subject to the following conditions:
41//
42// The above copyright notice and this permission notice shall be included in
43// all copies or substantial portions of the Software.
44//
45// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52//
53//---------------------------------------------------------------------------------
54//
55
56#include "lcms2_internal.h"
57
58
59//----------------------------------------------------------------------------------
60
61// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
62typedef struct {
63
64 cmsContext ContextID;
65
66 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
67
68 cmsUInt16Number rx[256], ry[256], rz[256];
69 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
70
71
72} Prelin8Data;
73
74
75// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
76typedef struct {
77
78 cmsContext ContextID;
79
80 // Number of channels
81 cmsUInt32Number nInputs;
82 cmsUInt32Number nOutputs;
83
84 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
85 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
86
87 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
88 const cmsInterpParams* CLUTparams; // (not-owned pointer)
89
90
91 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
92 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
93
94
95} Prelin16Data;
96
97
98// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
99
100typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
101
102#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
103
104typedef struct {
105
106 cmsContext ContextID;
107
108 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
109 cmsS1Fixed14Number Shaper1G[256];
110 cmsS1Fixed14Number Shaper1B[256];
111
112 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
113 cmsS1Fixed14Number Off[3];
114
115 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
116 cmsUInt16Number Shaper2G[16385];
117 cmsUInt16Number Shaper2B[16385];
118
119} MatShaper8Data;
120
121// Curves, optimization is shared between 8 and 16 bits
122typedef struct {
123
124 cmsContext ContextID;
125
126 cmsUInt32Number nCurves; // Number of curves
127 cmsUInt32Number nElements; // Elements in curves
128 cmsUInt16Number** Curves; // Points to a dynamically allocated array
129
130} Curves16Data;
131
132
133// Simple optimizations ----------------------------------------------------------------------------------------------------------
134
135
136// Remove an element in linked chain
137static
138void _RemoveElement(cmsStage** head)
139{
140 cmsStage* mpe = *head;
141 cmsStage* next = mpe ->Next;
142 *head = next;
143 cmsStageFree(mpe);
144}
145
146// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
147static
148cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
149{
150 cmsStage** pt = &Lut ->Elements;
151 cmsBool AnyOpt = FALSE;
152
153 while (*pt != NULL) {
154
155 if ((*pt) ->Implements == UnaryOp) {
156 _RemoveElement(pt);
157 AnyOpt = TRUE;
158 }
159 else
160 pt = &((*pt) -> Next);
161 }
162
163 return AnyOpt;
164}
165
166// Same, but only if two adjacent elements are found
167static
168cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
169{
170 cmsStage** pt1;
171 cmsStage** pt2;
172 cmsBool AnyOpt = FALSE;
173
174 pt1 = &Lut ->Elements;
175 if (*pt1 == NULL) return AnyOpt;
176
177 while (*pt1 != NULL) {
178
179 pt2 = &((*pt1) -> Next);
180 if (*pt2 == NULL) return AnyOpt;
181
182 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
183 _RemoveElement(pt2);
184 _RemoveElement(pt1);
185 AnyOpt = TRUE;
186 }
187 else
188 pt1 = &((*pt1) -> Next);
189 }
190
191 return AnyOpt;
192}
193
194
195static
196cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
197{
198 return fabs(b - a) < 0.00001f;
199}
200
201static
202cmsBool isFloatMatrixIdentity(const cmsMAT3* a)
203{
204 cmsMAT3 Identity;
205 int i, j;
206
207 _cmsMAT3identity(&Identity);
208
209 for (i = 0; i < 3; i++)
210 for (j = 0; j < 3; j++)
211 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
212
213 return TRUE;
214}
215// if two adjacent matrices are found, multiply them.
216static
217cmsBool _MultiplyMatrix(cmsPipeline* Lut)
218{
219 cmsStage** pt1;
220 cmsStage** pt2;
221 cmsStage* chain;
222 cmsBool AnyOpt = FALSE;
223
224 pt1 = &Lut->Elements;
225 if (*pt1 == NULL) return AnyOpt;
226
227 while (*pt1 != NULL) {
228
229 pt2 = &((*pt1)->Next);
230 if (*pt2 == NULL) return AnyOpt;
231
232 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
233
234 // Get both matrices
235 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
236 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
237 cmsMAT3 res;
238
239 // Input offset and output offset should be zero to use this optimization
240 if (m1->Offset != NULL || m2 ->Offset != NULL ||
241 cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
242 cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
243 return FALSE;
244
245 // Multiply both matrices to get the result
246 _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
247
248 // Get the next in chain after the matrices
249 chain = (*pt2)->Next;
250
251 // Remove both matrices
252 _RemoveElement(pt2);
253 _RemoveElement(pt1);
254
255 // Now what if the result is a plain identity?
256 if (!isFloatMatrixIdentity(&res)) {
257
258 // We can not get rid of full matrix
259 cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
260 if (Multmat == NULL) return FALSE; // Should never happen
261
262 // Recover the chain
263 Multmat->Next = chain;
264 *pt1 = Multmat;
265 }
266
267 AnyOpt = TRUE;
268 }
269 else
270 pt1 = &((*pt1)->Next);
271 }
272
273 return AnyOpt;
274}
275
276
277// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
278// by a v4 to v2 and vice-versa. The elements are then discarded.
279static
280cmsBool PreOptimize(cmsPipeline* Lut)
281{
282 cmsBool AnyOpt = FALSE, Opt;
283
284 do {
285
286 Opt = FALSE;
287
288 // Remove all identities
289 Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
290
291 // Remove XYZ2Lab followed by Lab2XYZ
292 Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
293
294 // Remove Lab2XYZ followed by XYZ2Lab
295 Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
296
297 // Remove V4 to V2 followed by V2 to V4
298 Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
299
300 // Remove V2 to V4 followed by V4 to V2
301 Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
302
303 // Remove float pcs Lab conversions
304 Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
305
306 // Remove float pcs Lab conversions
307 Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
308
309 // Simplify matrix.
310 Opt |= _MultiplyMatrix(Lut);
311
312 if (Opt) AnyOpt = TRUE;
313
314 } while (Opt);
315
316 return AnyOpt;
317}
318
319static
320void Eval16nop1D(register const cmsUInt16Number Input[],
321 register cmsUInt16Number Output[],
322 register const struct _cms_interp_struc* p)
323{
324 Output[0] = Input[0];
325
326 cmsUNUSED_PARAMETER(p);
327}
328
329static
330void PrelinEval16(register const cmsUInt16Number Input[],
331 register cmsUInt16Number Output[],
332 register const void* D)
333{
334 Prelin16Data* p16 = (Prelin16Data*) D;
335 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
336 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
337 cmsUInt32Number i;
338
339 for (i=0; i < p16 ->nInputs; i++) {
340
341 p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
342 }
343
344 p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
345
346 for (i=0; i < p16 ->nOutputs; i++) {
347
348 p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
349 }
350}
351
352
353static
354void PrelinOpt16free(cmsContext ContextID, void* ptr)
355{
356 Prelin16Data* p16 = (Prelin16Data*) ptr;
357
358 _cmsFree(ContextID, p16 ->EvalCurveOut16);
359 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
360
361 _cmsFree(ContextID, p16);
362}
363
364static
365void* Prelin16dup(cmsContext ContextID, const void* ptr)
366{
367 Prelin16Data* p16 = (Prelin16Data*) ptr;
368 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
369
370 if (Duped == NULL) return NULL;
371
372 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
373 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
374
375 return Duped;
376}
377
378
379static
380Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
381 const cmsInterpParams* ColorMap,
382 cmsUInt32Number nInputs, cmsToneCurve** In,
383 cmsUInt32Number nOutputs, cmsToneCurve** Out )
384{
385 cmsUInt32Number i;
386 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
387 if (p16 == NULL) return NULL;
388
389 p16 ->nInputs = nInputs;
390 p16 ->nOutputs = nOutputs;
391
392
393 for (i=0; i < nInputs; i++) {
394
395 if (In == NULL) {
396 p16 -> ParamsCurveIn16[i] = NULL;
397 p16 -> EvalCurveIn16[i] = Eval16nop1D;
398
399 }
400 else {
401 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
402 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
403 }
404 }
405
406 p16 ->CLUTparams = ColorMap;
407 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
408
409
410 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
411 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
412
413 for (i=0; i < nOutputs; i++) {
414
415 if (Out == NULL) {
416 p16 ->ParamsCurveOut16[i] = NULL;
417 p16 -> EvalCurveOut16[i] = Eval16nop1D;
418 }
419 else {
420
421 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
422 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
423 }
424 }
425
426 return p16;
427}
428
429
430
431// Resampling ---------------------------------------------------------------------------------
432
433#define PRELINEARIZATION_POINTS 4096
434
435// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
436// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
437static
438cmsInt32Number XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
439{
440 cmsPipeline* Lut = (cmsPipeline*) Cargo;
441 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
442 cmsUInt32Number i;
443
444 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
445 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
446
447 // From 16 bit to floating point
448 for (i=0; i < Lut ->InputChannels; i++)
449 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
450
451 // Evaluate in floating point
452 cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
453
454 // Back to 16 bits representation
455 for (i=0; i < Lut ->OutputChannels; i++)
456 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
457
458 // Always succeed
459 return TRUE;
460}
461
462// Try to see if the curves of a given MPE are linear
463static
464cmsBool AllCurvesAreLinear(cmsStage* mpe)
465{
466 cmsToneCurve** Curves;
467 cmsUInt32Number i, n;
468
469 Curves = _cmsStageGetPtrToCurveSet(mpe);
470 if (Curves == NULL) return FALSE;
471
472 n = cmsStageOutputChannels(mpe);
473
474 for (i=0; i < n; i++) {
475 if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
476 }
477
478 return TRUE;
479}
480
481// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
482// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
483static
484cmsBool PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
485 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
486{
487 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
488 cmsInterpParams* p16 = Grid ->Params;
489 cmsFloat64Number px, py, pz, pw;
490 int x0, y0, z0, w0;
491 int i, index;
492
493 if (CLUT -> Type != cmsSigCLutElemType) {
494 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
495 return FALSE;
496 }
497
498 if (nChannelsIn == 4) {
499
500 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
501 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
502 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
503 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
504
505 x0 = (int) floor(px);
506 y0 = (int) floor(py);
507 z0 = (int) floor(pz);
508 w0 = (int) floor(pw);
509
510 if (((px - x0) != 0) ||
511 ((py - y0) != 0) ||
512 ((pz - z0) != 0) ||
513 ((pw - w0) != 0)) return FALSE; // Not on exact node
514
515 index = (int) p16 -> opta[3] * x0 +
516 (int) p16 -> opta[2] * y0 +
517 (int) p16 -> opta[1] * z0 +
518 (int) p16 -> opta[0] * w0;
519 }
520 else
521 if (nChannelsIn == 3) {
522
523 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
524 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
525 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
526
527 x0 = (int) floor(px);
528 y0 = (int) floor(py);
529 z0 = (int) floor(pz);
530
531 if (((px - x0) != 0) ||
532 ((py - y0) != 0) ||
533 ((pz - z0) != 0)) return FALSE; // Not on exact node
534
535 index = (int) p16 -> opta[2] * x0 +
536 (int) p16 -> opta[1] * y0 +
537 (int) p16 -> opta[0] * z0;
538 }
539 else
540 if (nChannelsIn == 1) {
541
542 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
543
544 x0 = (int) floor(px);
545
546 if (((px - x0) != 0)) return FALSE; // Not on exact node
547
548 index = (int) p16 -> opta[0] * x0;
549 }
550 else {
551 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
552 return FALSE;
553 }
554
555 for (i = 0; i < (int) nChannelsOut; i++)
556 Grid->Tab.T[index + i] = Value[i];
557
558 return TRUE;
559}
560
561// Auxiliary, to see if two values are equal or very different
562static
563cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
564{
565 cmsUInt32Number i;
566
567 for (i=0; i < n; i++) {
568
569 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
570 if (White1[i] != White2[i]) return FALSE;
571 }
572 return TRUE;
573}
574
575
576// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
577static
578cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
579{
580 cmsUInt16Number *WhitePointIn, *WhitePointOut;
581 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
582 cmsUInt32Number i, nOuts, nIns;
583 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
584
585 if (!_cmsEndPointsBySpace(EntryColorSpace,
586 &WhitePointIn, NULL, &nIns)) return FALSE;
587
588 if (!_cmsEndPointsBySpace(ExitColorSpace,
589 &WhitePointOut, NULL, &nOuts)) return FALSE;
590
591 // It needs to be fixed?
592 if (Lut ->InputChannels != nIns) return FALSE;
593 if (Lut ->OutputChannels != nOuts) return FALSE;
594
595 cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
596
597 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
598
599 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
600 if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
601 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
602 if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
603 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
604 return FALSE;
605
606 // We need to interpolate white points of both, pre and post curves
607 if (PreLin) {
608
609 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
610
611 for (i=0; i < nIns; i++) {
612 WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
613 }
614 }
615 else {
616 for (i=0; i < nIns; i++)
617 WhiteIn[i] = WhitePointIn[i];
618 }
619
620 // If any post-linearization, we need to find how is represented white before the curve, do
621 // a reverse interpolation in this case.
622 if (PostLin) {
623
624 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
625
626 for (i=0; i < nOuts; i++) {
627
628 cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
629 if (InversePostLin == NULL) {
630 WhiteOut[i] = WhitePointOut[i];
631
632 } else {
633
634 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
635 cmsFreeToneCurve(InversePostLin);
636 }
637 }
638 }
639 else {
640 for (i=0; i < nOuts; i++)
641 WhiteOut[i] = WhitePointOut[i];
642 }
643
644 // Ok, proceed with patching. May fail and we don't care if it fails
645 PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
646
647 return TRUE;
648}
649
650// -----------------------------------------------------------------------------------------------------------------------------------------------
651// This function creates simple LUT from complex ones. The generated LUT has an optional set of
652// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
653// These curves have to exist in the original LUT in order to be used in the simplified output.
654// Caller may also use the flags to allow this feature.
655// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
656// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
657// -----------------------------------------------------------------------------------------------------------------------------------------------
658
659static
660cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
661{
662 cmsPipeline* Src = NULL;
663 cmsPipeline* Dest = NULL;
664 cmsStage* mpe;
665 cmsStage* CLUT;
666 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
667 cmsUInt32Number nGridPoints;
668 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
669 cmsStage *NewPreLin = NULL;
670 cmsStage *NewPostLin = NULL;
671 _cmsStageCLutData* DataCLUT;
672 cmsToneCurve** DataSetIn;
673 cmsToneCurve** DataSetOut;
674 Prelin16Data* p16;
675
676 // This is a loosy optimization! does not apply in floating-point cases
677 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
678
679 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
680 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
681
682 // Color space must be specified
683 if (ColorSpace == (cmsColorSpaceSignature)0 ||
684 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
685
686 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
687
688 // For empty LUTs, 2 points are enough
689 if (cmsPipelineStageCount(*Lut) == 0)
690 nGridPoints = 2;
691
692 Src = *Lut;
693
694 // Named color pipelines cannot be optimized either
695 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
696 mpe != NULL;
697 mpe = cmsStageNext(mpe)) {
698 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
699 }
700
701 // Allocate an empty LUT
702 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
703 if (!Dest) return FALSE;
704
705 // Prelinearization tables are kept unless indicated by flags
706 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
707
708 // Get a pointer to the prelinearization element
709 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
710
711 // Check if suitable
712 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
713
714 // Maybe this is a linear tram, so we can avoid the whole stuff
715 if (!AllCurvesAreLinear(PreLin)) {
716
717 // All seems ok, proceed.
718 NewPreLin = cmsStageDup(PreLin);
719 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
720 goto Error;
721
722 // Remove prelinearization. Since we have duplicated the curve
723 // in destination LUT, the sampling should be applied after this stage.
724 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
725 }
726 }
727 }
728
729 // Allocate the CLUT
730 CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
731 if (CLUT == NULL) goto Error;
732
733 // Add the CLUT to the destination LUT
734 if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
735 goto Error;
736 }
737
738 // Postlinearization tables are kept unless indicated by flags
739 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
740
741 // Get a pointer to the postlinearization if present
742 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
743
744 // Check if suitable
745 if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
746
747 // Maybe this is a linear tram, so we can avoid the whole stuff
748 if (!AllCurvesAreLinear(PostLin)) {
749
750 // All seems ok, proceed.
751 NewPostLin = cmsStageDup(PostLin);
752 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
753 goto Error;
754
755 // In destination LUT, the sampling should be applied after this stage.
756 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
757 }
758 }
759 }
760
761 // Now its time to do the sampling. We have to ignore pre/post linearization
762 // The source LUT without pre/post curves is passed as parameter.
763 if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
764Error:
765 // Ops, something went wrong, Restore stages
766 if (KeepPreLin != NULL) {
767 if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
768 _cmsAssert(0); // This never happens
769 }
770 }
771 if (KeepPostLin != NULL) {
772 if (!cmsPipelineInsertStage(Src, cmsAT_END, KeepPostLin)) {
773 _cmsAssert(0); // This never happens
774 }
775 }
776 cmsPipelineFree(Dest);
777 return FALSE;
778 }
779
780 // Done.
781
782 if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
783 if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
784 cmsPipelineFree(Src);
785
786 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
787
788 if (NewPreLin == NULL) DataSetIn = NULL;
789 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
790
791 if (NewPostLin == NULL) DataSetOut = NULL;
792 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
793
794
795 if (DataSetIn == NULL && DataSetOut == NULL) {
796
797 _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
798 }
799 else {
800
801 p16 = PrelinOpt16alloc(Dest ->ContextID,
802 DataCLUT ->Params,
803 Dest ->InputChannels,
804 DataSetIn,
805 Dest ->OutputChannels,
806 DataSetOut);
807
808 _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
809 }
810
811
812 // Don't fix white on absolute colorimetric
813 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
814 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
815
816 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
817
818 FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
819 }
820
821 *Lut = Dest;
822 return TRUE;
823
824 cmsUNUSED_PARAMETER(Intent);
825}
826
827
828// -----------------------------------------------------------------------------------------------------------------------------------------------
829// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
830// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
831// for RGB transforms. See the paper for more details
832// -----------------------------------------------------------------------------------------------------------------------------------------------
833
834
835// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
836// Descending curves are handled as well.
837static
838void SlopeLimiting(cmsToneCurve* g)
839{
840 int BeginVal, EndVal;
841 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
842 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
843 cmsFloat64Number Val, Slope, beta;
844 int i;
845
846 if (cmsIsToneCurveDescending(g)) {
847 BeginVal = 0xffff; EndVal = 0;
848 }
849 else {
850 BeginVal = 0; EndVal = 0xffff;
851 }
852
853 // Compute slope and offset for begin of curve
854 Val = g ->Table16[AtBegin];
855 Slope = (Val - BeginVal) / AtBegin;
856 beta = Val - Slope * AtBegin;
857
858 for (i=0; i < AtBegin; i++)
859 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
860
861 // Compute slope and offset for the end
862 Val = g ->Table16[AtEnd];
863 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
864 beta = Val - Slope * AtEnd;
865
866 for (i = AtEnd; i < (int) g ->nEntries; i++)
867 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
868}
869
870
871// Precomputes tables for 8-bit on input devicelink.
872static
873Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
874{
875 int i;
876 cmsUInt16Number Input[3];
877 cmsS15Fixed16Number v1, v2, v3;
878 Prelin8Data* p8;
879
880 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
881 if (p8 == NULL) return NULL;
882
883 // Since this only works for 8 bit input, values comes always as x * 257,
884 // we can safely take msb byte (x << 8 + x)
885
886 for (i=0; i < 256; i++) {
887
888 if (G != NULL) {
889
890 // Get 16-bit representation
891 Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
892 Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
893 Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
894 }
895 else {
896 Input[0] = FROM_8_TO_16(i);
897 Input[1] = FROM_8_TO_16(i);
898 Input[2] = FROM_8_TO_16(i);
899 }
900
901
902 // Move to 0..1.0 in fixed domain
903 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
904 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
905 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
906
907 // Store the precalculated table of nodes
908 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
909 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
910 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
911
912 // Store the precalculated table of offsets
913 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
914 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
915 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
916 }
917
918 p8 ->ContextID = ContextID;
919 p8 ->p = p;
920
921 return p8;
922}
923
924static
925void Prelin8free(cmsContext ContextID, void* ptr)
926{
927 _cmsFree(ContextID, ptr);
928}
929
930static
931void* Prelin8dup(cmsContext ContextID, const void* ptr)
932{
933 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
934}
935
936
937
938// A optimized interpolation for 8-bit input.
939#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
940static
941void PrelinEval8(register const cmsUInt16Number Input[],
942 register cmsUInt16Number Output[],
943 register const void* D)
944{
945
946 cmsUInt8Number r, g, b;
947 cmsS15Fixed16Number rx, ry, rz;
948 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
949 int OutChan;
950 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
951 Prelin8Data* p8 = (Prelin8Data*) D;
952 register const cmsInterpParams* p = p8 ->p;
953 int TotalOut = (int) p -> nOutputs;
954 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
955
956 r = (cmsUInt8Number) (Input[0] >> 8);
957 g = (cmsUInt8Number) (Input[1] >> 8);
958 b = (cmsUInt8Number) (Input[2] >> 8);
959
960 X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
961 Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
962 Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
963
964 rx = p8 ->rx[r];
965 ry = p8 ->ry[g];
966 rz = p8 ->rz[b];
967
968 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
969 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
970 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
971
972
973 // These are the 6 Tetrahedral
974 for (OutChan=0; OutChan < TotalOut; OutChan++) {
975
976 c0 = DENS(X0, Y0, Z0);
977
978 if (rx >= ry && ry >= rz)
979 {
980 c1 = DENS(X1, Y0, Z0) - c0;
981 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
982 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
983 }
984 else
985 if (rx >= rz && rz >= ry)
986 {
987 c1 = DENS(X1, Y0, Z0) - c0;
988 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
989 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
990 }
991 else
992 if (rz >= rx && rx >= ry)
993 {
994 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
995 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
996 c3 = DENS(X0, Y0, Z1) - c0;
997 }
998 else
999 if (ry >= rx && rx >= rz)
1000 {
1001 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1002 c2 = DENS(X0, Y1, Z0) - c0;
1003 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1004 }
1005 else
1006 if (ry >= rz && rz >= rx)
1007 {
1008 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1009 c2 = DENS(X0, Y1, Z0) - c0;
1010 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1011 }
1012 else
1013 if (rz >= ry && ry >= rx)
1014 {
1015 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1016 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1017 c3 = DENS(X0, Y0, Z1) - c0;
1018 }
1019 else {
1020 c1 = c2 = c3 = 0;
1021 }
1022
1023 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1024 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1025
1026 }
1027}
1028
1029#undef DENS
1030
1031
1032// Curves that contain wide empty areas are not optimizeable
1033static
1034cmsBool IsDegenerated(const cmsToneCurve* g)
1035{
1036 cmsUInt32Number i, Zeros = 0, Poles = 0;
1037 cmsUInt32Number nEntries = g ->nEntries;
1038
1039 for (i=0; i < nEntries; i++) {
1040
1041 if (g ->Table16[i] == 0x0000) Zeros++;
1042 if (g ->Table16[i] == 0xffff) Poles++;
1043 }
1044
1045 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1046 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1047 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1048
1049 return FALSE;
1050}
1051
1052// --------------------------------------------------------------------------------------------------------------
1053// We need xput over here
1054
1055static
1056cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1057{
1058 cmsPipeline* OriginalLut;
1059 cmsUInt32Number nGridPoints;
1060 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1061 cmsUInt32Number t, i;
1062 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1063 cmsBool lIsSuitable, lIsLinear;
1064 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1065 cmsStage* OptimizedCLUTmpe;
1066 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1067 cmsStage* OptimizedPrelinMpe;
1068 cmsStage* mpe;
1069 cmsToneCurve** OptimizedPrelinCurves;
1070 _cmsStageCLutData* OptimizedPrelinCLUT;
1071
1072
1073 // This is a loosy optimization! does not apply in floating-point cases
1074 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1075
1076 // Only on chunky RGB
1077 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1078 if (T_PLANAR(*InputFormat)) return FALSE;
1079
1080 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1081 if (T_PLANAR(*OutputFormat)) return FALSE;
1082
1083 // On 16 bits, user has to specify the feature
1084 if (!_cmsFormatterIs8bit(*InputFormat)) {
1085 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1086 }
1087
1088 OriginalLut = *Lut;
1089
1090 // Named color pipelines cannot be optimized either
1091 for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1092 mpe != NULL;
1093 mpe = cmsStageNext(mpe)) {
1094 if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1095 }
1096
1097 ColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1098 OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1099
1100 // Color space must be specified
1101 if (ColorSpace == (cmsColorSpaceSignature)0 ||
1102 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1103
1104 nGridPoints = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1105
1106 // Empty gamma containers
1107 memset(Trans, 0, sizeof(Trans));
1108 memset(TransReverse, 0, sizeof(TransReverse));
1109
1110 // If the last stage of the original lut are curves, and those curves are
1111 // degenerated, it is likely the transform is squeezing and clipping
1112 // the output from previous CLUT. We cannot optimize this case
1113 {
1114 cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1115
1116 if (cmsStageType(last) == cmsSigCurveSetElemType) {
1117
1118 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1119 for (i = 0; i < Data->nCurves; i++) {
1120 if (IsDegenerated(Data->TheCurves[i]))
1121 goto Error;
1122 }
1123 }
1124 }
1125
1126 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1127 Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1128 if (Trans[t] == NULL) goto Error;
1129 }
1130
1131 // Populate the curves
1132 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1133
1134 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1135
1136 // Feed input with a gray ramp
1137 for (t=0; t < OriginalLut ->InputChannels; t++)
1138 In[t] = v;
1139
1140 // Evaluate the gray value
1141 cmsPipelineEvalFloat(In, Out, OriginalLut);
1142
1143 // Store result in curve
1144 for (t=0; t < OriginalLut ->InputChannels; t++)
1145 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1146 }
1147
1148 // Slope-limit the obtained curves
1149 for (t = 0; t < OriginalLut ->InputChannels; t++)
1150 SlopeLimiting(Trans[t]);
1151
1152 // Check for validity
1153 lIsSuitable = TRUE;
1154 lIsLinear = TRUE;
1155 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1156
1157 // Exclude if already linear
1158 if (!cmsIsToneCurveLinear(Trans[t]))
1159 lIsLinear = FALSE;
1160
1161 // Exclude if non-monotonic
1162 if (!cmsIsToneCurveMonotonic(Trans[t]))
1163 lIsSuitable = FALSE;
1164
1165 if (IsDegenerated(Trans[t]))
1166 lIsSuitable = FALSE;
1167 }
1168
1169 // If it is not suitable, just quit
1170 if (!lIsSuitable) goto Error;
1171
1172 // Invert curves if possible
1173 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1174 TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1175 if (TransReverse[t] == NULL) goto Error;
1176 }
1177
1178 // Now inset the reversed curves at the begin of transform
1179 LutPlusCurves = cmsPipelineDup(OriginalLut);
1180 if (LutPlusCurves == NULL) goto Error;
1181
1182 if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1183 goto Error;
1184
1185 // Create the result LUT
1186 OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1187 if (OptimizedLUT == NULL) goto Error;
1188
1189 OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1190
1191 // Create and insert the curves at the beginning
1192 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1193 goto Error;
1194
1195 // Allocate the CLUT for result
1196 OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1197
1198 // Add the CLUT to the destination LUT
1199 if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1200 goto Error;
1201
1202 // Resample the LUT
1203 if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1204
1205 // Free resources
1206 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1207
1208 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1209 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1210 }
1211
1212 cmsPipelineFree(LutPlusCurves);
1213
1214
1215 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1216 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1217
1218 // Set the evaluator if 8-bit
1219 if (_cmsFormatterIs8bit(*InputFormat)) {
1220
1221 Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1222 OptimizedPrelinCLUT ->Params,
1223 OptimizedPrelinCurves);
1224 if (p8 == NULL) {
1225 cmsPipelineFree(OptimizedLUT);
1226 return FALSE;
1227 }
1228
1229 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1230
1231 }
1232 else
1233 {
1234 Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1235 OptimizedPrelinCLUT ->Params,
1236 3, OptimizedPrelinCurves, 3, NULL);
1237 if (p16 == NULL) {
1238 cmsPipelineFree(OptimizedLUT);
1239 return FALSE;
1240 }
1241
1242 _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1243
1244 }
1245
1246 // Don't fix white on absolute colorimetric
1247 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1248 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1249
1250 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1251
1252 if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1253
1254 return FALSE;
1255 }
1256 }
1257
1258 // And return the obtained LUT
1259
1260 cmsPipelineFree(OriginalLut);
1261 *Lut = OptimizedLUT;
1262 return TRUE;
1263
1264Error:
1265
1266 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1267
1268 if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1269 if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1270 }
1271
1272 if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1273 if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1274
1275 return FALSE;
1276
1277 cmsUNUSED_PARAMETER(Intent);
1278 cmsUNUSED_PARAMETER(lIsLinear);
1279}
1280
1281
1282// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1283
1284static
1285void CurvesFree(cmsContext ContextID, void* ptr)
1286{
1287 Curves16Data* Data = (Curves16Data*) ptr;
1288 cmsUInt32Number i;
1289
1290 for (i=0; i < Data -> nCurves; i++) {
1291
1292 _cmsFree(ContextID, Data ->Curves[i]);
1293 }
1294
1295 _cmsFree(ContextID, Data ->Curves);
1296 _cmsFree(ContextID, ptr);
1297}
1298
1299static
1300void* CurvesDup(cmsContext ContextID, const void* ptr)
1301{
1302 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1303 cmsUInt32Number i;
1304
1305 if (Data == NULL) return NULL;
1306
1307 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1308
1309 for (i=0; i < Data -> nCurves; i++) {
1310 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1311 }
1312
1313 return (void*) Data;
1314}
1315
1316// Precomputes tables for 8-bit on input devicelink.
1317static
1318Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1319{
1320 cmsUInt32Number i, j;
1321 Curves16Data* c16;
1322
1323 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1324 if (c16 == NULL) return NULL;
1325
1326 c16 ->nCurves = nCurves;
1327 c16 ->nElements = nElements;
1328
1329 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1330 if (c16->Curves == NULL) {
1331 _cmsFree(ContextID, c16);
1332 return NULL;
1333 }
1334
1335 for (i=0; i < nCurves; i++) {
1336
1337 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1338
1339 if (c16->Curves[i] == NULL) {
1340
1341 for (j=0; j < i; j++) {
1342 _cmsFree(ContextID, c16->Curves[j]);
1343 }
1344 _cmsFree(ContextID, c16->Curves);
1345 _cmsFree(ContextID, c16);
1346 return NULL;
1347 }
1348
1349 if (nElements == 256U) {
1350
1351 for (j=0; j < nElements; j++) {
1352
1353 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1354 }
1355 }
1356 else {
1357
1358 for (j=0; j < nElements; j++) {
1359 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1360 }
1361 }
1362 }
1363
1364 return c16;
1365}
1366
1367static
1368void FastEvaluateCurves8(register const cmsUInt16Number In[],
1369 register cmsUInt16Number Out[],
1370 register const void* D)
1371{
1372 Curves16Data* Data = (Curves16Data*) D;
1373 int x;
1374 cmsUInt32Number i;
1375
1376 for (i=0; i < Data ->nCurves; i++) {
1377
1378 x = (In[i] >> 8);
1379 Out[i] = Data -> Curves[i][x];
1380 }
1381}
1382
1383
1384static
1385void FastEvaluateCurves16(register const cmsUInt16Number In[],
1386 register cmsUInt16Number Out[],
1387 register const void* D)
1388{
1389 Curves16Data* Data = (Curves16Data*) D;
1390 cmsUInt32Number i;
1391
1392 for (i=0; i < Data ->nCurves; i++) {
1393 Out[i] = Data -> Curves[i][In[i]];
1394 }
1395}
1396
1397
1398static
1399void FastIdentity16(register const cmsUInt16Number In[],
1400 register cmsUInt16Number Out[],
1401 register const void* D)
1402{
1403 cmsPipeline* Lut = (cmsPipeline*) D;
1404 cmsUInt32Number i;
1405
1406 for (i=0; i < Lut ->InputChannels; i++) {
1407 Out[i] = In[i];
1408 }
1409}
1410
1411
1412// If the target LUT holds only curves, the optimization procedure is to join all those
1413// curves together. That only works on curves and does not work on matrices.
1414static
1415cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1416{
1417 cmsToneCurve** GammaTables = NULL;
1418 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1419 cmsUInt32Number i, j;
1420 cmsPipeline* Src = *Lut;
1421 cmsPipeline* Dest = NULL;
1422 cmsStage* mpe;
1423 cmsStage* ObtainedCurves = NULL;
1424
1425
1426 // This is a loosy optimization! does not apply in floating-point cases
1427 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1428
1429 // Only curves in this LUT?
1430 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1431 mpe != NULL;
1432 mpe = cmsStageNext(mpe)) {
1433 if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1434 }
1435
1436 // Allocate an empty LUT
1437 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1438 if (Dest == NULL) return FALSE;
1439
1440 // Create target curves
1441 GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1442 if (GammaTables == NULL) goto Error;
1443
1444 for (i=0; i < Src ->InputChannels; i++) {
1445 GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1446 if (GammaTables[i] == NULL) goto Error;
1447 }
1448
1449 // Compute 16 bit result by using floating point
1450 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1451
1452 for (j=0; j < Src ->InputChannels; j++)
1453 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1454
1455 cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1456
1457 for (j=0; j < Src ->InputChannels; j++)
1458 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1459 }
1460
1461 ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1462 if (ObtainedCurves == NULL) goto Error;
1463
1464 for (i=0; i < Src ->InputChannels; i++) {
1465 cmsFreeToneCurve(GammaTables[i]);
1466 GammaTables[i] = NULL;
1467 }
1468
1469 if (GammaTables != NULL) {
1470 _cmsFree(Src->ContextID, GammaTables);
1471 GammaTables = NULL;
1472 }
1473
1474 // Maybe the curves are linear at the end
1475 if (!AllCurvesAreLinear(ObtainedCurves)) {
1476
1477 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1478 goto Error;
1479
1480 // If the curves are to be applied in 8 bits, we can save memory
1481 if (_cmsFormatterIs8bit(*InputFormat)) {
1482
1483 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1484 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1485
1486 if (c16 == NULL) goto Error;
1487 *dwFlags |= cmsFLAGS_NOCACHE;
1488 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1489
1490 }
1491 else {
1492
1493 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1494 Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1495
1496 if (c16 == NULL) goto Error;
1497 *dwFlags |= cmsFLAGS_NOCACHE;
1498 _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1499 }
1500 }
1501 else {
1502
1503 // LUT optimizes to nothing. Set the identity LUT
1504 cmsStageFree(ObtainedCurves);
1505 ObtainedCurves = NULL;
1506
1507 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1508 goto Error;
1509
1510 *dwFlags |= cmsFLAGS_NOCACHE;
1511 _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1512 }
1513
1514 // We are done.
1515 cmsPipelineFree(Src);
1516 *Lut = Dest;
1517 return TRUE;
1518
1519Error:
1520
1521 if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1522 if (GammaTables != NULL) {
1523 for (i=0; i < Src ->InputChannels; i++) {
1524 if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1525 }
1526
1527 _cmsFree(Src ->ContextID, GammaTables);
1528 }
1529
1530 if (Dest != NULL) cmsPipelineFree(Dest);
1531 return FALSE;
1532
1533 cmsUNUSED_PARAMETER(Intent);
1534 cmsUNUSED_PARAMETER(InputFormat);
1535 cmsUNUSED_PARAMETER(OutputFormat);
1536 cmsUNUSED_PARAMETER(dwFlags);
1537}
1538
1539// -------------------------------------------------------------------------------------------------------------------------------------
1540// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1541
1542
1543static
1544void FreeMatShaper(cmsContext ContextID, void* Data)
1545{
1546 if (Data != NULL) _cmsFree(ContextID, Data);
1547}
1548
1549static
1550void* DupMatShaper(cmsContext ContextID, const void* Data)
1551{
1552 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1553}
1554
1555
1556// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1557// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1558// in total about 50K, and the performance boost is huge!
1559static
1560void MatShaperEval16(register const cmsUInt16Number In[],
1561 register cmsUInt16Number Out[],
1562 register const void* D)
1563{
1564 MatShaper8Data* p = (MatShaper8Data*) D;
1565 cmsS1Fixed14Number l1, l2, l3, r, g, b;
1566 cmsUInt32Number ri, gi, bi;
1567
1568 // In this case (and only in this case!) we can use this simplification since
1569 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1570 ri = In[0] & 0xFFU;
1571 gi = In[1] & 0xFFU;
1572 bi = In[2] & 0xFFU;
1573
1574 // Across first shaper, which also converts to 1.14 fixed point
1575 r = p->Shaper1R[ri];
1576 g = p->Shaper1G[gi];
1577 b = p->Shaper1B[bi];
1578
1579 // Evaluate the matrix in 1.14 fixed point
1580 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1581 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1582 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1583
1584 // Now we have to clip to 0..1.0 range
1585 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1586 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1587 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1588
1589 // And across second shaper,
1590 Out[0] = p->Shaper2R[ri];
1591 Out[1] = p->Shaper2G[gi];
1592 Out[2] = p->Shaper2B[bi];
1593
1594}
1595
1596// This table converts from 8 bits to 1.14 after applying the curve
1597static
1598void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1599{
1600 int i;
1601 cmsFloat32Number R, y;
1602
1603 for (i=0; i < 256; i++) {
1604
1605 R = (cmsFloat32Number) (i / 255.0);
1606 y = cmsEvalToneCurveFloat(Curve, R);
1607
1608 if (y < 131072.0)
1609 Table[i] = DOUBLE_TO_1FIXED14(y);
1610 else
1611 Table[i] = 0x7fffffff;
1612 }
1613}
1614
1615// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1616static
1617void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1618{
1619 int i;
1620 cmsFloat32Number R, Val;
1621
1622 for (i=0; i < 16385; i++) {
1623
1624 R = (cmsFloat32Number) (i / 16384.0);
1625 Val = cmsEvalToneCurveFloat(Curve, R); // Val comes 0..1.0
1626
1627 if (Val < 0)
1628 Val = 0;
1629
1630 if (Val > 1.0)
1631 Val = 1.0;
1632
1633 if (Is8BitsOutput) {
1634
1635 // If 8 bits output, we can optimize further by computing the / 257 part.
1636 // first we compute the resulting byte and then we store the byte times
1637 // 257. This quantization allows to round very quick by doing a >> 8, but
1638 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1639 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1640 cmsUInt8Number b = FROM_16_TO_8(w);
1641
1642 Table[i] = FROM_8_TO_16(b);
1643 }
1644 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1645 }
1646}
1647
1648// Compute the matrix-shaper structure
1649static
1650cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1651{
1652 MatShaper8Data* p;
1653 int i, j;
1654 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1655
1656 // Allocate a big chuck of memory to store precomputed tables
1657 p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1658 if (p == NULL) return FALSE;
1659
1660 p -> ContextID = Dest -> ContextID;
1661
1662 // Precompute tables
1663 FillFirstShaper(p ->Shaper1R, Curve1[0]);
1664 FillFirstShaper(p ->Shaper1G, Curve1[1]);
1665 FillFirstShaper(p ->Shaper1B, Curve1[2]);
1666
1667 FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1668 FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1669 FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1670
1671 // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1672 for (i=0; i < 3; i++) {
1673 for (j=0; j < 3; j++) {
1674 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1675 }
1676 }
1677
1678 for (i=0; i < 3; i++) {
1679
1680 if (Off == NULL) {
1681 p ->Off[i] = 0;
1682 }
1683 else {
1684 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1685 }
1686 }
1687
1688 // Mark as optimized for faster formatter
1689 if (Is8Bits)
1690 *OutputFormat |= OPTIMIZED_SH(1);
1691
1692 // Fill function pointers
1693 _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1694 return TRUE;
1695}
1696
1697// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1698static
1699cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1700{
1701 cmsStage* Curve1, *Curve2;
1702 cmsStage* Matrix1, *Matrix2;
1703 cmsMAT3 res;
1704 cmsBool IdentityMat;
1705 cmsPipeline* Dest, *Src;
1706 cmsFloat64Number* Offset;
1707
1708 // Only works on RGB to RGB
1709 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1710
1711 // Only works on 8 bit input
1712 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1713
1714 // Seems suitable, proceed
1715 Src = *Lut;
1716
1717 // Check for:
1718 //
1719 // shaper-matrix-matrix-shaper
1720 // shaper-matrix-shaper
1721 //
1722 // Both of those constructs are possible (first because abs. colorimetric).
1723 // additionally, In the first case, the input matrix offset should be zero.
1724
1725 IdentityMat = FALSE;
1726 if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1727 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1728 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1729
1730 // Get both matrices
1731 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1732 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1733
1734 // Input offset should be zero
1735 if (Data1->Offset != NULL) return FALSE;
1736
1737 // Multiply both matrices to get the result
1738 _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1739
1740 // Only 2nd matrix has offset, or it is zero
1741 Offset = Data2->Offset;
1742
1743 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1744 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1745
1746 // We can get rid of full matrix
1747 IdentityMat = TRUE;
1748 }
1749
1750 }
1751 else {
1752
1753 if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1754 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1755 &Curve1, &Matrix1, &Curve2)) {
1756
1757 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1758
1759 // Copy the matrix to our result
1760 memcpy(&res, Data->Double, sizeof(res));
1761
1762 // Preserve the Odffset (may be NULL as a zero offset)
1763 Offset = Data->Offset;
1764
1765 if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1766
1767 // We can get rid of full matrix
1768 IdentityMat = TRUE;
1769 }
1770 }
1771 else
1772 return FALSE; // Not optimizeable this time
1773
1774 }
1775
1776 // Allocate an empty LUT
1777 Dest = cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1778 if (!Dest) return FALSE;
1779
1780 // Assamble the new LUT
1781 if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1782 goto Error;
1783
1784 if (!IdentityMat) {
1785
1786 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1787 goto Error;
1788 }
1789
1790 if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1791 goto Error;
1792
1793 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1794 if (IdentityMat) {
1795
1796 OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1797 }
1798 else {
1799 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1800 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1801
1802 // In this particular optimization, caché does not help as it takes more time to deal with
1803 // the caché that with the pixel handling
1804 *dwFlags |= cmsFLAGS_NOCACHE;
1805
1806 // Setup the optimizarion routines
1807 SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1808 }
1809
1810 cmsPipelineFree(Src);
1811 *Lut = Dest;
1812 return TRUE;
1813Error:
1814 // Leave Src unchanged
1815 cmsPipelineFree(Dest);
1816 return FALSE;
1817}
1818
1819
1820// -------------------------------------------------------------------------------------------------------------------------------------
1821// Optimization plug-ins
1822
1823// List of optimizations
1824typedef struct _cmsOptimizationCollection_st {
1825
1826 _cmsOPToptimizeFn OptimizePtr;
1827
1828 struct _cmsOptimizationCollection_st *Next;
1829
1830} _cmsOptimizationCollection;
1831
1832
1833// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1834static _cmsOptimizationCollection DefaultOptimization[] = {
1835
1836 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1837 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1838 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1839 { OptimizeByResampling, NULL }
1840};
1841
1842// The linked list head
1843_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1844
1845
1846// Duplicates the zone of memory used by the plug-in in the new context
1847static
1848void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1849 const struct _cmsContext_struct* src)
1850{
1851 _cmsOptimizationPluginChunkType newHead = { NULL };
1852 _cmsOptimizationCollection* entry;
1853 _cmsOptimizationCollection* Anterior = NULL;
1854 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1855
1856 _cmsAssert(ctx != NULL);
1857 _cmsAssert(head != NULL);
1858
1859 // Walk the list copying all nodes
1860 for (entry = head->OptimizationCollection;
1861 entry != NULL;
1862 entry = entry ->Next) {
1863
1864 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1865
1866 if (newEntry == NULL)
1867 return;
1868
1869 // We want to keep the linked list order, so this is a little bit tricky
1870 newEntry -> Next = NULL;
1871 if (Anterior)
1872 Anterior -> Next = newEntry;
1873
1874 Anterior = newEntry;
1875
1876 if (newHead.OptimizationCollection == NULL)
1877 newHead.OptimizationCollection = newEntry;
1878 }
1879
1880 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1881}
1882
1883void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1884 const struct _cmsContext_struct* src)
1885{
1886 if (src != NULL) {
1887
1888 // Copy all linked list
1889 DupPluginOptimizationList(ctx, src);
1890 }
1891 else {
1892 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1893 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1894 }
1895}
1896
1897
1898// Register new ways to optimize
1899cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1900{
1901 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1902 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1903 _cmsOptimizationCollection* fl;
1904
1905 if (Data == NULL) {
1906
1907 ctx->OptimizationCollection = NULL;
1908 return TRUE;
1909 }
1910
1911 // Optimizer callback is required
1912 if (Plugin ->OptimizePtr == NULL) return FALSE;
1913
1914 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1915 if (fl == NULL) return FALSE;
1916
1917 // Copy the parameters
1918 fl ->OptimizePtr = Plugin ->OptimizePtr;
1919
1920 // Keep linked list
1921 fl ->Next = ctx->OptimizationCollection;
1922
1923 // Set the head
1924 ctx ->OptimizationCollection = fl;
1925
1926 // All is ok
1927 return TRUE;
1928}
1929
1930// The entry point for LUT optimization
1931cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1932 cmsPipeline** PtrLut,
1933 cmsUInt32Number Intent,
1934 cmsUInt32Number* InputFormat,
1935 cmsUInt32Number* OutputFormat,
1936 cmsUInt32Number* dwFlags)
1937{
1938 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1939 _cmsOptimizationCollection* Opts;
1940 cmsBool AnySuccess = FALSE;
1941
1942 // A CLUT is being asked, so force this specific optimization
1943 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1944
1945 PreOptimize(*PtrLut);
1946 return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1947 }
1948
1949 // Anything to optimize?
1950 if ((*PtrLut) ->Elements == NULL) {
1951 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1952 return TRUE;
1953 }
1954
1955 // Try to get rid of identities and trivial conversions.
1956 AnySuccess = PreOptimize(*PtrLut);
1957
1958 // After removal do we end with an identity?
1959 if ((*PtrLut) ->Elements == NULL) {
1960 _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1961 return TRUE;
1962 }
1963
1964 // Do not optimize, keep all precision
1965 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1966 return FALSE;
1967
1968 // Try plug-in optimizations
1969 for (Opts = ctx->OptimizationCollection;
1970 Opts != NULL;
1971 Opts = Opts ->Next) {
1972
1973 // If one schema succeeded, we are done
1974 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1975
1976 return TRUE; // Optimized!
1977 }
1978 }
1979
1980 // Try built-in optimizations
1981 for (Opts = DefaultOptimization;
1982 Opts != NULL;
1983 Opts = Opts ->Next) {
1984
1985 if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1986
1987 return TRUE;
1988 }
1989 }
1990
1991 // Only simple optimizations succeeded
1992 return AnySuccess;
1993}
1994
1995
1996
1997