| 1 | /* |
| 2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 3 | * |
| 4 | * This code is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License version 2 only, as |
| 6 | * published by the Free Software Foundation. Oracle designates this |
| 7 | * particular file as subject to the "Classpath" exception as provided |
| 8 | * by Oracle in the LICENSE file that accompanied this code. |
| 9 | * |
| 10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 13 | * version 2 for more details (a copy is included in the LICENSE file that |
| 14 | * accompanied this code). |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License version |
| 17 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 19 | * |
| 20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 21 | * or visit www.oracle.com if you need additional information or have any |
| 22 | * questions. |
| 23 | */ |
| 24 | |
| 25 | // This file is available under and governed by the GNU General Public |
| 26 | // License version 2 only, as published by the Free Software Foundation. |
| 27 | // However, the following notice accompanied the original version of this |
| 28 | // file: |
| 29 | // |
| 30 | //--------------------------------------------------------------------------------- |
| 31 | // |
| 32 | // Little Color Management System |
| 33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
| 34 | // |
| 35 | // Permission is hereby granted, free of charge, to any person obtaining |
| 36 | // a copy of this software and associated documentation files (the "Software"), |
| 37 | // to deal in the Software without restriction, including without limitation |
| 38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 40 | // is furnished to do so, subject to the following conditions: |
| 41 | // |
| 42 | // The above copyright notice and this permission notice shall be included in |
| 43 | // all copies or substantial portions of the Software. |
| 44 | // |
| 45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 52 | // |
| 53 | //--------------------------------------------------------------------------------- |
| 54 | // |
| 55 | |
| 56 | #include "lcms2_internal.h" |
| 57 | |
| 58 | // inter PCS conversions XYZ <-> CIE L* a* b* |
| 59 | /* |
| 60 | |
| 61 | |
| 62 | CIE 15:2004 CIELab is defined as: |
| 63 | |
| 64 | L* = 116*f(Y/Yn) - 16 0 <= L* <= 100 |
| 65 | a* = 500*[f(X/Xn) - f(Y/Yn)] |
| 66 | b* = 200*[f(Y/Yn) - f(Z/Zn)] |
| 67 | |
| 68 | and |
| 69 | |
| 70 | f(t) = t^(1/3) 1 >= t > (24/116)^3 |
| 71 | (841/108)*t + (16/116) 0 <= t <= (24/116)^3 |
| 72 | |
| 73 | |
| 74 | Reverse transform is: |
| 75 | |
| 76 | X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3 if (X/Xn) > (24/116) |
| 77 | = Xn*(a* / 500 + L* / 116) / 7.787 if (X/Xn) <= (24/116) |
| 78 | |
| 79 | |
| 80 | |
| 81 | PCS in Lab2 is encoded as: |
| 82 | |
| 83 | 8 bit Lab PCS: |
| 84 | |
| 85 | L* 0..100 into a 0..ff byte. |
| 86 | a* t + 128 range is -128.0 +127.0 |
| 87 | b* |
| 88 | |
| 89 | 16 bit Lab PCS: |
| 90 | |
| 91 | L* 0..100 into a 0..ff00 word. |
| 92 | a* t + 128 range is -128.0 +127.9961 |
| 93 | b* |
| 94 | |
| 95 | |
| 96 | |
| 97 | Interchange Space Component Actual Range Encoded Range |
| 98 | CIE XYZ X 0 -> 1.99997 0x0000 -> 0xffff |
| 99 | CIE XYZ Y 0 -> 1.99997 0x0000 -> 0xffff |
| 100 | CIE XYZ Z 0 -> 1.99997 0x0000 -> 0xffff |
| 101 | |
| 102 | Version 2,3 |
| 103 | ----------- |
| 104 | |
| 105 | CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xff00 |
| 106 | CIELAB (16 bit) a* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff |
| 107 | CIELAB (16 bit) b* -128.0 -> +127.996 0x0000 -> 0x8000 -> 0xffff |
| 108 | |
| 109 | |
| 110 | Version 4 |
| 111 | --------- |
| 112 | |
| 113 | CIELAB (16 bit) L* 0 -> 100.0 0x0000 -> 0xffff |
| 114 | CIELAB (16 bit) a* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff |
| 115 | CIELAB (16 bit) b* -128.0 -> +127 0x0000 -> 0x8080 -> 0xffff |
| 116 | |
| 117 | */ |
| 118 | |
| 119 | // Conversions |
| 120 | void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source) |
| 121 | { |
| 122 | cmsFloat64Number ISum; |
| 123 | |
| 124 | ISum = 1./(Source -> X + Source -> Y + Source -> Z); |
| 125 | |
| 126 | Dest -> x = (Source -> X) * ISum; |
| 127 | Dest -> y = (Source -> Y) * ISum; |
| 128 | Dest -> Y = Source -> Y; |
| 129 | } |
| 130 | |
| 131 | void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source) |
| 132 | { |
| 133 | Dest -> X = (Source -> x / Source -> y) * Source -> Y; |
| 134 | Dest -> Y = Source -> Y; |
| 135 | Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus |
| 140 | primary (0.008856). Generally, this only happens for |
| 141 | nearly ideal blacks and for some orange / amber colors in transmission mode. |
| 142 | For example, the Z value of the orange turn indicator lamp lens on an |
| 143 | automobile will often be below this value. But the Z does not |
| 144 | contribute to the perceived color directly. |
| 145 | */ |
| 146 | |
| 147 | static |
| 148 | cmsFloat64Number f(cmsFloat64Number t) |
| 149 | { |
| 150 | const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0); |
| 151 | |
| 152 | if (t <= Limit) |
| 153 | return (841.0/108.0) * t + (16.0/116.0); |
| 154 | else |
| 155 | return pow(t, 1.0/3.0); |
| 156 | } |
| 157 | |
| 158 | static |
| 159 | cmsFloat64Number f_1(cmsFloat64Number t) |
| 160 | { |
| 161 | const cmsFloat64Number Limit = (24.0/116.0); |
| 162 | |
| 163 | if (t <= Limit) { |
| 164 | return (108.0/841.0) * (t - (16.0/116.0)); |
| 165 | } |
| 166 | |
| 167 | return t * t * t; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | // Standard XYZ to Lab. it can handle negative XZY numbers in some cases |
| 172 | void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz) |
| 173 | { |
| 174 | cmsFloat64Number fx, fy, fz; |
| 175 | |
| 176 | if (WhitePoint == NULL) |
| 177 | WhitePoint = cmsD50_XYZ(); |
| 178 | |
| 179 | fx = f(xyz->X / WhitePoint->X); |
| 180 | fy = f(xyz->Y / WhitePoint->Y); |
| 181 | fz = f(xyz->Z / WhitePoint->Z); |
| 182 | |
| 183 | Lab->L = 116.0*fy - 16.0; |
| 184 | Lab->a = 500.0*(fx - fy); |
| 185 | Lab->b = 200.0*(fy - fz); |
| 186 | } |
| 187 | |
| 188 | |
| 189 | // Standard XYZ to Lab. It can return negative XYZ in some cases |
| 190 | void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz, const cmsCIELab* Lab) |
| 191 | { |
| 192 | cmsFloat64Number x, y, z; |
| 193 | |
| 194 | if (WhitePoint == NULL) |
| 195 | WhitePoint = cmsD50_XYZ(); |
| 196 | |
| 197 | y = (Lab-> L + 16.0) / 116.0; |
| 198 | x = y + 0.002 * Lab -> a; |
| 199 | z = y - 0.005 * Lab -> b; |
| 200 | |
| 201 | xyz -> X = f_1(x) * WhitePoint -> X; |
| 202 | xyz -> Y = f_1(y) * WhitePoint -> Y; |
| 203 | xyz -> Z = f_1(z) * WhitePoint -> Z; |
| 204 | |
| 205 | } |
| 206 | |
| 207 | static |
| 208 | cmsFloat64Number L2float2(cmsUInt16Number v) |
| 209 | { |
| 210 | return (cmsFloat64Number) v / 652.800; |
| 211 | } |
| 212 | |
| 213 | // the a/b part |
| 214 | static |
| 215 | cmsFloat64Number ab2float2(cmsUInt16Number v) |
| 216 | { |
| 217 | return ((cmsFloat64Number) v / 256.0) - 128.0; |
| 218 | } |
| 219 | |
| 220 | static |
| 221 | cmsUInt16Number L2Fix2(cmsFloat64Number L) |
| 222 | { |
| 223 | return _cmsQuickSaturateWord(L * 652.8); |
| 224 | } |
| 225 | |
| 226 | static |
| 227 | cmsUInt16Number ab2Fix2(cmsFloat64Number ab) |
| 228 | { |
| 229 | return _cmsQuickSaturateWord((ab + 128.0) * 256.0); |
| 230 | } |
| 231 | |
| 232 | |
| 233 | static |
| 234 | cmsFloat64Number L2float4(cmsUInt16Number v) |
| 235 | { |
| 236 | return (cmsFloat64Number) v / 655.35; |
| 237 | } |
| 238 | |
| 239 | // the a/b part |
| 240 | static |
| 241 | cmsFloat64Number ab2float4(cmsUInt16Number v) |
| 242 | { |
| 243 | return ((cmsFloat64Number) v / 257.0) - 128.0; |
| 244 | } |
| 245 | |
| 246 | |
| 247 | void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) |
| 248 | { |
| 249 | Lab->L = L2float2(wLab[0]); |
| 250 | Lab->a = ab2float2(wLab[1]); |
| 251 | Lab->b = ab2float2(wLab[2]); |
| 252 | } |
| 253 | |
| 254 | |
| 255 | void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3]) |
| 256 | { |
| 257 | Lab->L = L2float4(wLab[0]); |
| 258 | Lab->a = ab2float4(wLab[1]); |
| 259 | Lab->b = ab2float4(wLab[2]); |
| 260 | } |
| 261 | |
| 262 | static |
| 263 | cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L) |
| 264 | { |
| 265 | const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00; |
| 266 | |
| 267 | if (L < 0) L = 0; |
| 268 | if (L > L_max) L = L_max; |
| 269 | |
| 270 | return L; |
| 271 | } |
| 272 | |
| 273 | |
| 274 | static |
| 275 | cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab) |
| 276 | { |
| 277 | if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2; |
| 278 | if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2; |
| 279 | |
| 280 | return ab; |
| 281 | } |
| 282 | |
| 283 | void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab) |
| 284 | { |
| 285 | cmsCIELab Lab; |
| 286 | |
| 287 | Lab.L = Clamp_L_doubleV2(fLab ->L); |
| 288 | Lab.a = Clamp_ab_doubleV2(fLab ->a); |
| 289 | Lab.b = Clamp_ab_doubleV2(fLab ->b); |
| 290 | |
| 291 | wLab[0] = L2Fix2(Lab.L); |
| 292 | wLab[1] = ab2Fix2(Lab.a); |
| 293 | wLab[2] = ab2Fix2(Lab.b); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | static |
| 298 | cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L) |
| 299 | { |
| 300 | if (L < 0) L = 0; |
| 301 | if (L > 100.0) L = 100.0; |
| 302 | |
| 303 | return L; |
| 304 | } |
| 305 | |
| 306 | static |
| 307 | cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab) |
| 308 | { |
| 309 | if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4; |
| 310 | if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4; |
| 311 | |
| 312 | return ab; |
| 313 | } |
| 314 | |
| 315 | static |
| 316 | cmsUInt16Number L2Fix4(cmsFloat64Number L) |
| 317 | { |
| 318 | return _cmsQuickSaturateWord(L * 655.35); |
| 319 | } |
| 320 | |
| 321 | static |
| 322 | cmsUInt16Number ab2Fix4(cmsFloat64Number ab) |
| 323 | { |
| 324 | return _cmsQuickSaturateWord((ab + 128.0) * 257.0); |
| 325 | } |
| 326 | |
| 327 | void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab) |
| 328 | { |
| 329 | cmsCIELab Lab; |
| 330 | |
| 331 | Lab.L = Clamp_L_doubleV4(fLab ->L); |
| 332 | Lab.a = Clamp_ab_doubleV4(fLab ->a); |
| 333 | Lab.b = Clamp_ab_doubleV4(fLab ->b); |
| 334 | |
| 335 | wLab[0] = L2Fix4(Lab.L); |
| 336 | wLab[1] = ab2Fix4(Lab.a); |
| 337 | wLab[2] = ab2Fix4(Lab.b); |
| 338 | } |
| 339 | |
| 340 | // Auxiliary: convert to Radians |
| 341 | static |
| 342 | cmsFloat64Number RADIANS(cmsFloat64Number deg) |
| 343 | { |
| 344 | return (deg * M_PI) / 180.; |
| 345 | } |
| 346 | |
| 347 | |
| 348 | // Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0 |
| 349 | static |
| 350 | cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b) |
| 351 | { |
| 352 | cmsFloat64Number h; |
| 353 | |
| 354 | if (a == 0 && b == 0) |
| 355 | h = 0; |
| 356 | else |
| 357 | h = atan2(a, b); |
| 358 | |
| 359 | h *= (180. / M_PI); |
| 360 | |
| 361 | while (h > 360.) |
| 362 | h -= 360.; |
| 363 | |
| 364 | while ( h < 0) |
| 365 | h += 360.; |
| 366 | |
| 367 | return h; |
| 368 | } |
| 369 | |
| 370 | |
| 371 | // Auxiliary: Square |
| 372 | static |
| 373 | cmsFloat64Number Sqr(cmsFloat64Number v) |
| 374 | { |
| 375 | return v * v; |
| 376 | } |
| 377 | // From cylindrical coordinates. No check is performed, then negative values are allowed |
| 378 | void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab) |
| 379 | { |
| 380 | LCh -> L = Lab -> L; |
| 381 | LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5); |
| 382 | LCh -> h = atan2deg(Lab ->b, Lab ->a); |
| 383 | } |
| 384 | |
| 385 | |
| 386 | // To cylindrical coordinates. No check is performed, then negative values are allowed |
| 387 | void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh) |
| 388 | { |
| 389 | cmsFloat64Number h = (LCh -> h * M_PI) / 180.0; |
| 390 | |
| 391 | Lab -> L = LCh -> L; |
| 392 | Lab -> a = LCh -> C * cos(h); |
| 393 | Lab -> b = LCh -> C * sin(h); |
| 394 | } |
| 395 | |
| 396 | // In XYZ All 3 components are encoded using 1.15 fixed point |
| 397 | static |
| 398 | cmsUInt16Number XYZ2Fix(cmsFloat64Number d) |
| 399 | { |
| 400 | return _cmsQuickSaturateWord(d * 32768.0); |
| 401 | } |
| 402 | |
| 403 | void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ) |
| 404 | { |
| 405 | cmsCIEXYZ xyz; |
| 406 | |
| 407 | xyz.X = fXYZ -> X; |
| 408 | xyz.Y = fXYZ -> Y; |
| 409 | xyz.Z = fXYZ -> Z; |
| 410 | |
| 411 | // Clamp to encodeable values. |
| 412 | if (xyz.Y <= 0) { |
| 413 | |
| 414 | xyz.X = 0; |
| 415 | xyz.Y = 0; |
| 416 | xyz.Z = 0; |
| 417 | } |
| 418 | |
| 419 | if (xyz.X > MAX_ENCODEABLE_XYZ) |
| 420 | xyz.X = MAX_ENCODEABLE_XYZ; |
| 421 | |
| 422 | if (xyz.X < 0) |
| 423 | xyz.X = 0; |
| 424 | |
| 425 | if (xyz.Y > MAX_ENCODEABLE_XYZ) |
| 426 | xyz.Y = MAX_ENCODEABLE_XYZ; |
| 427 | |
| 428 | if (xyz.Y < 0) |
| 429 | xyz.Y = 0; |
| 430 | |
| 431 | if (xyz.Z > MAX_ENCODEABLE_XYZ) |
| 432 | xyz.Z = MAX_ENCODEABLE_XYZ; |
| 433 | |
| 434 | if (xyz.Z < 0) |
| 435 | xyz.Z = 0; |
| 436 | |
| 437 | |
| 438 | XYZ[0] = XYZ2Fix(xyz.X); |
| 439 | XYZ[1] = XYZ2Fix(xyz.Y); |
| 440 | XYZ[2] = XYZ2Fix(xyz.Z); |
| 441 | } |
| 442 | |
| 443 | |
| 444 | // To convert from Fixed 1.15 point to cmsFloat64Number |
| 445 | static |
| 446 | cmsFloat64Number XYZ2float(cmsUInt16Number v) |
| 447 | { |
| 448 | cmsS15Fixed16Number fix32; |
| 449 | |
| 450 | // From 1.15 to 15.16 |
| 451 | fix32 = v << 1; |
| 452 | |
| 453 | // From fixed 15.16 to cmsFloat64Number |
| 454 | return _cms15Fixed16toDouble(fix32); |
| 455 | } |
| 456 | |
| 457 | |
| 458 | void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3]) |
| 459 | { |
| 460 | fXYZ -> X = XYZ2float(XYZ[0]); |
| 461 | fXYZ -> Y = XYZ2float(XYZ[1]); |
| 462 | fXYZ -> Z = XYZ2float(XYZ[2]); |
| 463 | } |
| 464 | |
| 465 | |
| 466 | // Returns dE on two Lab values |
| 467 | cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| 468 | { |
| 469 | cmsFloat64Number dL, da, db; |
| 470 | |
| 471 | dL = fabs(Lab1 -> L - Lab2 -> L); |
| 472 | da = fabs(Lab1 -> a - Lab2 -> a); |
| 473 | db = fabs(Lab1 -> b - Lab2 -> b); |
| 474 | |
| 475 | return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5); |
| 476 | } |
| 477 | |
| 478 | |
| 479 | // Return the CIE94 Delta E |
| 480 | cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| 481 | { |
| 482 | cmsCIELCh LCh1, LCh2; |
| 483 | cmsFloat64Number dE, dL, dC, dh, dhsq; |
| 484 | cmsFloat64Number c12, sc, sh; |
| 485 | |
| 486 | dL = fabs(Lab1 ->L - Lab2 ->L); |
| 487 | |
| 488 | cmsLab2LCh(&LCh1, Lab1); |
| 489 | cmsLab2LCh(&LCh2, Lab2); |
| 490 | |
| 491 | dC = fabs(LCh1.C - LCh2.C); |
| 492 | dE = cmsDeltaE(Lab1, Lab2); |
| 493 | |
| 494 | dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC); |
| 495 | if (dhsq < 0) |
| 496 | dh = 0; |
| 497 | else |
| 498 | dh = pow(dhsq, 0.5); |
| 499 | |
| 500 | c12 = sqrt(LCh1.C * LCh2.C); |
| 501 | |
| 502 | sc = 1.0 + (0.048 * c12); |
| 503 | sh = 1.0 + (0.014 * c12); |
| 504 | |
| 505 | return sqrt(Sqr(dL) + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh)); |
| 506 | } |
| 507 | |
| 508 | |
| 509 | // Auxiliary |
| 510 | static |
| 511 | cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab) |
| 512 | { |
| 513 | cmsFloat64Number yt; |
| 514 | |
| 515 | if (Lab->L > 7.996969) |
| 516 | yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100; |
| 517 | else |
| 518 | yt = 100 * (Lab->L / 903.3); |
| 519 | |
| 520 | return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6); |
| 521 | } |
| 522 | |
| 523 | |
| 524 | |
| 525 | // bfd - gets BFD(1:1) difference between Lab1, Lab2 |
| 526 | cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2) |
| 527 | { |
| 528 | cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL, |
| 529 | deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd; |
| 530 | cmsCIELCh LCh1, LCh2; |
| 531 | |
| 532 | |
| 533 | lbfd1 = ComputeLBFD(Lab1); |
| 534 | lbfd2 = ComputeLBFD(Lab2); |
| 535 | deltaL = lbfd2 - lbfd1; |
| 536 | |
| 537 | cmsLab2LCh(&LCh1, Lab1); |
| 538 | cmsLab2LCh(&LCh2, Lab2); |
| 539 | |
| 540 | deltaC = LCh2.C - LCh1.C; |
| 541 | AveC = (LCh1.C+LCh2.C)/2; |
| 542 | Aveh = (LCh1.h+LCh2.h)/2; |
| 543 | |
| 544 | dE = cmsDeltaE(Lab1, Lab2); |
| 545 | |
| 546 | if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC))) |
| 547 | deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC)); |
| 548 | else |
| 549 | deltah =0; |
| 550 | |
| 551 | |
| 552 | dc = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521; |
| 553 | g = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000)); |
| 554 | t = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))- |
| 555 | 0.040*cos((2*Aveh-136)/(180/M_PI))+ |
| 556 | 0.070*cos((3*Aveh-31)/(180/M_PI))+ |
| 557 | 0.049*cos((4*Aveh+114)/(180/M_PI))- |
| 558 | 0.015*cos((5*Aveh-103)/(180/M_PI))); |
| 559 | |
| 560 | dh = dc*(g*t+1-g); |
| 561 | rh = -0.260*cos((Aveh-308)/(180/M_PI))- |
| 562 | 0.379*cos((2*Aveh-160)/(180/M_PI))- |
| 563 | 0.636*cos((3*Aveh+254)/(180/M_PI))+ |
| 564 | 0.226*cos((4*Aveh+140)/(180/M_PI))- |
| 565 | 0.194*cos((5*Aveh+280)/(180/M_PI)); |
| 566 | |
| 567 | rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000)); |
| 568 | rt = rh*rc; |
| 569 | |
| 570 | bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh))); |
| 571 | |
| 572 | return bfd; |
| 573 | } |
| 574 | |
| 575 | |
| 576 | // cmc - CMC(l:c) difference between Lab1, Lab2 |
| 577 | cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c) |
| 578 | { |
| 579 | cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc; |
| 580 | cmsCIELCh LCh1, LCh2; |
| 581 | |
| 582 | if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0; |
| 583 | |
| 584 | cmsLab2LCh(&LCh1, Lab1); |
| 585 | cmsLab2LCh(&LCh2, Lab2); |
| 586 | |
| 587 | |
| 588 | dL = Lab2->L-Lab1->L; |
| 589 | dC = LCh2.C-LCh1.C; |
| 590 | |
| 591 | dE = cmsDeltaE(Lab1, Lab2); |
| 592 | |
| 593 | if (Sqr(dE)>(Sqr(dL)+Sqr(dC))) |
| 594 | dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC)); |
| 595 | else |
| 596 | dh =0; |
| 597 | |
| 598 | if ((LCh1.h > 164) && (LCh1.h < 345)) |
| 599 | t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI)))); |
| 600 | else |
| 601 | t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI)))); |
| 602 | |
| 603 | sc = 0.0638 * LCh1.C / (1 + 0.0131 * LCh1.C) + 0.638; |
| 604 | sl = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L); |
| 605 | |
| 606 | if (Lab1->L<16) |
| 607 | sl = 0.511; |
| 608 | |
| 609 | f = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900)); |
| 610 | sh = sc*(t*f+1-f); |
| 611 | cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh)); |
| 612 | |
| 613 | return cmc; |
| 614 | } |
| 615 | |
| 616 | // dE2000 The weightings KL, KC and KH can be modified to reflect the relative |
| 617 | // importance of lightness, chroma and hue in different industrial applications |
| 618 | cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, |
| 619 | cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh) |
| 620 | { |
| 621 | cmsFloat64Number L1 = Lab1->L; |
| 622 | cmsFloat64Number a1 = Lab1->a; |
| 623 | cmsFloat64Number b1 = Lab1->b; |
| 624 | cmsFloat64Number C = sqrt( Sqr(a1) + Sqr(b1) ); |
| 625 | |
| 626 | cmsFloat64Number Ls = Lab2 ->L; |
| 627 | cmsFloat64Number as = Lab2 ->a; |
| 628 | cmsFloat64Number bs = Lab2 ->b; |
| 629 | cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) ); |
| 630 | |
| 631 | cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) )); |
| 632 | |
| 633 | cmsFloat64Number a_p = (1 + G ) * a1; |
| 634 | cmsFloat64Number b_p = b1; |
| 635 | cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p)); |
| 636 | cmsFloat64Number h_p = atan2deg(b_p, a_p); |
| 637 | |
| 638 | |
| 639 | cmsFloat64Number a_ps = (1 + G) * as; |
| 640 | cmsFloat64Number b_ps = bs; |
| 641 | cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps)); |
| 642 | cmsFloat64Number h_ps = atan2deg(b_ps, a_ps); |
| 643 | |
| 644 | cmsFloat64Number meanC_p =(C_p + C_ps) / 2; |
| 645 | |
| 646 | cmsFloat64Number hps_plus_hp = h_ps + h_p; |
| 647 | cmsFloat64Number hps_minus_hp = h_ps - h_p; |
| 648 | |
| 649 | cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 : |
| 650 | (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 : |
| 651 | (hps_plus_hp - 360)/2; |
| 652 | |
| 653 | cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ? (hps_minus_hp + 360) : |
| 654 | (hps_minus_hp) > 180 ? (hps_minus_hp - 360) : |
| 655 | (hps_minus_hp); |
| 656 | cmsFloat64Number delta_L = (Ls - L1); |
| 657 | cmsFloat64Number delta_C = (C_ps - C_p ); |
| 658 | |
| 659 | |
| 660 | cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2); |
| 661 | |
| 662 | cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30)) |
| 663 | + 0.24 * cos(RADIANS(2*meanh_p)) |
| 664 | + 0.32 * cos(RADIANS(3*meanh_p + 6)) |
| 665 | - 0.2 * cos(RADIANS(4*meanh_p - 63)); |
| 666 | |
| 667 | cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) ); |
| 668 | |
| 669 | cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2; |
| 670 | cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T; |
| 671 | |
| 672 | cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25))); |
| 673 | |
| 674 | cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0))); |
| 675 | |
| 676 | cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc; |
| 677 | |
| 678 | cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) + |
| 679 | Sqr(delta_C/(Sc * Kc)) + |
| 680 | Sqr(delta_H/(Sh * Kh)) + |
| 681 | Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh))); |
| 682 | |
| 683 | return deltaE00; |
| 684 | } |
| 685 | |
| 686 | // This function returns a number of gridpoints to be used as LUT table. It assumes same number |
| 687 | // of gripdpoints in all dimensions. Flags may override the choice. |
| 688 | cmsUInt32Number _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags) |
| 689 | { |
| 690 | cmsUInt32Number nChannels; |
| 691 | |
| 692 | // Already specified? |
| 693 | if (dwFlags & 0x00FF0000) { |
| 694 | // Yes, grab'em |
| 695 | return (dwFlags >> 16) & 0xFF; |
| 696 | } |
| 697 | |
| 698 | nChannels = cmsChannelsOf(Colorspace); |
| 699 | |
| 700 | // HighResPrecalc is maximum resolution |
| 701 | if (dwFlags & cmsFLAGS_HIGHRESPRECALC) { |
| 702 | |
| 703 | if (nChannels > 4) |
| 704 | return 7; // 7 for Hifi |
| 705 | |
| 706 | if (nChannels == 4) // 23 for CMYK |
| 707 | return 23; |
| 708 | |
| 709 | return 49; // 49 for RGB and others |
| 710 | } |
| 711 | |
| 712 | |
| 713 | // LowResPrecal is lower resolution |
| 714 | if (dwFlags & cmsFLAGS_LOWRESPRECALC) { |
| 715 | |
| 716 | if (nChannels > 4) |
| 717 | return 6; // 6 for more than 4 channels |
| 718 | |
| 719 | if (nChannels == 1) |
| 720 | return 33; // For monochrome |
| 721 | |
| 722 | return 17; // 17 for remaining |
| 723 | } |
| 724 | |
| 725 | // Default values |
| 726 | if (nChannels > 4) |
| 727 | return 7; // 7 for Hifi |
| 728 | |
| 729 | if (nChannels == 4) |
| 730 | return 17; // 17 for CMYK |
| 731 | |
| 732 | return 33; // 33 for RGB |
| 733 | } |
| 734 | |
| 735 | |
| 736 | cmsBool _cmsEndPointsBySpace(cmsColorSpaceSignature Space, |
| 737 | cmsUInt16Number **White, |
| 738 | cmsUInt16Number **Black, |
| 739 | cmsUInt32Number *nOutputs) |
| 740 | { |
| 741 | // Only most common spaces |
| 742 | |
| 743 | static cmsUInt16Number RGBblack[4] = { 0, 0, 0 }; |
| 744 | static cmsUInt16Number RGBwhite[4] = { 0xffff, 0xffff, 0xffff }; |
| 745 | static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff }; // 400% of ink |
| 746 | static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 }; |
| 747 | static cmsUInt16Number LABblack[4] = { 0, 0x8080, 0x8080 }; // V4 Lab encoding |
| 748 | static cmsUInt16Number LABwhite[4] = { 0xFFFF, 0x8080, 0x8080 }; |
| 749 | static cmsUInt16Number CMYblack[4] = { 0xffff, 0xffff, 0xffff }; |
| 750 | static cmsUInt16Number CMYwhite[4] = { 0, 0, 0 }; |
| 751 | static cmsUInt16Number Grayblack[4] = { 0 }; |
| 752 | static cmsUInt16Number GrayWhite[4] = { 0xffff }; |
| 753 | |
| 754 | switch (Space) { |
| 755 | |
| 756 | case cmsSigGrayData: if (White) *White = GrayWhite; |
| 757 | if (Black) *Black = Grayblack; |
| 758 | if (nOutputs) *nOutputs = 1; |
| 759 | return TRUE; |
| 760 | |
| 761 | case cmsSigRgbData: if (White) *White = RGBwhite; |
| 762 | if (Black) *Black = RGBblack; |
| 763 | if (nOutputs) *nOutputs = 3; |
| 764 | return TRUE; |
| 765 | |
| 766 | case cmsSigLabData: if (White) *White = LABwhite; |
| 767 | if (Black) *Black = LABblack; |
| 768 | if (nOutputs) *nOutputs = 3; |
| 769 | return TRUE; |
| 770 | |
| 771 | case cmsSigCmykData: if (White) *White = CMYKwhite; |
| 772 | if (Black) *Black = CMYKblack; |
| 773 | if (nOutputs) *nOutputs = 4; |
| 774 | return TRUE; |
| 775 | |
| 776 | case cmsSigCmyData: if (White) *White = CMYwhite; |
| 777 | if (Black) *Black = CMYblack; |
| 778 | if (nOutputs) *nOutputs = 3; |
| 779 | return TRUE; |
| 780 | |
| 781 | default:; |
| 782 | } |
| 783 | |
| 784 | return FALSE; |
| 785 | } |
| 786 | |
| 787 | |
| 788 | |
| 789 | // Several utilities ------------------------------------------------------- |
| 790 | |
| 791 | // Translate from our colorspace to ICC representation |
| 792 | |
| 793 | cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation) |
| 794 | { |
| 795 | switch (OurNotation) { |
| 796 | |
| 797 | case 1: |
| 798 | case PT_GRAY: return cmsSigGrayData; |
| 799 | |
| 800 | case 2: |
| 801 | case PT_RGB: return cmsSigRgbData; |
| 802 | |
| 803 | case PT_CMY: return cmsSigCmyData; |
| 804 | case PT_CMYK: return cmsSigCmykData; |
| 805 | case PT_YCbCr:return cmsSigYCbCrData; |
| 806 | case PT_YUV: return cmsSigLuvData; |
| 807 | case PT_XYZ: return cmsSigXYZData; |
| 808 | |
| 809 | case PT_LabV2: |
| 810 | case PT_Lab: return cmsSigLabData; |
| 811 | |
| 812 | case PT_YUVK: return cmsSigLuvKData; |
| 813 | case PT_HSV: return cmsSigHsvData; |
| 814 | case PT_HLS: return cmsSigHlsData; |
| 815 | case PT_Yxy: return cmsSigYxyData; |
| 816 | |
| 817 | case PT_MCH1: return cmsSigMCH1Data; |
| 818 | case PT_MCH2: return cmsSigMCH2Data; |
| 819 | case PT_MCH3: return cmsSigMCH3Data; |
| 820 | case PT_MCH4: return cmsSigMCH4Data; |
| 821 | case PT_MCH5: return cmsSigMCH5Data; |
| 822 | case PT_MCH6: return cmsSigMCH6Data; |
| 823 | case PT_MCH7: return cmsSigMCH7Data; |
| 824 | case PT_MCH8: return cmsSigMCH8Data; |
| 825 | |
| 826 | case PT_MCH9: return cmsSigMCH9Data; |
| 827 | case PT_MCH10: return cmsSigMCHAData; |
| 828 | case PT_MCH11: return cmsSigMCHBData; |
| 829 | case PT_MCH12: return cmsSigMCHCData; |
| 830 | case PT_MCH13: return cmsSigMCHDData; |
| 831 | case PT_MCH14: return cmsSigMCHEData; |
| 832 | case PT_MCH15: return cmsSigMCHFData; |
| 833 | |
| 834 | default: return (cmsColorSpaceSignature) 0; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | |
| 839 | int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace) |
| 840 | { |
| 841 | switch (ProfileSpace) { |
| 842 | |
| 843 | case cmsSigGrayData: return PT_GRAY; |
| 844 | case cmsSigRgbData: return PT_RGB; |
| 845 | case cmsSigCmyData: return PT_CMY; |
| 846 | case cmsSigCmykData: return PT_CMYK; |
| 847 | case cmsSigYCbCrData:return PT_YCbCr; |
| 848 | case cmsSigLuvData: return PT_YUV; |
| 849 | case cmsSigXYZData: return PT_XYZ; |
| 850 | case cmsSigLabData: return PT_Lab; |
| 851 | case cmsSigLuvKData: return PT_YUVK; |
| 852 | case cmsSigHsvData: return PT_HSV; |
| 853 | case cmsSigHlsData: return PT_HLS; |
| 854 | case cmsSigYxyData: return PT_Yxy; |
| 855 | |
| 856 | case cmsSig1colorData: |
| 857 | case cmsSigMCH1Data: return PT_MCH1; |
| 858 | |
| 859 | case cmsSig2colorData: |
| 860 | case cmsSigMCH2Data: return PT_MCH2; |
| 861 | |
| 862 | case cmsSig3colorData: |
| 863 | case cmsSigMCH3Data: return PT_MCH3; |
| 864 | |
| 865 | case cmsSig4colorData: |
| 866 | case cmsSigMCH4Data: return PT_MCH4; |
| 867 | |
| 868 | case cmsSig5colorData: |
| 869 | case cmsSigMCH5Data: return PT_MCH5; |
| 870 | |
| 871 | case cmsSig6colorData: |
| 872 | case cmsSigMCH6Data: return PT_MCH6; |
| 873 | |
| 874 | case cmsSigMCH7Data: |
| 875 | case cmsSig7colorData:return PT_MCH7; |
| 876 | |
| 877 | case cmsSigMCH8Data: |
| 878 | case cmsSig8colorData:return PT_MCH8; |
| 879 | |
| 880 | case cmsSigMCH9Data: |
| 881 | case cmsSig9colorData:return PT_MCH9; |
| 882 | |
| 883 | case cmsSigMCHAData: |
| 884 | case cmsSig10colorData:return PT_MCH10; |
| 885 | |
| 886 | case cmsSigMCHBData: |
| 887 | case cmsSig11colorData:return PT_MCH11; |
| 888 | |
| 889 | case cmsSigMCHCData: |
| 890 | case cmsSig12colorData:return PT_MCH12; |
| 891 | |
| 892 | case cmsSigMCHDData: |
| 893 | case cmsSig13colorData:return PT_MCH13; |
| 894 | |
| 895 | case cmsSigMCHEData: |
| 896 | case cmsSig14colorData:return PT_MCH14; |
| 897 | |
| 898 | case cmsSigMCHFData: |
| 899 | case cmsSig15colorData:return PT_MCH15; |
| 900 | |
| 901 | default: return (cmsColorSpaceSignature) 0; |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | |
| 906 | cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace) |
| 907 | { |
| 908 | switch (ColorSpace) { |
| 909 | |
| 910 | case cmsSigMCH1Data: |
| 911 | case cmsSig1colorData: |
| 912 | case cmsSigGrayData: return 1; |
| 913 | |
| 914 | case cmsSigMCH2Data: |
| 915 | case cmsSig2colorData: return 2; |
| 916 | |
| 917 | case cmsSigXYZData: |
| 918 | case cmsSigLabData: |
| 919 | case cmsSigLuvData: |
| 920 | case cmsSigYCbCrData: |
| 921 | case cmsSigYxyData: |
| 922 | case cmsSigRgbData: |
| 923 | case cmsSigHsvData: |
| 924 | case cmsSigHlsData: |
| 925 | case cmsSigCmyData: |
| 926 | case cmsSigMCH3Data: |
| 927 | case cmsSig3colorData: return 3; |
| 928 | |
| 929 | case cmsSigLuvKData: |
| 930 | case cmsSigCmykData: |
| 931 | case cmsSigMCH4Data: |
| 932 | case cmsSig4colorData: return 4; |
| 933 | |
| 934 | case cmsSigMCH5Data: |
| 935 | case cmsSig5colorData: return 5; |
| 936 | |
| 937 | case cmsSigMCH6Data: |
| 938 | case cmsSig6colorData: return 6; |
| 939 | |
| 940 | case cmsSigMCH7Data: |
| 941 | case cmsSig7colorData: return 7; |
| 942 | |
| 943 | case cmsSigMCH8Data: |
| 944 | case cmsSig8colorData: return 8; |
| 945 | |
| 946 | case cmsSigMCH9Data: |
| 947 | case cmsSig9colorData: return 9; |
| 948 | |
| 949 | case cmsSigMCHAData: |
| 950 | case cmsSig10colorData: return 10; |
| 951 | |
| 952 | case cmsSigMCHBData: |
| 953 | case cmsSig11colorData: return 11; |
| 954 | |
| 955 | case cmsSigMCHCData: |
| 956 | case cmsSig12colorData: return 12; |
| 957 | |
| 958 | case cmsSigMCHDData: |
| 959 | case cmsSig13colorData: return 13; |
| 960 | |
| 961 | case cmsSigMCHEData: |
| 962 | case cmsSig14colorData: return 14; |
| 963 | |
| 964 | case cmsSigMCHFData: |
| 965 | case cmsSig15colorData: return 15; |
| 966 | |
| 967 | default: return 3; |
| 968 | } |
| 969 | } |
| 970 | |