1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | |
56 | #include "lcms2_internal.h" |
57 | |
58 | |
59 | // ------------------------------------------------------------------------ |
60 | |
61 | // Gamut boundary description by using Jan Morovic's Segment maxima method |
62 | // Many thanks to Jan for allowing me to use his algorithm. |
63 | |
64 | // r = C* |
65 | // alpha = Hab |
66 | // theta = L* |
67 | |
68 | #define SECTORS 16 // number of divisions in alpha and theta |
69 | |
70 | // Spherical coordinates |
71 | typedef struct { |
72 | |
73 | cmsFloat64Number r; |
74 | cmsFloat64Number alpha; |
75 | cmsFloat64Number theta; |
76 | |
77 | } cmsSpherical; |
78 | |
79 | typedef enum { |
80 | GP_EMPTY, |
81 | GP_SPECIFIED, |
82 | GP_MODELED |
83 | |
84 | } GDBPointType; |
85 | |
86 | |
87 | typedef struct { |
88 | |
89 | GDBPointType Type; |
90 | cmsSpherical p; // Keep also alpha & theta of maximum |
91 | |
92 | } cmsGDBPoint; |
93 | |
94 | |
95 | typedef struct { |
96 | |
97 | cmsContext ContextID; |
98 | cmsGDBPoint Gamut[SECTORS][SECTORS]; |
99 | |
100 | } cmsGDB; |
101 | |
102 | |
103 | // A line using the parametric form |
104 | // P = a + t*u |
105 | typedef struct { |
106 | |
107 | cmsVEC3 a; |
108 | cmsVEC3 u; |
109 | |
110 | } cmsLine; |
111 | |
112 | |
113 | // A plane using the parametric form |
114 | // Q = b + r*v + s*w |
115 | typedef struct { |
116 | |
117 | cmsVEC3 b; |
118 | cmsVEC3 v; |
119 | cmsVEC3 w; |
120 | |
121 | } cmsPlane; |
122 | |
123 | |
124 | |
125 | // -------------------------------------------------------------------------------------------- |
126 | |
127 | // ATAN2() which always returns degree positive numbers |
128 | |
129 | static |
130 | cmsFloat64Number _cmsAtan2(cmsFloat64Number y, cmsFloat64Number x) |
131 | { |
132 | cmsFloat64Number a; |
133 | |
134 | // Deal with undefined case |
135 | if (x == 0.0 && y == 0.0) return 0; |
136 | |
137 | a = (atan2(y, x) * 180.0) / M_PI; |
138 | |
139 | while (a < 0) { |
140 | a += 360; |
141 | } |
142 | |
143 | return a; |
144 | } |
145 | |
146 | // Convert to spherical coordinates |
147 | static |
148 | void ToSpherical(cmsSpherical* sp, const cmsVEC3* v) |
149 | { |
150 | |
151 | cmsFloat64Number L, a, b; |
152 | |
153 | L = v ->n[VX]; |
154 | a = v ->n[VY]; |
155 | b = v ->n[VZ]; |
156 | |
157 | sp ->r = sqrt( L*L + a*a + b*b ); |
158 | |
159 | if (sp ->r == 0) { |
160 | sp ->alpha = sp ->theta = 0; |
161 | return; |
162 | } |
163 | |
164 | sp ->alpha = _cmsAtan2(a, b); |
165 | sp ->theta = _cmsAtan2(sqrt(a*a + b*b), L); |
166 | } |
167 | |
168 | |
169 | // Convert to cartesian from spherical |
170 | static |
171 | void ToCartesian(cmsVEC3* v, const cmsSpherical* sp) |
172 | { |
173 | cmsFloat64Number sin_alpha; |
174 | cmsFloat64Number cos_alpha; |
175 | cmsFloat64Number sin_theta; |
176 | cmsFloat64Number cos_theta; |
177 | cmsFloat64Number L, a, b; |
178 | |
179 | sin_alpha = sin((M_PI * sp ->alpha) / 180.0); |
180 | cos_alpha = cos((M_PI * sp ->alpha) / 180.0); |
181 | sin_theta = sin((M_PI * sp ->theta) / 180.0); |
182 | cos_theta = cos((M_PI * sp ->theta) / 180.0); |
183 | |
184 | a = sp ->r * sin_theta * sin_alpha; |
185 | b = sp ->r * sin_theta * cos_alpha; |
186 | L = sp ->r * cos_theta; |
187 | |
188 | v ->n[VX] = L; |
189 | v ->n[VY] = a; |
190 | v ->n[VZ] = b; |
191 | } |
192 | |
193 | |
194 | // Quantize sector of a spherical coordinate. Saturate 360, 180 to last sector |
195 | // The limits are the centers of each sector, so |
196 | static |
197 | void QuantizeToSector(const cmsSpherical* sp, int* alpha, int* theta) |
198 | { |
199 | *alpha = (int) floor(((sp->alpha * (SECTORS)) / 360.0) ); |
200 | *theta = (int) floor(((sp->theta * (SECTORS)) / 180.0) ); |
201 | |
202 | if (*alpha >= SECTORS) |
203 | *alpha = SECTORS-1; |
204 | if (*theta >= SECTORS) |
205 | *theta = SECTORS-1; |
206 | } |
207 | |
208 | |
209 | // Line determined by 2 points |
210 | static |
211 | void LineOf2Points(cmsLine* line, cmsVEC3* a, cmsVEC3* b) |
212 | { |
213 | |
214 | _cmsVEC3init(&line ->a, a ->n[VX], a ->n[VY], a ->n[VZ]); |
215 | _cmsVEC3init(&line ->u, b ->n[VX] - a ->n[VX], |
216 | b ->n[VY] - a ->n[VY], |
217 | b ->n[VZ] - a ->n[VZ]); |
218 | } |
219 | |
220 | |
221 | // Evaluate parametric line |
222 | static |
223 | void GetPointOfLine(cmsVEC3* p, const cmsLine* line, cmsFloat64Number t) |
224 | { |
225 | p ->n[VX] = line ->a.n[VX] + t * line->u.n[VX]; |
226 | p ->n[VY] = line ->a.n[VY] + t * line->u.n[VY]; |
227 | p ->n[VZ] = line ->a.n[VZ] + t * line->u.n[VZ]; |
228 | } |
229 | |
230 | |
231 | |
232 | /* |
233 | Closest point in sector line1 to sector line2 (both are defined as 0 <=t <= 1) |
234 | http://softsurfer.com/Archive/algorithm_0106/algorithm_0106.htm |
235 | |
236 | Copyright 2001, softSurfer (www.softsurfer.com) |
237 | This code may be freely used and modified for any purpose |
238 | providing that this copyright notice is included with it. |
239 | SoftSurfer makes no warranty for this code, and cannot be held |
240 | liable for any real or imagined damage resulting from its use. |
241 | Users of this code must verify correctness for their application. |
242 | |
243 | */ |
244 | |
245 | static |
246 | cmsBool ClosestLineToLine(cmsVEC3* r, const cmsLine* line1, const cmsLine* line2) |
247 | { |
248 | cmsFloat64Number a, b, c, d, e, D; |
249 | cmsFloat64Number sc, sN, sD; |
250 | //cmsFloat64Number tc; // left for future use |
251 | cmsFloat64Number tN, tD; |
252 | cmsVEC3 w0; |
253 | |
254 | _cmsVEC3minus(&w0, &line1 ->a, &line2 ->a); |
255 | |
256 | a = _cmsVEC3dot(&line1 ->u, &line1 ->u); |
257 | b = _cmsVEC3dot(&line1 ->u, &line2 ->u); |
258 | c = _cmsVEC3dot(&line2 ->u, &line2 ->u); |
259 | d = _cmsVEC3dot(&line1 ->u, &w0); |
260 | e = _cmsVEC3dot(&line2 ->u, &w0); |
261 | |
262 | D = a*c - b * b; // Denominator |
263 | sD = tD = D; // default sD = D >= 0 |
264 | |
265 | if (D < MATRIX_DET_TOLERANCE) { // the lines are almost parallel |
266 | |
267 | sN = 0.0; // force using point P0 on segment S1 |
268 | sD = 1.0; // to prevent possible division by 0.0 later |
269 | tN = e; |
270 | tD = c; |
271 | } |
272 | else { // get the closest points on the infinite lines |
273 | |
274 | sN = (b*e - c*d); |
275 | tN = (a*e - b*d); |
276 | |
277 | if (sN < 0.0) { // sc < 0 => the s=0 edge is visible |
278 | |
279 | sN = 0.0; |
280 | tN = e; |
281 | tD = c; |
282 | } |
283 | else if (sN > sD) { // sc > 1 => the s=1 edge is visible |
284 | sN = sD; |
285 | tN = e + b; |
286 | tD = c; |
287 | } |
288 | } |
289 | |
290 | if (tN < 0.0) { // tc < 0 => the t=0 edge is visible |
291 | |
292 | tN = 0.0; |
293 | // recompute sc for this edge |
294 | if (-d < 0.0) |
295 | sN = 0.0; |
296 | else if (-d > a) |
297 | sN = sD; |
298 | else { |
299 | sN = -d; |
300 | sD = a; |
301 | } |
302 | } |
303 | else if (tN > tD) { // tc > 1 => the t=1 edge is visible |
304 | |
305 | tN = tD; |
306 | |
307 | // recompute sc for this edge |
308 | if ((-d + b) < 0.0) |
309 | sN = 0; |
310 | else if ((-d + b) > a) |
311 | sN = sD; |
312 | else { |
313 | sN = (-d + b); |
314 | sD = a; |
315 | } |
316 | } |
317 | // finally do the division to get sc and tc |
318 | sc = (fabs(sN) < MATRIX_DET_TOLERANCE ? 0.0 : sN / sD); |
319 | //tc = (fabs(tN) < MATRIX_DET_TOLERANCE ? 0.0 : tN / tD); // left for future use. |
320 | |
321 | GetPointOfLine(r, line1, sc); |
322 | return TRUE; |
323 | } |
324 | |
325 | |
326 | |
327 | // ------------------------------------------------------------------ Wrapper |
328 | |
329 | |
330 | // Allocate & free structure |
331 | cmsHANDLE CMSEXPORT cmsGBDAlloc(cmsContext ContextID) |
332 | { |
333 | cmsGDB* gbd = (cmsGDB*) _cmsMallocZero(ContextID, sizeof(cmsGDB)); |
334 | if (gbd == NULL) return NULL; |
335 | |
336 | gbd -> ContextID = ContextID; |
337 | |
338 | return (cmsHANDLE) gbd; |
339 | } |
340 | |
341 | |
342 | void CMSEXPORT cmsGBDFree(cmsHANDLE hGBD) |
343 | { |
344 | cmsGDB* gbd = (cmsGDB*) hGBD; |
345 | if (hGBD != NULL) |
346 | _cmsFree(gbd->ContextID, (void*) gbd); |
347 | } |
348 | |
349 | |
350 | // Auxiliary to retrieve a pointer to the segmentr containing the Lab value |
351 | static |
352 | cmsGDBPoint* GetPoint(cmsGDB* gbd, const cmsCIELab* Lab, cmsSpherical* sp) |
353 | { |
354 | cmsVEC3 v; |
355 | int alpha, theta; |
356 | |
357 | // Housekeeping |
358 | _cmsAssert(gbd != NULL); |
359 | _cmsAssert(Lab != NULL); |
360 | _cmsAssert(sp != NULL); |
361 | |
362 | // Center L* by subtracting half of its domain, that's 50 |
363 | _cmsVEC3init(&v, Lab ->L - 50.0, Lab ->a, Lab ->b); |
364 | |
365 | // Convert to spherical coordinates |
366 | ToSpherical(sp, &v); |
367 | |
368 | if (sp ->r < 0 || sp ->alpha < 0 || sp->theta < 0) { |
369 | cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, "spherical value out of range" ); |
370 | return NULL; |
371 | } |
372 | |
373 | // On which sector it falls? |
374 | QuantizeToSector(sp, &alpha, &theta); |
375 | |
376 | if (alpha < 0 || theta < 0 || alpha >= SECTORS || theta >= SECTORS) { |
377 | cmsSignalError(gbd ->ContextID, cmsERROR_RANGE, " quadrant out of range" ); |
378 | return NULL; |
379 | } |
380 | |
381 | // Get pointer to the sector |
382 | return &gbd ->Gamut[theta][alpha]; |
383 | } |
384 | |
385 | // Add a point to gamut descriptor. Point to add is in Lab color space. |
386 | // GBD is centered on a=b=0 and L*=50 |
387 | cmsBool CMSEXPORT cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab) |
388 | { |
389 | cmsGDB* gbd = (cmsGDB*) hGBD; |
390 | cmsGDBPoint* ptr; |
391 | cmsSpherical sp; |
392 | |
393 | |
394 | // Get pointer to the sector |
395 | ptr = GetPoint(gbd, Lab, &sp); |
396 | if (ptr == NULL) return FALSE; |
397 | |
398 | // If no samples at this sector, add it |
399 | if (ptr ->Type == GP_EMPTY) { |
400 | |
401 | ptr -> Type = GP_SPECIFIED; |
402 | ptr -> p = sp; |
403 | } |
404 | else { |
405 | |
406 | |
407 | // Substitute only if radius is greater |
408 | if (sp.r > ptr -> p.r) { |
409 | |
410 | ptr -> Type = GP_SPECIFIED; |
411 | ptr -> p = sp; |
412 | } |
413 | } |
414 | |
415 | return TRUE; |
416 | } |
417 | |
418 | // Check if a given point falls inside gamut |
419 | cmsBool CMSEXPORT cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab) |
420 | { |
421 | cmsGDB* gbd = (cmsGDB*) hGBD; |
422 | cmsGDBPoint* ptr; |
423 | cmsSpherical sp; |
424 | |
425 | // Get pointer to the sector |
426 | ptr = GetPoint(gbd, Lab, &sp); |
427 | if (ptr == NULL) return FALSE; |
428 | |
429 | // If no samples at this sector, return no data |
430 | if (ptr ->Type == GP_EMPTY) return FALSE; |
431 | |
432 | // In gamut only if radius is greater |
433 | |
434 | return (sp.r <= ptr -> p.r); |
435 | } |
436 | |
437 | // ----------------------------------------------------------------------------------------------------------------------- |
438 | |
439 | // Find near sectors. The list of sectors found is returned on Close[]. |
440 | // The function returns the number of sectors as well. |
441 | |
442 | // 24 9 10 11 12 |
443 | // 23 8 1 2 13 |
444 | // 22 7 * 3 14 |
445 | // 21 6 5 4 15 |
446 | // 20 19 18 17 16 |
447 | // |
448 | // Those are the relative movements |
449 | // {-2,-2}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
450 | // {-2,-1}, {-1, -1}, {0, -1}, {+1, -1}, {+2, -1}, |
451 | // {-2, 0}, {-1, 0}, {0, 0}, {+1, 0}, {+2, 0}, |
452 | // {-2,+1}, {-1, +1}, {0, +1}, {+1, +1}, {+2, +1}, |
453 | // {-2,+2}, {-1, +2}, {0, +2}, {+1, +2}, {+2, +2}}; |
454 | |
455 | |
456 | static |
457 | const struct _spiral { |
458 | |
459 | int AdvX, AdvY; |
460 | |
461 | } Spiral[] = { {0, -1}, {+1, -1}, {+1, 0}, {+1, +1}, {0, +1}, {-1, +1}, |
462 | {-1, 0}, {-1, -1}, {-1, -2}, {0, -2}, {+1, -2}, {+2, -2}, |
463 | {+2, -1}, {+2, 0}, {+2, +1}, {+2, +2}, {+1, +2}, {0, +2}, |
464 | {-1, +2}, {-2, +2}, {-2, +1}, {-2, 0}, {-2, -1}, {-2, -2} }; |
465 | |
466 | #define NSTEPS (sizeof(Spiral) / sizeof(struct _spiral)) |
467 | |
468 | static |
469 | int FindNearSectors(cmsGDB* gbd, int alpha, int theta, cmsGDBPoint* Close[]) |
470 | { |
471 | int nSectors = 0; |
472 | int a, t; |
473 | cmsUInt32Number i; |
474 | cmsGDBPoint* pt; |
475 | |
476 | for (i=0; i < NSTEPS; i++) { |
477 | |
478 | a = alpha + Spiral[i].AdvX; |
479 | t = theta + Spiral[i].AdvY; |
480 | |
481 | // Cycle at the end |
482 | a %= SECTORS; |
483 | t %= SECTORS; |
484 | |
485 | // Cycle at the begin |
486 | if (a < 0) a = SECTORS + a; |
487 | if (t < 0) t = SECTORS + t; |
488 | |
489 | pt = &gbd ->Gamut[t][a]; |
490 | |
491 | if (pt -> Type != GP_EMPTY) { |
492 | |
493 | Close[nSectors++] = pt; |
494 | } |
495 | } |
496 | |
497 | return nSectors; |
498 | } |
499 | |
500 | |
501 | // Interpolate a missing sector. Method identifies whatever this is top, bottom or mid |
502 | static |
503 | cmsBool InterpolateMissingSector(cmsGDB* gbd, int alpha, int theta) |
504 | { |
505 | cmsSpherical sp; |
506 | cmsVEC3 Lab; |
507 | cmsVEC3 Centre; |
508 | cmsLine ray; |
509 | int nCloseSectors; |
510 | cmsGDBPoint* Close[NSTEPS + 1]; |
511 | cmsSpherical closel, templ; |
512 | cmsLine edge; |
513 | int k, m; |
514 | |
515 | // Is that point already specified? |
516 | if (gbd ->Gamut[theta][alpha].Type != GP_EMPTY) return TRUE; |
517 | |
518 | // Fill close points |
519 | nCloseSectors = FindNearSectors(gbd, alpha, theta, Close); |
520 | |
521 | |
522 | // Find a central point on the sector |
523 | sp.alpha = (cmsFloat64Number) ((alpha + 0.5) * 360.0) / (SECTORS); |
524 | sp.theta = (cmsFloat64Number) ((theta + 0.5) * 180.0) / (SECTORS); |
525 | sp.r = 50.0; |
526 | |
527 | // Convert to Cartesian |
528 | ToCartesian(&Lab, &sp); |
529 | |
530 | // Create a ray line from centre to this point |
531 | _cmsVEC3init(&Centre, 50.0, 0, 0); |
532 | LineOf2Points(&ray, &Lab, &Centre); |
533 | |
534 | // For all close sectors |
535 | closel.r = 0.0; |
536 | closel.alpha = 0; |
537 | closel.theta = 0; |
538 | |
539 | for (k=0; k < nCloseSectors; k++) { |
540 | |
541 | for(m = k+1; m < nCloseSectors; m++) { |
542 | |
543 | cmsVEC3 temp, a1, a2; |
544 | |
545 | // A line from sector to sector |
546 | ToCartesian(&a1, &Close[k]->p); |
547 | ToCartesian(&a2, &Close[m]->p); |
548 | |
549 | LineOf2Points(&edge, &a1, &a2); |
550 | |
551 | // Find a line |
552 | ClosestLineToLine(&temp, &ray, &edge); |
553 | |
554 | // Convert to spherical |
555 | ToSpherical(&templ, &temp); |
556 | |
557 | |
558 | if ( templ.r > closel.r && |
559 | templ.theta >= (theta*180.0/SECTORS) && |
560 | templ.theta <= ((theta+1)*180.0/SECTORS) && |
561 | templ.alpha >= (alpha*360.0/SECTORS) && |
562 | templ.alpha <= ((alpha+1)*360.0/SECTORS)) { |
563 | |
564 | closel = templ; |
565 | } |
566 | } |
567 | } |
568 | |
569 | gbd ->Gamut[theta][alpha].p = closel; |
570 | gbd ->Gamut[theta][alpha].Type = GP_MODELED; |
571 | |
572 | return TRUE; |
573 | |
574 | } |
575 | |
576 | |
577 | // Interpolate missing parts. The algorithm fist computes slices at |
578 | // theta=0 and theta=Max. |
579 | cmsBool CMSEXPORT cmsGDBCompute(cmsHANDLE hGBD, cmsUInt32Number dwFlags) |
580 | { |
581 | int alpha, theta; |
582 | cmsGDB* gbd = (cmsGDB*) hGBD; |
583 | |
584 | _cmsAssert(hGBD != NULL); |
585 | |
586 | // Interpolate black |
587 | for (alpha = 0; alpha < SECTORS; alpha++) { |
588 | |
589 | if (!InterpolateMissingSector(gbd, alpha, 0)) return FALSE; |
590 | } |
591 | |
592 | // Interpolate white |
593 | for (alpha = 0; alpha < SECTORS; alpha++) { |
594 | |
595 | if (!InterpolateMissingSector(gbd, alpha, SECTORS-1)) return FALSE; |
596 | } |
597 | |
598 | |
599 | // Interpolate Mid |
600 | for (theta = 1; theta < SECTORS; theta++) { |
601 | for (alpha = 0; alpha < SECTORS; alpha++) { |
602 | |
603 | if (!InterpolateMissingSector(gbd, alpha, theta)) return FALSE; |
604 | } |
605 | } |
606 | |
607 | // Done |
608 | return TRUE; |
609 | |
610 | cmsUNUSED_PARAMETER(dwFlags); |
611 | } |
612 | |
613 | |
614 | |
615 | |
616 | // -------------------------------------------------------------------------------------------------------- |
617 | |
618 | // Great for debug, but not suitable for real use |
619 | |
620 | #if 0 |
621 | cmsBool cmsGBDdumpVRML(cmsHANDLE hGBD, const char* fname) |
622 | { |
623 | FILE* fp; |
624 | int i, j; |
625 | cmsGDB* gbd = (cmsGDB*) hGBD; |
626 | cmsGDBPoint* pt; |
627 | |
628 | fp = fopen (fname, "wt" ); |
629 | if (fp == NULL) |
630 | return FALSE; |
631 | |
632 | fprintf (fp, "#VRML V2.0 utf8\n" ); |
633 | |
634 | // set the viewing orientation and distance |
635 | fprintf (fp, "DEF CamTest Group {\n" ); |
636 | fprintf (fp, "\tchildren [\n" ); |
637 | fprintf (fp, "\t\tDEF Cameras Group {\n" ); |
638 | fprintf (fp, "\t\t\tchildren [\n" ); |
639 | fprintf (fp, "\t\t\t\tDEF DefaultView Viewpoint {\n" ); |
640 | fprintf (fp, "\t\t\t\t\tposition 0 0 340\n" ); |
641 | fprintf (fp, "\t\t\t\t\torientation 0 0 1 0\n" ); |
642 | fprintf (fp, "\t\t\t\t\tdescription \"default view\"\n" ); |
643 | fprintf (fp, "\t\t\t\t}\n" ); |
644 | fprintf (fp, "\t\t\t]\n" ); |
645 | fprintf (fp, "\t\t},\n" ); |
646 | fprintf (fp, "\t]\n" ); |
647 | fprintf (fp, "}\n" ); |
648 | |
649 | // Output the background stuff |
650 | fprintf (fp, "Background {\n" ); |
651 | fprintf (fp, "\tskyColor [\n" ); |
652 | fprintf (fp, "\t\t.5 .5 .5\n" ); |
653 | fprintf (fp, "\t]\n" ); |
654 | fprintf (fp, "}\n" ); |
655 | |
656 | // Output the shape stuff |
657 | fprintf (fp, "Transform {\n" ); |
658 | fprintf (fp, "\tscale .3 .3 .3\n" ); |
659 | fprintf (fp, "\tchildren [\n" ); |
660 | |
661 | // Draw the axes as a shape: |
662 | fprintf (fp, "\t\tShape {\n" ); |
663 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
664 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
665 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
666 | fprintf (fp, "\t\t\t\t\temissiveColor 1.0 1.0 1.0\n" ); |
667 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
668 | fprintf (fp, "\t\t\t\t}\n" ); |
669 | fprintf (fp, "\t\t\t}\n" ); |
670 | fprintf (fp, "\t\t\tgeometry IndexedLineSet {\n" ); |
671 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
672 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
673 | fprintf (fp, "\t\t\t\t\t0.0 0.0 0.0,\n" ); |
674 | fprintf (fp, "\t\t\t\t\t%f 0.0 0.0,\n" , 255.0); |
675 | fprintf (fp, "\t\t\t\t\t0.0 %f 0.0,\n" , 255.0); |
676 | fprintf (fp, "\t\t\t\t\t0.0 0.0 %f]\n" , 255.0); |
677 | fprintf (fp, "\t\t\t\t}\n" ); |
678 | fprintf (fp, "\t\t\t\tcoordIndex [\n" ); |
679 | fprintf (fp, "\t\t\t\t\t0, 1, -1\n" ); |
680 | fprintf (fp, "\t\t\t\t\t0, 2, -1\n" ); |
681 | fprintf (fp, "\t\t\t\t\t0, 3, -1]\n" ); |
682 | fprintf (fp, "\t\t\t}\n" ); |
683 | fprintf (fp, "\t\t}\n" ); |
684 | |
685 | |
686 | fprintf (fp, "\t\tShape {\n" ); |
687 | fprintf (fp, "\t\t\tappearance Appearance {\n" ); |
688 | fprintf (fp, "\t\t\t\tmaterial Material {\n" ); |
689 | fprintf (fp, "\t\t\t\t\tdiffuseColor 0 0.8 0\n" ); |
690 | fprintf (fp, "\t\t\t\t\temissiveColor 1 1 1\n" ); |
691 | fprintf (fp, "\t\t\t\t\tshininess 0.8\n" ); |
692 | fprintf (fp, "\t\t\t\t}\n" ); |
693 | fprintf (fp, "\t\t\t}\n" ); |
694 | fprintf (fp, "\t\t\tgeometry PointSet {\n" ); |
695 | |
696 | // fill in the points here |
697 | fprintf (fp, "\t\t\t\tcoord Coordinate {\n" ); |
698 | fprintf (fp, "\t\t\t\t\tpoint [\n" ); |
699 | |
700 | // We need to transverse all gamut hull. |
701 | for (i=0; i < SECTORS; i++) |
702 | for (j=0; j < SECTORS; j++) { |
703 | |
704 | cmsVEC3 v; |
705 | |
706 | pt = &gbd ->Gamut[i][j]; |
707 | ToCartesian(&v, &pt ->p); |
708 | |
709 | fprintf (fp, "\t\t\t\t\t%g %g %g" , v.n[0]+50, v.n[1], v.n[2]); |
710 | |
711 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
712 | fprintf (fp, "]\n" ); |
713 | else |
714 | fprintf (fp, ",\n" ); |
715 | |
716 | } |
717 | |
718 | fprintf (fp, "\t\t\t\t}\n" ); |
719 | |
720 | |
721 | |
722 | // fill in the face colors |
723 | fprintf (fp, "\t\t\t\tcolor Color {\n" ); |
724 | fprintf (fp, "\t\t\t\t\tcolor [\n" ); |
725 | |
726 | for (i=0; i < SECTORS; i++) |
727 | for (j=0; j < SECTORS; j++) { |
728 | |
729 | cmsVEC3 v; |
730 | |
731 | pt = &gbd ->Gamut[i][j]; |
732 | |
733 | |
734 | ToCartesian(&v, &pt ->p); |
735 | |
736 | |
737 | if (pt ->Type == GP_EMPTY) |
738 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 0.0, 0.0, 0.0); |
739 | else |
740 | if (pt ->Type == GP_MODELED) |
741 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, .5, .5); |
742 | else { |
743 | fprintf (fp, "\t\t\t\t\t%g %g %g" , 1.0, 1.0, 1.0); |
744 | |
745 | } |
746 | |
747 | if ((j == SECTORS - 1) && (i == SECTORS - 1)) |
748 | fprintf (fp, "]\n" ); |
749 | else |
750 | fprintf (fp, ",\n" ); |
751 | } |
752 | fprintf (fp, "\t\t\t}\n" ); |
753 | |
754 | |
755 | fprintf (fp, "\t\t\t}\n" ); |
756 | fprintf (fp, "\t\t}\n" ); |
757 | fprintf (fp, "\t]\n" ); |
758 | fprintf (fp, "}\n" ); |
759 | |
760 | fclose (fp); |
761 | |
762 | return TRUE; |
763 | } |
764 | #endif |
765 | |
766 | |