1 | /* |
2 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
3 | * |
4 | * This code is free software; you can redistribute it and/or modify it |
5 | * under the terms of the GNU General Public License version 2 only, as |
6 | * published by the Free Software Foundation. Oracle designates this |
7 | * particular file as subject to the "Classpath" exception as provided |
8 | * by Oracle in the LICENSE file that accompanied this code. |
9 | * |
10 | * This code is distributed in the hope that it will be useful, but WITHOUT |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13 | * version 2 for more details (a copy is included in the LICENSE file that |
14 | * accompanied this code). |
15 | * |
16 | * You should have received a copy of the GNU General Public License version |
17 | * 2 along with this work; if not, write to the Free Software Foundation, |
18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
19 | * |
20 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
21 | * or visit www.oracle.com if you need additional information or have any |
22 | * questions. |
23 | */ |
24 | |
25 | // This file is available under and governed by the GNU General Public |
26 | // License version 2 only, as published by the Free Software Foundation. |
27 | // However, the following notice accompanied the original version of this |
28 | // file: |
29 | // |
30 | //--------------------------------------------------------------------------------- |
31 | // |
32 | // Little Color Management System |
33 | // Copyright (c) 1998-2017 Marti Maria Saguer |
34 | // |
35 | // Permission is hereby granted, free of charge, to any person obtaining |
36 | // a copy of this software and associated documentation files (the "Software"), |
37 | // to deal in the Software without restriction, including without limitation |
38 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
39 | // and/or sell copies of the Software, and to permit persons to whom the Software |
40 | // is furnished to do so, subject to the following conditions: |
41 | // |
42 | // The above copyright notice and this permission notice shall be included in |
43 | // all copies or substantial portions of the Software. |
44 | // |
45 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
46 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
47 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
48 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
49 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
50 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
51 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
52 | // |
53 | //--------------------------------------------------------------------------------- |
54 | // |
55 | |
56 | #include "lcms2_internal.h" |
57 | |
58 | |
59 | // D50 - Widely used |
60 | const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void) |
61 | { |
62 | static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z}; |
63 | |
64 | return &D50XYZ; |
65 | } |
66 | |
67 | const cmsCIExyY* CMSEXPORT cmsD50_xyY(void) |
68 | { |
69 | static cmsCIExyY D50xyY; |
70 | |
71 | cmsXYZ2xyY(&D50xyY, cmsD50_XYZ()); |
72 | |
73 | return &D50xyY; |
74 | } |
75 | |
76 | // Obtains WhitePoint from Temperature |
77 | cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK) |
78 | { |
79 | cmsFloat64Number x, y; |
80 | cmsFloat64Number T, T2, T3; |
81 | // cmsFloat64Number M1, M2; |
82 | |
83 | _cmsAssert(WhitePoint != NULL); |
84 | |
85 | T = TempK; |
86 | T2 = T*T; // Square |
87 | T3 = T2*T; // Cube |
88 | |
89 | // For correlated color temperature (T) between 4000K and 7000K: |
90 | |
91 | if (T >= 4000. && T <= 7000.) |
92 | { |
93 | x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063; |
94 | } |
95 | else |
96 | // or for correlated color temperature (T) between 7000K and 25000K: |
97 | |
98 | if (T > 7000.0 && T <= 25000.0) |
99 | { |
100 | x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040; |
101 | } |
102 | else { |
103 | cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp" ); |
104 | return FALSE; |
105 | } |
106 | |
107 | // Obtain y(x) |
108 | y = -3.000*(x*x) + 2.870*x - 0.275; |
109 | |
110 | // wave factors (not used, but here for futures extensions) |
111 | |
112 | // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y); |
113 | // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y); |
114 | |
115 | WhitePoint -> x = x; |
116 | WhitePoint -> y = y; |
117 | WhitePoint -> Y = 1.0; |
118 | |
119 | return TRUE; |
120 | } |
121 | |
122 | |
123 | |
124 | typedef struct { |
125 | |
126 | cmsFloat64Number mirek; // temp (in microreciprocal kelvin) |
127 | cmsFloat64Number ut; // u coord of intersection w/ blackbody locus |
128 | cmsFloat64Number vt; // v coord of intersection w/ blackbody locus |
129 | cmsFloat64Number tt; // slope of ISOTEMPERATURE. line |
130 | |
131 | } ISOTEMPERATURE; |
132 | |
133 | static const ISOTEMPERATURE isotempdata[] = { |
134 | // {Mirek, Ut, Vt, Tt } |
135 | {0, 0.18006, 0.26352, -0.24341}, |
136 | {10, 0.18066, 0.26589, -0.25479}, |
137 | {20, 0.18133, 0.26846, -0.26876}, |
138 | {30, 0.18208, 0.27119, -0.28539}, |
139 | {40, 0.18293, 0.27407, -0.30470}, |
140 | {50, 0.18388, 0.27709, -0.32675}, |
141 | {60, 0.18494, 0.28021, -0.35156}, |
142 | {70, 0.18611, 0.28342, -0.37915}, |
143 | {80, 0.18740, 0.28668, -0.40955}, |
144 | {90, 0.18880, 0.28997, -0.44278}, |
145 | {100, 0.19032, 0.29326, -0.47888}, |
146 | {125, 0.19462, 0.30141, -0.58204}, |
147 | {150, 0.19962, 0.30921, -0.70471}, |
148 | {175, 0.20525, 0.31647, -0.84901}, |
149 | {200, 0.21142, 0.32312, -1.0182 }, |
150 | {225, 0.21807, 0.32909, -1.2168 }, |
151 | {250, 0.22511, 0.33439, -1.4512 }, |
152 | {275, 0.23247, 0.33904, -1.7298 }, |
153 | {300, 0.24010, 0.34308, -2.0637 }, |
154 | {325, 0.24702, 0.34655, -2.4681 }, |
155 | {350, 0.25591, 0.34951, -2.9641 }, |
156 | {375, 0.26400, 0.35200, -3.5814 }, |
157 | {400, 0.27218, 0.35407, -4.3633 }, |
158 | {425, 0.28039, 0.35577, -5.3762 }, |
159 | {450, 0.28863, 0.35714, -6.7262 }, |
160 | {475, 0.29685, 0.35823, -8.5955 }, |
161 | {500, 0.30505, 0.35907, -11.324 }, |
162 | {525, 0.31320, 0.35968, -15.628 }, |
163 | {550, 0.32129, 0.36011, -23.325 }, |
164 | {575, 0.32931, 0.36038, -40.770 }, |
165 | {600, 0.33724, 0.36051, -116.45 } |
166 | }; |
167 | |
168 | #define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE) |
169 | |
170 | |
171 | // Robertson's method |
172 | cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint) |
173 | { |
174 | cmsUInt32Number j; |
175 | cmsFloat64Number us,vs; |
176 | cmsFloat64Number uj,vj,tj,di,dj,mi,mj; |
177 | cmsFloat64Number xs, ys; |
178 | |
179 | _cmsAssert(WhitePoint != NULL); |
180 | _cmsAssert(TempK != NULL); |
181 | |
182 | di = mi = 0; |
183 | xs = WhitePoint -> x; |
184 | ys = WhitePoint -> y; |
185 | |
186 | // convert (x,y) to CIE 1960 (u,WhitePoint) |
187 | |
188 | us = (2*xs) / (-xs + 6*ys + 1.5); |
189 | vs = (3*ys) / (-xs + 6*ys + 1.5); |
190 | |
191 | |
192 | for (j=0; j < NISO; j++) { |
193 | |
194 | uj = isotempdata[j].ut; |
195 | vj = isotempdata[j].vt; |
196 | tj = isotempdata[j].tt; |
197 | mj = isotempdata[j].mirek; |
198 | |
199 | dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj); |
200 | |
201 | if ((j != 0) && (di/dj < 0.0)) { |
202 | |
203 | // Found a match |
204 | *TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi)); |
205 | return TRUE; |
206 | } |
207 | |
208 | di = dj; |
209 | mi = mj; |
210 | } |
211 | |
212 | // Not found |
213 | return FALSE; |
214 | } |
215 | |
216 | |
217 | // Compute chromatic adaptation matrix using Chad as cone matrix |
218 | |
219 | static |
220 | cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion, |
221 | const cmsCIEXYZ* SourceWhitePoint, |
222 | const cmsCIEXYZ* DestWhitePoint, |
223 | const cmsMAT3* Chad) |
224 | |
225 | { |
226 | |
227 | cmsMAT3 Chad_Inv; |
228 | cmsVEC3 ConeSourceXYZ, ConeSourceRGB; |
229 | cmsVEC3 ConeDestXYZ, ConeDestRGB; |
230 | cmsMAT3 Cone, Tmp; |
231 | |
232 | |
233 | Tmp = *Chad; |
234 | if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE; |
235 | |
236 | _cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X, |
237 | SourceWhitePoint -> Y, |
238 | SourceWhitePoint -> Z); |
239 | |
240 | _cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X, |
241 | DestWhitePoint -> Y, |
242 | DestWhitePoint -> Z); |
243 | |
244 | _cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ); |
245 | _cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ); |
246 | |
247 | // Build matrix |
248 | _cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0); |
249 | _cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0); |
250 | _cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]); |
251 | |
252 | |
253 | // Normalize |
254 | _cmsMAT3per(&Tmp, &Cone, Chad); |
255 | _cmsMAT3per(Conversion, &Chad_Inv, &Tmp); |
256 | |
257 | return TRUE; |
258 | } |
259 | |
260 | // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll |
261 | // The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed |
262 | cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll) |
263 | { |
264 | cmsMAT3 LamRigg = {{ // Bradford matrix |
265 | {{ 0.8951, 0.2664, -0.1614 }}, |
266 | {{ -0.7502, 1.7135, 0.0367 }}, |
267 | {{ 0.0389, -0.0685, 1.0296 }} |
268 | }}; |
269 | |
270 | if (ConeMatrix == NULL) |
271 | ConeMatrix = &LamRigg; |
272 | |
273 | return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix); |
274 | } |
275 | |
276 | // Same as anterior, but assuming D50 destination. White point is given in xyY |
277 | static |
278 | cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt) |
279 | { |
280 | cmsCIEXYZ Dn; |
281 | cmsMAT3 Bradford; |
282 | cmsMAT3 Tmp; |
283 | |
284 | cmsxyY2XYZ(&Dn, SourceWhitePt); |
285 | |
286 | if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE; |
287 | |
288 | Tmp = *r; |
289 | _cmsMAT3per(r, &Bradford, &Tmp); |
290 | |
291 | return TRUE; |
292 | } |
293 | |
294 | // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ |
295 | // This is just an approximation, I am not handling all the non-linear |
296 | // aspects of the RGB to XYZ process, and assumming that the gamma correction |
297 | // has transitive property in the transformation chain. |
298 | // |
299 | // the alghoritm: |
300 | // |
301 | // - First I build the absolute conversion matrix using |
302 | // primaries in XYZ. This matrix is next inverted |
303 | // - Then I eval the source white point across this matrix |
304 | // obtaining the coeficients of the transformation |
305 | // - Then, I apply these coeficients to the original matrix |
306 | // |
307 | cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs) |
308 | { |
309 | cmsVEC3 WhitePoint, Coef; |
310 | cmsMAT3 Result, Primaries; |
311 | cmsFloat64Number xn, yn; |
312 | cmsFloat64Number xr, yr; |
313 | cmsFloat64Number xg, yg; |
314 | cmsFloat64Number xb, yb; |
315 | |
316 | xn = WhitePt -> x; |
317 | yn = WhitePt -> y; |
318 | xr = Primrs -> Red.x; |
319 | yr = Primrs -> Red.y; |
320 | xg = Primrs -> Green.x; |
321 | yg = Primrs -> Green.y; |
322 | xb = Primrs -> Blue.x; |
323 | yb = Primrs -> Blue.y; |
324 | |
325 | // Build Primaries matrix |
326 | _cmsVEC3init(&Primaries.v[0], xr, xg, xb); |
327 | _cmsVEC3init(&Primaries.v[1], yr, yg, yb); |
328 | _cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb)); |
329 | |
330 | |
331 | // Result = Primaries ^ (-1) inverse matrix |
332 | if (!_cmsMAT3inverse(&Primaries, &Result)) |
333 | return FALSE; |
334 | |
335 | |
336 | _cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn); |
337 | |
338 | // Across inverse primaries ... |
339 | _cmsMAT3eval(&Coef, &Result, &WhitePoint); |
340 | |
341 | // Give us the Coefs, then I build transformation matrix |
342 | _cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb); |
343 | _cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb); |
344 | _cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb)); |
345 | |
346 | |
347 | return _cmsAdaptMatrixToD50(r, WhitePt); |
348 | |
349 | } |
350 | |
351 | |
352 | // Adapts a color to a given illuminant. Original color is expected to have |
353 | // a SourceWhitePt white point. |
354 | cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result, |
355 | const cmsCIEXYZ* SourceWhitePt, |
356 | const cmsCIEXYZ* Illuminant, |
357 | const cmsCIEXYZ* Value) |
358 | { |
359 | cmsMAT3 Bradford; |
360 | cmsVEC3 In, Out; |
361 | |
362 | _cmsAssert(Result != NULL); |
363 | _cmsAssert(SourceWhitePt != NULL); |
364 | _cmsAssert(Illuminant != NULL); |
365 | _cmsAssert(Value != NULL); |
366 | |
367 | if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE; |
368 | |
369 | _cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z); |
370 | _cmsMAT3eval(&Out, &Bradford, &In); |
371 | |
372 | Result -> X = Out.n[0]; |
373 | Result -> Y = Out.n[1]; |
374 | Result -> Z = Out.n[2]; |
375 | |
376 | return TRUE; |
377 | } |
378 | |
379 | |
380 | |