1/*
2 * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26
27/*
28 * FUNCTIONS
29 * mlib_ImageConvCopyEdge_Bit - Copy src edges to dst edges
30 *
31 *
32 * SYNOPSIS
33 * mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst,
34 * const mlib_image *src,
35 * mlib_s32 dx_l,
36 * mlib_32 dx_r,
37 * mlib_s32 dy_t,
38 * mlib_32 dy_b,
39 * mlib_s32 cmask);
40 *
41 * ARGUMENT
42 * dst Pointer to an dst image.
43 * src Pointer to an src image.
44 * dx_l Number of columns on the left side of the
45 * image to be copyed.
46 * dx_r Number of columns on the right side of the
47 * image to be copyed.
48 * dy_t Number of rows on the top edge of the
49 * image to be copyed.
50 * dy_b Number of rows on the top edge of the
51 * image to be copyed.
52 * cmask Channel mask to indicate the channels to be convolved.
53 * Each bit of which represents a channel in the image. The
54 * channels corresponded to 1 bits are those to be processed.
55 *
56 * RESTRICTION
57 * The src and the dst must be the MLIB_BIT type, same width, same height and have same number
58 * of channels (1). The unselected channels are not
59 * overwritten. If both src and dst have just one channel,
60 * cmask is ignored.
61 *
62 * DESCRIPTION
63 * Copy src edges to dst edges.
64 *
65 * The unselected channels are not overwritten.
66 * If src and dst have just one channel,
67 * cmask is ignored.
68 */
69
70#include "mlib_image.h"
71#include "mlib_ImageConvEdge.h"
72
73/***************************************************************/
74mlib_status mlib_ImageConvCopyEdge_Bit(mlib_image *dst,
75 const mlib_image *src,
76 mlib_s32 dx_l,
77 mlib_s32 dx_r,
78 mlib_s32 dy_t,
79 mlib_s32 dy_b,
80 mlib_s32 cmask)
81{
82 mlib_u8 *pdst = mlib_ImageGetData(dst), *pd;
83 mlib_u8 *psrc = mlib_ImageGetData(src), *ps;
84 mlib_s32 img_height = mlib_ImageGetHeight(dst);
85 mlib_s32 img_width = mlib_ImageGetWidth(dst);
86 mlib_s32 img_strided = mlib_ImageGetStride(dst);
87 mlib_s32 img_strides = mlib_ImageGetStride(src);
88 mlib_s32 bitoffd = mlib_ImageGetBitOffset(dst);
89 mlib_s32 bitoffs = mlib_ImageGetBitOffset(src);
90 mlib_s32 bitoff_end, test, shift1, shift2;
91 mlib_u32 s0, s1, tmp;
92 mlib_u8 mask, mask_end;
93 mlib_u8 tmp_start, tmp_end;
94 mlib_s32 i, j, amount;
95
96 if (bitoffd == bitoffs) {
97 pd = pdst;
98 ps = psrc;
99
100 if (dx_l > 0) {
101 if (bitoffd + dx_l <= 8) {
102 mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7));
103
104 for (i = dy_t; i < (img_height - dy_b); i++) {
105 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
106 }
107
108 } else {
109 mask = (0xFF >> bitoffd);
110
111 for (i = dy_t; i < (img_height - dy_b); i++) {
112 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
113 }
114
115 amount = (bitoffd + dx_l + 7) >> 3;
116 mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7));
117
118 for (j = 1; j < amount - 1; j++) {
119 for (i = dy_t; i < (img_height - dy_b); i++) {
120 pd[i*img_strided + j] = ps[i*img_strides + j];
121 }
122 }
123
124 for (i = dy_t; i < (img_height - dy_b); i++) {
125 pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
126 (ps[i*img_strides + amount - 1] & mask);
127 }
128 }
129 }
130
131 if (dx_r > 0) {
132 pd = pdst + (img_width + bitoffd - dx_r) / 8;
133 ps = psrc + (img_width + bitoffd - dx_r) / 8;
134 bitoffd = (img_width + bitoffd - dx_r) & 7;
135
136 if (bitoffd + dx_r <= 8) {
137 mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7));
138
139 for (i = dy_t; i < (img_height - dy_b); i++) {
140 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
141 }
142
143 } else {
144 mask = (0xFF >> bitoffd);
145
146 for (i = dy_t; i < (img_height - dy_b); i++) {
147 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (ps[i*img_strides] & mask);
148 }
149
150 amount = (bitoffd + dx_r + 7) >> 3;
151 mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7));
152
153 for (j = 1; j < amount - 1; j++) {
154 for (i = dy_t; i < (img_height - dy_b); i++) {
155 pd[i*img_strided + j] = ps[i*img_strides + j];
156 }
157 }
158
159 for (i = dy_t; i < (img_height - dy_b); i++) {
160 pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
161 (ps[i*img_strides + amount - 1] & mask);
162 }
163 }
164 }
165
166 bitoffd = mlib_ImageGetBitOffset(dst);
167 bitoff_end = (bitoffd + img_width) & 7;
168 amount = (bitoffd + img_width + 7) >> 3;
169 mask = (0xFF >> bitoffd);
170 mask_end = (0xFF << ((8 - bitoff_end) & 7));
171
172 pd = pdst;
173 ps = psrc;
174
175 for (i = 0; i < dy_t; i++) {
176 tmp_start = pd[i*img_strided];
177 tmp_end = pd[i*img_strided+amount-1];
178 for (j = 0; j < amount; j++) {
179 pd[i*img_strided + j] = ps[i*img_strides + j];
180 }
181
182 pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask);
183 pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
184 (pd[i*img_strided+amount-1] & mask_end);
185 }
186
187 pd = pdst + (img_height-1)*img_strided;
188 ps = psrc + (img_height-1)*img_strides;
189
190 for (i = 0; i < dy_b; i++) {
191 tmp_start = pd[-i*img_strided];
192 tmp_end = pd[-i*img_strided+amount-1];
193 for (j = 0; j < amount; j++) {
194 pd[-i*img_strided + j] = ps[-i*img_strides + j];
195 }
196
197 pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask);
198 pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
199 (pd[-i*img_strided+amount-1] & mask_end);
200 }
201
202 } else {
203 pd = pdst;
204
205 if (bitoffs > bitoffd) {
206 ps = psrc;
207 shift2 = (8 - (bitoffs - bitoffd));
208 test = 0;
209 } else {
210 test = 1;
211 ps = psrc - 1;
212 shift2 = bitoffd - bitoffs;
213 }
214
215 shift1 = 8 - shift2;
216
217 if (dx_l > 0) {
218 if (bitoffd + dx_l <= 8) {
219 mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_l)) & 7));
220
221 for (i = dy_t; i < (img_height - dy_b); i++) {
222 s0 = ps[i*img_strides];
223 s1 = ps[i*img_strides+1];
224 tmp = (s0 << shift1) | (s1 >> shift2);
225 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
226 }
227
228 } else {
229 mask = (0xFF >> bitoffd);
230
231 for (i = dy_t; i < (img_height - dy_b); i++) {
232 s0 = ps[i*img_strides];
233 s1 = ps[i*img_strides+1];
234 tmp = (s0 << shift1) | (s1 >> shift2);
235 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
236 }
237
238 amount = (bitoffd + dx_l + 7) >> 3;
239 mask = (0xFF << ((8 - (bitoffd + dx_l)) & 7));
240
241 for (j = 1; j < amount - 1; j++) {
242 for (i = dy_t; i < (img_height - dy_b); i++) {
243 s0 = ps[i*img_strides+j];
244 s1 = ps[i*img_strides+j+1];
245 pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
246 s0 = s1;
247 }
248 }
249
250 for (i = dy_t; i < (img_height - dy_b); i++) {
251 s0 = ps[i*img_strides+amount-1];
252 s1 = ps[i*img_strides+amount];
253 tmp = (s0 << shift1) | (s1 >> shift2);
254 pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
255 (tmp & mask);
256 }
257 }
258 }
259
260 if (dx_r > 0) {
261 pd = pdst + (img_width + bitoffd - dx_r) / 8;
262 ps = psrc + (img_width + bitoffd - dx_r) / 8;
263 bitoffd = (img_width + bitoffd - dx_r) & 7;
264 ps -= test;
265
266 if (bitoffd + dx_r <= 8) {
267 mask = (0xFF >> bitoffd) & (0xFF << ((8 - (bitoffd + dx_r)) & 7));
268
269 for (i = dy_t; i < (img_height - dy_b); i++) {
270 s0 = ps[i*img_strides];
271 s1 = ps[i*img_strides+1];
272 tmp = (s0 << shift1) | (s1 >> shift2);
273 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
274 }
275
276 } else {
277 mask = (0xFF >> bitoffd);
278
279 for (i = dy_t; i < (img_height - dy_b); i++) {
280 s0 = ps[i*img_strides];
281 s1 = ps[i*img_strides+1];
282 tmp = (s0 << shift1) | (s1 >> shift2);
283 pd[i*img_strided] = (pd[i*img_strided] & ~mask) | (tmp & mask);
284 }
285
286 amount = (bitoffd + dx_r + 7) >> 3;
287 mask = (0xFF << ((8 - (bitoffd + dx_r)) & 7));
288
289 for (j = 1; j < amount - 1; j++) {
290 for (i = dy_t; i < (img_height - dy_b); i++) {
291 s0 = ps[i*img_strides+j];
292 s1 = ps[i*img_strides+j+1];
293 pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
294 }
295 }
296
297 for (i = dy_t; i < (img_height - dy_b); i++) {
298 s0 = ps[i*img_strides+amount-1];
299 s1 = ps[i*img_strides+amount];
300 tmp = (s0 << shift1) | (s1 >> shift2);
301 pd[i*img_strided + amount - 1] = (pd[i*img_strided + amount - 1] & ~mask) |
302 (tmp & mask);
303 }
304 }
305 }
306
307 bitoffd = mlib_ImageGetBitOffset(dst);
308 bitoff_end = (bitoffd + img_width) & 7;
309 amount = (bitoffd + img_width + 7) >> 3;
310 mask = (0xFF >> bitoffd);
311 mask_end = (0xFF << ((8 - bitoff_end) & 7));
312
313 pd = pdst;
314 ps = psrc-test;
315
316 for (i = 0; i < dy_t; i++) {
317 tmp_start = pd[i*img_strided];
318 tmp_end = pd[i*img_strided+amount-1];
319 s0 = ps[i*img_strides];
320 for (j = 0; j < amount; j++) {
321 s1 = ps[i*img_strides+j+1];
322 pd[i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
323 s0 = s1;
324 }
325
326 pd[i*img_strided] = (tmp_start & (~mask)) | (pd[i*img_strided] & mask);
327 pd[i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
328 (pd[i*img_strided+amount-1] & mask_end);
329 }
330
331 pd = pdst + (img_height-1)*img_strided;
332 ps = psrc + (img_height-1)*img_strides - test;
333
334 for (i = 0; i < dy_b; i++) {
335 tmp_start = pd[-i*img_strided];
336 tmp_end = pd[-i*img_strided+amount-1];
337 s0 = ps[-i*img_strides];
338 for (j = 0; j < amount; j++) {
339 s1 = ps[-i*img_strides+j+1];
340 pd[-i*img_strided + j] = (s0 << shift1) | (s1 >> shift2);
341 s0 = s1;
342 }
343
344 pd[-i*img_strided] = (tmp_start & (~mask)) | (pd[-i*img_strided] & mask);
345 pd[-i*img_strided+amount-1] = (tmp_end & (~mask_end)) |
346 (pd[-i*img_strided+amount-1] & mask_end);
347 }
348 }
349
350 return MLIB_SUCCESS;
351}
352
353/***************************************************************/
354