1/*
2 * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26
27/*
28 * FUNCTION
29 * mlib_ImageConvKernelConvert - Convert convolution kernel from
30 * floating point version to integer
31 * version.
32 *
33 * SYNOPSIS
34 * mlib_status mlib_ImageConvKernelConvert(mlib_s32 *ikernel,
35 * mlib_s32 *iscale,
36 * const mlib_d64 *fkernel,
37 * mlib_s32 m,
38 * mlib_s32 n,
39 * mlib_type type);
40 *
41 * ARGUMENT
42 * ikernel integer kernel
43 * iscale scaling factor of the integer kernel
44 * fkernel floating-point kernel
45 * m width of the convolution kernel
46 * n height of the convolution kernel
47 * type image type
48 *
49 * DESCRIPTION
50 * Convert a floating point convolution kernel to integer kernel
51 * with scaling factor. The result integer kernel and scaling factor
52 * can be used in convolution functions directly without overflow.
53 *
54 * RESTRICTION
55 * The type can be MLIB_BYTE, MLIB_SHORT, MLIB_USHORT or MLIB_INT.
56 */
57
58#include <stdlib.h>
59#include "mlib_image.h"
60#include "mlib_SysMath.h"
61#include "mlib_ImageConv.h"
62
63/***************************************************************/
64#ifdef __sparc
65
66#define CLAMP_S32(dst, src) \
67 dst = (mlib_s32)(src)
68
69#else
70
71#define CLAMP_S32(dst, src) { \
72 mlib_d64 s0 = (mlib_d64)(src); \
73 if (s0 > (mlib_d64)MLIB_S32_MAX) s0 = (mlib_d64)MLIB_S32_MAX; \
74 if (s0 < (mlib_d64)MLIB_S32_MIN) s0 = (mlib_d64)MLIB_S32_MIN; \
75 dst = (mlib_s32)s0; \
76}
77
78#endif /* __sparc */
79
80/***************************************************************/
81JNIEXPORT
82mlib_status mlib_ImageConvKernelConvert(mlib_s32 *ikernel,
83 mlib_s32 *iscale,
84 const mlib_d64 *fkernel,
85 mlib_s32 m,
86 mlib_s32 n,
87 mlib_type type)
88{
89 mlib_d64 sum_pos, sum_neg, sum, norm, max, f;
90 mlib_s32 isum_pos, isum_neg, isum, test;
91 mlib_s32 i, scale, scale1, chk_flag;
92
93 if (ikernel == NULL || iscale == NULL || fkernel == NULL || m < 1 || n < 1) {
94 return MLIB_FAILURE;
95 }
96
97 if ((type == MLIB_BYTE) || (type == MLIB_SHORT) || (type == MLIB_USHORT)) {
98
99 if (type != MLIB_SHORT) { /* MLIB_BYTE, MLIB_USHORT */
100 sum_pos = 0;
101 sum_neg = 0;
102
103 for (i = 0; i < m * n; i++) {
104 if (fkernel[i] > 0)
105 sum_pos += fkernel[i];
106 else
107 sum_neg -= fkernel[i];
108 }
109
110 sum = (sum_pos > sum_neg) ? sum_pos : sum_neg;
111 scale = mlib_ilogb(sum);
112 scale++;
113
114 scale = 31 - scale;
115 }
116 else { /* MLIB_SHORT */
117 sum = 0;
118 max = 0;
119
120 for (i = 0; i < m * n; i++) {
121 f = mlib_fabs(fkernel[i]);
122 sum += f;
123 max = (max > f) ? max : f;
124 }
125
126 scale1 = mlib_ilogb(max) + 1;
127 scale = mlib_ilogb(sum);
128 scale = (scale > scale1) ? scale : scale1;
129 scale++;
130
131 scale = 32 - scale;
132 }
133
134 if (scale <= 16)
135 return MLIB_FAILURE;
136 if (scale > 31)
137 scale = 31;
138
139 *iscale = scale;
140
141 chk_flag = mlib_ImageConvVersion(m, n, scale, type);
142
143 if (!chk_flag) {
144 norm = (1u << scale);
145 for (i = 0; i < m * n; i++) {
146 CLAMP_S32(ikernel[i], fkernel[i] * norm);
147 }
148
149 return MLIB_SUCCESS;
150 }
151
152 /* try to round coefficients */
153#ifdef __sparc
154 scale1 = 16; /* shift of coefficients is 16 */
155#else
156
157 if (chk_flag == 3)
158 scale1 = 16; /* MMX */
159 else
160 scale1 = (type == MLIB_BYTE) ? 8 : 16;
161#endif /* __sparc */
162 norm = (1u << (scale - scale1));
163
164 for (i = 0; i < m * n; i++) {
165 if (fkernel[i] > 0)
166 ikernel[i] = (mlib_s32) (fkernel[i] * norm + 0.5);
167 else
168 ikernel[i] = (mlib_s32) (fkernel[i] * norm - 0.5);
169 }
170
171 isum_pos = 0;
172 isum_neg = 0;
173 test = 0;
174
175 for (i = 0; i < m * n; i++) {
176 if (ikernel[i] > 0)
177 isum_pos += ikernel[i];
178 else
179 isum_neg -= ikernel[i];
180 }
181
182 if (type == MLIB_BYTE || type == MLIB_USHORT) {
183 isum = (isum_pos > isum_neg) ? isum_pos : isum_neg;
184
185 if (isum >= (1 << (31 - scale1)))
186 test = 1;
187 }
188 else {
189 isum = isum_pos + isum_neg;
190
191 if (isum >= (1 << (32 - scale1)))
192 test = 1;
193 for (i = 0; i < m * n; i++) {
194 if (abs(ikernel[i]) >= (1 << (31 - scale1)))
195 test = 1;
196 }
197 }
198
199 if (test == 1) { /* rounding according scale1 cause overflow, truncate instead of round */
200 for (i = 0; i < m * n; i++)
201 ikernel[i] = (mlib_s32) (fkernel[i] * norm) << scale1;
202 }
203 else { /* rounding is Ok */
204 for (i = 0; i < m * n; i++)
205 ikernel[i] = ikernel[i] << scale1;
206 }
207
208 return MLIB_SUCCESS;
209 }
210 else if ((type == MLIB_INT) || (type == MLIB_BIT)) {
211 max = 0;
212
213 for (i = 0; i < m * n; i++) {
214 f = mlib_fabs(fkernel[i]);
215 max = (max > f) ? max : f;
216 }
217
218 scale = mlib_ilogb(max);
219
220 if (scale > 29)
221 return MLIB_FAILURE;
222
223 if (scale < -100)
224 scale = -100;
225
226 *iscale = 29 - scale;
227 scale = 29 - scale;
228
229 norm = 1.0;
230 while (scale > 30) {
231 norm *= (1 << 30);
232 scale -= 30;
233 }
234
235 norm *= (1 << scale);
236
237 for (i = 0; i < m * n; i++) {
238 if (fkernel[i] > 0) {
239 CLAMP_S32(ikernel[i], fkernel[i] * norm + 0.5);
240 }
241 else {
242 CLAMP_S32(ikernel[i], fkernel[i] * norm - 0.5);
243 }
244 }
245
246 return MLIB_SUCCESS;
247 }
248 else {
249 return MLIB_FAILURE;
250 }
251}
252
253/***************************************************************/
254