1 | /* |
2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include <jni.h> |
26 | #include <unistd.h> |
27 | #include <fcntl.h> |
28 | #include <string.h> |
29 | #include <stdlib.h> |
30 | #include <stddef.h> |
31 | #include <elf.h> |
32 | #include <link.h> |
33 | #include "libproc_impl.h" |
34 | #include "proc_service.h" |
35 | #include "salibelf.h" |
36 | #include "cds.h" |
37 | |
38 | // This file has the libproc implementation to read core files. |
39 | // For live processes, refer to ps_proc.c. Portions of this is adapted |
40 | // /modelled after Solaris libproc.so (in particular Pcore.c) |
41 | |
42 | //---------------------------------------------------------------------- |
43 | // ps_prochandle cleanup helper functions |
44 | |
45 | // close all file descriptors |
46 | static void close_files(struct ps_prochandle* ph) { |
47 | lib_info* lib = NULL; |
48 | |
49 | // close core file descriptor |
50 | if (ph->core->core_fd >= 0) |
51 | close(ph->core->core_fd); |
52 | |
53 | // close exec file descriptor |
54 | if (ph->core->exec_fd >= 0) |
55 | close(ph->core->exec_fd); |
56 | |
57 | // close interp file descriptor |
58 | if (ph->core->interp_fd >= 0) |
59 | close(ph->core->interp_fd); |
60 | |
61 | // close class share archive file |
62 | if (ph->core->classes_jsa_fd >= 0) |
63 | close(ph->core->classes_jsa_fd); |
64 | |
65 | // close all library file descriptors |
66 | lib = ph->libs; |
67 | while (lib) { |
68 | int fd = lib->fd; |
69 | if (fd >= 0 && fd != ph->core->exec_fd) { |
70 | close(fd); |
71 | } |
72 | lib = lib->next; |
73 | } |
74 | } |
75 | |
76 | // clean all map_info stuff |
77 | static void destroy_map_info(struct ps_prochandle* ph) { |
78 | map_info* map = ph->core->maps; |
79 | while (map) { |
80 | map_info* next = map->next; |
81 | free(map); |
82 | map = next; |
83 | } |
84 | |
85 | if (ph->core->map_array) { |
86 | free(ph->core->map_array); |
87 | } |
88 | |
89 | // Part of the class sharing workaround |
90 | map = ph->core->class_share_maps; |
91 | while (map) { |
92 | map_info* next = map->next; |
93 | free(map); |
94 | map = next; |
95 | } |
96 | } |
97 | |
98 | // ps_prochandle operations |
99 | static void core_release(struct ps_prochandle* ph) { |
100 | if (ph->core) { |
101 | close_files(ph); |
102 | destroy_map_info(ph); |
103 | free(ph->core); |
104 | } |
105 | } |
106 | |
107 | static map_info* allocate_init_map(int fd, off_t offset, uintptr_t vaddr, size_t memsz) { |
108 | map_info* map; |
109 | if ( (map = (map_info*) calloc(1, sizeof(map_info))) == NULL) { |
110 | print_debug("can't allocate memory for map_info\n" ); |
111 | return NULL; |
112 | } |
113 | |
114 | // initialize map |
115 | map->fd = fd; |
116 | map->offset = offset; |
117 | map->vaddr = vaddr; |
118 | map->memsz = memsz; |
119 | return map; |
120 | } |
121 | |
122 | // add map info with given fd, offset, vaddr and memsz |
123 | static map_info* add_map_info(struct ps_prochandle* ph, int fd, off_t offset, |
124 | uintptr_t vaddr, size_t memsz) { |
125 | map_info* map; |
126 | if ((map = allocate_init_map(fd, offset, vaddr, memsz)) == NULL) { |
127 | return NULL; |
128 | } |
129 | |
130 | // add this to map list |
131 | map->next = ph->core->maps; |
132 | ph->core->maps = map; |
133 | ph->core->num_maps++; |
134 | |
135 | return map; |
136 | } |
137 | |
138 | // Part of the class sharing workaround |
139 | static map_info* add_class_share_map_info(struct ps_prochandle* ph, off_t offset, |
140 | uintptr_t vaddr, size_t memsz) { |
141 | map_info* map; |
142 | if ((map = allocate_init_map(ph->core->classes_jsa_fd, |
143 | offset, vaddr, memsz)) == NULL) { |
144 | return NULL; |
145 | } |
146 | |
147 | map->next = ph->core->class_share_maps; |
148 | ph->core->class_share_maps = map; |
149 | return map; |
150 | } |
151 | |
152 | // Return the map_info for the given virtual address. We keep a sorted |
153 | // array of pointers in ph->map_array, so we can binary search. |
154 | static map_info* core_lookup(struct ps_prochandle *ph, uintptr_t addr) { |
155 | int mid, lo = 0, hi = ph->core->num_maps - 1; |
156 | map_info *mp; |
157 | |
158 | while (hi - lo > 1) { |
159 | mid = (lo + hi) / 2; |
160 | if (addr >= ph->core->map_array[mid]->vaddr) { |
161 | lo = mid; |
162 | } else { |
163 | hi = mid; |
164 | } |
165 | } |
166 | |
167 | if (addr < ph->core->map_array[hi]->vaddr) { |
168 | mp = ph->core->map_array[lo]; |
169 | } else { |
170 | mp = ph->core->map_array[hi]; |
171 | } |
172 | |
173 | if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) { |
174 | return (mp); |
175 | } |
176 | |
177 | |
178 | // Part of the class sharing workaround |
179 | // Unfortunately, we have no way of detecting -Xshare state. |
180 | // Check out the share maps atlast, if we don't find anywhere. |
181 | // This is done this way so to avoid reading share pages |
182 | // ahead of other normal maps. For eg. with -Xshare:off we don't |
183 | // want to prefer class sharing data to data from core. |
184 | mp = ph->core->class_share_maps; |
185 | if (mp) { |
186 | print_debug("can't locate map_info at 0x%lx, trying class share maps\n" , addr); |
187 | } |
188 | while (mp) { |
189 | if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) { |
190 | print_debug("located map_info at 0x%lx from class share maps\n" , addr); |
191 | return (mp); |
192 | } |
193 | mp = mp->next; |
194 | } |
195 | |
196 | print_debug("can't locate map_info at 0x%lx\n" , addr); |
197 | return (NULL); |
198 | } |
199 | |
200 | //--------------------------------------------------------------- |
201 | // Part of the class sharing workaround: |
202 | // |
203 | // With class sharing, pages are mapped from classes.jsa file. |
204 | // The read-only class sharing pages are mapped as MAP_SHARED, |
205 | // PROT_READ pages. These pages are not dumped into core dump. |
206 | // With this workaround, these pages are read from classes.jsa. |
207 | |
208 | static bool read_jboolean(struct ps_prochandle* ph, uintptr_t addr, jboolean* pvalue) { |
209 | jboolean i; |
210 | if (ps_pdread(ph, (psaddr_t) addr, &i, sizeof(i)) == PS_OK) { |
211 | *pvalue = i; |
212 | return true; |
213 | } else { |
214 | return false; |
215 | } |
216 | } |
217 | |
218 | static bool read_pointer(struct ps_prochandle* ph, uintptr_t addr, uintptr_t* pvalue) { |
219 | uintptr_t uip; |
220 | if (ps_pdread(ph, (psaddr_t) addr, (char *)&uip, sizeof(uip)) == PS_OK) { |
221 | *pvalue = uip; |
222 | return true; |
223 | } else { |
224 | return false; |
225 | } |
226 | } |
227 | |
228 | // used to read strings from debuggee |
229 | static bool read_string(struct ps_prochandle* ph, uintptr_t addr, char* buf, size_t size) { |
230 | size_t i = 0; |
231 | char c = ' '; |
232 | |
233 | while (c != '\0') { |
234 | if (ps_pdread(ph, (psaddr_t) addr, &c, sizeof(char)) != PS_OK) { |
235 | return false; |
236 | } |
237 | if (i < size - 1) { |
238 | buf[i] = c; |
239 | } else { |
240 | // smaller buffer |
241 | return false; |
242 | } |
243 | i++; addr++; |
244 | } |
245 | |
246 | buf[i] = '\0'; |
247 | return true; |
248 | } |
249 | |
250 | #define USE_SHARED_SPACES_SYM "UseSharedSpaces" |
251 | // mangled name of Arguments::SharedArchivePath |
252 | #define SHARED_ARCHIVE_PATH_SYM "_ZN9Arguments17SharedArchivePathE" |
253 | #define LIBJVM_NAME "/libjvm.so" |
254 | |
255 | static bool init_classsharing_workaround(struct ps_prochandle* ph) { |
256 | lib_info* lib = ph->libs; |
257 | while (lib != NULL) { |
258 | // we are iterating over shared objects from the core dump. look for |
259 | // libjvm.so. |
260 | const char *jvm_name = 0; |
261 | if ((jvm_name = strstr(lib->name, LIBJVM_NAME)) != 0) { |
262 | char classes_jsa[PATH_MAX]; |
263 | CDSFileMapHeaderBase ; |
264 | int fd = -1; |
265 | int m = 0; |
266 | size_t n = 0; |
267 | uintptr_t base = 0, useSharedSpacesAddr = 0; |
268 | uintptr_t sharedArchivePathAddrAddr = 0, sharedArchivePathAddr = 0; |
269 | jboolean useSharedSpaces = 0; |
270 | map_info* mi = 0; |
271 | |
272 | memset(classes_jsa, 0, sizeof(classes_jsa)); |
273 | jvm_name = lib->name; |
274 | useSharedSpacesAddr = lookup_symbol(ph, jvm_name, USE_SHARED_SPACES_SYM); |
275 | if (useSharedSpacesAddr == 0) { |
276 | print_debug("can't lookup 'UseSharedSpaces' flag\n" ); |
277 | return false; |
278 | } |
279 | |
280 | // Hotspot vm types are not exported to build this library. So |
281 | // using equivalent type jboolean to read the value of |
282 | // UseSharedSpaces which is same as hotspot type "bool". |
283 | if (read_jboolean(ph, useSharedSpacesAddr, &useSharedSpaces) != true) { |
284 | print_debug("can't read the value of 'UseSharedSpaces' flag\n" ); |
285 | return false; |
286 | } |
287 | |
288 | if ((int)useSharedSpaces == 0) { |
289 | print_debug("UseSharedSpaces is false, assuming -Xshare:off!\n" ); |
290 | return true; |
291 | } |
292 | |
293 | sharedArchivePathAddrAddr = lookup_symbol(ph, jvm_name, SHARED_ARCHIVE_PATH_SYM); |
294 | if (sharedArchivePathAddrAddr == 0) { |
295 | print_debug("can't lookup shared archive path symbol\n" ); |
296 | return false; |
297 | } |
298 | |
299 | if (read_pointer(ph, sharedArchivePathAddrAddr, &sharedArchivePathAddr) != true) { |
300 | print_debug("can't read shared archive path pointer\n" ); |
301 | return false; |
302 | } |
303 | |
304 | if (read_string(ph, sharedArchivePathAddr, classes_jsa, sizeof(classes_jsa)) != true) { |
305 | print_debug("can't read shared archive path value\n" ); |
306 | return false; |
307 | } |
308 | |
309 | print_debug("looking for %s\n" , classes_jsa); |
310 | // open the class sharing archive file |
311 | fd = pathmap_open(classes_jsa); |
312 | if (fd < 0) { |
313 | print_debug("can't open %s!\n" , classes_jsa); |
314 | ph->core->classes_jsa_fd = -1; |
315 | return false; |
316 | } else { |
317 | print_debug("opened %s\n" , classes_jsa); |
318 | } |
319 | |
320 | // read CDSFileMapHeaderBase from the file |
321 | memset(&header, 0, sizeof(CDSFileMapHeaderBase)); |
322 | if ((n = read(fd, &header, sizeof(CDSFileMapHeaderBase))) |
323 | != sizeof(CDSFileMapHeaderBase)) { |
324 | print_debug("can't read shared archive file map header from %s\n" , classes_jsa); |
325 | close(fd); |
326 | return false; |
327 | } |
328 | |
329 | // check file magic |
330 | if (header._magic != CDS_ARCHIVE_MAGIC) { |
331 | print_debug("%s has bad shared archive file magic number 0x%x, expecting 0x%x\n" , |
332 | classes_jsa, header._magic, CDS_ARCHIVE_MAGIC); |
333 | close(fd); |
334 | return false; |
335 | } |
336 | |
337 | // check version |
338 | if (header._version != CURRENT_CDS_ARCHIVE_VERSION) { |
339 | print_debug("%s has wrong shared archive file version %d, expecting %d\n" , |
340 | classes_jsa, header._version, CURRENT_CDS_ARCHIVE_VERSION); |
341 | close(fd); |
342 | return false; |
343 | } |
344 | |
345 | ph->core->classes_jsa_fd = fd; |
346 | // add read-only maps from classes.jsa to the list of maps |
347 | for (m = 0; m < NUM_CDS_REGIONS; m++) { |
348 | if (header._space[m]._read_only) { |
349 | base = (uintptr_t) header._space[m]._addr._base; |
350 | // no need to worry about the fractional pages at-the-end. |
351 | // possible fractional pages are handled by core_read_data. |
352 | add_class_share_map_info(ph, (off_t) header._space[m]._file_offset, |
353 | base, (size_t) header._space[m]._used); |
354 | print_debug("added a share archive map at 0x%lx\n" , base); |
355 | } |
356 | } |
357 | return true; |
358 | } |
359 | lib = lib->next; |
360 | } |
361 | return true; |
362 | } |
363 | |
364 | |
365 | //--------------------------------------------------------------------------- |
366 | // functions to handle map_info |
367 | |
368 | // Order mappings based on virtual address. We use this function as the |
369 | // callback for sorting the array of map_info pointers. |
370 | static int core_cmp_mapping(const void *lhsp, const void *rhsp) |
371 | { |
372 | const map_info *lhs = *((const map_info **)lhsp); |
373 | const map_info *rhs = *((const map_info **)rhsp); |
374 | |
375 | if (lhs->vaddr == rhs->vaddr) { |
376 | return (0); |
377 | } |
378 | |
379 | return (lhs->vaddr < rhs->vaddr ? -1 : 1); |
380 | } |
381 | |
382 | // we sort map_info by starting virtual address so that we can do |
383 | // binary search to read from an address. |
384 | static bool sort_map_array(struct ps_prochandle* ph) { |
385 | size_t num_maps = ph->core->num_maps; |
386 | map_info* map = ph->core->maps; |
387 | int i = 0; |
388 | |
389 | // allocate map_array |
390 | map_info** array; |
391 | if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) { |
392 | print_debug("can't allocate memory for map array\n" ); |
393 | return false; |
394 | } |
395 | |
396 | // add maps to array |
397 | while (map) { |
398 | array[i] = map; |
399 | i++; |
400 | map = map->next; |
401 | } |
402 | |
403 | // sort is called twice. If this is second time, clear map array |
404 | if (ph->core->map_array) { |
405 | free(ph->core->map_array); |
406 | } |
407 | |
408 | ph->core->map_array = array; |
409 | // sort the map_info array by base virtual address. |
410 | qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*), |
411 | core_cmp_mapping); |
412 | |
413 | // print map |
414 | if (is_debug()) { |
415 | int j = 0; |
416 | print_debug("---- sorted virtual address map ----\n" ); |
417 | for (j = 0; j < ph->core->num_maps; j++) { |
418 | print_debug("base = 0x%lx\tsize = %zu\n" , ph->core->map_array[j]->vaddr, |
419 | ph->core->map_array[j]->memsz); |
420 | } |
421 | } |
422 | |
423 | return true; |
424 | } |
425 | |
426 | #ifndef MIN |
427 | #define MIN(x, y) (((x) < (y))? (x): (y)) |
428 | #endif |
429 | |
430 | static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) { |
431 | ssize_t resid = size; |
432 | int page_size=sysconf(_SC_PAGE_SIZE); |
433 | while (resid != 0) { |
434 | map_info *mp = core_lookup(ph, addr); |
435 | uintptr_t mapoff; |
436 | ssize_t len, rem; |
437 | off_t off; |
438 | int fd; |
439 | |
440 | if (mp == NULL) { |
441 | break; /* No mapping for this address */ |
442 | } |
443 | |
444 | fd = mp->fd; |
445 | mapoff = addr - mp->vaddr; |
446 | len = MIN(resid, mp->memsz - mapoff); |
447 | off = mp->offset + mapoff; |
448 | |
449 | if ((len = pread(fd, buf, len, off)) <= 0) { |
450 | break; |
451 | } |
452 | |
453 | resid -= len; |
454 | addr += len; |
455 | buf = (char *)buf + len; |
456 | |
457 | // mappings always start at page boundary. But, may end in fractional |
458 | // page. fill zeros for possible fractional page at the end of a mapping. |
459 | rem = mp->memsz % page_size; |
460 | if (rem > 0) { |
461 | rem = page_size - rem; |
462 | len = MIN(resid, rem); |
463 | resid -= len; |
464 | addr += len; |
465 | // we are not assuming 'buf' to be zero initialized. |
466 | memset(buf, 0, len); |
467 | buf += len; |
468 | } |
469 | } |
470 | |
471 | if (resid) { |
472 | print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n" , |
473 | size, addr, resid); |
474 | return false; |
475 | } else { |
476 | return true; |
477 | } |
478 | } |
479 | |
480 | // null implementation for write |
481 | static bool core_write_data(struct ps_prochandle* ph, |
482 | uintptr_t addr, const char *buf , size_t size) { |
483 | return false; |
484 | } |
485 | |
486 | static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id, |
487 | struct user_regs_struct* regs) { |
488 | // for core we have cached the lwp regs from NOTE section |
489 | thread_info* thr = ph->threads; |
490 | while (thr) { |
491 | if (thr->lwp_id == lwp_id) { |
492 | memcpy(regs, &thr->regs, sizeof(struct user_regs_struct)); |
493 | return true; |
494 | } |
495 | thr = thr->next; |
496 | } |
497 | return false; |
498 | } |
499 | |
500 | static ps_prochandle_ops core_ops = { |
501 | .release= core_release, |
502 | .p_pread= core_read_data, |
503 | .p_pwrite= core_write_data, |
504 | .get_lwp_regs= core_get_lwp_regs |
505 | }; |
506 | |
507 | // read regs and create thread from NT_PRSTATUS entries from core file |
508 | static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) { |
509 | // we have to read prstatus_t from buf |
510 | // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t"); |
511 | prstatus_t* prstat = (prstatus_t*) buf; |
512 | thread_info* newthr; |
513 | print_debug("got integer regset for lwp %d\n" , prstat->pr_pid); |
514 | if((newthr = add_thread_info(ph, prstat->pr_pid)) == NULL) |
515 | return false; |
516 | |
517 | // copy regs |
518 | memcpy(&newthr->regs, prstat->pr_reg, sizeof(struct user_regs_struct)); |
519 | |
520 | if (is_debug()) { |
521 | print_debug("integer regset\n" ); |
522 | #ifdef i386 |
523 | // print the regset |
524 | print_debug("\teax = 0x%x\n" , newthr->regs.eax); |
525 | print_debug("\tebx = 0x%x\n" , newthr->regs.ebx); |
526 | print_debug("\tecx = 0x%x\n" , newthr->regs.ecx); |
527 | print_debug("\tedx = 0x%x\n" , newthr->regs.edx); |
528 | print_debug("\tesp = 0x%x\n" , newthr->regs.esp); |
529 | print_debug("\tebp = 0x%x\n" , newthr->regs.ebp); |
530 | print_debug("\tesi = 0x%x\n" , newthr->regs.esi); |
531 | print_debug("\tedi = 0x%x\n" , newthr->regs.edi); |
532 | print_debug("\teip = 0x%x\n" , newthr->regs.eip); |
533 | #endif |
534 | |
535 | #if defined(amd64) || defined(x86_64) |
536 | // print the regset |
537 | print_debug("\tr15 = 0x%lx\n" , newthr->regs.r15); |
538 | print_debug("\tr14 = 0x%lx\n" , newthr->regs.r14); |
539 | print_debug("\tr13 = 0x%lx\n" , newthr->regs.r13); |
540 | print_debug("\tr12 = 0x%lx\n" , newthr->regs.r12); |
541 | print_debug("\trbp = 0x%lx\n" , newthr->regs.rbp); |
542 | print_debug("\trbx = 0x%lx\n" , newthr->regs.rbx); |
543 | print_debug("\tr11 = 0x%lx\n" , newthr->regs.r11); |
544 | print_debug("\tr10 = 0x%lx\n" , newthr->regs.r10); |
545 | print_debug("\tr9 = 0x%lx\n" , newthr->regs.r9); |
546 | print_debug("\tr8 = 0x%lx\n" , newthr->regs.r8); |
547 | print_debug("\trax = 0x%lx\n" , newthr->regs.rax); |
548 | print_debug("\trcx = 0x%lx\n" , newthr->regs.rcx); |
549 | print_debug("\trdx = 0x%lx\n" , newthr->regs.rdx); |
550 | print_debug("\trsi = 0x%lx\n" , newthr->regs.rsi); |
551 | print_debug("\trdi = 0x%lx\n" , newthr->regs.rdi); |
552 | print_debug("\torig_rax = 0x%lx\n" , newthr->regs.orig_rax); |
553 | print_debug("\trip = 0x%lx\n" , newthr->regs.rip); |
554 | print_debug("\tcs = 0x%lx\n" , newthr->regs.cs); |
555 | print_debug("\teflags = 0x%lx\n" , newthr->regs.eflags); |
556 | print_debug("\trsp = 0x%lx\n" , newthr->regs.rsp); |
557 | print_debug("\tss = 0x%lx\n" , newthr->regs.ss); |
558 | print_debug("\tfs_base = 0x%lx\n" , newthr->regs.fs_base); |
559 | print_debug("\tgs_base = 0x%lx\n" , newthr->regs.gs_base); |
560 | print_debug("\tds = 0x%lx\n" , newthr->regs.ds); |
561 | print_debug("\tes = 0x%lx\n" , newthr->regs.es); |
562 | print_debug("\tfs = 0x%lx\n" , newthr->regs.fs); |
563 | print_debug("\tgs = 0x%lx\n" , newthr->regs.gs); |
564 | #endif |
565 | } |
566 | |
567 | return true; |
568 | } |
569 | |
570 | #define ROUNDUP(x, y) ((((x)+((y)-1))/(y))*(y)) |
571 | |
572 | // read NT_PRSTATUS entries from core NOTE segment |
573 | static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) { |
574 | char* buf = NULL; |
575 | char* p = NULL; |
576 | size_t size = note_phdr->p_filesz; |
577 | |
578 | // we are interested in just prstatus entries. we will ignore the rest. |
579 | // Advance the seek pointer to the start of the PT_NOTE data |
580 | if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) { |
581 | print_debug("failed to lseek to PT_NOTE data\n" ); |
582 | return false; |
583 | } |
584 | |
585 | // Now process the PT_NOTE structures. Each one is preceded by |
586 | // an Elf{32/64}_Nhdr structure describing its type and size. |
587 | if ( (buf = (char*) malloc(size)) == NULL) { |
588 | print_debug("can't allocate memory for reading core notes\n" ); |
589 | goto err; |
590 | } |
591 | |
592 | // read notes into buffer |
593 | if (read(ph->core->core_fd, buf, size) != size) { |
594 | print_debug("failed to read notes, core file must have been truncated\n" ); |
595 | goto err; |
596 | } |
597 | |
598 | p = buf; |
599 | while (p < buf + size) { |
600 | ELF_NHDR* notep = (ELF_NHDR*) p; |
601 | char* descdata = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4); |
602 | print_debug("Note header with n_type = %d and n_descsz = %u\n" , |
603 | notep->n_type, notep->n_descsz); |
604 | |
605 | if (notep->n_type == NT_PRSTATUS) { |
606 | if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true) { |
607 | return false; |
608 | } |
609 | } else if (notep->n_type == NT_AUXV) { |
610 | // Get first segment from entry point |
611 | ELF_AUXV *auxv = (ELF_AUXV *)descdata; |
612 | while (auxv->a_type != AT_NULL) { |
613 | if (auxv->a_type == AT_ENTRY) { |
614 | // Set entry point address to address of dynamic section. |
615 | // We will adjust it in read_exec_segments(). |
616 | ph->core->dynamic_addr = auxv->a_un.a_val; |
617 | break; |
618 | } |
619 | auxv++; |
620 | } |
621 | } |
622 | p = descdata + ROUNDUP(notep->n_descsz, 4); |
623 | } |
624 | |
625 | free(buf); |
626 | return true; |
627 | |
628 | err: |
629 | if (buf) free(buf); |
630 | return false; |
631 | } |
632 | |
633 | // read all segments from core file |
634 | static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) { |
635 | int i = 0; |
636 | ELF_PHDR* phbuf = NULL; |
637 | ELF_PHDR* core_php = NULL; |
638 | |
639 | if ((phbuf = read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL) |
640 | return false; |
641 | |
642 | /* |
643 | * Now iterate through the program headers in the core file. |
644 | * We're interested in two types of Phdrs: PT_NOTE (which |
645 | * contains a set of saved /proc structures), and PT_LOAD (which |
646 | * represents a memory mapping from the process's address space). |
647 | * |
648 | * Difference b/w Solaris PT_NOTE and Linux/BSD PT_NOTE: |
649 | * |
650 | * In Solaris there are two PT_NOTE segments the first PT_NOTE (if present) |
651 | * contains /proc structs in the pre-2.6 unstructured /proc format. the last |
652 | * PT_NOTE has data in new /proc format. |
653 | * |
654 | * In Solaris, there is only one pstatus (process status). pstatus contains |
655 | * integer register set among other stuff. For each LWP, we have one lwpstatus |
656 | * entry that has integer regset for that LWP. |
657 | * |
658 | * Linux threads are actually 'clone'd processes. To support core analysis |
659 | * of "multithreaded" process, Linux creates more than one pstatus (called |
660 | * "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one |
661 | * "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular |
662 | * function "elf_core_dump". |
663 | */ |
664 | |
665 | for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) { |
666 | switch (core_php->p_type) { |
667 | case PT_NOTE: |
668 | if (core_handle_note(ph, core_php) != true) { |
669 | goto err; |
670 | } |
671 | break; |
672 | |
673 | case PT_LOAD: { |
674 | if (core_php->p_filesz != 0) { |
675 | if (add_map_info(ph, ph->core->core_fd, core_php->p_offset, |
676 | core_php->p_vaddr, core_php->p_filesz) == NULL) goto err; |
677 | } |
678 | break; |
679 | } |
680 | } |
681 | |
682 | core_php++; |
683 | } |
684 | |
685 | free(phbuf); |
686 | return true; |
687 | err: |
688 | free(phbuf); |
689 | return false; |
690 | } |
691 | |
692 | // read segments of a shared object |
693 | static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) { |
694 | int i = 0; |
695 | ELF_PHDR* phbuf; |
696 | ELF_PHDR* lib_php = NULL; |
697 | |
698 | int page_size = sysconf(_SC_PAGE_SIZE); |
699 | |
700 | if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL) { |
701 | return false; |
702 | } |
703 | |
704 | // we want to process only PT_LOAD segments that are not writable. |
705 | // i.e., text segments. The read/write/exec (data) segments would |
706 | // have been already added from core file segments. |
707 | for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) { |
708 | if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) { |
709 | |
710 | uintptr_t target_vaddr = lib_php->p_vaddr + lib_base; |
711 | map_info *existing_map = core_lookup(ph, target_vaddr); |
712 | |
713 | if (existing_map == NULL){ |
714 | if (add_map_info(ph, lib_fd, lib_php->p_offset, |
715 | target_vaddr, lib_php->p_memsz) == NULL) { |
716 | goto err; |
717 | } |
718 | } else { |
719 | // Coredump stores value of p_memsz elf field |
720 | // rounded up to page boundary. |
721 | |
722 | if ((existing_map->memsz != page_size) && |
723 | (existing_map->fd != lib_fd) && |
724 | (ROUNDUP(existing_map->memsz, page_size) != ROUNDUP(lib_php->p_memsz, page_size))) { |
725 | |
726 | print_debug("address conflict @ 0x%lx (existing map size = %ld, size = %ld, flags = %d)\n" , |
727 | target_vaddr, existing_map->memsz, lib_php->p_memsz, lib_php->p_flags); |
728 | goto err; |
729 | } |
730 | |
731 | /* replace PT_LOAD segment with library segment */ |
732 | print_debug("overwrote with new address mapping (memsz %ld -> %ld)\n" , |
733 | existing_map->memsz, ROUNDUP(lib_php->p_memsz, page_size)); |
734 | |
735 | existing_map->fd = lib_fd; |
736 | existing_map->offset = lib_php->p_offset; |
737 | existing_map->memsz = ROUNDUP(lib_php->p_memsz, page_size); |
738 | } |
739 | } |
740 | |
741 | lib_php++; |
742 | } |
743 | |
744 | free(phbuf); |
745 | return true; |
746 | err: |
747 | free(phbuf); |
748 | return false; |
749 | } |
750 | |
751 | // process segments from interpreter (ld.so or ld-linux.so) |
752 | static bool read_interp_segments(struct ps_prochandle* ph) { |
753 | ELF_EHDR interp_ehdr; |
754 | |
755 | if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) { |
756 | print_debug("interpreter is not a valid ELF file\n" ); |
757 | return false; |
758 | } |
759 | |
760 | if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) { |
761 | print_debug("can't read segments of interpreter\n" ); |
762 | return false; |
763 | } |
764 | |
765 | return true; |
766 | } |
767 | |
768 | // process segments of a a.out |
769 | static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) { |
770 | int i = 0; |
771 | ELF_PHDR* phbuf = NULL; |
772 | ELF_PHDR* exec_php = NULL; |
773 | |
774 | if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL) { |
775 | return false; |
776 | } |
777 | |
778 | for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) { |
779 | switch (exec_php->p_type) { |
780 | |
781 | // add mappings for PT_LOAD segments |
782 | case PT_LOAD: { |
783 | // add only non-writable segments of non-zero filesz |
784 | if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) { |
785 | if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err; |
786 | } |
787 | break; |
788 | } |
789 | |
790 | // read the interpreter and it's segments |
791 | case PT_INTERP: { |
792 | char interp_name[BUF_SIZE + 1]; |
793 | |
794 | // BUF_SIZE is PATH_MAX + NAME_MAX + 1. |
795 | if (exec_php->p_filesz > BUF_SIZE) { |
796 | goto err; |
797 | } |
798 | if (pread(ph->core->exec_fd, interp_name, |
799 | exec_php->p_filesz, exec_php->p_offset) != exec_php->p_filesz) { |
800 | print_debug("Unable to read in the ELF interpreter\n" ); |
801 | goto err; |
802 | } |
803 | interp_name[exec_php->p_filesz] = '\0'; |
804 | print_debug("ELF interpreter %s\n" , interp_name); |
805 | // read interpreter segments as well |
806 | if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) { |
807 | print_debug("can't open runtime loader\n" ); |
808 | goto err; |
809 | } |
810 | break; |
811 | } |
812 | |
813 | // from PT_DYNAMIC we want to read address of first link_map addr |
814 | case PT_DYNAMIC: { |
815 | if (exec_ehdr->e_type == ET_EXEC) { |
816 | ph->core->dynamic_addr = exec_php->p_vaddr; |
817 | } else { // ET_DYN |
818 | // dynamic_addr has entry point of executable. |
819 | // Thus we should substract it. |
820 | ph->core->dynamic_addr += exec_php->p_vaddr - exec_ehdr->e_entry; |
821 | } |
822 | print_debug("address of _DYNAMIC is 0x%lx\n" , ph->core->dynamic_addr); |
823 | break; |
824 | } |
825 | |
826 | } // switch |
827 | exec_php++; |
828 | } // for |
829 | |
830 | free(phbuf); |
831 | return true; |
832 | err: |
833 | free(phbuf); |
834 | return false; |
835 | } |
836 | |
837 | |
838 | #define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug, r_map) |
839 | #define LD_BASE_OFFSET offsetof(struct r_debug, r_ldbase) |
840 | #define LINK_MAP_ADDR_OFFSET offsetof(struct link_map, l_addr) |
841 | #define LINK_MAP_NAME_OFFSET offsetof(struct link_map, l_name) |
842 | #define LINK_MAP_NEXT_OFFSET offsetof(struct link_map, l_next) |
843 | |
844 | // read shared library info from runtime linker's data structures. |
845 | // This work is done by librtlb_db in Solaris |
846 | static bool read_shared_lib_info(struct ps_prochandle* ph) { |
847 | uintptr_t addr = ph->core->dynamic_addr; |
848 | uintptr_t debug_base; |
849 | uintptr_t first_link_map_addr; |
850 | uintptr_t ld_base_addr; |
851 | uintptr_t link_map_addr; |
852 | uintptr_t lib_base_diff; |
853 | uintptr_t lib_base; |
854 | uintptr_t lib_name_addr; |
855 | char lib_name[BUF_SIZE]; |
856 | ELF_DYN dyn; |
857 | ELF_EHDR elf_ehdr; |
858 | int lib_fd; |
859 | |
860 | // _DYNAMIC has information of the form |
861 | // [tag] [data] [tag] [data] ..... |
862 | // Both tag and data are pointer sized. |
863 | // We look for dynamic info with DT_DEBUG. This has shared object info. |
864 | // refer to struct r_debug in link.h |
865 | |
866 | dyn.d_tag = DT_NULL; |
867 | while (dyn.d_tag != DT_DEBUG) { |
868 | if (ps_pdread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) { |
869 | print_debug("can't read debug info from _DYNAMIC\n" ); |
870 | return false; |
871 | } |
872 | addr += sizeof(ELF_DYN); |
873 | } |
874 | |
875 | // we have got Dyn entry with DT_DEBUG |
876 | debug_base = dyn.d_un.d_ptr; |
877 | // at debug_base we have struct r_debug. This has first link map in r_map field |
878 | if (ps_pdread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET, |
879 | &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) { |
880 | print_debug("can't read first link map address\n" ); |
881 | return false; |
882 | } |
883 | |
884 | // read ld_base address from struct r_debug |
885 | if (ps_pdread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr, |
886 | sizeof(uintptr_t)) != PS_OK) { |
887 | print_debug("can't read ld base address\n" ); |
888 | return false; |
889 | } |
890 | ph->core->ld_base_addr = ld_base_addr; |
891 | |
892 | print_debug("interpreter base address is 0x%lx\n" , ld_base_addr); |
893 | |
894 | // now read segments from interp (i.e ld.so or ld-linux.so or ld-elf.so) |
895 | if (read_interp_segments(ph) != true) { |
896 | return false; |
897 | } |
898 | |
899 | // after adding interpreter (ld.so) mappings sort again |
900 | if (sort_map_array(ph) != true) { |
901 | return false; |
902 | } |
903 | |
904 | print_debug("first link map is at 0x%lx\n" , first_link_map_addr); |
905 | |
906 | link_map_addr = first_link_map_addr; |
907 | while (link_map_addr != 0) { |
908 | // read library base address of the .so. Note that even though <sys/link.h> calls |
909 | // link_map->l_addr as "base address", this is * not * really base virtual |
910 | // address of the shared object. This is actually the difference b/w the virtual |
911 | // address mentioned in shared object and the actual virtual base where runtime |
912 | // linker loaded it. We use "base diff" in read_lib_segments call below. |
913 | |
914 | if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET, |
915 | &lib_base_diff, sizeof(uintptr_t)) != PS_OK) { |
916 | print_debug("can't read shared object base address diff\n" ); |
917 | return false; |
918 | } |
919 | |
920 | // read address of the name |
921 | if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET, |
922 | &lib_name_addr, sizeof(uintptr_t)) != PS_OK) { |
923 | print_debug("can't read address of shared object name\n" ); |
924 | return false; |
925 | } |
926 | |
927 | // read name of the shared object |
928 | lib_name[0] = '\0'; |
929 | if (lib_name_addr != 0 && |
930 | read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) { |
931 | print_debug("can't read shared object name\n" ); |
932 | // don't let failure to read the name stop opening the file. If something is really wrong |
933 | // it will fail later. |
934 | } |
935 | |
936 | if (lib_name[0] != '\0') { |
937 | // ignore empty lib names |
938 | lib_fd = pathmap_open(lib_name); |
939 | |
940 | if (lib_fd < 0) { |
941 | print_debug("can't open shared object %s\n" , lib_name); |
942 | // continue with other libraries... |
943 | } else { |
944 | if (read_elf_header(lib_fd, &elf_ehdr)) { |
945 | lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr); |
946 | print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n" , |
947 | lib_name, lib_base, lib_base_diff); |
948 | // while adding library mappings we need to use "base difference". |
949 | if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) { |
950 | print_debug("can't read shared object's segments\n" ); |
951 | close(lib_fd); |
952 | return false; |
953 | } |
954 | add_lib_info_fd(ph, lib_name, lib_fd, lib_base); |
955 | // Map info is added for the library (lib_name) so |
956 | // we need to re-sort it before calling the p_pdread. |
957 | if (sort_map_array(ph) != true) |
958 | return false; |
959 | } else { |
960 | print_debug("can't read ELF header for shared object %s\n" , lib_name); |
961 | close(lib_fd); |
962 | // continue with other libraries... |
963 | } |
964 | } |
965 | } |
966 | |
967 | // read next link_map address |
968 | if (ps_pdread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET, |
969 | &link_map_addr, sizeof(uintptr_t)) != PS_OK) { |
970 | print_debug("can't read next link in link_map\n" ); |
971 | return false; |
972 | } |
973 | } |
974 | |
975 | return true; |
976 | } |
977 | |
978 | // the one and only one exposed stuff from this file |
979 | JNIEXPORT struct ps_prochandle* JNICALL |
980 | Pgrab_core(const char* exec_file, const char* core_file) { |
981 | ELF_EHDR core_ehdr; |
982 | ELF_EHDR exec_ehdr; |
983 | ELF_EHDR lib_ehdr; |
984 | |
985 | struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle)); |
986 | if (ph == NULL) { |
987 | print_debug("can't allocate ps_prochandle\n" ); |
988 | return NULL; |
989 | } |
990 | |
991 | if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) { |
992 | free(ph); |
993 | print_debug("can't allocate ps_prochandle\n" ); |
994 | return NULL; |
995 | } |
996 | |
997 | // initialize ph |
998 | ph->ops = &core_ops; |
999 | ph->core->core_fd = -1; |
1000 | ph->core->exec_fd = -1; |
1001 | ph->core->interp_fd = -1; |
1002 | |
1003 | // open the core file |
1004 | if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) { |
1005 | print_debug("can't open core file\n" ); |
1006 | goto err; |
1007 | } |
1008 | |
1009 | // read core file ELF header |
1010 | if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) { |
1011 | print_debug("core file is not a valid ELF ET_CORE file\n" ); |
1012 | goto err; |
1013 | } |
1014 | |
1015 | if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) { |
1016 | print_debug("can't open executable file\n" ); |
1017 | goto err; |
1018 | } |
1019 | |
1020 | if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true || |
1021 | ((exec_ehdr.e_type != ET_EXEC) && (exec_ehdr.e_type != ET_DYN))) { |
1022 | print_debug("executable file is not a valid ELF file\n" ); |
1023 | goto err; |
1024 | } |
1025 | |
1026 | // process core file segments |
1027 | if (read_core_segments(ph, &core_ehdr) != true) { |
1028 | goto err; |
1029 | } |
1030 | |
1031 | // process exec file segments |
1032 | if (read_exec_segments(ph, &exec_ehdr) != true) { |
1033 | goto err; |
1034 | } |
1035 | |
1036 | // exec file is also treated like a shared object for symbol search |
1037 | if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd, |
1038 | (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL) { |
1039 | goto err; |
1040 | } |
1041 | |
1042 | // allocate and sort maps into map_array, we need to do this |
1043 | // here because read_shared_lib_info needs to read from debuggee |
1044 | // address space |
1045 | if (sort_map_array(ph) != true) { |
1046 | goto err; |
1047 | } |
1048 | |
1049 | if (read_shared_lib_info(ph) != true) { |
1050 | goto err; |
1051 | } |
1052 | |
1053 | // sort again because we have added more mappings from shared objects |
1054 | if (sort_map_array(ph) != true) { |
1055 | goto err; |
1056 | } |
1057 | |
1058 | if (init_classsharing_workaround(ph) != true) { |
1059 | goto err; |
1060 | } |
1061 | |
1062 | return ph; |
1063 | |
1064 | err: |
1065 | Prelease(ph); |
1066 | return NULL; |
1067 | } |
1068 | |