1 | // Copyright 2007, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | |
30 | |
31 | // Google Mock - a framework for writing C++ mock classes. |
32 | // |
33 | // This file implements some commonly used argument matchers. More |
34 | // matchers can be defined by the user implementing the |
35 | // MatcherInterface<T> interface if necessary. |
36 | |
37 | // GOOGLETEST_CM0002 DO NOT DELETE |
38 | |
39 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
40 | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
41 | |
42 | #include <math.h> |
43 | #include <algorithm> |
44 | #include <iterator> |
45 | #include <limits> |
46 | #include <ostream> // NOLINT |
47 | #include <sstream> |
48 | #include <string> |
49 | #include <utility> |
50 | #include <vector> |
51 | #include "gtest/gtest.h" |
52 | #include "gmock/internal/gmock-internal-utils.h" |
53 | #include "gmock/internal/gmock-port.h" |
54 | |
55 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
56 | # include <initializer_list> // NOLINT -- must be after gtest.h |
57 | #endif |
58 | |
59 | #if _MSC_VER >= 1900 |
60 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
61 | 4251 5046 /* class A needs to have dll-interface to be used by clients of |
62 | class B */ |
63 | /* Symbol involving type with internal linkage not defined */) |
64 | #else //Pragma 5046 doesn't exist in version of MSC prior to 1900 |
65 | GTEST_DISABLE_MSC_WARNINGS_PUSH_( |
66 | 4251 /* class A needs to have dll-interface to be used by clients of |
67 | class B */ |
68 | /* Symbol involving type with internal linkage not defined */) |
69 | #endif |
70 | namespace testing { |
71 | |
72 | // To implement a matcher Foo for type T, define: |
73 | // 1. a class FooMatcherImpl that implements the |
74 | // MatcherInterface<T> interface, and |
75 | // 2. a factory function that creates a Matcher<T> object from a |
76 | // FooMatcherImpl*. |
77 | // |
78 | // The two-level delegation design makes it possible to allow a user |
79 | // to write "v" instead of "Eq(v)" where a Matcher is expected, which |
80 | // is impossible if we pass matchers by pointers. It also eases |
81 | // ownership management as Matcher objects can now be copied like |
82 | // plain values. |
83 | |
84 | // MatchResultListener is an abstract class. Its << operator can be |
85 | // used by a matcher to explain why a value matches or doesn't match. |
86 | // |
87 | // FIXME: add method |
88 | // bool InterestedInWhy(bool result) const; |
89 | // to indicate whether the listener is interested in why the match |
90 | // result is 'result'. |
91 | class MatchResultListener { |
92 | public: |
93 | // Creates a listener object with the given underlying ostream. The |
94 | // listener does not own the ostream, and does not dereference it |
95 | // in the constructor or destructor. |
96 | explicit MatchResultListener(::std::ostream* os) : stream_(os) {} |
97 | virtual ~MatchResultListener() = 0; // Makes this class abstract. |
98 | |
99 | // Streams x to the underlying ostream; does nothing if the ostream |
100 | // is NULL. |
101 | template <typename T> |
102 | MatchResultListener& operator<<(const T& x) { |
103 | if (stream_ != NULL) |
104 | *stream_ << x; |
105 | return *this; |
106 | } |
107 | |
108 | // Returns the underlying ostream. |
109 | ::std::ostream* stream() { return stream_; } |
110 | |
111 | // Returns true iff the listener is interested in an explanation of |
112 | // the match result. A matcher's MatchAndExplain() method can use |
113 | // this information to avoid generating the explanation when no one |
114 | // intends to hear it. |
115 | bool IsInterested() const { return stream_ != NULL; } |
116 | |
117 | private: |
118 | ::std::ostream* const stream_; |
119 | |
120 | GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); |
121 | }; |
122 | |
123 | inline MatchResultListener::~MatchResultListener() { |
124 | } |
125 | |
126 | // An instance of a subclass of this knows how to describe itself as a |
127 | // matcher. |
128 | class MatcherDescriberInterface { |
129 | public: |
130 | virtual ~MatcherDescriberInterface() {} |
131 | |
132 | // Describes this matcher to an ostream. The function should print |
133 | // a verb phrase that describes the property a value matching this |
134 | // matcher should have. The subject of the verb phrase is the value |
135 | // being matched. For example, the DescribeTo() method of the Gt(7) |
136 | // matcher prints "is greater than 7". |
137 | virtual void DescribeTo(::std::ostream* os) const = 0; |
138 | |
139 | // Describes the negation of this matcher to an ostream. For |
140 | // example, if the description of this matcher is "is greater than |
141 | // 7", the negated description could be "is not greater than 7". |
142 | // You are not required to override this when implementing |
143 | // MatcherInterface, but it is highly advised so that your matcher |
144 | // can produce good error messages. |
145 | virtual void DescribeNegationTo(::std::ostream* os) const { |
146 | *os << "not (" ; |
147 | DescribeTo(os); |
148 | *os << ")" ; |
149 | } |
150 | }; |
151 | |
152 | // The implementation of a matcher. |
153 | template <typename T> |
154 | class MatcherInterface : public MatcherDescriberInterface { |
155 | public: |
156 | // Returns true iff the matcher matches x; also explains the match |
157 | // result to 'listener' if necessary (see the next paragraph), in |
158 | // the form of a non-restrictive relative clause ("which ...", |
159 | // "whose ...", etc) that describes x. For example, the |
160 | // MatchAndExplain() method of the Pointee(...) matcher should |
161 | // generate an explanation like "which points to ...". |
162 | // |
163 | // Implementations of MatchAndExplain() should add an explanation of |
164 | // the match result *if and only if* they can provide additional |
165 | // information that's not already present (or not obvious) in the |
166 | // print-out of x and the matcher's description. Whether the match |
167 | // succeeds is not a factor in deciding whether an explanation is |
168 | // needed, as sometimes the caller needs to print a failure message |
169 | // when the match succeeds (e.g. when the matcher is used inside |
170 | // Not()). |
171 | // |
172 | // For example, a "has at least 10 elements" matcher should explain |
173 | // what the actual element count is, regardless of the match result, |
174 | // as it is useful information to the reader; on the other hand, an |
175 | // "is empty" matcher probably only needs to explain what the actual |
176 | // size is when the match fails, as it's redundant to say that the |
177 | // size is 0 when the value is already known to be empty. |
178 | // |
179 | // You should override this method when defining a new matcher. |
180 | // |
181 | // It's the responsibility of the caller (Google Mock) to guarantee |
182 | // that 'listener' is not NULL. This helps to simplify a matcher's |
183 | // implementation when it doesn't care about the performance, as it |
184 | // can talk to 'listener' without checking its validity first. |
185 | // However, in order to implement dummy listeners efficiently, |
186 | // listener->stream() may be NULL. |
187 | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; |
188 | |
189 | // Inherits these methods from MatcherDescriberInterface: |
190 | // virtual void DescribeTo(::std::ostream* os) const = 0; |
191 | // virtual void DescribeNegationTo(::std::ostream* os) const; |
192 | }; |
193 | |
194 | namespace internal { |
195 | |
196 | // Converts a MatcherInterface<T> to a MatcherInterface<const T&>. |
197 | template <typename T> |
198 | class MatcherInterfaceAdapter : public MatcherInterface<const T&> { |
199 | public: |
200 | explicit MatcherInterfaceAdapter(const MatcherInterface<T>* impl) |
201 | : impl_(impl) {} |
202 | virtual ~MatcherInterfaceAdapter() { delete impl_; } |
203 | |
204 | virtual void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
205 | |
206 | virtual void DescribeNegationTo(::std::ostream* os) const { |
207 | impl_->DescribeNegationTo(os); |
208 | } |
209 | |
210 | virtual bool MatchAndExplain(const T& x, |
211 | MatchResultListener* listener) const { |
212 | return impl_->MatchAndExplain(x, listener); |
213 | } |
214 | |
215 | private: |
216 | const MatcherInterface<T>* const impl_; |
217 | |
218 | GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter); |
219 | }; |
220 | |
221 | } // namespace internal |
222 | |
223 | // A match result listener that stores the explanation in a string. |
224 | class StringMatchResultListener : public MatchResultListener { |
225 | public: |
226 | StringMatchResultListener() : MatchResultListener(&ss_) {} |
227 | |
228 | // Returns the explanation accumulated so far. |
229 | std::string str() const { return ss_.str(); } |
230 | |
231 | // Clears the explanation accumulated so far. |
232 | void Clear() { ss_.str("" ); } |
233 | |
234 | private: |
235 | ::std::stringstream ss_; |
236 | |
237 | GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); |
238 | }; |
239 | |
240 | namespace internal { |
241 | |
242 | struct AnyEq { |
243 | template <typename A, typename B> |
244 | bool operator()(const A& a, const B& b) const { return a == b; } |
245 | }; |
246 | struct AnyNe { |
247 | template <typename A, typename B> |
248 | bool operator()(const A& a, const B& b) const { return a != b; } |
249 | }; |
250 | struct AnyLt { |
251 | template <typename A, typename B> |
252 | bool operator()(const A& a, const B& b) const { return a < b; } |
253 | }; |
254 | struct AnyGt { |
255 | template <typename A, typename B> |
256 | bool operator()(const A& a, const B& b) const { return a > b; } |
257 | }; |
258 | struct AnyLe { |
259 | template <typename A, typename B> |
260 | bool operator()(const A& a, const B& b) const { return a <= b; } |
261 | }; |
262 | struct AnyGe { |
263 | template <typename A, typename B> |
264 | bool operator()(const A& a, const B& b) const { return a >= b; } |
265 | }; |
266 | |
267 | // A match result listener that ignores the explanation. |
268 | class DummyMatchResultListener : public MatchResultListener { |
269 | public: |
270 | DummyMatchResultListener() : MatchResultListener(NULL) {} |
271 | |
272 | private: |
273 | GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); |
274 | }; |
275 | |
276 | // A match result listener that forwards the explanation to a given |
277 | // ostream. The difference between this and MatchResultListener is |
278 | // that the former is concrete. |
279 | class StreamMatchResultListener : public MatchResultListener { |
280 | public: |
281 | explicit StreamMatchResultListener(::std::ostream* os) |
282 | : MatchResultListener(os) {} |
283 | |
284 | private: |
285 | GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); |
286 | }; |
287 | |
288 | // An internal class for implementing Matcher<T>, which will derive |
289 | // from it. We put functionalities common to all Matcher<T> |
290 | // specializations here to avoid code duplication. |
291 | template <typename T> |
292 | class MatcherBase { |
293 | public: |
294 | // Returns true iff the matcher matches x; also explains the match |
295 | // result to 'listener'. |
296 | bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, |
297 | MatchResultListener* listener) const { |
298 | return impl_->MatchAndExplain(x, listener); |
299 | } |
300 | |
301 | // Returns true iff this matcher matches x. |
302 | bool Matches(GTEST_REFERENCE_TO_CONST_(T) x) const { |
303 | DummyMatchResultListener dummy; |
304 | return MatchAndExplain(x, &dummy); |
305 | } |
306 | |
307 | // Describes this matcher to an ostream. |
308 | void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } |
309 | |
310 | // Describes the negation of this matcher to an ostream. |
311 | void DescribeNegationTo(::std::ostream* os) const { |
312 | impl_->DescribeNegationTo(os); |
313 | } |
314 | |
315 | // Explains why x matches, or doesn't match, the matcher. |
316 | void ExplainMatchResultTo(GTEST_REFERENCE_TO_CONST_(T) x, |
317 | ::std::ostream* os) const { |
318 | StreamMatchResultListener listener(os); |
319 | MatchAndExplain(x, &listener); |
320 | } |
321 | |
322 | // Returns the describer for this matcher object; retains ownership |
323 | // of the describer, which is only guaranteed to be alive when |
324 | // this matcher object is alive. |
325 | const MatcherDescriberInterface* GetDescriber() const { |
326 | return impl_.get(); |
327 | } |
328 | |
329 | protected: |
330 | MatcherBase() {} |
331 | |
332 | // Constructs a matcher from its implementation. |
333 | explicit MatcherBase( |
334 | const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) |
335 | : impl_(impl) {} |
336 | |
337 | template <typename U> |
338 | explicit MatcherBase( |
339 | const MatcherInterface<U>* impl, |
340 | typename internal::EnableIf< |
341 | !internal::IsSame<U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = |
342 | NULL) |
343 | : impl_(new internal::MatcherInterfaceAdapter<U>(impl)) {} |
344 | |
345 | virtual ~MatcherBase() {} |
346 | |
347 | private: |
348 | // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar |
349 | // interfaces. The former dynamically allocates a chunk of memory |
350 | // to hold the reference count, while the latter tracks all |
351 | // references using a circular linked list without allocating |
352 | // memory. It has been observed that linked_ptr performs better in |
353 | // typical scenarios. However, shared_ptr can out-perform |
354 | // linked_ptr when there are many more uses of the copy constructor |
355 | // than the default constructor. |
356 | // |
357 | // If performance becomes a problem, we should see if using |
358 | // shared_ptr helps. |
359 | ::testing::internal::linked_ptr< |
360 | const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> > |
361 | impl_; |
362 | }; |
363 | |
364 | } // namespace internal |
365 | |
366 | // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) |
367 | // object that can check whether a value of type T matches. The |
368 | // implementation of Matcher<T> is just a linked_ptr to const |
369 | // MatcherInterface<T>, so copying is fairly cheap. Don't inherit |
370 | // from Matcher! |
371 | template <typename T> |
372 | class Matcher : public internal::MatcherBase<T> { |
373 | public: |
374 | // Constructs a null matcher. Needed for storing Matcher objects in STL |
375 | // containers. A default-constructed matcher is not yet initialized. You |
376 | // cannot use it until a valid value has been assigned to it. |
377 | explicit Matcher() {} // NOLINT |
378 | |
379 | // Constructs a matcher from its implementation. |
380 | explicit Matcher(const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl) |
381 | : internal::MatcherBase<T>(impl) {} |
382 | |
383 | template <typename U> |
384 | explicit Matcher(const MatcherInterface<U>* impl, |
385 | typename internal::EnableIf<!internal::IsSame< |
386 | U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL) |
387 | : internal::MatcherBase<T>(impl) {} |
388 | |
389 | // Implicit constructor here allows people to write |
390 | // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes |
391 | Matcher(T value); // NOLINT |
392 | }; |
393 | |
394 | // The following two specializations allow the user to write str |
395 | // instead of Eq(str) and "foo" instead of Eq("foo") when a std::string |
396 | // matcher is expected. |
397 | template <> |
398 | class GTEST_API_ Matcher<const std::string&> |
399 | : public internal::MatcherBase<const std::string&> { |
400 | public: |
401 | Matcher() {} |
402 | |
403 | explicit Matcher(const MatcherInterface<const std::string&>* impl) |
404 | : internal::MatcherBase<const std::string&>(impl) {} |
405 | |
406 | // Allows the user to write str instead of Eq(str) sometimes, where |
407 | // str is a std::string object. |
408 | Matcher(const std::string& s); // NOLINT |
409 | |
410 | #if GTEST_HAS_GLOBAL_STRING |
411 | // Allows the user to write str instead of Eq(str) sometimes, where |
412 | // str is a ::string object. |
413 | Matcher(const ::string& s); // NOLINT |
414 | #endif // GTEST_HAS_GLOBAL_STRING |
415 | |
416 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
417 | Matcher(const char* s); // NOLINT |
418 | }; |
419 | |
420 | template <> |
421 | class GTEST_API_ Matcher<std::string> |
422 | : public internal::MatcherBase<std::string> { |
423 | public: |
424 | Matcher() {} |
425 | |
426 | explicit Matcher(const MatcherInterface<const std::string&>* impl) |
427 | : internal::MatcherBase<std::string>(impl) {} |
428 | explicit Matcher(const MatcherInterface<std::string>* impl) |
429 | : internal::MatcherBase<std::string>(impl) {} |
430 | |
431 | // Allows the user to write str instead of Eq(str) sometimes, where |
432 | // str is a string object. |
433 | Matcher(const std::string& s); // NOLINT |
434 | |
435 | #if GTEST_HAS_GLOBAL_STRING |
436 | // Allows the user to write str instead of Eq(str) sometimes, where |
437 | // str is a ::string object. |
438 | Matcher(const ::string& s); // NOLINT |
439 | #endif // GTEST_HAS_GLOBAL_STRING |
440 | |
441 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
442 | Matcher(const char* s); // NOLINT |
443 | }; |
444 | |
445 | #if GTEST_HAS_GLOBAL_STRING |
446 | // The following two specializations allow the user to write str |
447 | // instead of Eq(str) and "foo" instead of Eq("foo") when a ::string |
448 | // matcher is expected. |
449 | template <> |
450 | class GTEST_API_ Matcher<const ::string&> |
451 | : public internal::MatcherBase<const ::string&> { |
452 | public: |
453 | Matcher() {} |
454 | |
455 | explicit Matcher(const MatcherInterface<const ::string&>* impl) |
456 | : internal::MatcherBase<const ::string&>(impl) {} |
457 | |
458 | // Allows the user to write str instead of Eq(str) sometimes, where |
459 | // str is a std::string object. |
460 | Matcher(const std::string& s); // NOLINT |
461 | |
462 | // Allows the user to write str instead of Eq(str) sometimes, where |
463 | // str is a ::string object. |
464 | Matcher(const ::string& s); // NOLINT |
465 | |
466 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
467 | Matcher(const char* s); // NOLINT |
468 | }; |
469 | |
470 | template <> |
471 | class GTEST_API_ Matcher< ::string> |
472 | : public internal::MatcherBase< ::string> { |
473 | public: |
474 | Matcher() {} |
475 | |
476 | explicit Matcher(const MatcherInterface<const ::string&>* impl) |
477 | : internal::MatcherBase< ::string>(impl) {} |
478 | explicit Matcher(const MatcherInterface< ::string>* impl) |
479 | : internal::MatcherBase< ::string>(impl) {} |
480 | |
481 | // Allows the user to write str instead of Eq(str) sometimes, where |
482 | // str is a std::string object. |
483 | Matcher(const std::string& s); // NOLINT |
484 | |
485 | // Allows the user to write str instead of Eq(str) sometimes, where |
486 | // str is a ::string object. |
487 | Matcher(const ::string& s); // NOLINT |
488 | |
489 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
490 | Matcher(const char* s); // NOLINT |
491 | }; |
492 | #endif // GTEST_HAS_GLOBAL_STRING |
493 | |
494 | #if GTEST_HAS_ABSL |
495 | // The following two specializations allow the user to write str |
496 | // instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view |
497 | // matcher is expected. |
498 | template <> |
499 | class GTEST_API_ Matcher<const absl::string_view&> |
500 | : public internal::MatcherBase<const absl::string_view&> { |
501 | public: |
502 | Matcher() {} |
503 | |
504 | explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) |
505 | : internal::MatcherBase<const absl::string_view&>(impl) {} |
506 | |
507 | // Allows the user to write str instead of Eq(str) sometimes, where |
508 | // str is a std::string object. |
509 | Matcher(const std::string& s); // NOLINT |
510 | |
511 | #if GTEST_HAS_GLOBAL_STRING |
512 | // Allows the user to write str instead of Eq(str) sometimes, where |
513 | // str is a ::string object. |
514 | Matcher(const ::string& s); // NOLINT |
515 | #endif // GTEST_HAS_GLOBAL_STRING |
516 | |
517 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
518 | Matcher(const char* s); // NOLINT |
519 | |
520 | // Allows the user to pass absl::string_views directly. |
521 | Matcher(absl::string_view s); // NOLINT |
522 | }; |
523 | |
524 | template <> |
525 | class GTEST_API_ Matcher<absl::string_view> |
526 | : public internal::MatcherBase<absl::string_view> { |
527 | public: |
528 | Matcher() {} |
529 | |
530 | explicit Matcher(const MatcherInterface<const absl::string_view&>* impl) |
531 | : internal::MatcherBase<absl::string_view>(impl) {} |
532 | explicit Matcher(const MatcherInterface<absl::string_view>* impl) |
533 | : internal::MatcherBase<absl::string_view>(impl) {} |
534 | |
535 | // Allows the user to write str instead of Eq(str) sometimes, where |
536 | // str is a std::string object. |
537 | Matcher(const std::string& s); // NOLINT |
538 | |
539 | #if GTEST_HAS_GLOBAL_STRING |
540 | // Allows the user to write str instead of Eq(str) sometimes, where |
541 | // str is a ::string object. |
542 | Matcher(const ::string& s); // NOLINT |
543 | #endif // GTEST_HAS_GLOBAL_STRING |
544 | |
545 | // Allows the user to write "foo" instead of Eq("foo") sometimes. |
546 | Matcher(const char* s); // NOLINT |
547 | |
548 | // Allows the user to pass absl::string_views directly. |
549 | Matcher(absl::string_view s); // NOLINT |
550 | }; |
551 | #endif // GTEST_HAS_ABSL |
552 | |
553 | // Prints a matcher in a human-readable format. |
554 | template <typename T> |
555 | std::ostream& operator<<(std::ostream& os, const Matcher<T>& matcher) { |
556 | matcher.DescribeTo(&os); |
557 | return os; |
558 | } |
559 | |
560 | // The PolymorphicMatcher class template makes it easy to implement a |
561 | // polymorphic matcher (i.e. a matcher that can match values of more |
562 | // than one type, e.g. Eq(n) and NotNull()). |
563 | // |
564 | // To define a polymorphic matcher, a user should provide an Impl |
565 | // class that has a DescribeTo() method and a DescribeNegationTo() |
566 | // method, and define a member function (or member function template) |
567 | // |
568 | // bool MatchAndExplain(const Value& value, |
569 | // MatchResultListener* listener) const; |
570 | // |
571 | // See the definition of NotNull() for a complete example. |
572 | template <class Impl> |
573 | class PolymorphicMatcher { |
574 | public: |
575 | explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} |
576 | |
577 | // Returns a mutable reference to the underlying matcher |
578 | // implementation object. |
579 | Impl& mutable_impl() { return impl_; } |
580 | |
581 | // Returns an immutable reference to the underlying matcher |
582 | // implementation object. |
583 | const Impl& impl() const { return impl_; } |
584 | |
585 | template <typename T> |
586 | operator Matcher<T>() const { |
587 | return Matcher<T>(new MonomorphicImpl<GTEST_REFERENCE_TO_CONST_(T)>(impl_)); |
588 | } |
589 | |
590 | private: |
591 | template <typename T> |
592 | class MonomorphicImpl : public MatcherInterface<T> { |
593 | public: |
594 | explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
595 | |
596 | virtual void DescribeTo(::std::ostream* os) const { |
597 | impl_.DescribeTo(os); |
598 | } |
599 | |
600 | virtual void DescribeNegationTo(::std::ostream* os) const { |
601 | impl_.DescribeNegationTo(os); |
602 | } |
603 | |
604 | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
605 | return impl_.MatchAndExplain(x, listener); |
606 | } |
607 | |
608 | private: |
609 | const Impl impl_; |
610 | |
611 | GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); |
612 | }; |
613 | |
614 | Impl impl_; |
615 | |
616 | GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); |
617 | }; |
618 | |
619 | // Creates a matcher from its implementation. This is easier to use |
620 | // than the Matcher<T> constructor as it doesn't require you to |
621 | // explicitly write the template argument, e.g. |
622 | // |
623 | // MakeMatcher(foo); |
624 | // vs |
625 | // Matcher<const string&>(foo); |
626 | template <typename T> |
627 | inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { |
628 | return Matcher<T>(impl); |
629 | } |
630 | |
631 | // Creates a polymorphic matcher from its implementation. This is |
632 | // easier to use than the PolymorphicMatcher<Impl> constructor as it |
633 | // doesn't require you to explicitly write the template argument, e.g. |
634 | // |
635 | // MakePolymorphicMatcher(foo); |
636 | // vs |
637 | // PolymorphicMatcher<TypeOfFoo>(foo); |
638 | template <class Impl> |
639 | inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { |
640 | return PolymorphicMatcher<Impl>(impl); |
641 | } |
642 | |
643 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
644 | // and MUST NOT BE USED IN USER CODE!!! |
645 | namespace internal { |
646 | |
647 | // The MatcherCastImpl class template is a helper for implementing |
648 | // MatcherCast(). We need this helper in order to partially |
649 | // specialize the implementation of MatcherCast() (C++ allows |
650 | // class/struct templates to be partially specialized, but not |
651 | // function templates.). |
652 | |
653 | // This general version is used when MatcherCast()'s argument is a |
654 | // polymorphic matcher (i.e. something that can be converted to a |
655 | // Matcher but is not one yet; for example, Eq(value)) or a value (for |
656 | // example, "hello"). |
657 | template <typename T, typename M> |
658 | class MatcherCastImpl { |
659 | public: |
660 | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
661 | // M can be a polymorphic matcher, in which case we want to use |
662 | // its conversion operator to create Matcher<T>. Or it can be a value |
663 | // that should be passed to the Matcher<T>'s constructor. |
664 | // |
665 | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a |
666 | // polymorphic matcher because it'll be ambiguous if T has an implicit |
667 | // constructor from M (this usually happens when T has an implicit |
668 | // constructor from any type). |
669 | // |
670 | // It won't work to unconditionally implict_cast |
671 | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger |
672 | // a user-defined conversion from M to T if one exists (assuming M is |
673 | // a value). |
674 | return CastImpl( |
675 | polymorphic_matcher_or_value, |
676 | BooleanConstant< |
677 | internal::ImplicitlyConvertible<M, Matcher<T> >::value>(), |
678 | BooleanConstant< |
679 | internal::ImplicitlyConvertible<M, T>::value>()); |
680 | } |
681 | |
682 | private: |
683 | template <bool Ignore> |
684 | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, |
685 | BooleanConstant<true> /* convertible_to_matcher */, |
686 | BooleanConstant<Ignore>) { |
687 | // M is implicitly convertible to Matcher<T>, which means that either |
688 | // M is a polymorphic matcher or Matcher<T> has an implicit constructor |
689 | // from M. In both cases using the implicit conversion will produce a |
690 | // matcher. |
691 | // |
692 | // Even if T has an implicit constructor from M, it won't be called because |
693 | // creating Matcher<T> would require a chain of two user-defined conversions |
694 | // (first to create T from M and then to create Matcher<T> from T). |
695 | return polymorphic_matcher_or_value; |
696 | } |
697 | |
698 | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic |
699 | // matcher. It's a value of a type implicitly convertible to T. Use direct |
700 | // initialization to create a matcher. |
701 | static Matcher<T> CastImpl( |
702 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
703 | BooleanConstant<true> /* convertible_to_T */) { |
704 | return Matcher<T>(ImplicitCast_<T>(value)); |
705 | } |
706 | |
707 | // M can't be implicitly converted to either Matcher<T> or T. Attempt to use |
708 | // polymorphic matcher Eq(value) in this case. |
709 | // |
710 | // Note that we first attempt to perform an implicit cast on the value and |
711 | // only fall back to the polymorphic Eq() matcher afterwards because the |
712 | // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end |
713 | // which might be undefined even when Rhs is implicitly convertible to Lhs |
714 | // (e.g. std::pair<const int, int> vs. std::pair<int, int>). |
715 | // |
716 | // We don't define this method inline as we need the declaration of Eq(). |
717 | static Matcher<T> CastImpl( |
718 | const M& value, BooleanConstant<false> /* convertible_to_matcher */, |
719 | BooleanConstant<false> /* convertible_to_T */); |
720 | }; |
721 | |
722 | // This more specialized version is used when MatcherCast()'s argument |
723 | // is already a Matcher. This only compiles when type T can be |
724 | // statically converted to type U. |
725 | template <typename T, typename U> |
726 | class MatcherCastImpl<T, Matcher<U> > { |
727 | public: |
728 | static Matcher<T> Cast(const Matcher<U>& source_matcher) { |
729 | return Matcher<T>(new Impl(source_matcher)); |
730 | } |
731 | |
732 | private: |
733 | class Impl : public MatcherInterface<T> { |
734 | public: |
735 | explicit Impl(const Matcher<U>& source_matcher) |
736 | : source_matcher_(source_matcher) {} |
737 | |
738 | // We delegate the matching logic to the source matcher. |
739 | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
740 | #if GTEST_LANG_CXX11 |
741 | using FromType = typename std::remove_cv<typename std::remove_pointer< |
742 | typename std::remove_reference<T>::type>::type>::type; |
743 | using ToType = typename std::remove_cv<typename std::remove_pointer< |
744 | typename std::remove_reference<U>::type>::type>::type; |
745 | // Do not allow implicitly converting base*/& to derived*/&. |
746 | static_assert( |
747 | // Do not trigger if only one of them is a pointer. That implies a |
748 | // regular conversion and not a down_cast. |
749 | (std::is_pointer<typename std::remove_reference<T>::type>::value != |
750 | std::is_pointer<typename std::remove_reference<U>::type>::value) || |
751 | std::is_same<FromType, ToType>::value || |
752 | !std::is_base_of<FromType, ToType>::value, |
753 | "Can't implicitly convert from <base> to <derived>" ); |
754 | #endif // GTEST_LANG_CXX11 |
755 | |
756 | return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); |
757 | } |
758 | |
759 | virtual void DescribeTo(::std::ostream* os) const { |
760 | source_matcher_.DescribeTo(os); |
761 | } |
762 | |
763 | virtual void DescribeNegationTo(::std::ostream* os) const { |
764 | source_matcher_.DescribeNegationTo(os); |
765 | } |
766 | |
767 | private: |
768 | const Matcher<U> source_matcher_; |
769 | |
770 | GTEST_DISALLOW_ASSIGN_(Impl); |
771 | }; |
772 | }; |
773 | |
774 | // This even more specialized version is used for efficiently casting |
775 | // a matcher to its own type. |
776 | template <typename T> |
777 | class MatcherCastImpl<T, Matcher<T> > { |
778 | public: |
779 | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } |
780 | }; |
781 | |
782 | } // namespace internal |
783 | |
784 | // In order to be safe and clear, casting between different matcher |
785 | // types is done explicitly via MatcherCast<T>(m), which takes a |
786 | // matcher m and returns a Matcher<T>. It compiles only when T can be |
787 | // statically converted to the argument type of m. |
788 | template <typename T, typename M> |
789 | inline Matcher<T> MatcherCast(const M& matcher) { |
790 | return internal::MatcherCastImpl<T, M>::Cast(matcher); |
791 | } |
792 | |
793 | // Implements SafeMatcherCast(). |
794 | // |
795 | // We use an intermediate class to do the actual safe casting as Nokia's |
796 | // Symbian compiler cannot decide between |
797 | // template <T, M> ... (M) and |
798 | // template <T, U> ... (const Matcher<U>&) |
799 | // for function templates but can for member function templates. |
800 | template <typename T> |
801 | class SafeMatcherCastImpl { |
802 | public: |
803 | // This overload handles polymorphic matchers and values only since |
804 | // monomorphic matchers are handled by the next one. |
805 | template <typename M> |
806 | static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { |
807 | return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); |
808 | } |
809 | |
810 | // This overload handles monomorphic matchers. |
811 | // |
812 | // In general, if type T can be implicitly converted to type U, we can |
813 | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is |
814 | // contravariant): just keep a copy of the original Matcher<U>, convert the |
815 | // argument from type T to U, and then pass it to the underlying Matcher<U>. |
816 | // The only exception is when U is a reference and T is not, as the |
817 | // underlying Matcher<U> may be interested in the argument's address, which |
818 | // is not preserved in the conversion from T to U. |
819 | template <typename U> |
820 | static inline Matcher<T> Cast(const Matcher<U>& matcher) { |
821 | // Enforce that T can be implicitly converted to U. |
822 | GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), |
823 | T_must_be_implicitly_convertible_to_U); |
824 | // Enforce that we are not converting a non-reference type T to a reference |
825 | // type U. |
826 | GTEST_COMPILE_ASSERT_( |
827 | internal::is_reference<T>::value || !internal::is_reference<U>::value, |
828 | cannot_convert_non_reference_arg_to_reference); |
829 | // In case both T and U are arithmetic types, enforce that the |
830 | // conversion is not lossy. |
831 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; |
832 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; |
833 | const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; |
834 | const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; |
835 | GTEST_COMPILE_ASSERT_( |
836 | kTIsOther || kUIsOther || |
837 | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), |
838 | conversion_of_arithmetic_types_must_be_lossless); |
839 | return MatcherCast<T>(matcher); |
840 | } |
841 | }; |
842 | |
843 | template <typename T, typename M> |
844 | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { |
845 | return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); |
846 | } |
847 | |
848 | // A<T>() returns a matcher that matches any value of type T. |
849 | template <typename T> |
850 | Matcher<T> A(); |
851 | |
852 | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION |
853 | // and MUST NOT BE USED IN USER CODE!!! |
854 | namespace internal { |
855 | |
856 | // If the explanation is not empty, prints it to the ostream. |
857 | inline void PrintIfNotEmpty(const std::string& explanation, |
858 | ::std::ostream* os) { |
859 | if (explanation != "" && os != NULL) { |
860 | *os << ", " << explanation; |
861 | } |
862 | } |
863 | |
864 | // Returns true if the given type name is easy to read by a human. |
865 | // This is used to decide whether printing the type of a value might |
866 | // be helpful. |
867 | inline bool IsReadableTypeName(const std::string& type_name) { |
868 | // We consider a type name readable if it's short or doesn't contain |
869 | // a template or function type. |
870 | return (type_name.length() <= 20 || |
871 | type_name.find_first_of("<(" ) == std::string::npos); |
872 | } |
873 | |
874 | // Matches the value against the given matcher, prints the value and explains |
875 | // the match result to the listener. Returns the match result. |
876 | // 'listener' must not be NULL. |
877 | // Value cannot be passed by const reference, because some matchers take a |
878 | // non-const argument. |
879 | template <typename Value, typename T> |
880 | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, |
881 | MatchResultListener* listener) { |
882 | if (!listener->IsInterested()) { |
883 | // If the listener is not interested, we do not need to construct the |
884 | // inner explanation. |
885 | return matcher.Matches(value); |
886 | } |
887 | |
888 | StringMatchResultListener inner_listener; |
889 | const bool match = matcher.MatchAndExplain(value, &inner_listener); |
890 | |
891 | UniversalPrint(value, listener->stream()); |
892 | #if GTEST_HAS_RTTI |
893 | const std::string& type_name = GetTypeName<Value>(); |
894 | if (IsReadableTypeName(type_name)) |
895 | *listener->stream() << " (of type " << type_name << ")" ; |
896 | #endif |
897 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
898 | |
899 | return match; |
900 | } |
901 | |
902 | // An internal helper class for doing compile-time loop on a tuple's |
903 | // fields. |
904 | template <size_t N> |
905 | class TuplePrefix { |
906 | public: |
907 | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true |
908 | // iff the first N fields of matcher_tuple matches the first N |
909 | // fields of value_tuple, respectively. |
910 | template <typename MatcherTuple, typename ValueTuple> |
911 | static bool Matches(const MatcherTuple& matcher_tuple, |
912 | const ValueTuple& value_tuple) { |
913 | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) |
914 | && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); |
915 | } |
916 | |
917 | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) |
918 | // describes failures in matching the first N fields of matchers |
919 | // against the first N fields of values. If there is no failure, |
920 | // nothing will be streamed to os. |
921 | template <typename MatcherTuple, typename ValueTuple> |
922 | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, |
923 | const ValueTuple& values, |
924 | ::std::ostream* os) { |
925 | // First, describes failures in the first N - 1 fields. |
926 | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); |
927 | |
928 | // Then describes the failure (if any) in the (N - 1)-th (0-based) |
929 | // field. |
930 | typename tuple_element<N - 1, MatcherTuple>::type matcher = |
931 | get<N - 1>(matchers); |
932 | typedef typename tuple_element<N - 1, ValueTuple>::type Value; |
933 | GTEST_REFERENCE_TO_CONST_(Value) value = get<N - 1>(values); |
934 | StringMatchResultListener listener; |
935 | if (!matcher.MatchAndExplain(value, &listener)) { |
936 | // FIXME: include in the message the name of the parameter |
937 | // as used in MOCK_METHOD*() when possible. |
938 | *os << " Expected arg #" << N - 1 << ": " ; |
939 | get<N - 1>(matchers).DescribeTo(os); |
940 | *os << "\n Actual: " ; |
941 | // We remove the reference in type Value to prevent the |
942 | // universal printer from printing the address of value, which |
943 | // isn't interesting to the user most of the time. The |
944 | // matcher's MatchAndExplain() method handles the case when |
945 | // the address is interesting. |
946 | internal::UniversalPrint(value, os); |
947 | PrintIfNotEmpty(listener.str(), os); |
948 | *os << "\n" ; |
949 | } |
950 | } |
951 | }; |
952 | |
953 | // The base case. |
954 | template <> |
955 | class TuplePrefix<0> { |
956 | public: |
957 | template <typename MatcherTuple, typename ValueTuple> |
958 | static bool Matches(const MatcherTuple& /* matcher_tuple */, |
959 | const ValueTuple& /* value_tuple */) { |
960 | return true; |
961 | } |
962 | |
963 | template <typename MatcherTuple, typename ValueTuple> |
964 | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, |
965 | const ValueTuple& /* values */, |
966 | ::std::ostream* /* os */) {} |
967 | }; |
968 | |
969 | // TupleMatches(matcher_tuple, value_tuple) returns true iff all |
970 | // matchers in matcher_tuple match the corresponding fields in |
971 | // value_tuple. It is a compiler error if matcher_tuple and |
972 | // value_tuple have different number of fields or incompatible field |
973 | // types. |
974 | template <typename MatcherTuple, typename ValueTuple> |
975 | bool TupleMatches(const MatcherTuple& matcher_tuple, |
976 | const ValueTuple& value_tuple) { |
977 | // Makes sure that matcher_tuple and value_tuple have the same |
978 | // number of fields. |
979 | GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == |
980 | tuple_size<ValueTuple>::value, |
981 | matcher_and_value_have_different_numbers_of_fields); |
982 | return TuplePrefix<tuple_size<ValueTuple>::value>:: |
983 | Matches(matcher_tuple, value_tuple); |
984 | } |
985 | |
986 | // Describes failures in matching matchers against values. If there |
987 | // is no failure, nothing will be streamed to os. |
988 | template <typename MatcherTuple, typename ValueTuple> |
989 | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, |
990 | const ValueTuple& values, |
991 | ::std::ostream* os) { |
992 | TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( |
993 | matchers, values, os); |
994 | } |
995 | |
996 | // TransformTupleValues and its helper. |
997 | // |
998 | // TransformTupleValuesHelper hides the internal machinery that |
999 | // TransformTupleValues uses to implement a tuple traversal. |
1000 | template <typename Tuple, typename Func, typename OutIter> |
1001 | class TransformTupleValuesHelper { |
1002 | private: |
1003 | typedef ::testing::tuple_size<Tuple> TupleSize; |
1004 | |
1005 | public: |
1006 | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. |
1007 | // Returns the final value of 'out' in case the caller needs it. |
1008 | static OutIter Run(Func f, const Tuple& t, OutIter out) { |
1009 | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); |
1010 | } |
1011 | |
1012 | private: |
1013 | template <typename Tup, size_t kRemainingSize> |
1014 | struct IterateOverTuple { |
1015 | OutIter operator() (Func f, const Tup& t, OutIter out) const { |
1016 | *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t)); |
1017 | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); |
1018 | } |
1019 | }; |
1020 | template <typename Tup> |
1021 | struct IterateOverTuple<Tup, 0> { |
1022 | OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { |
1023 | return out; |
1024 | } |
1025 | }; |
1026 | }; |
1027 | |
1028 | // Successively invokes 'f(element)' on each element of the tuple 't', |
1029 | // appending each result to the 'out' iterator. Returns the final value |
1030 | // of 'out'. |
1031 | template <typename Tuple, typename Func, typename OutIter> |
1032 | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { |
1033 | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); |
1034 | } |
1035 | |
1036 | // Implements A<T>(). |
1037 | template <typename T> |
1038 | class AnyMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { |
1039 | public: |
1040 | virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) /* x */, |
1041 | MatchResultListener* /* listener */) const { |
1042 | return true; |
1043 | } |
1044 | virtual void DescribeTo(::std::ostream* os) const { *os << "is anything" ; } |
1045 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1046 | // This is mostly for completeness' safe, as it's not very useful |
1047 | // to write Not(A<bool>()). However we cannot completely rule out |
1048 | // such a possibility, and it doesn't hurt to be prepared. |
1049 | *os << "never matches" ; |
1050 | } |
1051 | }; |
1052 | |
1053 | // Implements _, a matcher that matches any value of any |
1054 | // type. This is a polymorphic matcher, so we need a template type |
1055 | // conversion operator to make it appearing as a Matcher<T> for any |
1056 | // type T. |
1057 | class AnythingMatcher { |
1058 | public: |
1059 | template <typename T> |
1060 | operator Matcher<T>() const { return A<T>(); } |
1061 | }; |
1062 | |
1063 | // Implements a matcher that compares a given value with a |
1064 | // pre-supplied value using one of the ==, <=, <, etc, operators. The |
1065 | // two values being compared don't have to have the same type. |
1066 | // |
1067 | // The matcher defined here is polymorphic (for example, Eq(5) can be |
1068 | // used to match an int, a short, a double, etc). Therefore we use |
1069 | // a template type conversion operator in the implementation. |
1070 | // |
1071 | // The following template definition assumes that the Rhs parameter is |
1072 | // a "bare" type (i.e. neither 'const T' nor 'T&'). |
1073 | template <typename D, typename Rhs, typename Op> |
1074 | class ComparisonBase { |
1075 | public: |
1076 | explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} |
1077 | template <typename Lhs> |
1078 | operator Matcher<Lhs>() const { |
1079 | return MakeMatcher(new Impl<Lhs>(rhs_)); |
1080 | } |
1081 | |
1082 | private: |
1083 | template <typename Lhs> |
1084 | class Impl : public MatcherInterface<Lhs> { |
1085 | public: |
1086 | explicit Impl(const Rhs& rhs) : rhs_(rhs) {} |
1087 | virtual bool MatchAndExplain( |
1088 | Lhs lhs, MatchResultListener* /* listener */) const { |
1089 | return Op()(lhs, rhs_); |
1090 | } |
1091 | virtual void DescribeTo(::std::ostream* os) const { |
1092 | *os << D::Desc() << " " ; |
1093 | UniversalPrint(rhs_, os); |
1094 | } |
1095 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1096 | *os << D::NegatedDesc() << " " ; |
1097 | UniversalPrint(rhs_, os); |
1098 | } |
1099 | private: |
1100 | Rhs rhs_; |
1101 | GTEST_DISALLOW_ASSIGN_(Impl); |
1102 | }; |
1103 | Rhs rhs_; |
1104 | GTEST_DISALLOW_ASSIGN_(ComparisonBase); |
1105 | }; |
1106 | |
1107 | template <typename Rhs> |
1108 | class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> { |
1109 | public: |
1110 | explicit EqMatcher(const Rhs& rhs) |
1111 | : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { } |
1112 | static const char* Desc() { return "is equal to" ; } |
1113 | static const char* NegatedDesc() { return "isn't equal to" ; } |
1114 | }; |
1115 | template <typename Rhs> |
1116 | class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> { |
1117 | public: |
1118 | explicit NeMatcher(const Rhs& rhs) |
1119 | : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { } |
1120 | static const char* Desc() { return "isn't equal to" ; } |
1121 | static const char* NegatedDesc() { return "is equal to" ; } |
1122 | }; |
1123 | template <typename Rhs> |
1124 | class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> { |
1125 | public: |
1126 | explicit LtMatcher(const Rhs& rhs) |
1127 | : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { } |
1128 | static const char* Desc() { return "is <" ; } |
1129 | static const char* NegatedDesc() { return "isn't <" ; } |
1130 | }; |
1131 | template <typename Rhs> |
1132 | class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> { |
1133 | public: |
1134 | explicit GtMatcher(const Rhs& rhs) |
1135 | : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { } |
1136 | static const char* Desc() { return "is >" ; } |
1137 | static const char* NegatedDesc() { return "isn't >" ; } |
1138 | }; |
1139 | template <typename Rhs> |
1140 | class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> { |
1141 | public: |
1142 | explicit LeMatcher(const Rhs& rhs) |
1143 | : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { } |
1144 | static const char* Desc() { return "is <=" ; } |
1145 | static const char* NegatedDesc() { return "isn't <=" ; } |
1146 | }; |
1147 | template <typename Rhs> |
1148 | class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> { |
1149 | public: |
1150 | explicit GeMatcher(const Rhs& rhs) |
1151 | : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { } |
1152 | static const char* Desc() { return "is >=" ; } |
1153 | static const char* NegatedDesc() { return "isn't >=" ; } |
1154 | }; |
1155 | |
1156 | // Implements the polymorphic IsNull() matcher, which matches any raw or smart |
1157 | // pointer that is NULL. |
1158 | class IsNullMatcher { |
1159 | public: |
1160 | template <typename Pointer> |
1161 | bool MatchAndExplain(const Pointer& p, |
1162 | MatchResultListener* /* listener */) const { |
1163 | #if GTEST_LANG_CXX11 |
1164 | return p == nullptr; |
1165 | #else // GTEST_LANG_CXX11 |
1166 | return GetRawPointer(p) == NULL; |
1167 | #endif // GTEST_LANG_CXX11 |
1168 | } |
1169 | |
1170 | void DescribeTo(::std::ostream* os) const { *os << "is NULL" ; } |
1171 | void DescribeNegationTo(::std::ostream* os) const { |
1172 | *os << "isn't NULL" ; |
1173 | } |
1174 | }; |
1175 | |
1176 | // Implements the polymorphic NotNull() matcher, which matches any raw or smart |
1177 | // pointer that is not NULL. |
1178 | class NotNullMatcher { |
1179 | public: |
1180 | template <typename Pointer> |
1181 | bool MatchAndExplain(const Pointer& p, |
1182 | MatchResultListener* /* listener */) const { |
1183 | #if GTEST_LANG_CXX11 |
1184 | return p != nullptr; |
1185 | #else // GTEST_LANG_CXX11 |
1186 | return GetRawPointer(p) != NULL; |
1187 | #endif // GTEST_LANG_CXX11 |
1188 | } |
1189 | |
1190 | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL" ; } |
1191 | void DescribeNegationTo(::std::ostream* os) const { |
1192 | *os << "is NULL" ; |
1193 | } |
1194 | }; |
1195 | |
1196 | // Ref(variable) matches any argument that is a reference to |
1197 | // 'variable'. This matcher is polymorphic as it can match any |
1198 | // super type of the type of 'variable'. |
1199 | // |
1200 | // The RefMatcher template class implements Ref(variable). It can |
1201 | // only be instantiated with a reference type. This prevents a user |
1202 | // from mistakenly using Ref(x) to match a non-reference function |
1203 | // argument. For example, the following will righteously cause a |
1204 | // compiler error: |
1205 | // |
1206 | // int n; |
1207 | // Matcher<int> m1 = Ref(n); // This won't compile. |
1208 | // Matcher<int&> m2 = Ref(n); // This will compile. |
1209 | template <typename T> |
1210 | class RefMatcher; |
1211 | |
1212 | template <typename T> |
1213 | class RefMatcher<T&> { |
1214 | // Google Mock is a generic framework and thus needs to support |
1215 | // mocking any function types, including those that take non-const |
1216 | // reference arguments. Therefore the template parameter T (and |
1217 | // Super below) can be instantiated to either a const type or a |
1218 | // non-const type. |
1219 | public: |
1220 | // RefMatcher() takes a T& instead of const T&, as we want the |
1221 | // compiler to catch using Ref(const_value) as a matcher for a |
1222 | // non-const reference. |
1223 | explicit RefMatcher(T& x) : object_(x) {} // NOLINT |
1224 | |
1225 | template <typename Super> |
1226 | operator Matcher<Super&>() const { |
1227 | // By passing object_ (type T&) to Impl(), which expects a Super&, |
1228 | // we make sure that Super is a super type of T. In particular, |
1229 | // this catches using Ref(const_value) as a matcher for a |
1230 | // non-const reference, as you cannot implicitly convert a const |
1231 | // reference to a non-const reference. |
1232 | return MakeMatcher(new Impl<Super>(object_)); |
1233 | } |
1234 | |
1235 | private: |
1236 | template <typename Super> |
1237 | class Impl : public MatcherInterface<Super&> { |
1238 | public: |
1239 | explicit Impl(Super& x) : object_(x) {} // NOLINT |
1240 | |
1241 | // MatchAndExplain() takes a Super& (as opposed to const Super&) |
1242 | // in order to match the interface MatcherInterface<Super&>. |
1243 | virtual bool MatchAndExplain( |
1244 | Super& x, MatchResultListener* listener) const { |
1245 | *listener << "which is located @" << static_cast<const void*>(&x); |
1246 | return &x == &object_; |
1247 | } |
1248 | |
1249 | virtual void DescribeTo(::std::ostream* os) const { |
1250 | *os << "references the variable " ; |
1251 | UniversalPrinter<Super&>::Print(object_, os); |
1252 | } |
1253 | |
1254 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1255 | *os << "does not reference the variable " ; |
1256 | UniversalPrinter<Super&>::Print(object_, os); |
1257 | } |
1258 | |
1259 | private: |
1260 | const Super& object_; |
1261 | |
1262 | GTEST_DISALLOW_ASSIGN_(Impl); |
1263 | }; |
1264 | |
1265 | T& object_; |
1266 | |
1267 | GTEST_DISALLOW_ASSIGN_(RefMatcher); |
1268 | }; |
1269 | |
1270 | // Polymorphic helper functions for narrow and wide string matchers. |
1271 | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { |
1272 | return String::CaseInsensitiveCStringEquals(lhs, rhs); |
1273 | } |
1274 | |
1275 | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, |
1276 | const wchar_t* rhs) { |
1277 | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); |
1278 | } |
1279 | |
1280 | // String comparison for narrow or wide strings that can have embedded NUL |
1281 | // characters. |
1282 | template <typename StringType> |
1283 | bool CaseInsensitiveStringEquals(const StringType& s1, |
1284 | const StringType& s2) { |
1285 | // Are the heads equal? |
1286 | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { |
1287 | return false; |
1288 | } |
1289 | |
1290 | // Skip the equal heads. |
1291 | const typename StringType::value_type nul = 0; |
1292 | const size_t i1 = s1.find(nul), i2 = s2.find(nul); |
1293 | |
1294 | // Are we at the end of either s1 or s2? |
1295 | if (i1 == StringType::npos || i2 == StringType::npos) { |
1296 | return i1 == i2; |
1297 | } |
1298 | |
1299 | // Are the tails equal? |
1300 | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); |
1301 | } |
1302 | |
1303 | // String matchers. |
1304 | |
1305 | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. |
1306 | template <typename StringType> |
1307 | class StrEqualityMatcher { |
1308 | public: |
1309 | StrEqualityMatcher(const StringType& str, bool expect_eq, |
1310 | bool case_sensitive) |
1311 | : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} |
1312 | |
1313 | #if GTEST_HAS_ABSL |
1314 | bool MatchAndExplain(const absl::string_view& s, |
1315 | MatchResultListener* listener) const { |
1316 | if (s.data() == NULL) { |
1317 | return !expect_eq_; |
1318 | } |
1319 | // This should fail to compile if absl::string_view is used with wide |
1320 | // strings. |
1321 | const StringType& str = string(s); |
1322 | return MatchAndExplain(str, listener); |
1323 | } |
1324 | #endif // GTEST_HAS_ABSL |
1325 | |
1326 | // Accepts pointer types, particularly: |
1327 | // const char* |
1328 | // char* |
1329 | // const wchar_t* |
1330 | // wchar_t* |
1331 | template <typename CharType> |
1332 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1333 | if (s == NULL) { |
1334 | return !expect_eq_; |
1335 | } |
1336 | return MatchAndExplain(StringType(s), listener); |
1337 | } |
1338 | |
1339 | // Matches anything that can convert to StringType. |
1340 | // |
1341 | // This is a template, not just a plain function with const StringType&, |
1342 | // because absl::string_view has some interfering non-explicit constructors. |
1343 | template <typename MatcheeStringType> |
1344 | bool MatchAndExplain(const MatcheeStringType& s, |
1345 | MatchResultListener* /* listener */) const { |
1346 | const StringType& s2(s); |
1347 | const bool eq = case_sensitive_ ? s2 == string_ : |
1348 | CaseInsensitiveStringEquals(s2, string_); |
1349 | return expect_eq_ == eq; |
1350 | } |
1351 | |
1352 | void DescribeTo(::std::ostream* os) const { |
1353 | DescribeToHelper(expect_eq_, os); |
1354 | } |
1355 | |
1356 | void DescribeNegationTo(::std::ostream* os) const { |
1357 | DescribeToHelper(!expect_eq_, os); |
1358 | } |
1359 | |
1360 | private: |
1361 | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { |
1362 | *os << (expect_eq ? "is " : "isn't " ); |
1363 | *os << "equal to " ; |
1364 | if (!case_sensitive_) { |
1365 | *os << "(ignoring case) " ; |
1366 | } |
1367 | UniversalPrint(string_, os); |
1368 | } |
1369 | |
1370 | const StringType string_; |
1371 | const bool expect_eq_; |
1372 | const bool case_sensitive_; |
1373 | |
1374 | GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); |
1375 | }; |
1376 | |
1377 | // Implements the polymorphic HasSubstr(substring) matcher, which |
1378 | // can be used as a Matcher<T> as long as T can be converted to a |
1379 | // string. |
1380 | template <typename StringType> |
1381 | class HasSubstrMatcher { |
1382 | public: |
1383 | explicit HasSubstrMatcher(const StringType& substring) |
1384 | : substring_(substring) {} |
1385 | |
1386 | #if GTEST_HAS_ABSL |
1387 | bool MatchAndExplain(const absl::string_view& s, |
1388 | MatchResultListener* listener) const { |
1389 | if (s.data() == NULL) { |
1390 | return false; |
1391 | } |
1392 | // This should fail to compile if absl::string_view is used with wide |
1393 | // strings. |
1394 | const StringType& str = string(s); |
1395 | return MatchAndExplain(str, listener); |
1396 | } |
1397 | #endif // GTEST_HAS_ABSL |
1398 | |
1399 | // Accepts pointer types, particularly: |
1400 | // const char* |
1401 | // char* |
1402 | // const wchar_t* |
1403 | // wchar_t* |
1404 | template <typename CharType> |
1405 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1406 | return s != NULL && MatchAndExplain(StringType(s), listener); |
1407 | } |
1408 | |
1409 | // Matches anything that can convert to StringType. |
1410 | // |
1411 | // This is a template, not just a plain function with const StringType&, |
1412 | // because absl::string_view has some interfering non-explicit constructors. |
1413 | template <typename MatcheeStringType> |
1414 | bool MatchAndExplain(const MatcheeStringType& s, |
1415 | MatchResultListener* /* listener */) const { |
1416 | const StringType& s2(s); |
1417 | return s2.find(substring_) != StringType::npos; |
1418 | } |
1419 | |
1420 | // Describes what this matcher matches. |
1421 | void DescribeTo(::std::ostream* os) const { |
1422 | *os << "has substring " ; |
1423 | UniversalPrint(substring_, os); |
1424 | } |
1425 | |
1426 | void DescribeNegationTo(::std::ostream* os) const { |
1427 | *os << "has no substring " ; |
1428 | UniversalPrint(substring_, os); |
1429 | } |
1430 | |
1431 | private: |
1432 | const StringType substring_; |
1433 | |
1434 | GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); |
1435 | }; |
1436 | |
1437 | // Implements the polymorphic StartsWith(substring) matcher, which |
1438 | // can be used as a Matcher<T> as long as T can be converted to a |
1439 | // string. |
1440 | template <typename StringType> |
1441 | class StartsWithMatcher { |
1442 | public: |
1443 | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { |
1444 | } |
1445 | |
1446 | #if GTEST_HAS_ABSL |
1447 | bool MatchAndExplain(const absl::string_view& s, |
1448 | MatchResultListener* listener) const { |
1449 | if (s.data() == NULL) { |
1450 | return false; |
1451 | } |
1452 | // This should fail to compile if absl::string_view is used with wide |
1453 | // strings. |
1454 | const StringType& str = string(s); |
1455 | return MatchAndExplain(str, listener); |
1456 | } |
1457 | #endif // GTEST_HAS_ABSL |
1458 | |
1459 | // Accepts pointer types, particularly: |
1460 | // const char* |
1461 | // char* |
1462 | // const wchar_t* |
1463 | // wchar_t* |
1464 | template <typename CharType> |
1465 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1466 | return s != NULL && MatchAndExplain(StringType(s), listener); |
1467 | } |
1468 | |
1469 | // Matches anything that can convert to StringType. |
1470 | // |
1471 | // This is a template, not just a plain function with const StringType&, |
1472 | // because absl::string_view has some interfering non-explicit constructors. |
1473 | template <typename MatcheeStringType> |
1474 | bool MatchAndExplain(const MatcheeStringType& s, |
1475 | MatchResultListener* /* listener */) const { |
1476 | const StringType& s2(s); |
1477 | return s2.length() >= prefix_.length() && |
1478 | s2.substr(0, prefix_.length()) == prefix_; |
1479 | } |
1480 | |
1481 | void DescribeTo(::std::ostream* os) const { |
1482 | *os << "starts with " ; |
1483 | UniversalPrint(prefix_, os); |
1484 | } |
1485 | |
1486 | void DescribeNegationTo(::std::ostream* os) const { |
1487 | *os << "doesn't start with " ; |
1488 | UniversalPrint(prefix_, os); |
1489 | } |
1490 | |
1491 | private: |
1492 | const StringType prefix_; |
1493 | |
1494 | GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); |
1495 | }; |
1496 | |
1497 | // Implements the polymorphic EndsWith(substring) matcher, which |
1498 | // can be used as a Matcher<T> as long as T can be converted to a |
1499 | // string. |
1500 | template <typename StringType> |
1501 | class EndsWithMatcher { |
1502 | public: |
1503 | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} |
1504 | |
1505 | #if GTEST_HAS_ABSL |
1506 | bool MatchAndExplain(const absl::string_view& s, |
1507 | MatchResultListener* listener) const { |
1508 | if (s.data() == NULL) { |
1509 | return false; |
1510 | } |
1511 | // This should fail to compile if absl::string_view is used with wide |
1512 | // strings. |
1513 | const StringType& str = string(s); |
1514 | return MatchAndExplain(str, listener); |
1515 | } |
1516 | #endif // GTEST_HAS_ABSL |
1517 | |
1518 | // Accepts pointer types, particularly: |
1519 | // const char* |
1520 | // char* |
1521 | // const wchar_t* |
1522 | // wchar_t* |
1523 | template <typename CharType> |
1524 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1525 | return s != NULL && MatchAndExplain(StringType(s), listener); |
1526 | } |
1527 | |
1528 | // Matches anything that can convert to StringType. |
1529 | // |
1530 | // This is a template, not just a plain function with const StringType&, |
1531 | // because absl::string_view has some interfering non-explicit constructors. |
1532 | template <typename MatcheeStringType> |
1533 | bool MatchAndExplain(const MatcheeStringType& s, |
1534 | MatchResultListener* /* listener */) const { |
1535 | const StringType& s2(s); |
1536 | return s2.length() >= suffix_.length() && |
1537 | s2.substr(s2.length() - suffix_.length()) == suffix_; |
1538 | } |
1539 | |
1540 | void DescribeTo(::std::ostream* os) const { |
1541 | *os << "ends with " ; |
1542 | UniversalPrint(suffix_, os); |
1543 | } |
1544 | |
1545 | void DescribeNegationTo(::std::ostream* os) const { |
1546 | *os << "doesn't end with " ; |
1547 | UniversalPrint(suffix_, os); |
1548 | } |
1549 | |
1550 | private: |
1551 | const StringType suffix_; |
1552 | |
1553 | GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); |
1554 | }; |
1555 | |
1556 | // Implements polymorphic matchers MatchesRegex(regex) and |
1557 | // ContainsRegex(regex), which can be used as a Matcher<T> as long as |
1558 | // T can be converted to a string. |
1559 | class MatchesRegexMatcher { |
1560 | public: |
1561 | MatchesRegexMatcher(const RE* regex, bool full_match) |
1562 | : regex_(regex), full_match_(full_match) {} |
1563 | |
1564 | #if GTEST_HAS_ABSL |
1565 | bool MatchAndExplain(const absl::string_view& s, |
1566 | MatchResultListener* listener) const { |
1567 | return s.data() && MatchAndExplain(string(s), listener); |
1568 | } |
1569 | #endif // GTEST_HAS_ABSL |
1570 | |
1571 | // Accepts pointer types, particularly: |
1572 | // const char* |
1573 | // char* |
1574 | // const wchar_t* |
1575 | // wchar_t* |
1576 | template <typename CharType> |
1577 | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { |
1578 | return s != NULL && MatchAndExplain(std::string(s), listener); |
1579 | } |
1580 | |
1581 | // Matches anything that can convert to std::string. |
1582 | // |
1583 | // This is a template, not just a plain function with const std::string&, |
1584 | // because absl::string_view has some interfering non-explicit constructors. |
1585 | template <class MatcheeStringType> |
1586 | bool MatchAndExplain(const MatcheeStringType& s, |
1587 | MatchResultListener* /* listener */) const { |
1588 | const std::string& s2(s); |
1589 | return full_match_ ? RE::FullMatch(s2, *regex_) : |
1590 | RE::PartialMatch(s2, *regex_); |
1591 | } |
1592 | |
1593 | void DescribeTo(::std::ostream* os) const { |
1594 | *os << (full_match_ ? "matches" : "contains" ) |
1595 | << " regular expression " ; |
1596 | UniversalPrinter<std::string>::Print(regex_->pattern(), os); |
1597 | } |
1598 | |
1599 | void DescribeNegationTo(::std::ostream* os) const { |
1600 | *os << "doesn't " << (full_match_ ? "match" : "contain" ) |
1601 | << " regular expression " ; |
1602 | UniversalPrinter<std::string>::Print(regex_->pattern(), os); |
1603 | } |
1604 | |
1605 | private: |
1606 | const internal::linked_ptr<const RE> regex_; |
1607 | const bool full_match_; |
1608 | |
1609 | GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); |
1610 | }; |
1611 | |
1612 | // Implements a matcher that compares the two fields of a 2-tuple |
1613 | // using one of the ==, <=, <, etc, operators. The two fields being |
1614 | // compared don't have to have the same type. |
1615 | // |
1616 | // The matcher defined here is polymorphic (for example, Eq() can be |
1617 | // used to match a tuple<int, short>, a tuple<const long&, double>, |
1618 | // etc). Therefore we use a template type conversion operator in the |
1619 | // implementation. |
1620 | template <typename D, typename Op> |
1621 | class PairMatchBase { |
1622 | public: |
1623 | template <typename T1, typename T2> |
1624 | operator Matcher< ::testing::tuple<T1, T2> >() const { |
1625 | return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >); |
1626 | } |
1627 | template <typename T1, typename T2> |
1628 | operator Matcher<const ::testing::tuple<T1, T2>&>() const { |
1629 | return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>); |
1630 | } |
1631 | |
1632 | private: |
1633 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
1634 | return os << D::Desc(); |
1635 | } |
1636 | |
1637 | template <typename Tuple> |
1638 | class Impl : public MatcherInterface<Tuple> { |
1639 | public: |
1640 | virtual bool MatchAndExplain( |
1641 | Tuple args, |
1642 | MatchResultListener* /* listener */) const { |
1643 | return Op()(::testing::get<0>(args), ::testing::get<1>(args)); |
1644 | } |
1645 | virtual void DescribeTo(::std::ostream* os) const { |
1646 | *os << "are " << GetDesc; |
1647 | } |
1648 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1649 | *os << "aren't " << GetDesc; |
1650 | } |
1651 | }; |
1652 | }; |
1653 | |
1654 | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { |
1655 | public: |
1656 | static const char* Desc() { return "an equal pair" ; } |
1657 | }; |
1658 | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { |
1659 | public: |
1660 | static const char* Desc() { return "an unequal pair" ; } |
1661 | }; |
1662 | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { |
1663 | public: |
1664 | static const char* Desc() { return "a pair where the first < the second" ; } |
1665 | }; |
1666 | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { |
1667 | public: |
1668 | static const char* Desc() { return "a pair where the first > the second" ; } |
1669 | }; |
1670 | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { |
1671 | public: |
1672 | static const char* Desc() { return "a pair where the first <= the second" ; } |
1673 | }; |
1674 | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { |
1675 | public: |
1676 | static const char* Desc() { return "a pair where the first >= the second" ; } |
1677 | }; |
1678 | |
1679 | // Implements the Not(...) matcher for a particular argument type T. |
1680 | // We do not nest it inside the NotMatcher class template, as that |
1681 | // will prevent different instantiations of NotMatcher from sharing |
1682 | // the same NotMatcherImpl<T> class. |
1683 | template <typename T> |
1684 | class NotMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { |
1685 | public: |
1686 | explicit NotMatcherImpl(const Matcher<T>& matcher) |
1687 | : matcher_(matcher) {} |
1688 | |
1689 | virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, |
1690 | MatchResultListener* listener) const { |
1691 | return !matcher_.MatchAndExplain(x, listener); |
1692 | } |
1693 | |
1694 | virtual void DescribeTo(::std::ostream* os) const { |
1695 | matcher_.DescribeNegationTo(os); |
1696 | } |
1697 | |
1698 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1699 | matcher_.DescribeTo(os); |
1700 | } |
1701 | |
1702 | private: |
1703 | const Matcher<T> matcher_; |
1704 | |
1705 | GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); |
1706 | }; |
1707 | |
1708 | // Implements the Not(m) matcher, which matches a value that doesn't |
1709 | // match matcher m. |
1710 | template <typename InnerMatcher> |
1711 | class NotMatcher { |
1712 | public: |
1713 | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} |
1714 | |
1715 | // This template type conversion operator allows Not(m) to be used |
1716 | // to match any type m can match. |
1717 | template <typename T> |
1718 | operator Matcher<T>() const { |
1719 | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); |
1720 | } |
1721 | |
1722 | private: |
1723 | InnerMatcher matcher_; |
1724 | |
1725 | GTEST_DISALLOW_ASSIGN_(NotMatcher); |
1726 | }; |
1727 | |
1728 | // Implements the AllOf(m1, m2) matcher for a particular argument type |
1729 | // T. We do not nest it inside the BothOfMatcher class template, as |
1730 | // that will prevent different instantiations of BothOfMatcher from |
1731 | // sharing the same BothOfMatcherImpl<T> class. |
1732 | template <typename T> |
1733 | class AllOfMatcherImpl |
1734 | : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { |
1735 | public: |
1736 | explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1737 | : matchers_(internal::move(matchers)) {} |
1738 | |
1739 | virtual void DescribeTo(::std::ostream* os) const { |
1740 | *os << "(" ; |
1741 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1742 | if (i != 0) *os << ") and (" ; |
1743 | matchers_[i].DescribeTo(os); |
1744 | } |
1745 | *os << ")" ; |
1746 | } |
1747 | |
1748 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1749 | *os << "(" ; |
1750 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1751 | if (i != 0) *os << ") or (" ; |
1752 | matchers_[i].DescribeNegationTo(os); |
1753 | } |
1754 | *os << ")" ; |
1755 | } |
1756 | |
1757 | virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, |
1758 | MatchResultListener* listener) const { |
1759 | // If either matcher1_ or matcher2_ doesn't match x, we only need |
1760 | // to explain why one of them fails. |
1761 | std::string all_match_result; |
1762 | |
1763 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1764 | StringMatchResultListener slistener; |
1765 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1766 | if (all_match_result.empty()) { |
1767 | all_match_result = slistener.str(); |
1768 | } else { |
1769 | std::string result = slistener.str(); |
1770 | if (!result.empty()) { |
1771 | all_match_result += ", and " ; |
1772 | all_match_result += result; |
1773 | } |
1774 | } |
1775 | } else { |
1776 | *listener << slistener.str(); |
1777 | return false; |
1778 | } |
1779 | } |
1780 | |
1781 | // Otherwise we need to explain why *both* of them match. |
1782 | *listener << all_match_result; |
1783 | return true; |
1784 | } |
1785 | |
1786 | private: |
1787 | const std::vector<Matcher<T> > matchers_; |
1788 | |
1789 | GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); |
1790 | }; |
1791 | |
1792 | #if GTEST_LANG_CXX11 |
1793 | // VariadicMatcher is used for the variadic implementation of |
1794 | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). |
1795 | // CombiningMatcher<T> is used to recursively combine the provided matchers |
1796 | // (of type Args...). |
1797 | template <template <typename T> class CombiningMatcher, typename... Args> |
1798 | class VariadicMatcher { |
1799 | public: |
1800 | VariadicMatcher(const Args&... matchers) // NOLINT |
1801 | : matchers_(matchers...) { |
1802 | static_assert(sizeof...(Args) > 0, "Must have at least one matcher." ); |
1803 | } |
1804 | |
1805 | // This template type conversion operator allows an |
1806 | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that |
1807 | // all of the provided matchers (Matcher1, Matcher2, ...) can match. |
1808 | template <typename T> |
1809 | operator Matcher<T>() const { |
1810 | std::vector<Matcher<T> > values; |
1811 | CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>()); |
1812 | return Matcher<T>(new CombiningMatcher<T>(internal::move(values))); |
1813 | } |
1814 | |
1815 | private: |
1816 | template <typename T, size_t I> |
1817 | void CreateVariadicMatcher(std::vector<Matcher<T> >* values, |
1818 | std::integral_constant<size_t, I>) const { |
1819 | values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_))); |
1820 | CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>()); |
1821 | } |
1822 | |
1823 | template <typename T> |
1824 | void CreateVariadicMatcher( |
1825 | std::vector<Matcher<T> >*, |
1826 | std::integral_constant<size_t, sizeof...(Args)>) const {} |
1827 | |
1828 | tuple<Args...> matchers_; |
1829 | |
1830 | GTEST_DISALLOW_ASSIGN_(VariadicMatcher); |
1831 | }; |
1832 | |
1833 | template <typename... Args> |
1834 | using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>; |
1835 | |
1836 | #endif // GTEST_LANG_CXX11 |
1837 | |
1838 | // Used for implementing the AllOf(m_1, ..., m_n) matcher, which |
1839 | // matches a value that matches all of the matchers m_1, ..., and m_n. |
1840 | template <typename Matcher1, typename Matcher2> |
1841 | class BothOfMatcher { |
1842 | public: |
1843 | BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
1844 | : matcher1_(matcher1), matcher2_(matcher2) {} |
1845 | |
1846 | // This template type conversion operator allows a |
1847 | // BothOfMatcher<Matcher1, Matcher2> object to match any type that |
1848 | // both Matcher1 and Matcher2 can match. |
1849 | template <typename T> |
1850 | operator Matcher<T>() const { |
1851 | std::vector<Matcher<T> > values; |
1852 | values.push_back(SafeMatcherCast<T>(matcher1_)); |
1853 | values.push_back(SafeMatcherCast<T>(matcher2_)); |
1854 | return Matcher<T>(new AllOfMatcherImpl<T>(internal::move(values))); |
1855 | } |
1856 | |
1857 | private: |
1858 | Matcher1 matcher1_; |
1859 | Matcher2 matcher2_; |
1860 | |
1861 | GTEST_DISALLOW_ASSIGN_(BothOfMatcher); |
1862 | }; |
1863 | |
1864 | // Implements the AnyOf(m1, m2) matcher for a particular argument type |
1865 | // T. We do not nest it inside the AnyOfMatcher class template, as |
1866 | // that will prevent different instantiations of AnyOfMatcher from |
1867 | // sharing the same EitherOfMatcherImpl<T> class. |
1868 | template <typename T> |
1869 | class AnyOfMatcherImpl |
1870 | : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> { |
1871 | public: |
1872 | explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers) |
1873 | : matchers_(internal::move(matchers)) {} |
1874 | |
1875 | virtual void DescribeTo(::std::ostream* os) const { |
1876 | *os << "(" ; |
1877 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1878 | if (i != 0) *os << ") or (" ; |
1879 | matchers_[i].DescribeTo(os); |
1880 | } |
1881 | *os << ")" ; |
1882 | } |
1883 | |
1884 | virtual void DescribeNegationTo(::std::ostream* os) const { |
1885 | *os << "(" ; |
1886 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1887 | if (i != 0) *os << ") and (" ; |
1888 | matchers_[i].DescribeNegationTo(os); |
1889 | } |
1890 | *os << ")" ; |
1891 | } |
1892 | |
1893 | virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x, |
1894 | MatchResultListener* listener) const { |
1895 | std::string no_match_result; |
1896 | |
1897 | // If either matcher1_ or matcher2_ matches x, we just need to |
1898 | // explain why *one* of them matches. |
1899 | for (size_t i = 0; i < matchers_.size(); ++i) { |
1900 | StringMatchResultListener slistener; |
1901 | if (matchers_[i].MatchAndExplain(x, &slistener)) { |
1902 | *listener << slistener.str(); |
1903 | return true; |
1904 | } else { |
1905 | if (no_match_result.empty()) { |
1906 | no_match_result = slistener.str(); |
1907 | } else { |
1908 | std::string result = slistener.str(); |
1909 | if (!result.empty()) { |
1910 | no_match_result += ", and " ; |
1911 | no_match_result += result; |
1912 | } |
1913 | } |
1914 | } |
1915 | } |
1916 | |
1917 | // Otherwise we need to explain why *both* of them fail. |
1918 | *listener << no_match_result; |
1919 | return false; |
1920 | } |
1921 | |
1922 | private: |
1923 | const std::vector<Matcher<T> > matchers_; |
1924 | |
1925 | GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); |
1926 | }; |
1927 | |
1928 | #if GTEST_LANG_CXX11 |
1929 | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). |
1930 | template <typename... Args> |
1931 | using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>; |
1932 | |
1933 | #endif // GTEST_LANG_CXX11 |
1934 | |
1935 | // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which |
1936 | // matches a value that matches at least one of the matchers m_1, ..., |
1937 | // and m_n. |
1938 | template <typename Matcher1, typename Matcher2> |
1939 | class EitherOfMatcher { |
1940 | public: |
1941 | EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) |
1942 | : matcher1_(matcher1), matcher2_(matcher2) {} |
1943 | |
1944 | // This template type conversion operator allows a |
1945 | // EitherOfMatcher<Matcher1, Matcher2> object to match any type that |
1946 | // both Matcher1 and Matcher2 can match. |
1947 | template <typename T> |
1948 | operator Matcher<T>() const { |
1949 | std::vector<Matcher<T> > values; |
1950 | values.push_back(SafeMatcherCast<T>(matcher1_)); |
1951 | values.push_back(SafeMatcherCast<T>(matcher2_)); |
1952 | return Matcher<T>(new AnyOfMatcherImpl<T>(internal::move(values))); |
1953 | } |
1954 | |
1955 | private: |
1956 | Matcher1 matcher1_; |
1957 | Matcher2 matcher2_; |
1958 | |
1959 | GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); |
1960 | }; |
1961 | |
1962 | // Used for implementing Truly(pred), which turns a predicate into a |
1963 | // matcher. |
1964 | template <typename Predicate> |
1965 | class TrulyMatcher { |
1966 | public: |
1967 | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} |
1968 | |
1969 | // This method template allows Truly(pred) to be used as a matcher |
1970 | // for type T where T is the argument type of predicate 'pred'. The |
1971 | // argument is passed by reference as the predicate may be |
1972 | // interested in the address of the argument. |
1973 | template <typename T> |
1974 | bool MatchAndExplain(T& x, // NOLINT |
1975 | MatchResultListener* /* listener */) const { |
1976 | // Without the if-statement, MSVC sometimes warns about converting |
1977 | // a value to bool (warning 4800). |
1978 | // |
1979 | // We cannot write 'return !!predicate_(x);' as that doesn't work |
1980 | // when predicate_(x) returns a class convertible to bool but |
1981 | // having no operator!(). |
1982 | if (predicate_(x)) |
1983 | return true; |
1984 | return false; |
1985 | } |
1986 | |
1987 | void DescribeTo(::std::ostream* os) const { |
1988 | *os << "satisfies the given predicate" ; |
1989 | } |
1990 | |
1991 | void DescribeNegationTo(::std::ostream* os) const { |
1992 | *os << "doesn't satisfy the given predicate" ; |
1993 | } |
1994 | |
1995 | private: |
1996 | Predicate predicate_; |
1997 | |
1998 | GTEST_DISALLOW_ASSIGN_(TrulyMatcher); |
1999 | }; |
2000 | |
2001 | // Used for implementing Matches(matcher), which turns a matcher into |
2002 | // a predicate. |
2003 | template <typename M> |
2004 | class MatcherAsPredicate { |
2005 | public: |
2006 | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} |
2007 | |
2008 | // This template operator() allows Matches(m) to be used as a |
2009 | // predicate on type T where m is a matcher on type T. |
2010 | // |
2011 | // The argument x is passed by reference instead of by value, as |
2012 | // some matcher may be interested in its address (e.g. as in |
2013 | // Matches(Ref(n))(x)). |
2014 | template <typename T> |
2015 | bool operator()(const T& x) const { |
2016 | // We let matcher_ commit to a particular type here instead of |
2017 | // when the MatcherAsPredicate object was constructed. This |
2018 | // allows us to write Matches(m) where m is a polymorphic matcher |
2019 | // (e.g. Eq(5)). |
2020 | // |
2021 | // If we write Matcher<T>(matcher_).Matches(x) here, it won't |
2022 | // compile when matcher_ has type Matcher<const T&>; if we write |
2023 | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile |
2024 | // when matcher_ has type Matcher<T>; if we just write |
2025 | // matcher_.Matches(x), it won't compile when matcher_ is |
2026 | // polymorphic, e.g. Eq(5). |
2027 | // |
2028 | // MatcherCast<const T&>() is necessary for making the code work |
2029 | // in all of the above situations. |
2030 | return MatcherCast<const T&>(matcher_).Matches(x); |
2031 | } |
2032 | |
2033 | private: |
2034 | M matcher_; |
2035 | |
2036 | GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); |
2037 | }; |
2038 | |
2039 | // For implementing ASSERT_THAT() and EXPECT_THAT(). The template |
2040 | // argument M must be a type that can be converted to a matcher. |
2041 | template <typename M> |
2042 | class PredicateFormatterFromMatcher { |
2043 | public: |
2044 | explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {} |
2045 | |
2046 | // This template () operator allows a PredicateFormatterFromMatcher |
2047 | // object to act as a predicate-formatter suitable for using with |
2048 | // Google Test's EXPECT_PRED_FORMAT1() macro. |
2049 | template <typename T> |
2050 | AssertionResult operator()(const char* value_text, const T& x) const { |
2051 | // We convert matcher_ to a Matcher<const T&> *now* instead of |
2052 | // when the PredicateFormatterFromMatcher object was constructed, |
2053 | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't |
2054 | // know which type to instantiate it to until we actually see the |
2055 | // type of x here. |
2056 | // |
2057 | // We write SafeMatcherCast<const T&>(matcher_) instead of |
2058 | // Matcher<const T&>(matcher_), as the latter won't compile when |
2059 | // matcher_ has type Matcher<T> (e.g. An<int>()). |
2060 | // We don't write MatcherCast<const T&> either, as that allows |
2061 | // potentially unsafe downcasting of the matcher argument. |
2062 | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); |
2063 | StringMatchResultListener listener; |
2064 | if (MatchPrintAndExplain(x, matcher, &listener)) |
2065 | return AssertionSuccess(); |
2066 | |
2067 | ::std::stringstream ss; |
2068 | ss << "Value of: " << value_text << "\n" |
2069 | << "Expected: " ; |
2070 | matcher.DescribeTo(&ss); |
2071 | ss << "\n Actual: " << listener.str(); |
2072 | return AssertionFailure() << ss.str(); |
2073 | } |
2074 | |
2075 | private: |
2076 | const M matcher_; |
2077 | |
2078 | GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); |
2079 | }; |
2080 | |
2081 | // A helper function for converting a matcher to a predicate-formatter |
2082 | // without the user needing to explicitly write the type. This is |
2083 | // used for implementing ASSERT_THAT() and EXPECT_THAT(). |
2084 | // Implementation detail: 'matcher' is received by-value to force decaying. |
2085 | template <typename M> |
2086 | inline PredicateFormatterFromMatcher<M> |
2087 | MakePredicateFormatterFromMatcher(M matcher) { |
2088 | return PredicateFormatterFromMatcher<M>(internal::move(matcher)); |
2089 | } |
2090 | |
2091 | // Implements the polymorphic floating point equality matcher, which matches |
2092 | // two float values using ULP-based approximation or, optionally, a |
2093 | // user-specified epsilon. The template is meant to be instantiated with |
2094 | // FloatType being either float or double. |
2095 | template <typename FloatType> |
2096 | class FloatingEqMatcher { |
2097 | public: |
2098 | // Constructor for FloatingEqMatcher. |
2099 | // The matcher's input will be compared with expected. The matcher treats two |
2100 | // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards, |
2101 | // equality comparisons between NANs will always return false. We specify a |
2102 | // negative max_abs_error_ term to indicate that ULP-based approximation will |
2103 | // be used for comparison. |
2104 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : |
2105 | expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { |
2106 | } |
2107 | |
2108 | // Constructor that supports a user-specified max_abs_error that will be used |
2109 | // for comparison instead of ULP-based approximation. The max absolute |
2110 | // should be non-negative. |
2111 | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, |
2112 | FloatType max_abs_error) |
2113 | : expected_(expected), |
2114 | nan_eq_nan_(nan_eq_nan), |
2115 | max_abs_error_(max_abs_error) { |
2116 | GTEST_CHECK_(max_abs_error >= 0) |
2117 | << ", where max_abs_error is" << max_abs_error; |
2118 | } |
2119 | |
2120 | // Implements floating point equality matcher as a Matcher<T>. |
2121 | template <typename T> |
2122 | class Impl : public MatcherInterface<T> { |
2123 | public: |
2124 | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) |
2125 | : expected_(expected), |
2126 | nan_eq_nan_(nan_eq_nan), |
2127 | max_abs_error_(max_abs_error) {} |
2128 | |
2129 | virtual bool MatchAndExplain(T value, |
2130 | MatchResultListener* listener) const { |
2131 | const FloatingPoint<FloatType> actual(value), expected(expected_); |
2132 | |
2133 | // Compares NaNs first, if nan_eq_nan_ is true. |
2134 | if (actual.is_nan() || expected.is_nan()) { |
2135 | if (actual.is_nan() && expected.is_nan()) { |
2136 | return nan_eq_nan_; |
2137 | } |
2138 | // One is nan; the other is not nan. |
2139 | return false; |
2140 | } |
2141 | if (HasMaxAbsError()) { |
2142 | // We perform an equality check so that inf will match inf, regardless |
2143 | // of error bounds. If the result of value - expected_ would result in |
2144 | // overflow or if either value is inf, the default result is infinity, |
2145 | // which should only match if max_abs_error_ is also infinity. |
2146 | if (value == expected_) { |
2147 | return true; |
2148 | } |
2149 | |
2150 | const FloatType diff = value - expected_; |
2151 | if (fabs(diff) <= max_abs_error_) { |
2152 | return true; |
2153 | } |
2154 | |
2155 | if (listener->IsInterested()) { |
2156 | *listener << "which is " << diff << " from " << expected_; |
2157 | } |
2158 | return false; |
2159 | } else { |
2160 | return actual.AlmostEquals(expected); |
2161 | } |
2162 | } |
2163 | |
2164 | virtual void DescribeTo(::std::ostream* os) const { |
2165 | // os->precision() returns the previously set precision, which we |
2166 | // store to restore the ostream to its original configuration |
2167 | // after outputting. |
2168 | const ::std::streamsize old_precision = os->precision( |
2169 | ::std::numeric_limits<FloatType>::digits10 + 2); |
2170 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
2171 | if (nan_eq_nan_) { |
2172 | *os << "is NaN" ; |
2173 | } else { |
2174 | *os << "never matches" ; |
2175 | } |
2176 | } else { |
2177 | *os << "is approximately " << expected_; |
2178 | if (HasMaxAbsError()) { |
2179 | *os << " (absolute error <= " << max_abs_error_ << ")" ; |
2180 | } |
2181 | } |
2182 | os->precision(old_precision); |
2183 | } |
2184 | |
2185 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2186 | // As before, get original precision. |
2187 | const ::std::streamsize old_precision = os->precision( |
2188 | ::std::numeric_limits<FloatType>::digits10 + 2); |
2189 | if (FloatingPoint<FloatType>(expected_).is_nan()) { |
2190 | if (nan_eq_nan_) { |
2191 | *os << "isn't NaN" ; |
2192 | } else { |
2193 | *os << "is anything" ; |
2194 | } |
2195 | } else { |
2196 | *os << "isn't approximately " << expected_; |
2197 | if (HasMaxAbsError()) { |
2198 | *os << " (absolute error > " << max_abs_error_ << ")" ; |
2199 | } |
2200 | } |
2201 | // Restore original precision. |
2202 | os->precision(old_precision); |
2203 | } |
2204 | |
2205 | private: |
2206 | bool HasMaxAbsError() const { |
2207 | return max_abs_error_ >= 0; |
2208 | } |
2209 | |
2210 | const FloatType expected_; |
2211 | const bool nan_eq_nan_; |
2212 | // max_abs_error will be used for value comparison when >= 0. |
2213 | const FloatType max_abs_error_; |
2214 | |
2215 | GTEST_DISALLOW_ASSIGN_(Impl); |
2216 | }; |
2217 | |
2218 | // The following 3 type conversion operators allow FloatEq(expected) and |
2219 | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a |
2220 | // Matcher<const float&>, or a Matcher<float&>, but nothing else. |
2221 | // (While Google's C++ coding style doesn't allow arguments passed |
2222 | // by non-const reference, we may see them in code not conforming to |
2223 | // the style. Therefore Google Mock needs to support them.) |
2224 | operator Matcher<FloatType>() const { |
2225 | return MakeMatcher( |
2226 | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); |
2227 | } |
2228 | |
2229 | operator Matcher<const FloatType&>() const { |
2230 | return MakeMatcher( |
2231 | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
2232 | } |
2233 | |
2234 | operator Matcher<FloatType&>() const { |
2235 | return MakeMatcher( |
2236 | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); |
2237 | } |
2238 | |
2239 | private: |
2240 | const FloatType expected_; |
2241 | const bool nan_eq_nan_; |
2242 | // max_abs_error will be used for value comparison when >= 0. |
2243 | const FloatType max_abs_error_; |
2244 | |
2245 | GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); |
2246 | }; |
2247 | |
2248 | // A 2-tuple ("binary") wrapper around FloatingEqMatcher: |
2249 | // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false) |
2250 | // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e) |
2251 | // against y. The former implements "Eq", the latter "Near". At present, there |
2252 | // is no version that compares NaNs as equal. |
2253 | template <typename FloatType> |
2254 | class FloatingEq2Matcher { |
2255 | public: |
2256 | FloatingEq2Matcher() { Init(-1, false); } |
2257 | |
2258 | explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); } |
2259 | |
2260 | explicit FloatingEq2Matcher(FloatType max_abs_error) { |
2261 | Init(max_abs_error, false); |
2262 | } |
2263 | |
2264 | FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) { |
2265 | Init(max_abs_error, nan_eq_nan); |
2266 | } |
2267 | |
2268 | template <typename T1, typename T2> |
2269 | operator Matcher< ::testing::tuple<T1, T2> >() const { |
2270 | return MakeMatcher( |
2271 | new Impl< ::testing::tuple<T1, T2> >(max_abs_error_, nan_eq_nan_)); |
2272 | } |
2273 | template <typename T1, typename T2> |
2274 | operator Matcher<const ::testing::tuple<T1, T2>&>() const { |
2275 | return MakeMatcher( |
2276 | new Impl<const ::testing::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_)); |
2277 | } |
2278 | |
2279 | private: |
2280 | static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT |
2281 | return os << "an almost-equal pair" ; |
2282 | } |
2283 | |
2284 | template <typename Tuple> |
2285 | class Impl : public MatcherInterface<Tuple> { |
2286 | public: |
2287 | Impl(FloatType max_abs_error, bool nan_eq_nan) : |
2288 | max_abs_error_(max_abs_error), |
2289 | nan_eq_nan_(nan_eq_nan) {} |
2290 | |
2291 | virtual bool MatchAndExplain(Tuple args, |
2292 | MatchResultListener* listener) const { |
2293 | if (max_abs_error_ == -1) { |
2294 | FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_); |
2295 | return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( |
2296 | ::testing::get<1>(args), listener); |
2297 | } else { |
2298 | FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_, |
2299 | max_abs_error_); |
2300 | return static_cast<Matcher<FloatType> >(fm).MatchAndExplain( |
2301 | ::testing::get<1>(args), listener); |
2302 | } |
2303 | } |
2304 | virtual void DescribeTo(::std::ostream* os) const { |
2305 | *os << "are " << GetDesc; |
2306 | } |
2307 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2308 | *os << "aren't " << GetDesc; |
2309 | } |
2310 | |
2311 | private: |
2312 | FloatType max_abs_error_; |
2313 | const bool nan_eq_nan_; |
2314 | }; |
2315 | |
2316 | void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) { |
2317 | max_abs_error_ = max_abs_error_val; |
2318 | nan_eq_nan_ = nan_eq_nan_val; |
2319 | } |
2320 | FloatType max_abs_error_; |
2321 | bool nan_eq_nan_; |
2322 | }; |
2323 | |
2324 | // Implements the Pointee(m) matcher for matching a pointer whose |
2325 | // pointee matches matcher m. The pointer can be either raw or smart. |
2326 | template <typename InnerMatcher> |
2327 | class PointeeMatcher { |
2328 | public: |
2329 | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} |
2330 | |
2331 | // This type conversion operator template allows Pointee(m) to be |
2332 | // used as a matcher for any pointer type whose pointee type is |
2333 | // compatible with the inner matcher, where type Pointer can be |
2334 | // either a raw pointer or a smart pointer. |
2335 | // |
2336 | // The reason we do this instead of relying on |
2337 | // MakePolymorphicMatcher() is that the latter is not flexible |
2338 | // enough for implementing the DescribeTo() method of Pointee(). |
2339 | template <typename Pointer> |
2340 | operator Matcher<Pointer>() const { |
2341 | return Matcher<Pointer>( |
2342 | new Impl<GTEST_REFERENCE_TO_CONST_(Pointer)>(matcher_)); |
2343 | } |
2344 | |
2345 | private: |
2346 | // The monomorphic implementation that works for a particular pointer type. |
2347 | template <typename Pointer> |
2348 | class Impl : public MatcherInterface<Pointer> { |
2349 | public: |
2350 | typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT |
2351 | GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; |
2352 | |
2353 | explicit Impl(const InnerMatcher& matcher) |
2354 | : matcher_(MatcherCast<const Pointee&>(matcher)) {} |
2355 | |
2356 | virtual void DescribeTo(::std::ostream* os) const { |
2357 | *os << "points to a value that " ; |
2358 | matcher_.DescribeTo(os); |
2359 | } |
2360 | |
2361 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2362 | *os << "does not point to a value that " ; |
2363 | matcher_.DescribeTo(os); |
2364 | } |
2365 | |
2366 | virtual bool MatchAndExplain(Pointer pointer, |
2367 | MatchResultListener* listener) const { |
2368 | if (GetRawPointer(pointer) == NULL) |
2369 | return false; |
2370 | |
2371 | *listener << "which points to " ; |
2372 | return MatchPrintAndExplain(*pointer, matcher_, listener); |
2373 | } |
2374 | |
2375 | private: |
2376 | const Matcher<const Pointee&> matcher_; |
2377 | |
2378 | GTEST_DISALLOW_ASSIGN_(Impl); |
2379 | }; |
2380 | |
2381 | const InnerMatcher matcher_; |
2382 | |
2383 | GTEST_DISALLOW_ASSIGN_(PointeeMatcher); |
2384 | }; |
2385 | |
2386 | #if GTEST_HAS_RTTI |
2387 | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or |
2388 | // reference that matches inner_matcher when dynamic_cast<T> is applied. |
2389 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
2390 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
2391 | // If To is a reference and the cast fails, this matcher returns false |
2392 | // immediately. |
2393 | template <typename To> |
2394 | class WhenDynamicCastToMatcherBase { |
2395 | public: |
2396 | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) |
2397 | : matcher_(matcher) {} |
2398 | |
2399 | void DescribeTo(::std::ostream* os) const { |
2400 | GetCastTypeDescription(os); |
2401 | matcher_.DescribeTo(os); |
2402 | } |
2403 | |
2404 | void DescribeNegationTo(::std::ostream* os) const { |
2405 | GetCastTypeDescription(os); |
2406 | matcher_.DescribeNegationTo(os); |
2407 | } |
2408 | |
2409 | protected: |
2410 | const Matcher<To> matcher_; |
2411 | |
2412 | static std::string GetToName() { |
2413 | return GetTypeName<To>(); |
2414 | } |
2415 | |
2416 | private: |
2417 | static void GetCastTypeDescription(::std::ostream* os) { |
2418 | *os << "when dynamic_cast to " << GetToName() << ", " ; |
2419 | } |
2420 | |
2421 | GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); |
2422 | }; |
2423 | |
2424 | // Primary template. |
2425 | // To is a pointer. Cast and forward the result. |
2426 | template <typename To> |
2427 | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { |
2428 | public: |
2429 | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) |
2430 | : WhenDynamicCastToMatcherBase<To>(matcher) {} |
2431 | |
2432 | template <typename From> |
2433 | bool MatchAndExplain(From from, MatchResultListener* listener) const { |
2434 | // FIXME: Add more detail on failures. ie did the dyn_cast fail? |
2435 | To to = dynamic_cast<To>(from); |
2436 | return MatchPrintAndExplain(to, this->matcher_, listener); |
2437 | } |
2438 | }; |
2439 | |
2440 | // Specialize for references. |
2441 | // In this case we return false if the dynamic_cast fails. |
2442 | template <typename To> |
2443 | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { |
2444 | public: |
2445 | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) |
2446 | : WhenDynamicCastToMatcherBase<To&>(matcher) {} |
2447 | |
2448 | template <typename From> |
2449 | bool MatchAndExplain(From& from, MatchResultListener* listener) const { |
2450 | // We don't want an std::bad_cast here, so do the cast with pointers. |
2451 | To* to = dynamic_cast<To*>(&from); |
2452 | if (to == NULL) { |
2453 | *listener << "which cannot be dynamic_cast to " << this->GetToName(); |
2454 | return false; |
2455 | } |
2456 | return MatchPrintAndExplain(*to, this->matcher_, listener); |
2457 | } |
2458 | }; |
2459 | #endif // GTEST_HAS_RTTI |
2460 | |
2461 | // Implements the Field() matcher for matching a field (i.e. member |
2462 | // variable) of an object. |
2463 | template <typename Class, typename FieldType> |
2464 | class FieldMatcher { |
2465 | public: |
2466 | FieldMatcher(FieldType Class::*field, |
2467 | const Matcher<const FieldType&>& matcher) |
2468 | : field_(field), matcher_(matcher), whose_field_("whose given field " ) {} |
2469 | |
2470 | FieldMatcher(const std::string& field_name, FieldType Class::*field, |
2471 | const Matcher<const FieldType&>& matcher) |
2472 | : field_(field), |
2473 | matcher_(matcher), |
2474 | whose_field_("whose field `" + field_name + "` " ) {} |
2475 | |
2476 | void DescribeTo(::std::ostream* os) const { |
2477 | *os << "is an object " << whose_field_; |
2478 | matcher_.DescribeTo(os); |
2479 | } |
2480 | |
2481 | void DescribeNegationTo(::std::ostream* os) const { |
2482 | *os << "is an object " << whose_field_; |
2483 | matcher_.DescribeNegationTo(os); |
2484 | } |
2485 | |
2486 | template <typename T> |
2487 | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { |
2488 | return MatchAndExplainImpl( |
2489 | typename ::testing::internal:: |
2490 | is_pointer<GTEST_REMOVE_CONST_(T)>::type(), |
2491 | value, listener); |
2492 | } |
2493 | |
2494 | private: |
2495 | // The first argument of MatchAndExplainImpl() is needed to help |
2496 | // Symbian's C++ compiler choose which overload to use. Its type is |
2497 | // true_type iff the Field() matcher is used to match a pointer. |
2498 | bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, |
2499 | MatchResultListener* listener) const { |
2500 | *listener << whose_field_ << "is " ; |
2501 | return MatchPrintAndExplain(obj.*field_, matcher_, listener); |
2502 | } |
2503 | |
2504 | bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, |
2505 | MatchResultListener* listener) const { |
2506 | if (p == NULL) |
2507 | return false; |
2508 | |
2509 | *listener << "which points to an object " ; |
2510 | // Since *p has a field, it must be a class/struct/union type and |
2511 | // thus cannot be a pointer. Therefore we pass false_type() as |
2512 | // the first argument. |
2513 | return MatchAndExplainImpl(false_type(), *p, listener); |
2514 | } |
2515 | |
2516 | const FieldType Class::*field_; |
2517 | const Matcher<const FieldType&> matcher_; |
2518 | |
2519 | // Contains either "whose given field " if the name of the field is unknown |
2520 | // or "whose field `name_of_field` " if the name is known. |
2521 | const std::string whose_field_; |
2522 | |
2523 | GTEST_DISALLOW_ASSIGN_(FieldMatcher); |
2524 | }; |
2525 | |
2526 | // Implements the Property() matcher for matching a property |
2527 | // (i.e. return value of a getter method) of an object. |
2528 | // |
2529 | // Property is a const-qualified member function of Class returning |
2530 | // PropertyType. |
2531 | template <typename Class, typename PropertyType, typename Property> |
2532 | class PropertyMatcher { |
2533 | public: |
2534 | // The property may have a reference type, so 'const PropertyType&' |
2535 | // may cause double references and fail to compile. That's why we |
2536 | // need GTEST_REFERENCE_TO_CONST, which works regardless of |
2537 | // PropertyType being a reference or not. |
2538 | typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; |
2539 | |
2540 | PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher) |
2541 | : property_(property), |
2542 | matcher_(matcher), |
2543 | whose_property_("whose given property " ) {} |
2544 | |
2545 | PropertyMatcher(const std::string& property_name, Property property, |
2546 | const Matcher<RefToConstProperty>& matcher) |
2547 | : property_(property), |
2548 | matcher_(matcher), |
2549 | whose_property_("whose property `" + property_name + "` " ) {} |
2550 | |
2551 | void DescribeTo(::std::ostream* os) const { |
2552 | *os << "is an object " << whose_property_; |
2553 | matcher_.DescribeTo(os); |
2554 | } |
2555 | |
2556 | void DescribeNegationTo(::std::ostream* os) const { |
2557 | *os << "is an object " << whose_property_; |
2558 | matcher_.DescribeNegationTo(os); |
2559 | } |
2560 | |
2561 | template <typename T> |
2562 | bool MatchAndExplain(const T&value, MatchResultListener* listener) const { |
2563 | return MatchAndExplainImpl( |
2564 | typename ::testing::internal:: |
2565 | is_pointer<GTEST_REMOVE_CONST_(T)>::type(), |
2566 | value, listener); |
2567 | } |
2568 | |
2569 | private: |
2570 | // The first argument of MatchAndExplainImpl() is needed to help |
2571 | // Symbian's C++ compiler choose which overload to use. Its type is |
2572 | // true_type iff the Property() matcher is used to match a pointer. |
2573 | bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, |
2574 | MatchResultListener* listener) const { |
2575 | *listener << whose_property_ << "is " ; |
2576 | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, |
2577 | // which takes a non-const reference as argument. |
2578 | #if defined(_PREFAST_ ) && _MSC_VER == 1800 |
2579 | // Workaround bug in VC++ 2013's /analyze parser. |
2580 | // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move |
2581 | posix::Abort(); // To make sure it is never run. |
2582 | return false; |
2583 | #else |
2584 | RefToConstProperty result = (obj.*property_)(); |
2585 | return MatchPrintAndExplain(result, matcher_, listener); |
2586 | #endif |
2587 | } |
2588 | |
2589 | bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, |
2590 | MatchResultListener* listener) const { |
2591 | if (p == NULL) |
2592 | return false; |
2593 | |
2594 | *listener << "which points to an object " ; |
2595 | // Since *p has a property method, it must be a class/struct/union |
2596 | // type and thus cannot be a pointer. Therefore we pass |
2597 | // false_type() as the first argument. |
2598 | return MatchAndExplainImpl(false_type(), *p, listener); |
2599 | } |
2600 | |
2601 | Property property_; |
2602 | const Matcher<RefToConstProperty> matcher_; |
2603 | |
2604 | // Contains either "whose given property " if the name of the property is |
2605 | // unknown or "whose property `name_of_property` " if the name is known. |
2606 | const std::string whose_property_; |
2607 | |
2608 | GTEST_DISALLOW_ASSIGN_(PropertyMatcher); |
2609 | }; |
2610 | |
2611 | // Type traits specifying various features of different functors for ResultOf. |
2612 | // The default template specifies features for functor objects. |
2613 | template <typename Functor> |
2614 | struct CallableTraits { |
2615 | typedef Functor StorageType; |
2616 | |
2617 | static void CheckIsValid(Functor /* functor */) {} |
2618 | |
2619 | #if GTEST_LANG_CXX11 |
2620 | template <typename T> |
2621 | static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); } |
2622 | #else |
2623 | typedef typename Functor::result_type ResultType; |
2624 | template <typename T> |
2625 | static ResultType Invoke(Functor f, T arg) { return f(arg); } |
2626 | #endif |
2627 | }; |
2628 | |
2629 | // Specialization for function pointers. |
2630 | template <typename ArgType, typename ResType> |
2631 | struct CallableTraits<ResType(*)(ArgType)> { |
2632 | typedef ResType ResultType; |
2633 | typedef ResType(*StorageType)(ArgType); |
2634 | |
2635 | static void CheckIsValid(ResType(*f)(ArgType)) { |
2636 | GTEST_CHECK_(f != NULL) |
2637 | << "NULL function pointer is passed into ResultOf()." ; |
2638 | } |
2639 | template <typename T> |
2640 | static ResType Invoke(ResType(*f)(ArgType), T arg) { |
2641 | return (*f)(arg); |
2642 | } |
2643 | }; |
2644 | |
2645 | // Implements the ResultOf() matcher for matching a return value of a |
2646 | // unary function of an object. |
2647 | template <typename Callable, typename InnerMatcher> |
2648 | class ResultOfMatcher { |
2649 | public: |
2650 | ResultOfMatcher(Callable callable, InnerMatcher matcher) |
2651 | : callable_(internal::move(callable)), matcher_(internal::move(matcher)) { |
2652 | CallableTraits<Callable>::CheckIsValid(callable_); |
2653 | } |
2654 | |
2655 | template <typename T> |
2656 | operator Matcher<T>() const { |
2657 | return Matcher<T>(new Impl<T>(callable_, matcher_)); |
2658 | } |
2659 | |
2660 | private: |
2661 | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; |
2662 | |
2663 | template <typename T> |
2664 | class Impl : public MatcherInterface<T> { |
2665 | #if GTEST_LANG_CXX11 |
2666 | using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>( |
2667 | std::declval<CallableStorageType>(), std::declval<T>())); |
2668 | #else |
2669 | typedef typename CallableTraits<Callable>::ResultType ResultType; |
2670 | #endif |
2671 | |
2672 | public: |
2673 | template <typename M> |
2674 | Impl(const CallableStorageType& callable, const M& matcher) |
2675 | : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {} |
2676 | |
2677 | virtual void DescribeTo(::std::ostream* os) const { |
2678 | *os << "is mapped by the given callable to a value that " ; |
2679 | matcher_.DescribeTo(os); |
2680 | } |
2681 | |
2682 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2683 | *os << "is mapped by the given callable to a value that " ; |
2684 | matcher_.DescribeNegationTo(os); |
2685 | } |
2686 | |
2687 | virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { |
2688 | *listener << "which is mapped by the given callable to " ; |
2689 | // Cannot pass the return value directly to MatchPrintAndExplain, which |
2690 | // takes a non-const reference as argument. |
2691 | // Also, specifying template argument explicitly is needed because T could |
2692 | // be a non-const reference (e.g. Matcher<Uncopyable&>). |
2693 | ResultType result = |
2694 | CallableTraits<Callable>::template Invoke<T>(callable_, obj); |
2695 | return MatchPrintAndExplain(result, matcher_, listener); |
2696 | } |
2697 | |
2698 | private: |
2699 | // Functors often define operator() as non-const method even though |
2700 | // they are actually stateless. But we need to use them even when |
2701 | // 'this' is a const pointer. It's the user's responsibility not to |
2702 | // use stateful callables with ResultOf(), which doesn't guarantee |
2703 | // how many times the callable will be invoked. |
2704 | mutable CallableStorageType callable_; |
2705 | const Matcher<ResultType> matcher_; |
2706 | |
2707 | GTEST_DISALLOW_ASSIGN_(Impl); |
2708 | }; // class Impl |
2709 | |
2710 | const CallableStorageType callable_; |
2711 | const InnerMatcher matcher_; |
2712 | |
2713 | GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); |
2714 | }; |
2715 | |
2716 | // Implements a matcher that checks the size of an STL-style container. |
2717 | template <typename SizeMatcher> |
2718 | class SizeIsMatcher { |
2719 | public: |
2720 | explicit SizeIsMatcher(const SizeMatcher& size_matcher) |
2721 | : size_matcher_(size_matcher) { |
2722 | } |
2723 | |
2724 | template <typename Container> |
2725 | operator Matcher<Container>() const { |
2726 | return MakeMatcher(new Impl<Container>(size_matcher_)); |
2727 | } |
2728 | |
2729 | template <typename Container> |
2730 | class Impl : public MatcherInterface<Container> { |
2731 | public: |
2732 | typedef internal::StlContainerView< |
2733 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
2734 | typedef typename ContainerView::type::size_type SizeType; |
2735 | explicit Impl(const SizeMatcher& size_matcher) |
2736 | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} |
2737 | |
2738 | virtual void DescribeTo(::std::ostream* os) const { |
2739 | *os << "size " ; |
2740 | size_matcher_.DescribeTo(os); |
2741 | } |
2742 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2743 | *os << "size " ; |
2744 | size_matcher_.DescribeNegationTo(os); |
2745 | } |
2746 | |
2747 | virtual bool MatchAndExplain(Container container, |
2748 | MatchResultListener* listener) const { |
2749 | SizeType size = container.size(); |
2750 | StringMatchResultListener size_listener; |
2751 | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); |
2752 | *listener |
2753 | << "whose size " << size << (result ? " matches" : " doesn't match" ); |
2754 | PrintIfNotEmpty(size_listener.str(), listener->stream()); |
2755 | return result; |
2756 | } |
2757 | |
2758 | private: |
2759 | const Matcher<SizeType> size_matcher_; |
2760 | GTEST_DISALLOW_ASSIGN_(Impl); |
2761 | }; |
2762 | |
2763 | private: |
2764 | const SizeMatcher size_matcher_; |
2765 | GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); |
2766 | }; |
2767 | |
2768 | // Implements a matcher that checks the begin()..end() distance of an STL-style |
2769 | // container. |
2770 | template <typename DistanceMatcher> |
2771 | class BeginEndDistanceIsMatcher { |
2772 | public: |
2773 | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) |
2774 | : distance_matcher_(distance_matcher) {} |
2775 | |
2776 | template <typename Container> |
2777 | operator Matcher<Container>() const { |
2778 | return MakeMatcher(new Impl<Container>(distance_matcher_)); |
2779 | } |
2780 | |
2781 | template <typename Container> |
2782 | class Impl : public MatcherInterface<Container> { |
2783 | public: |
2784 | typedef internal::StlContainerView< |
2785 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; |
2786 | typedef typename std::iterator_traits< |
2787 | typename ContainerView::type::const_iterator>::difference_type |
2788 | DistanceType; |
2789 | explicit Impl(const DistanceMatcher& distance_matcher) |
2790 | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} |
2791 | |
2792 | virtual void DescribeTo(::std::ostream* os) const { |
2793 | *os << "distance between begin() and end() " ; |
2794 | distance_matcher_.DescribeTo(os); |
2795 | } |
2796 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2797 | *os << "distance between begin() and end() " ; |
2798 | distance_matcher_.DescribeNegationTo(os); |
2799 | } |
2800 | |
2801 | virtual bool MatchAndExplain(Container container, |
2802 | MatchResultListener* listener) const { |
2803 | #if GTEST_HAS_STD_BEGIN_AND_END_ |
2804 | using std::begin; |
2805 | using std::end; |
2806 | DistanceType distance = std::distance(begin(container), end(container)); |
2807 | #else |
2808 | DistanceType distance = std::distance(container.begin(), container.end()); |
2809 | #endif |
2810 | StringMatchResultListener distance_listener; |
2811 | const bool result = |
2812 | distance_matcher_.MatchAndExplain(distance, &distance_listener); |
2813 | *listener << "whose distance between begin() and end() " << distance |
2814 | << (result ? " matches" : " doesn't match" ); |
2815 | PrintIfNotEmpty(distance_listener.str(), listener->stream()); |
2816 | return result; |
2817 | } |
2818 | |
2819 | private: |
2820 | const Matcher<DistanceType> distance_matcher_; |
2821 | GTEST_DISALLOW_ASSIGN_(Impl); |
2822 | }; |
2823 | |
2824 | private: |
2825 | const DistanceMatcher distance_matcher_; |
2826 | GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); |
2827 | }; |
2828 | |
2829 | // Implements an equality matcher for any STL-style container whose elements |
2830 | // support ==. This matcher is like Eq(), but its failure explanations provide |
2831 | // more detailed information that is useful when the container is used as a set. |
2832 | // The failure message reports elements that are in one of the operands but not |
2833 | // the other. The failure messages do not report duplicate or out-of-order |
2834 | // elements in the containers (which don't properly matter to sets, but can |
2835 | // occur if the containers are vectors or lists, for example). |
2836 | // |
2837 | // Uses the container's const_iterator, value_type, operator ==, |
2838 | // begin(), and end(). |
2839 | template <typename Container> |
2840 | class ContainerEqMatcher { |
2841 | public: |
2842 | typedef internal::StlContainerView<Container> View; |
2843 | typedef typename View::type StlContainer; |
2844 | typedef typename View::const_reference StlContainerReference; |
2845 | |
2846 | // We make a copy of expected in case the elements in it are modified |
2847 | // after this matcher is created. |
2848 | explicit ContainerEqMatcher(const Container& expected) |
2849 | : expected_(View::Copy(expected)) { |
2850 | // Makes sure the user doesn't instantiate this class template |
2851 | // with a const or reference type. |
2852 | (void)testing::StaticAssertTypeEq<Container, |
2853 | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); |
2854 | } |
2855 | |
2856 | void DescribeTo(::std::ostream* os) const { |
2857 | *os << "equals " ; |
2858 | UniversalPrint(expected_, os); |
2859 | } |
2860 | void DescribeNegationTo(::std::ostream* os) const { |
2861 | *os << "does not equal " ; |
2862 | UniversalPrint(expected_, os); |
2863 | } |
2864 | |
2865 | template <typename LhsContainer> |
2866 | bool MatchAndExplain(const LhsContainer& lhs, |
2867 | MatchResultListener* listener) const { |
2868 | // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug |
2869 | // that causes LhsContainer to be a const type sometimes. |
2870 | typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> |
2871 | LhsView; |
2872 | typedef typename LhsView::type LhsStlContainer; |
2873 | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2874 | if (lhs_stl_container == expected_) |
2875 | return true; |
2876 | |
2877 | ::std::ostream* const os = listener->stream(); |
2878 | if (os != NULL) { |
2879 | // Something is different. Check for extra values first. |
2880 | bool = false; |
2881 | for (typename LhsStlContainer::const_iterator it = |
2882 | lhs_stl_container.begin(); |
2883 | it != lhs_stl_container.end(); ++it) { |
2884 | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == |
2885 | expected_.end()) { |
2886 | if (printed_header) { |
2887 | *os << ", " ; |
2888 | } else { |
2889 | *os << "which has these unexpected elements: " ; |
2890 | printed_header = true; |
2891 | } |
2892 | UniversalPrint(*it, os); |
2893 | } |
2894 | } |
2895 | |
2896 | // Now check for missing values. |
2897 | bool = false; |
2898 | for (typename StlContainer::const_iterator it = expected_.begin(); |
2899 | it != expected_.end(); ++it) { |
2900 | if (internal::ArrayAwareFind( |
2901 | lhs_stl_container.begin(), lhs_stl_container.end(), *it) == |
2902 | lhs_stl_container.end()) { |
2903 | if (printed_header2) { |
2904 | *os << ", " ; |
2905 | } else { |
2906 | *os << (printed_header ? ",\nand" : "which" ) |
2907 | << " doesn't have these expected elements: " ; |
2908 | printed_header2 = true; |
2909 | } |
2910 | UniversalPrint(*it, os); |
2911 | } |
2912 | } |
2913 | } |
2914 | |
2915 | return false; |
2916 | } |
2917 | |
2918 | private: |
2919 | const StlContainer expected_; |
2920 | |
2921 | GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); |
2922 | }; |
2923 | |
2924 | // A comparator functor that uses the < operator to compare two values. |
2925 | struct LessComparator { |
2926 | template <typename T, typename U> |
2927 | bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } |
2928 | }; |
2929 | |
2930 | // Implements WhenSortedBy(comparator, container_matcher). |
2931 | template <typename Comparator, typename ContainerMatcher> |
2932 | class WhenSortedByMatcher { |
2933 | public: |
2934 | WhenSortedByMatcher(const Comparator& comparator, |
2935 | const ContainerMatcher& matcher) |
2936 | : comparator_(comparator), matcher_(matcher) {} |
2937 | |
2938 | template <typename LhsContainer> |
2939 | operator Matcher<LhsContainer>() const { |
2940 | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); |
2941 | } |
2942 | |
2943 | template <typename LhsContainer> |
2944 | class Impl : public MatcherInterface<LhsContainer> { |
2945 | public: |
2946 | typedef internal::StlContainerView< |
2947 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
2948 | typedef typename LhsView::type LhsStlContainer; |
2949 | typedef typename LhsView::const_reference LhsStlContainerReference; |
2950 | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> |
2951 | // so that we can match associative containers. |
2952 | typedef typename RemoveConstFromKey< |
2953 | typename LhsStlContainer::value_type>::type LhsValue; |
2954 | |
2955 | Impl(const Comparator& comparator, const ContainerMatcher& matcher) |
2956 | : comparator_(comparator), matcher_(matcher) {} |
2957 | |
2958 | virtual void DescribeTo(::std::ostream* os) const { |
2959 | *os << "(when sorted) " ; |
2960 | matcher_.DescribeTo(os); |
2961 | } |
2962 | |
2963 | virtual void DescribeNegationTo(::std::ostream* os) const { |
2964 | *os << "(when sorted) " ; |
2965 | matcher_.DescribeNegationTo(os); |
2966 | } |
2967 | |
2968 | virtual bool MatchAndExplain(LhsContainer lhs, |
2969 | MatchResultListener* listener) const { |
2970 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
2971 | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), |
2972 | lhs_stl_container.end()); |
2973 | ::std::sort( |
2974 | sorted_container.begin(), sorted_container.end(), comparator_); |
2975 | |
2976 | if (!listener->IsInterested()) { |
2977 | // If the listener is not interested, we do not need to |
2978 | // construct the inner explanation. |
2979 | return matcher_.Matches(sorted_container); |
2980 | } |
2981 | |
2982 | *listener << "which is " ; |
2983 | UniversalPrint(sorted_container, listener->stream()); |
2984 | *listener << " when sorted" ; |
2985 | |
2986 | StringMatchResultListener inner_listener; |
2987 | const bool match = matcher_.MatchAndExplain(sorted_container, |
2988 | &inner_listener); |
2989 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
2990 | return match; |
2991 | } |
2992 | |
2993 | private: |
2994 | const Comparator comparator_; |
2995 | const Matcher<const ::std::vector<LhsValue>&> matcher_; |
2996 | |
2997 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
2998 | }; |
2999 | |
3000 | private: |
3001 | const Comparator comparator_; |
3002 | const ContainerMatcher matcher_; |
3003 | |
3004 | GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); |
3005 | }; |
3006 | |
3007 | // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher |
3008 | // must be able to be safely cast to Matcher<tuple<const T1&, const |
3009 | // T2&> >, where T1 and T2 are the types of elements in the LHS |
3010 | // container and the RHS container respectively. |
3011 | template <typename TupleMatcher, typename RhsContainer> |
3012 | class PointwiseMatcher { |
3013 | GTEST_COMPILE_ASSERT_( |
3014 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value, |
3015 | use_UnorderedPointwise_with_hash_tables); |
3016 | |
3017 | public: |
3018 | typedef internal::StlContainerView<RhsContainer> RhsView; |
3019 | typedef typename RhsView::type RhsStlContainer; |
3020 | typedef typename RhsStlContainer::value_type RhsValue; |
3021 | |
3022 | // Like ContainerEq, we make a copy of rhs in case the elements in |
3023 | // it are modified after this matcher is created. |
3024 | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) |
3025 | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { |
3026 | // Makes sure the user doesn't instantiate this class template |
3027 | // with a const or reference type. |
3028 | (void)testing::StaticAssertTypeEq<RhsContainer, |
3029 | GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); |
3030 | } |
3031 | |
3032 | template <typename LhsContainer> |
3033 | operator Matcher<LhsContainer>() const { |
3034 | GTEST_COMPILE_ASSERT_( |
3035 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value, |
3036 | use_UnorderedPointwise_with_hash_tables_); |
3037 | |
3038 | return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); |
3039 | } |
3040 | |
3041 | template <typename LhsContainer> |
3042 | class Impl : public MatcherInterface<LhsContainer> { |
3043 | public: |
3044 | typedef internal::StlContainerView< |
3045 | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; |
3046 | typedef typename LhsView::type LhsStlContainer; |
3047 | typedef typename LhsView::const_reference LhsStlContainerReference; |
3048 | typedef typename LhsStlContainer::value_type LhsValue; |
3049 | // We pass the LHS value and the RHS value to the inner matcher by |
3050 | // reference, as they may be expensive to copy. We must use tuple |
3051 | // instead of pair here, as a pair cannot hold references (C++ 98, |
3052 | // 20.2.2 [lib.pairs]). |
3053 | typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; |
3054 | |
3055 | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) |
3056 | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. |
3057 | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), |
3058 | rhs_(rhs) {} |
3059 | |
3060 | virtual void DescribeTo(::std::ostream* os) const { |
3061 | *os << "contains " << rhs_.size() |
3062 | << " values, where each value and its corresponding value in " ; |
3063 | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); |
3064 | *os << " " ; |
3065 | mono_tuple_matcher_.DescribeTo(os); |
3066 | } |
3067 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3068 | *os << "doesn't contain exactly " << rhs_.size() |
3069 | << " values, or contains a value x at some index i" |
3070 | << " where x and the i-th value of " ; |
3071 | UniversalPrint(rhs_, os); |
3072 | *os << " " ; |
3073 | mono_tuple_matcher_.DescribeNegationTo(os); |
3074 | } |
3075 | |
3076 | virtual bool MatchAndExplain(LhsContainer lhs, |
3077 | MatchResultListener* listener) const { |
3078 | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); |
3079 | const size_t actual_size = lhs_stl_container.size(); |
3080 | if (actual_size != rhs_.size()) { |
3081 | *listener << "which contains " << actual_size << " values" ; |
3082 | return false; |
3083 | } |
3084 | |
3085 | typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); |
3086 | typename RhsStlContainer::const_iterator right = rhs_.begin(); |
3087 | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { |
3088 | if (listener->IsInterested()) { |
3089 | StringMatchResultListener inner_listener; |
3090 | // Create InnerMatcherArg as a temporarily object to avoid it outlives |
3091 | // *left and *right. Dereference or the conversion to `const T&` may |
3092 | // return temp objects, e.g for vector<bool>. |
3093 | if (!mono_tuple_matcher_.MatchAndExplain( |
3094 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
3095 | ImplicitCast_<const RhsValue&>(*right)), |
3096 | &inner_listener)) { |
3097 | *listener << "where the value pair (" ; |
3098 | UniversalPrint(*left, listener->stream()); |
3099 | *listener << ", " ; |
3100 | UniversalPrint(*right, listener->stream()); |
3101 | *listener << ") at index #" << i << " don't match" ; |
3102 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
3103 | return false; |
3104 | } |
3105 | } else { |
3106 | if (!mono_tuple_matcher_.Matches( |
3107 | InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left), |
3108 | ImplicitCast_<const RhsValue&>(*right)))) |
3109 | return false; |
3110 | } |
3111 | } |
3112 | |
3113 | return true; |
3114 | } |
3115 | |
3116 | private: |
3117 | const Matcher<InnerMatcherArg> mono_tuple_matcher_; |
3118 | const RhsStlContainer rhs_; |
3119 | |
3120 | GTEST_DISALLOW_ASSIGN_(Impl); |
3121 | }; |
3122 | |
3123 | private: |
3124 | const TupleMatcher tuple_matcher_; |
3125 | const RhsStlContainer rhs_; |
3126 | |
3127 | GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); |
3128 | }; |
3129 | |
3130 | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. |
3131 | template <typename Container> |
3132 | class QuantifierMatcherImpl : public MatcherInterface<Container> { |
3133 | public: |
3134 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3135 | typedef StlContainerView<RawContainer> View; |
3136 | typedef typename View::type StlContainer; |
3137 | typedef typename View::const_reference StlContainerReference; |
3138 | typedef typename StlContainer::value_type Element; |
3139 | |
3140 | template <typename InnerMatcher> |
3141 | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) |
3142 | : inner_matcher_( |
3143 | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} |
3144 | |
3145 | // Checks whether: |
3146 | // * All elements in the container match, if all_elements_should_match. |
3147 | // * Any element in the container matches, if !all_elements_should_match. |
3148 | bool MatchAndExplainImpl(bool all_elements_should_match, |
3149 | Container container, |
3150 | MatchResultListener* listener) const { |
3151 | StlContainerReference stl_container = View::ConstReference(container); |
3152 | size_t i = 0; |
3153 | for (typename StlContainer::const_iterator it = stl_container.begin(); |
3154 | it != stl_container.end(); ++it, ++i) { |
3155 | StringMatchResultListener inner_listener; |
3156 | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); |
3157 | |
3158 | if (matches != all_elements_should_match) { |
3159 | *listener << "whose element #" << i |
3160 | << (matches ? " matches" : " doesn't match" ); |
3161 | PrintIfNotEmpty(inner_listener.str(), listener->stream()); |
3162 | return !all_elements_should_match; |
3163 | } |
3164 | } |
3165 | return all_elements_should_match; |
3166 | } |
3167 | |
3168 | protected: |
3169 | const Matcher<const Element&> inner_matcher_; |
3170 | |
3171 | GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); |
3172 | }; |
3173 | |
3174 | // Implements Contains(element_matcher) for the given argument type Container. |
3175 | // Symmetric to EachMatcherImpl. |
3176 | template <typename Container> |
3177 | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { |
3178 | public: |
3179 | template <typename InnerMatcher> |
3180 | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) |
3181 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
3182 | |
3183 | // Describes what this matcher does. |
3184 | virtual void DescribeTo(::std::ostream* os) const { |
3185 | *os << "contains at least one element that " ; |
3186 | this->inner_matcher_.DescribeTo(os); |
3187 | } |
3188 | |
3189 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3190 | *os << "doesn't contain any element that " ; |
3191 | this->inner_matcher_.DescribeTo(os); |
3192 | } |
3193 | |
3194 | virtual bool MatchAndExplain(Container container, |
3195 | MatchResultListener* listener) const { |
3196 | return this->MatchAndExplainImpl(false, container, listener); |
3197 | } |
3198 | |
3199 | private: |
3200 | GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); |
3201 | }; |
3202 | |
3203 | // Implements Each(element_matcher) for the given argument type Container. |
3204 | // Symmetric to ContainsMatcherImpl. |
3205 | template <typename Container> |
3206 | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { |
3207 | public: |
3208 | template <typename InnerMatcher> |
3209 | explicit EachMatcherImpl(InnerMatcher inner_matcher) |
3210 | : QuantifierMatcherImpl<Container>(inner_matcher) {} |
3211 | |
3212 | // Describes what this matcher does. |
3213 | virtual void DescribeTo(::std::ostream* os) const { |
3214 | *os << "only contains elements that " ; |
3215 | this->inner_matcher_.DescribeTo(os); |
3216 | } |
3217 | |
3218 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3219 | *os << "contains some element that " ; |
3220 | this->inner_matcher_.DescribeNegationTo(os); |
3221 | } |
3222 | |
3223 | virtual bool MatchAndExplain(Container container, |
3224 | MatchResultListener* listener) const { |
3225 | return this->MatchAndExplainImpl(true, container, listener); |
3226 | } |
3227 | |
3228 | private: |
3229 | GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); |
3230 | }; |
3231 | |
3232 | // Implements polymorphic Contains(element_matcher). |
3233 | template <typename M> |
3234 | class ContainsMatcher { |
3235 | public: |
3236 | explicit ContainsMatcher(M m) : inner_matcher_(m) {} |
3237 | |
3238 | template <typename Container> |
3239 | operator Matcher<Container>() const { |
3240 | return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); |
3241 | } |
3242 | |
3243 | private: |
3244 | const M inner_matcher_; |
3245 | |
3246 | GTEST_DISALLOW_ASSIGN_(ContainsMatcher); |
3247 | }; |
3248 | |
3249 | // Implements polymorphic Each(element_matcher). |
3250 | template <typename M> |
3251 | class EachMatcher { |
3252 | public: |
3253 | explicit EachMatcher(M m) : inner_matcher_(m) {} |
3254 | |
3255 | template <typename Container> |
3256 | operator Matcher<Container>() const { |
3257 | return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); |
3258 | } |
3259 | |
3260 | private: |
3261 | const M inner_matcher_; |
3262 | |
3263 | GTEST_DISALLOW_ASSIGN_(EachMatcher); |
3264 | }; |
3265 | |
3266 | struct Rank1 {}; |
3267 | struct Rank0 : Rank1 {}; |
3268 | |
3269 | namespace pair_getters { |
3270 | #if GTEST_LANG_CXX11 |
3271 | using std::get; |
3272 | template <typename T> |
3273 | auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT |
3274 | return get<0>(x); |
3275 | } |
3276 | template <typename T> |
3277 | auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT |
3278 | return x.first; |
3279 | } |
3280 | |
3281 | template <typename T> |
3282 | auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT |
3283 | return get<1>(x); |
3284 | } |
3285 | template <typename T> |
3286 | auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT |
3287 | return x.second; |
3288 | } |
3289 | #else |
3290 | template <typename T> |
3291 | typename T::first_type& First(T& x, Rank0) { // NOLINT |
3292 | return x.first; |
3293 | } |
3294 | template <typename T> |
3295 | const typename T::first_type& First(const T& x, Rank0) { |
3296 | return x.first; |
3297 | } |
3298 | |
3299 | template <typename T> |
3300 | typename T::second_type& Second(T& x, Rank0) { // NOLINT |
3301 | return x.second; |
3302 | } |
3303 | template <typename T> |
3304 | const typename T::second_type& Second(const T& x, Rank0) { |
3305 | return x.second; |
3306 | } |
3307 | #endif // GTEST_LANG_CXX11 |
3308 | } // namespace pair_getters |
3309 | |
3310 | // Implements Key(inner_matcher) for the given argument pair type. |
3311 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
3312 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
3313 | // std::map that contains at least one element whose key is >= 5. |
3314 | template <typename PairType> |
3315 | class KeyMatcherImpl : public MatcherInterface<PairType> { |
3316 | public: |
3317 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
3318 | typedef typename RawPairType::first_type KeyType; |
3319 | |
3320 | template <typename InnerMatcher> |
3321 | explicit KeyMatcherImpl(InnerMatcher inner_matcher) |
3322 | : inner_matcher_( |
3323 | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { |
3324 | } |
3325 | |
3326 | // Returns true iff 'key_value.first' (the key) matches the inner matcher. |
3327 | virtual bool MatchAndExplain(PairType key_value, |
3328 | MatchResultListener* listener) const { |
3329 | StringMatchResultListener inner_listener; |
3330 | const bool match = inner_matcher_.MatchAndExplain( |
3331 | pair_getters::First(key_value, Rank0()), &inner_listener); |
3332 | const std::string explanation = inner_listener.str(); |
3333 | if (explanation != "" ) { |
3334 | *listener << "whose first field is a value " << explanation; |
3335 | } |
3336 | return match; |
3337 | } |
3338 | |
3339 | // Describes what this matcher does. |
3340 | virtual void DescribeTo(::std::ostream* os) const { |
3341 | *os << "has a key that " ; |
3342 | inner_matcher_.DescribeTo(os); |
3343 | } |
3344 | |
3345 | // Describes what the negation of this matcher does. |
3346 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3347 | *os << "doesn't have a key that " ; |
3348 | inner_matcher_.DescribeTo(os); |
3349 | } |
3350 | |
3351 | private: |
3352 | const Matcher<const KeyType&> inner_matcher_; |
3353 | |
3354 | GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); |
3355 | }; |
3356 | |
3357 | // Implements polymorphic Key(matcher_for_key). |
3358 | template <typename M> |
3359 | class KeyMatcher { |
3360 | public: |
3361 | explicit KeyMatcher(M m) : matcher_for_key_(m) {} |
3362 | |
3363 | template <typename PairType> |
3364 | operator Matcher<PairType>() const { |
3365 | return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); |
3366 | } |
3367 | |
3368 | private: |
3369 | const M matcher_for_key_; |
3370 | |
3371 | GTEST_DISALLOW_ASSIGN_(KeyMatcher); |
3372 | }; |
3373 | |
3374 | // Implements Pair(first_matcher, second_matcher) for the given argument pair |
3375 | // type with its two matchers. See Pair() function below. |
3376 | template <typename PairType> |
3377 | class PairMatcherImpl : public MatcherInterface<PairType> { |
3378 | public: |
3379 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; |
3380 | typedef typename RawPairType::first_type FirstType; |
3381 | typedef typename RawPairType::second_type SecondType; |
3382 | |
3383 | template <typename FirstMatcher, typename SecondMatcher> |
3384 | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3385 | : first_matcher_( |
3386 | testing::SafeMatcherCast<const FirstType&>(first_matcher)), |
3387 | second_matcher_( |
3388 | testing::SafeMatcherCast<const SecondType&>(second_matcher)) { |
3389 | } |
3390 | |
3391 | // Describes what this matcher does. |
3392 | virtual void DescribeTo(::std::ostream* os) const { |
3393 | *os << "has a first field that " ; |
3394 | first_matcher_.DescribeTo(os); |
3395 | *os << ", and has a second field that " ; |
3396 | second_matcher_.DescribeTo(os); |
3397 | } |
3398 | |
3399 | // Describes what the negation of this matcher does. |
3400 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3401 | *os << "has a first field that " ; |
3402 | first_matcher_.DescribeNegationTo(os); |
3403 | *os << ", or has a second field that " ; |
3404 | second_matcher_.DescribeNegationTo(os); |
3405 | } |
3406 | |
3407 | // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' |
3408 | // matches second_matcher. |
3409 | virtual bool MatchAndExplain(PairType a_pair, |
3410 | MatchResultListener* listener) const { |
3411 | if (!listener->IsInterested()) { |
3412 | // If the listener is not interested, we don't need to construct the |
3413 | // explanation. |
3414 | return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) && |
3415 | second_matcher_.Matches(pair_getters::Second(a_pair, Rank0())); |
3416 | } |
3417 | StringMatchResultListener first_inner_listener; |
3418 | if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()), |
3419 | &first_inner_listener)) { |
3420 | *listener << "whose first field does not match" ; |
3421 | PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); |
3422 | return false; |
3423 | } |
3424 | StringMatchResultListener second_inner_listener; |
3425 | if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()), |
3426 | &second_inner_listener)) { |
3427 | *listener << "whose second field does not match" ; |
3428 | PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); |
3429 | return false; |
3430 | } |
3431 | ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), |
3432 | listener); |
3433 | return true; |
3434 | } |
3435 | |
3436 | private: |
3437 | void ExplainSuccess(const std::string& first_explanation, |
3438 | const std::string& second_explanation, |
3439 | MatchResultListener* listener) const { |
3440 | *listener << "whose both fields match" ; |
3441 | if (first_explanation != "" ) { |
3442 | *listener << ", where the first field is a value " << first_explanation; |
3443 | } |
3444 | if (second_explanation != "" ) { |
3445 | *listener << ", " ; |
3446 | if (first_explanation != "" ) { |
3447 | *listener << "and " ; |
3448 | } else { |
3449 | *listener << "where " ; |
3450 | } |
3451 | *listener << "the second field is a value " << second_explanation; |
3452 | } |
3453 | } |
3454 | |
3455 | const Matcher<const FirstType&> first_matcher_; |
3456 | const Matcher<const SecondType&> second_matcher_; |
3457 | |
3458 | GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); |
3459 | }; |
3460 | |
3461 | // Implements polymorphic Pair(first_matcher, second_matcher). |
3462 | template <typename FirstMatcher, typename SecondMatcher> |
3463 | class PairMatcher { |
3464 | public: |
3465 | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) |
3466 | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} |
3467 | |
3468 | template <typename PairType> |
3469 | operator Matcher<PairType> () const { |
3470 | return MakeMatcher( |
3471 | new PairMatcherImpl<PairType>( |
3472 | first_matcher_, second_matcher_)); |
3473 | } |
3474 | |
3475 | private: |
3476 | const FirstMatcher first_matcher_; |
3477 | const SecondMatcher second_matcher_; |
3478 | |
3479 | GTEST_DISALLOW_ASSIGN_(PairMatcher); |
3480 | }; |
3481 | |
3482 | // Implements ElementsAre() and ElementsAreArray(). |
3483 | template <typename Container> |
3484 | class ElementsAreMatcherImpl : public MatcherInterface<Container> { |
3485 | public: |
3486 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3487 | typedef internal::StlContainerView<RawContainer> View; |
3488 | typedef typename View::type StlContainer; |
3489 | typedef typename View::const_reference StlContainerReference; |
3490 | typedef typename StlContainer::value_type Element; |
3491 | |
3492 | // Constructs the matcher from a sequence of element values or |
3493 | // element matchers. |
3494 | template <typename InputIter> |
3495 | ElementsAreMatcherImpl(InputIter first, InputIter last) { |
3496 | while (first != last) { |
3497 | matchers_.push_back(MatcherCast<const Element&>(*first++)); |
3498 | } |
3499 | } |
3500 | |
3501 | // Describes what this matcher does. |
3502 | virtual void DescribeTo(::std::ostream* os) const { |
3503 | if (count() == 0) { |
3504 | *os << "is empty" ; |
3505 | } else if (count() == 1) { |
3506 | *os << "has 1 element that " ; |
3507 | matchers_[0].DescribeTo(os); |
3508 | } else { |
3509 | *os << "has " << Elements(count()) << " where\n" ; |
3510 | for (size_t i = 0; i != count(); ++i) { |
3511 | *os << "element #" << i << " " ; |
3512 | matchers_[i].DescribeTo(os); |
3513 | if (i + 1 < count()) { |
3514 | *os << ",\n" ; |
3515 | } |
3516 | } |
3517 | } |
3518 | } |
3519 | |
3520 | // Describes what the negation of this matcher does. |
3521 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3522 | if (count() == 0) { |
3523 | *os << "isn't empty" ; |
3524 | return; |
3525 | } |
3526 | |
3527 | *os << "doesn't have " << Elements(count()) << ", or\n" ; |
3528 | for (size_t i = 0; i != count(); ++i) { |
3529 | *os << "element #" << i << " " ; |
3530 | matchers_[i].DescribeNegationTo(os); |
3531 | if (i + 1 < count()) { |
3532 | *os << ", or\n" ; |
3533 | } |
3534 | } |
3535 | } |
3536 | |
3537 | virtual bool MatchAndExplain(Container container, |
3538 | MatchResultListener* listener) const { |
3539 | // To work with stream-like "containers", we must only walk |
3540 | // through the elements in one pass. |
3541 | |
3542 | const bool listener_interested = listener->IsInterested(); |
3543 | |
3544 | // explanations[i] is the explanation of the element at index i. |
3545 | ::std::vector<std::string> explanations(count()); |
3546 | StlContainerReference stl_container = View::ConstReference(container); |
3547 | typename StlContainer::const_iterator it = stl_container.begin(); |
3548 | size_t exam_pos = 0; |
3549 | bool mismatch_found = false; // Have we found a mismatched element yet? |
3550 | |
3551 | // Go through the elements and matchers in pairs, until we reach |
3552 | // the end of either the elements or the matchers, or until we find a |
3553 | // mismatch. |
3554 | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { |
3555 | bool match; // Does the current element match the current matcher? |
3556 | if (listener_interested) { |
3557 | StringMatchResultListener s; |
3558 | match = matchers_[exam_pos].MatchAndExplain(*it, &s); |
3559 | explanations[exam_pos] = s.str(); |
3560 | } else { |
3561 | match = matchers_[exam_pos].Matches(*it); |
3562 | } |
3563 | |
3564 | if (!match) { |
3565 | mismatch_found = true; |
3566 | break; |
3567 | } |
3568 | } |
3569 | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. |
3570 | |
3571 | // Find how many elements the actual container has. We avoid |
3572 | // calling size() s.t. this code works for stream-like "containers" |
3573 | // that don't define size(). |
3574 | size_t actual_count = exam_pos; |
3575 | for (; it != stl_container.end(); ++it) { |
3576 | ++actual_count; |
3577 | } |
3578 | |
3579 | if (actual_count != count()) { |
3580 | // The element count doesn't match. If the container is empty, |
3581 | // there's no need to explain anything as Google Mock already |
3582 | // prints the empty container. Otherwise we just need to show |
3583 | // how many elements there actually are. |
3584 | if (listener_interested && (actual_count != 0)) { |
3585 | *listener << "which has " << Elements(actual_count); |
3586 | } |
3587 | return false; |
3588 | } |
3589 | |
3590 | if (mismatch_found) { |
3591 | // The element count matches, but the exam_pos-th element doesn't match. |
3592 | if (listener_interested) { |
3593 | *listener << "whose element #" << exam_pos << " doesn't match" ; |
3594 | PrintIfNotEmpty(explanations[exam_pos], listener->stream()); |
3595 | } |
3596 | return false; |
3597 | } |
3598 | |
3599 | // Every element matches its expectation. We need to explain why |
3600 | // (the obvious ones can be skipped). |
3601 | if (listener_interested) { |
3602 | bool reason_printed = false; |
3603 | for (size_t i = 0; i != count(); ++i) { |
3604 | const std::string& s = explanations[i]; |
3605 | if (!s.empty()) { |
3606 | if (reason_printed) { |
3607 | *listener << ",\nand " ; |
3608 | } |
3609 | *listener << "whose element #" << i << " matches, " << s; |
3610 | reason_printed = true; |
3611 | } |
3612 | } |
3613 | } |
3614 | return true; |
3615 | } |
3616 | |
3617 | private: |
3618 | static Message Elements(size_t count) { |
3619 | return Message() << count << (count == 1 ? " element" : " elements" ); |
3620 | } |
3621 | |
3622 | size_t count() const { return matchers_.size(); } |
3623 | |
3624 | ::std::vector<Matcher<const Element&> > matchers_; |
3625 | |
3626 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); |
3627 | }; |
3628 | |
3629 | // Connectivity matrix of (elements X matchers), in element-major order. |
3630 | // Initially, there are no edges. |
3631 | // Use NextGraph() to iterate over all possible edge configurations. |
3632 | // Use Randomize() to generate a random edge configuration. |
3633 | class GTEST_API_ MatchMatrix { |
3634 | public: |
3635 | MatchMatrix(size_t num_elements, size_t num_matchers) |
3636 | : num_elements_(num_elements), |
3637 | num_matchers_(num_matchers), |
3638 | matched_(num_elements_* num_matchers_, 0) { |
3639 | } |
3640 | |
3641 | size_t LhsSize() const { return num_elements_; } |
3642 | size_t RhsSize() const { return num_matchers_; } |
3643 | bool HasEdge(size_t ilhs, size_t irhs) const { |
3644 | return matched_[SpaceIndex(ilhs, irhs)] == 1; |
3645 | } |
3646 | void SetEdge(size_t ilhs, size_t irhs, bool b) { |
3647 | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; |
3648 | } |
3649 | |
3650 | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, |
3651 | // adds 1 to that number; returns false if incrementing the graph left it |
3652 | // empty. |
3653 | bool NextGraph(); |
3654 | |
3655 | void Randomize(); |
3656 | |
3657 | std::string DebugString() const; |
3658 | |
3659 | private: |
3660 | size_t SpaceIndex(size_t ilhs, size_t irhs) const { |
3661 | return ilhs * num_matchers_ + irhs; |
3662 | } |
3663 | |
3664 | size_t num_elements_; |
3665 | size_t num_matchers_; |
3666 | |
3667 | // Each element is a char interpreted as bool. They are stored as a |
3668 | // flattened array in lhs-major order, use 'SpaceIndex()' to translate |
3669 | // a (ilhs, irhs) matrix coordinate into an offset. |
3670 | ::std::vector<char> matched_; |
3671 | }; |
3672 | |
3673 | typedef ::std::pair<size_t, size_t> ElementMatcherPair; |
3674 | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; |
3675 | |
3676 | // Returns a maximum bipartite matching for the specified graph 'g'. |
3677 | // The matching is represented as a vector of {element, matcher} pairs. |
3678 | GTEST_API_ ElementMatcherPairs |
3679 | FindMaxBipartiteMatching(const MatchMatrix& g); |
3680 | |
3681 | struct UnorderedMatcherRequire { |
3682 | enum Flags { |
3683 | Superset = 1 << 0, |
3684 | Subset = 1 << 1, |
3685 | ExactMatch = Superset | Subset, |
3686 | }; |
3687 | }; |
3688 | |
3689 | // Untyped base class for implementing UnorderedElementsAre. By |
3690 | // putting logic that's not specific to the element type here, we |
3691 | // reduce binary bloat and increase compilation speed. |
3692 | class GTEST_API_ UnorderedElementsAreMatcherImplBase { |
3693 | protected: |
3694 | explicit UnorderedElementsAreMatcherImplBase( |
3695 | UnorderedMatcherRequire::Flags matcher_flags) |
3696 | : match_flags_(matcher_flags) {} |
3697 | |
3698 | // A vector of matcher describers, one for each element matcher. |
3699 | // Does not own the describers (and thus can be used only when the |
3700 | // element matchers are alive). |
3701 | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; |
3702 | |
3703 | // Describes this UnorderedElementsAre matcher. |
3704 | void DescribeToImpl(::std::ostream* os) const; |
3705 | |
3706 | // Describes the negation of this UnorderedElementsAre matcher. |
3707 | void DescribeNegationToImpl(::std::ostream* os) const; |
3708 | |
3709 | bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts, |
3710 | const MatchMatrix& matrix, |
3711 | MatchResultListener* listener) const; |
3712 | |
3713 | bool FindPairing(const MatchMatrix& matrix, |
3714 | MatchResultListener* listener) const; |
3715 | |
3716 | MatcherDescriberVec& matcher_describers() { |
3717 | return matcher_describers_; |
3718 | } |
3719 | |
3720 | static Message Elements(size_t n) { |
3721 | return Message() << n << " element" << (n == 1 ? "" : "s" ); |
3722 | } |
3723 | |
3724 | UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; } |
3725 | |
3726 | private: |
3727 | UnorderedMatcherRequire::Flags match_flags_; |
3728 | MatcherDescriberVec matcher_describers_; |
3729 | |
3730 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); |
3731 | }; |
3732 | |
3733 | // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and |
3734 | // IsSupersetOf. |
3735 | template <typename Container> |
3736 | class UnorderedElementsAreMatcherImpl |
3737 | : public MatcherInterface<Container>, |
3738 | public UnorderedElementsAreMatcherImplBase { |
3739 | public: |
3740 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3741 | typedef internal::StlContainerView<RawContainer> View; |
3742 | typedef typename View::type StlContainer; |
3743 | typedef typename View::const_reference StlContainerReference; |
3744 | typedef typename StlContainer::const_iterator StlContainerConstIterator; |
3745 | typedef typename StlContainer::value_type Element; |
3746 | |
3747 | template <typename InputIter> |
3748 | UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags, |
3749 | InputIter first, InputIter last) |
3750 | : UnorderedElementsAreMatcherImplBase(matcher_flags) { |
3751 | for (; first != last; ++first) { |
3752 | matchers_.push_back(MatcherCast<const Element&>(*first)); |
3753 | matcher_describers().push_back(matchers_.back().GetDescriber()); |
3754 | } |
3755 | } |
3756 | |
3757 | // Describes what this matcher does. |
3758 | virtual void DescribeTo(::std::ostream* os) const { |
3759 | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); |
3760 | } |
3761 | |
3762 | // Describes what the negation of this matcher does. |
3763 | virtual void DescribeNegationTo(::std::ostream* os) const { |
3764 | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); |
3765 | } |
3766 | |
3767 | virtual bool MatchAndExplain(Container container, |
3768 | MatchResultListener* listener) const { |
3769 | StlContainerReference stl_container = View::ConstReference(container); |
3770 | ::std::vector<std::string> element_printouts; |
3771 | MatchMatrix matrix = |
3772 | AnalyzeElements(stl_container.begin(), stl_container.end(), |
3773 | &element_printouts, listener); |
3774 | |
3775 | if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { |
3776 | return true; |
3777 | } |
3778 | |
3779 | if (match_flags() == UnorderedMatcherRequire::ExactMatch) { |
3780 | if (matrix.LhsSize() != matrix.RhsSize()) { |
3781 | // The element count doesn't match. If the container is empty, |
3782 | // there's no need to explain anything as Google Mock already |
3783 | // prints the empty container. Otherwise we just need to show |
3784 | // how many elements there actually are. |
3785 | if (matrix.LhsSize() != 0 && listener->IsInterested()) { |
3786 | *listener << "which has " << Elements(matrix.LhsSize()); |
3787 | } |
3788 | return false; |
3789 | } |
3790 | } |
3791 | |
3792 | return VerifyMatchMatrix(element_printouts, matrix, listener) && |
3793 | FindPairing(matrix, listener); |
3794 | } |
3795 | |
3796 | private: |
3797 | template <typename ElementIter> |
3798 | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, |
3799 | ::std::vector<std::string>* element_printouts, |
3800 | MatchResultListener* listener) const { |
3801 | element_printouts->clear(); |
3802 | ::std::vector<char> did_match; |
3803 | size_t num_elements = 0; |
3804 | for (; elem_first != elem_last; ++num_elements, ++elem_first) { |
3805 | if (listener->IsInterested()) { |
3806 | element_printouts->push_back(PrintToString(*elem_first)); |
3807 | } |
3808 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3809 | did_match.push_back(Matches(matchers_[irhs])(*elem_first)); |
3810 | } |
3811 | } |
3812 | |
3813 | MatchMatrix matrix(num_elements, matchers_.size()); |
3814 | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); |
3815 | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { |
3816 | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { |
3817 | matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); |
3818 | } |
3819 | } |
3820 | return matrix; |
3821 | } |
3822 | |
3823 | ::std::vector<Matcher<const Element&> > matchers_; |
3824 | |
3825 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); |
3826 | }; |
3827 | |
3828 | // Functor for use in TransformTuple. |
3829 | // Performs MatcherCast<Target> on an input argument of any type. |
3830 | template <typename Target> |
3831 | struct CastAndAppendTransform { |
3832 | template <typename Arg> |
3833 | Matcher<Target> operator()(const Arg& a) const { |
3834 | return MatcherCast<Target>(a); |
3835 | } |
3836 | }; |
3837 | |
3838 | // Implements UnorderedElementsAre. |
3839 | template <typename MatcherTuple> |
3840 | class UnorderedElementsAreMatcher { |
3841 | public: |
3842 | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) |
3843 | : matchers_(args) {} |
3844 | |
3845 | template <typename Container> |
3846 | operator Matcher<Container>() const { |
3847 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3848 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3849 | typedef typename View::value_type Element; |
3850 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3851 | MatcherVec matchers; |
3852 | matchers.reserve(::testing::tuple_size<MatcherTuple>::value); |
3853 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3854 | ::std::back_inserter(matchers)); |
3855 | return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( |
3856 | UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end())); |
3857 | } |
3858 | |
3859 | private: |
3860 | const MatcherTuple matchers_; |
3861 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); |
3862 | }; |
3863 | |
3864 | // Implements ElementsAre. |
3865 | template <typename MatcherTuple> |
3866 | class ElementsAreMatcher { |
3867 | public: |
3868 | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} |
3869 | |
3870 | template <typename Container> |
3871 | operator Matcher<Container>() const { |
3872 | GTEST_COMPILE_ASSERT_( |
3873 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value || |
3874 | ::testing::tuple_size<MatcherTuple>::value < 2, |
3875 | use_UnorderedElementsAre_with_hash_tables); |
3876 | |
3877 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; |
3878 | typedef typename internal::StlContainerView<RawContainer>::type View; |
3879 | typedef typename View::value_type Element; |
3880 | typedef ::std::vector<Matcher<const Element&> > MatcherVec; |
3881 | MatcherVec matchers; |
3882 | matchers.reserve(::testing::tuple_size<MatcherTuple>::value); |
3883 | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, |
3884 | ::std::back_inserter(matchers)); |
3885 | return MakeMatcher(new ElementsAreMatcherImpl<Container>( |
3886 | matchers.begin(), matchers.end())); |
3887 | } |
3888 | |
3889 | private: |
3890 | const MatcherTuple matchers_; |
3891 | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); |
3892 | }; |
3893 | |
3894 | // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf(). |
3895 | template <typename T> |
3896 | class UnorderedElementsAreArrayMatcher { |
3897 | public: |
3898 | template <typename Iter> |
3899 | UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags, |
3900 | Iter first, Iter last) |
3901 | : match_flags_(match_flags), matchers_(first, last) {} |
3902 | |
3903 | template <typename Container> |
3904 | operator Matcher<Container>() const { |
3905 | return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( |
3906 | match_flags_, matchers_.begin(), matchers_.end())); |
3907 | } |
3908 | |
3909 | private: |
3910 | UnorderedMatcherRequire::Flags match_flags_; |
3911 | ::std::vector<T> matchers_; |
3912 | |
3913 | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); |
3914 | }; |
3915 | |
3916 | // Implements ElementsAreArray(). |
3917 | template <typename T> |
3918 | class ElementsAreArrayMatcher { |
3919 | public: |
3920 | template <typename Iter> |
3921 | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} |
3922 | |
3923 | template <typename Container> |
3924 | operator Matcher<Container>() const { |
3925 | GTEST_COMPILE_ASSERT_( |
3926 | !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value, |
3927 | use_UnorderedElementsAreArray_with_hash_tables); |
3928 | |
3929 | return MakeMatcher(new ElementsAreMatcherImpl<Container>( |
3930 | matchers_.begin(), matchers_.end())); |
3931 | } |
3932 | |
3933 | private: |
3934 | const ::std::vector<T> matchers_; |
3935 | |
3936 | GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); |
3937 | }; |
3938 | |
3939 | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second |
3940 | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, |
3941 | // second) is a polymorphic matcher that matches a value x iff tm |
3942 | // matches tuple (x, second). Useful for implementing |
3943 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
3944 | // |
3945 | // BoundSecondMatcher is copyable and assignable, as we need to put |
3946 | // instances of this class in a vector when implementing |
3947 | // UnorderedPointwise(). |
3948 | template <typename Tuple2Matcher, typename Second> |
3949 | class BoundSecondMatcher { |
3950 | public: |
3951 | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) |
3952 | : tuple2_matcher_(tm), second_value_(second) {} |
3953 | |
3954 | template <typename T> |
3955 | operator Matcher<T>() const { |
3956 | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); |
3957 | } |
3958 | |
3959 | // We have to define this for UnorderedPointwise() to compile in |
3960 | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, |
3961 | // which requires the elements to be assignable in C++98. The |
3962 | // compiler cannot generate the operator= for us, as Tuple2Matcher |
3963 | // and Second may not be assignable. |
3964 | // |
3965 | // However, this should never be called, so the implementation just |
3966 | // need to assert. |
3967 | void operator=(const BoundSecondMatcher& /*rhs*/) { |
3968 | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned." ; |
3969 | } |
3970 | |
3971 | private: |
3972 | template <typename T> |
3973 | class Impl : public MatcherInterface<T> { |
3974 | public: |
3975 | typedef ::testing::tuple<T, Second> ArgTuple; |
3976 | |
3977 | Impl(const Tuple2Matcher& tm, const Second& second) |
3978 | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), |
3979 | second_value_(second) {} |
3980 | |
3981 | virtual void DescribeTo(::std::ostream* os) const { |
3982 | *os << "and " ; |
3983 | UniversalPrint(second_value_, os); |
3984 | *os << " " ; |
3985 | mono_tuple2_matcher_.DescribeTo(os); |
3986 | } |
3987 | |
3988 | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { |
3989 | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), |
3990 | listener); |
3991 | } |
3992 | |
3993 | private: |
3994 | const Matcher<const ArgTuple&> mono_tuple2_matcher_; |
3995 | const Second second_value_; |
3996 | |
3997 | GTEST_DISALLOW_ASSIGN_(Impl); |
3998 | }; |
3999 | |
4000 | const Tuple2Matcher tuple2_matcher_; |
4001 | const Second second_value_; |
4002 | }; |
4003 | |
4004 | // Given a 2-tuple matcher tm and a value second, |
4005 | // MatcherBindSecond(tm, second) returns a matcher that matches a |
4006 | // value x iff tm matches tuple (x, second). Useful for implementing |
4007 | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). |
4008 | template <typename Tuple2Matcher, typename Second> |
4009 | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( |
4010 | const Tuple2Matcher& tm, const Second& second) { |
4011 | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); |
4012 | } |
4013 | |
4014 | // Returns the description for a matcher defined using the MATCHER*() |
4015 | // macro where the user-supplied description string is "", if |
4016 | // 'negation' is false; otherwise returns the description of the |
4017 | // negation of the matcher. 'param_values' contains a list of strings |
4018 | // that are the print-out of the matcher's parameters. |
4019 | GTEST_API_ std::string FormatMatcherDescription(bool negation, |
4020 | const char* matcher_name, |
4021 | const Strings& param_values); |
4022 | |
4023 | // Implements a matcher that checks the value of a optional<> type variable. |
4024 | template <typename ValueMatcher> |
4025 | class OptionalMatcher { |
4026 | public: |
4027 | explicit OptionalMatcher(const ValueMatcher& value_matcher) |
4028 | : value_matcher_(value_matcher) {} |
4029 | |
4030 | template <typename Optional> |
4031 | operator Matcher<Optional>() const { |
4032 | return MakeMatcher(new Impl<Optional>(value_matcher_)); |
4033 | } |
4034 | |
4035 | template <typename Optional> |
4036 | class Impl : public MatcherInterface<Optional> { |
4037 | public: |
4038 | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView; |
4039 | typedef typename OptionalView::value_type ValueType; |
4040 | explicit Impl(const ValueMatcher& value_matcher) |
4041 | : value_matcher_(MatcherCast<ValueType>(value_matcher)) {} |
4042 | |
4043 | virtual void DescribeTo(::std::ostream* os) const { |
4044 | *os << "value " ; |
4045 | value_matcher_.DescribeTo(os); |
4046 | } |
4047 | |
4048 | virtual void DescribeNegationTo(::std::ostream* os) const { |
4049 | *os << "value " ; |
4050 | value_matcher_.DescribeNegationTo(os); |
4051 | } |
4052 | |
4053 | virtual bool MatchAndExplain(Optional optional, |
4054 | MatchResultListener* listener) const { |
4055 | if (!optional) { |
4056 | *listener << "which is not engaged" ; |
4057 | return false; |
4058 | } |
4059 | const ValueType& value = *optional; |
4060 | StringMatchResultListener value_listener; |
4061 | const bool match = value_matcher_.MatchAndExplain(value, &value_listener); |
4062 | *listener << "whose value " << PrintToString(value) |
4063 | << (match ? " matches" : " doesn't match" ); |
4064 | PrintIfNotEmpty(value_listener.str(), listener->stream()); |
4065 | return match; |
4066 | } |
4067 | |
4068 | private: |
4069 | const Matcher<ValueType> value_matcher_; |
4070 | GTEST_DISALLOW_ASSIGN_(Impl); |
4071 | }; |
4072 | |
4073 | private: |
4074 | const ValueMatcher value_matcher_; |
4075 | GTEST_DISALLOW_ASSIGN_(OptionalMatcher); |
4076 | }; |
4077 | |
4078 | namespace variant_matcher { |
4079 | // Overloads to allow VariantMatcher to do proper ADL lookup. |
4080 | template <typename T> |
4081 | void holds_alternative() {} |
4082 | template <typename T> |
4083 | void get() {} |
4084 | |
4085 | // Implements a matcher that checks the value of a variant<> type variable. |
4086 | template <typename T> |
4087 | class VariantMatcher { |
4088 | public: |
4089 | explicit VariantMatcher(::testing::Matcher<const T&> matcher) |
4090 | : matcher_(internal::move(matcher)) {} |
4091 | |
4092 | template <typename Variant> |
4093 | bool MatchAndExplain(const Variant& value, |
4094 | ::testing::MatchResultListener* listener) const { |
4095 | if (!listener->IsInterested()) { |
4096 | return holds_alternative<T>(value) && matcher_.Matches(get<T>(value)); |
4097 | } |
4098 | |
4099 | if (!holds_alternative<T>(value)) { |
4100 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
4101 | return false; |
4102 | } |
4103 | |
4104 | const T& elem = get<T>(value); |
4105 | StringMatchResultListener elem_listener; |
4106 | const bool match = matcher_.MatchAndExplain(elem, &elem_listener); |
4107 | *listener << "whose value " << PrintToString(elem) |
4108 | << (match ? " matches" : " doesn't match" ); |
4109 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
4110 | return match; |
4111 | } |
4112 | |
4113 | void DescribeTo(std::ostream* os) const { |
4114 | *os << "is a variant<> with value of type '" << GetTypeName() |
4115 | << "' and the value " ; |
4116 | matcher_.DescribeTo(os); |
4117 | } |
4118 | |
4119 | void DescribeNegationTo(std::ostream* os) const { |
4120 | *os << "is a variant<> with value of type other than '" << GetTypeName() |
4121 | << "' or the value " ; |
4122 | matcher_.DescribeNegationTo(os); |
4123 | } |
4124 | |
4125 | private: |
4126 | static std::string GetTypeName() { |
4127 | #if GTEST_HAS_RTTI |
4128 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
4129 | return internal::GetTypeName<T>()); |
4130 | #endif |
4131 | return "the element type" ; |
4132 | } |
4133 | |
4134 | const ::testing::Matcher<const T&> matcher_; |
4135 | }; |
4136 | |
4137 | } // namespace variant_matcher |
4138 | |
4139 | namespace any_cast_matcher { |
4140 | |
4141 | // Overloads to allow AnyCastMatcher to do proper ADL lookup. |
4142 | template <typename T> |
4143 | void any_cast() {} |
4144 | |
4145 | // Implements a matcher that any_casts the value. |
4146 | template <typename T> |
4147 | class AnyCastMatcher { |
4148 | public: |
4149 | explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher) |
4150 | : matcher_(matcher) {} |
4151 | |
4152 | template <typename AnyType> |
4153 | bool MatchAndExplain(const AnyType& value, |
4154 | ::testing::MatchResultListener* listener) const { |
4155 | if (!listener->IsInterested()) { |
4156 | const T* ptr = any_cast<T>(&value); |
4157 | return ptr != NULL && matcher_.Matches(*ptr); |
4158 | } |
4159 | |
4160 | const T* elem = any_cast<T>(&value); |
4161 | if (elem == NULL) { |
4162 | *listener << "whose value is not of type '" << GetTypeName() << "'" ; |
4163 | return false; |
4164 | } |
4165 | |
4166 | StringMatchResultListener elem_listener; |
4167 | const bool match = matcher_.MatchAndExplain(*elem, &elem_listener); |
4168 | *listener << "whose value " << PrintToString(*elem) |
4169 | << (match ? " matches" : " doesn't match" ); |
4170 | PrintIfNotEmpty(elem_listener.str(), listener->stream()); |
4171 | return match; |
4172 | } |
4173 | |
4174 | void DescribeTo(std::ostream* os) const { |
4175 | *os << "is an 'any' type with value of type '" << GetTypeName() |
4176 | << "' and the value " ; |
4177 | matcher_.DescribeTo(os); |
4178 | } |
4179 | |
4180 | void DescribeNegationTo(std::ostream* os) const { |
4181 | *os << "is an 'any' type with value of type other than '" << GetTypeName() |
4182 | << "' or the value " ; |
4183 | matcher_.DescribeNegationTo(os); |
4184 | } |
4185 | |
4186 | private: |
4187 | static std::string GetTypeName() { |
4188 | #if GTEST_HAS_RTTI |
4189 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_( |
4190 | return internal::GetTypeName<T>()); |
4191 | #endif |
4192 | return "the element type" ; |
4193 | } |
4194 | |
4195 | const ::testing::Matcher<const T&> matcher_; |
4196 | }; |
4197 | |
4198 | } // namespace any_cast_matcher |
4199 | } // namespace internal |
4200 | |
4201 | // ElementsAreArray(iterator_first, iterator_last) |
4202 | // ElementsAreArray(pointer, count) |
4203 | // ElementsAreArray(array) |
4204 | // ElementsAreArray(container) |
4205 | // ElementsAreArray({ e1, e2, ..., en }) |
4206 | // |
4207 | // The ElementsAreArray() functions are like ElementsAre(...), except |
4208 | // that they are given a homogeneous sequence rather than taking each |
4209 | // element as a function argument. The sequence can be specified as an |
4210 | // array, a pointer and count, a vector, an initializer list, or an |
4211 | // STL iterator range. In each of these cases, the underlying sequence |
4212 | // can be either a sequence of values or a sequence of matchers. |
4213 | // |
4214 | // All forms of ElementsAreArray() make a copy of the input matcher sequence. |
4215 | |
4216 | template <typename Iter> |
4217 | inline internal::ElementsAreArrayMatcher< |
4218 | typename ::std::iterator_traits<Iter>::value_type> |
4219 | ElementsAreArray(Iter first, Iter last) { |
4220 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4221 | return internal::ElementsAreArrayMatcher<T>(first, last); |
4222 | } |
4223 | |
4224 | template <typename T> |
4225 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
4226 | const T* pointer, size_t count) { |
4227 | return ElementsAreArray(pointer, pointer + count); |
4228 | } |
4229 | |
4230 | template <typename T, size_t N> |
4231 | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( |
4232 | const T (&array)[N]) { |
4233 | return ElementsAreArray(array, N); |
4234 | } |
4235 | |
4236 | template <typename Container> |
4237 | inline internal::ElementsAreArrayMatcher<typename Container::value_type> |
4238 | ElementsAreArray(const Container& container) { |
4239 | return ElementsAreArray(container.begin(), container.end()); |
4240 | } |
4241 | |
4242 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
4243 | template <typename T> |
4244 | inline internal::ElementsAreArrayMatcher<T> |
4245 | ElementsAreArray(::std::initializer_list<T> xs) { |
4246 | return ElementsAreArray(xs.begin(), xs.end()); |
4247 | } |
4248 | #endif |
4249 | |
4250 | // UnorderedElementsAreArray(iterator_first, iterator_last) |
4251 | // UnorderedElementsAreArray(pointer, count) |
4252 | // UnorderedElementsAreArray(array) |
4253 | // UnorderedElementsAreArray(container) |
4254 | // UnorderedElementsAreArray({ e1, e2, ..., en }) |
4255 | // |
4256 | // UnorderedElementsAreArray() verifies that a bijective mapping onto a |
4257 | // collection of matchers exists. |
4258 | // |
4259 | // The matchers can be specified as an array, a pointer and count, a container, |
4260 | // an initializer list, or an STL iterator range. In each of these cases, the |
4261 | // underlying matchers can be either values or matchers. |
4262 | |
4263 | template <typename Iter> |
4264 | inline internal::UnorderedElementsAreArrayMatcher< |
4265 | typename ::std::iterator_traits<Iter>::value_type> |
4266 | UnorderedElementsAreArray(Iter first, Iter last) { |
4267 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
4268 | return internal::UnorderedElementsAreArrayMatcher<T>( |
4269 | internal::UnorderedMatcherRequire::ExactMatch, first, last); |
4270 | } |
4271 | |
4272 | template <typename T> |
4273 | inline internal::UnorderedElementsAreArrayMatcher<T> |
4274 | UnorderedElementsAreArray(const T* pointer, size_t count) { |
4275 | return UnorderedElementsAreArray(pointer, pointer + count); |
4276 | } |
4277 | |
4278 | template <typename T, size_t N> |
4279 | inline internal::UnorderedElementsAreArrayMatcher<T> |
4280 | UnorderedElementsAreArray(const T (&array)[N]) { |
4281 | return UnorderedElementsAreArray(array, N); |
4282 | } |
4283 | |
4284 | template <typename Container> |
4285 | inline internal::UnorderedElementsAreArrayMatcher< |
4286 | typename Container::value_type> |
4287 | UnorderedElementsAreArray(const Container& container) { |
4288 | return UnorderedElementsAreArray(container.begin(), container.end()); |
4289 | } |
4290 | |
4291 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
4292 | template <typename T> |
4293 | inline internal::UnorderedElementsAreArrayMatcher<T> |
4294 | UnorderedElementsAreArray(::std::initializer_list<T> xs) { |
4295 | return UnorderedElementsAreArray(xs.begin(), xs.end()); |
4296 | } |
4297 | #endif |
4298 | |
4299 | // _ is a matcher that matches anything of any type. |
4300 | // |
4301 | // This definition is fine as: |
4302 | // |
4303 | // 1. The C++ standard permits using the name _ in a namespace that |
4304 | // is not the global namespace or ::std. |
4305 | // 2. The AnythingMatcher class has no data member or constructor, |
4306 | // so it's OK to create global variables of this type. |
4307 | // 3. c-style has approved of using _ in this case. |
4308 | const internal::AnythingMatcher _ = {}; |
4309 | // Creates a matcher that matches any value of the given type T. |
4310 | template <typename T> |
4311 | inline Matcher<T> A() { |
4312 | return Matcher<T>(new internal::AnyMatcherImpl<T>()); |
4313 | } |
4314 | |
4315 | // Creates a matcher that matches any value of the given type T. |
4316 | template <typename T> |
4317 | inline Matcher<T> An() { return A<T>(); } |
4318 | |
4319 | // Creates a polymorphic matcher that matches anything equal to x. |
4320 | // Note: if the parameter of Eq() were declared as const T&, Eq("foo") |
4321 | // wouldn't compile. |
4322 | template <typename T> |
4323 | inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } |
4324 | |
4325 | // Constructs a Matcher<T> from a 'value' of type T. The constructed |
4326 | // matcher matches any value that's equal to 'value'. |
4327 | template <typename T> |
4328 | Matcher<T>::Matcher(T value) { *this = Eq(value); } |
4329 | |
4330 | template <typename T, typename M> |
4331 | Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl( |
4332 | const M& value, |
4333 | internal::BooleanConstant<false> /* convertible_to_matcher */, |
4334 | internal::BooleanConstant<false> /* convertible_to_T */) { |
4335 | return Eq(value); |
4336 | } |
4337 | |
4338 | // Creates a monomorphic matcher that matches anything with type Lhs |
4339 | // and equal to rhs. A user may need to use this instead of Eq(...) |
4340 | // in order to resolve an overloading ambiguity. |
4341 | // |
4342 | // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) |
4343 | // or Matcher<T>(x), but more readable than the latter. |
4344 | // |
4345 | // We could define similar monomorphic matchers for other comparison |
4346 | // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do |
4347 | // it yet as those are used much less than Eq() in practice. A user |
4348 | // can always write Matcher<T>(Lt(5)) to be explicit about the type, |
4349 | // for example. |
4350 | template <typename Lhs, typename Rhs> |
4351 | inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } |
4352 | |
4353 | // Creates a polymorphic matcher that matches anything >= x. |
4354 | template <typename Rhs> |
4355 | inline internal::GeMatcher<Rhs> Ge(Rhs x) { |
4356 | return internal::GeMatcher<Rhs>(x); |
4357 | } |
4358 | |
4359 | // Creates a polymorphic matcher that matches anything > x. |
4360 | template <typename Rhs> |
4361 | inline internal::GtMatcher<Rhs> Gt(Rhs x) { |
4362 | return internal::GtMatcher<Rhs>(x); |
4363 | } |
4364 | |
4365 | // Creates a polymorphic matcher that matches anything <= x. |
4366 | template <typename Rhs> |
4367 | inline internal::LeMatcher<Rhs> Le(Rhs x) { |
4368 | return internal::LeMatcher<Rhs>(x); |
4369 | } |
4370 | |
4371 | // Creates a polymorphic matcher that matches anything < x. |
4372 | template <typename Rhs> |
4373 | inline internal::LtMatcher<Rhs> Lt(Rhs x) { |
4374 | return internal::LtMatcher<Rhs>(x); |
4375 | } |
4376 | |
4377 | // Creates a polymorphic matcher that matches anything != x. |
4378 | template <typename Rhs> |
4379 | inline internal::NeMatcher<Rhs> Ne(Rhs x) { |
4380 | return internal::NeMatcher<Rhs>(x); |
4381 | } |
4382 | |
4383 | // Creates a polymorphic matcher that matches any NULL pointer. |
4384 | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { |
4385 | return MakePolymorphicMatcher(internal::IsNullMatcher()); |
4386 | } |
4387 | |
4388 | // Creates a polymorphic matcher that matches any non-NULL pointer. |
4389 | // This is convenient as Not(NULL) doesn't compile (the compiler |
4390 | // thinks that that expression is comparing a pointer with an integer). |
4391 | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { |
4392 | return MakePolymorphicMatcher(internal::NotNullMatcher()); |
4393 | } |
4394 | |
4395 | // Creates a polymorphic matcher that matches any argument that |
4396 | // references variable x. |
4397 | template <typename T> |
4398 | inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT |
4399 | return internal::RefMatcher<T&>(x); |
4400 | } |
4401 | |
4402 | // Creates a matcher that matches any double argument approximately |
4403 | // equal to rhs, where two NANs are considered unequal. |
4404 | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { |
4405 | return internal::FloatingEqMatcher<double>(rhs, false); |
4406 | } |
4407 | |
4408 | // Creates a matcher that matches any double argument approximately |
4409 | // equal to rhs, including NaN values when rhs is NaN. |
4410 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { |
4411 | return internal::FloatingEqMatcher<double>(rhs, true); |
4412 | } |
4413 | |
4414 | // Creates a matcher that matches any double argument approximately equal to |
4415 | // rhs, up to the specified max absolute error bound, where two NANs are |
4416 | // considered unequal. The max absolute error bound must be non-negative. |
4417 | inline internal::FloatingEqMatcher<double> DoubleNear( |
4418 | double rhs, double max_abs_error) { |
4419 | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); |
4420 | } |
4421 | |
4422 | // Creates a matcher that matches any double argument approximately equal to |
4423 | // rhs, up to the specified max absolute error bound, including NaN values when |
4424 | // rhs is NaN. The max absolute error bound must be non-negative. |
4425 | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( |
4426 | double rhs, double max_abs_error) { |
4427 | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); |
4428 | } |
4429 | |
4430 | // Creates a matcher that matches any float argument approximately |
4431 | // equal to rhs, where two NANs are considered unequal. |
4432 | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { |
4433 | return internal::FloatingEqMatcher<float>(rhs, false); |
4434 | } |
4435 | |
4436 | // Creates a matcher that matches any float argument approximately |
4437 | // equal to rhs, including NaN values when rhs is NaN. |
4438 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { |
4439 | return internal::FloatingEqMatcher<float>(rhs, true); |
4440 | } |
4441 | |
4442 | // Creates a matcher that matches any float argument approximately equal to |
4443 | // rhs, up to the specified max absolute error bound, where two NANs are |
4444 | // considered unequal. The max absolute error bound must be non-negative. |
4445 | inline internal::FloatingEqMatcher<float> FloatNear( |
4446 | float rhs, float max_abs_error) { |
4447 | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); |
4448 | } |
4449 | |
4450 | // Creates a matcher that matches any float argument approximately equal to |
4451 | // rhs, up to the specified max absolute error bound, including NaN values when |
4452 | // rhs is NaN. The max absolute error bound must be non-negative. |
4453 | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( |
4454 | float rhs, float max_abs_error) { |
4455 | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); |
4456 | } |
4457 | |
4458 | // Creates a matcher that matches a pointer (raw or smart) that points |
4459 | // to a value that matches inner_matcher. |
4460 | template <typename InnerMatcher> |
4461 | inline internal::PointeeMatcher<InnerMatcher> Pointee( |
4462 | const InnerMatcher& inner_matcher) { |
4463 | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); |
4464 | } |
4465 | |
4466 | #if GTEST_HAS_RTTI |
4467 | // Creates a matcher that matches a pointer or reference that matches |
4468 | // inner_matcher when dynamic_cast<To> is applied. |
4469 | // The result of dynamic_cast<To> is forwarded to the inner matcher. |
4470 | // If To is a pointer and the cast fails, the inner matcher will receive NULL. |
4471 | // If To is a reference and the cast fails, this matcher returns false |
4472 | // immediately. |
4473 | template <typename To> |
4474 | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > |
4475 | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { |
4476 | return MakePolymorphicMatcher( |
4477 | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); |
4478 | } |
4479 | #endif // GTEST_HAS_RTTI |
4480 | |
4481 | // Creates a matcher that matches an object whose given field matches |
4482 | // 'matcher'. For example, |
4483 | // Field(&Foo::number, Ge(5)) |
4484 | // matches a Foo object x iff x.number >= 5. |
4485 | template <typename Class, typename FieldType, typename FieldMatcher> |
4486 | inline PolymorphicMatcher< |
4487 | internal::FieldMatcher<Class, FieldType> > Field( |
4488 | FieldType Class::*field, const FieldMatcher& matcher) { |
4489 | return MakePolymorphicMatcher( |
4490 | internal::FieldMatcher<Class, FieldType>( |
4491 | field, MatcherCast<const FieldType&>(matcher))); |
4492 | // The call to MatcherCast() is required for supporting inner |
4493 | // matchers of compatible types. For example, it allows |
4494 | // Field(&Foo::bar, m) |
4495 | // to compile where bar is an int32 and m is a matcher for int64. |
4496 | } |
4497 | |
4498 | // Same as Field() but also takes the name of the field to provide better error |
4499 | // messages. |
4500 | template <typename Class, typename FieldType, typename FieldMatcher> |
4501 | inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field( |
4502 | const std::string& field_name, FieldType Class::*field, |
4503 | const FieldMatcher& matcher) { |
4504 | return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>( |
4505 | field_name, field, MatcherCast<const FieldType&>(matcher))); |
4506 | } |
4507 | |
4508 | // Creates a matcher that matches an object whose given property |
4509 | // matches 'matcher'. For example, |
4510 | // Property(&Foo::str, StartsWith("hi")) |
4511 | // matches a Foo object x iff x.str() starts with "hi". |
4512 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4513 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4514 | Class, PropertyType, PropertyType (Class::*)() const> > |
4515 | Property(PropertyType (Class::*property)() const, |
4516 | const PropertyMatcher& matcher) { |
4517 | return MakePolymorphicMatcher( |
4518 | internal::PropertyMatcher<Class, PropertyType, |
4519 | PropertyType (Class::*)() const>( |
4520 | property, |
4521 | MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
4522 | // The call to MatcherCast() is required for supporting inner |
4523 | // matchers of compatible types. For example, it allows |
4524 | // Property(&Foo::bar, m) |
4525 | // to compile where bar() returns an int32 and m is a matcher for int64. |
4526 | } |
4527 | |
4528 | // Same as Property() above, but also takes the name of the property to provide |
4529 | // better error messages. |
4530 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4531 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4532 | Class, PropertyType, PropertyType (Class::*)() const> > |
4533 | Property(const std::string& property_name, |
4534 | PropertyType (Class::*property)() const, |
4535 | const PropertyMatcher& matcher) { |
4536 | return MakePolymorphicMatcher( |
4537 | internal::PropertyMatcher<Class, PropertyType, |
4538 | PropertyType (Class::*)() const>( |
4539 | property_name, property, |
4540 | MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
4541 | } |
4542 | |
4543 | #if GTEST_LANG_CXX11 |
4544 | // The same as above but for reference-qualified member functions. |
4545 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4546 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4547 | Class, PropertyType, PropertyType (Class::*)() const &> > |
4548 | Property(PropertyType (Class::*property)() const &, |
4549 | const PropertyMatcher& matcher) { |
4550 | return MakePolymorphicMatcher( |
4551 | internal::PropertyMatcher<Class, PropertyType, |
4552 | PropertyType (Class::*)() const &>( |
4553 | property, |
4554 | MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
4555 | } |
4556 | |
4557 | // Three-argument form for reference-qualified member functions. |
4558 | template <typename Class, typename PropertyType, typename PropertyMatcher> |
4559 | inline PolymorphicMatcher<internal::PropertyMatcher< |
4560 | Class, PropertyType, PropertyType (Class::*)() const &> > |
4561 | Property(const std::string& property_name, |
4562 | PropertyType (Class::*property)() const &, |
4563 | const PropertyMatcher& matcher) { |
4564 | return MakePolymorphicMatcher( |
4565 | internal::PropertyMatcher<Class, PropertyType, |
4566 | PropertyType (Class::*)() const &>( |
4567 | property_name, property, |
4568 | MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); |
4569 | } |
4570 | #endif |
4571 | |
4572 | // Creates a matcher that matches an object iff the result of applying |
4573 | // a callable to x matches 'matcher'. |
4574 | // For example, |
4575 | // ResultOf(f, StartsWith("hi")) |
4576 | // matches a Foo object x iff f(x) starts with "hi". |
4577 | // `callable` parameter can be a function, function pointer, or a functor. It is |
4578 | // required to keep no state affecting the results of the calls on it and make |
4579 | // no assumptions about how many calls will be made. Any state it keeps must be |
4580 | // protected from the concurrent access. |
4581 | template <typename Callable, typename InnerMatcher> |
4582 | internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf( |
4583 | Callable callable, InnerMatcher matcher) { |
4584 | return internal::ResultOfMatcher<Callable, InnerMatcher>( |
4585 | internal::move(callable), internal::move(matcher)); |
4586 | } |
4587 | |
4588 | // String matchers. |
4589 | |
4590 | // Matches a string equal to str. |
4591 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq( |
4592 | const std::string& str) { |
4593 | return MakePolymorphicMatcher( |
4594 | internal::StrEqualityMatcher<std::string>(str, true, true)); |
4595 | } |
4596 | |
4597 | // Matches a string not equal to str. |
4598 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe( |
4599 | const std::string& str) { |
4600 | return MakePolymorphicMatcher( |
4601 | internal::StrEqualityMatcher<std::string>(str, false, true)); |
4602 | } |
4603 | |
4604 | // Matches a string equal to str, ignoring case. |
4605 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq( |
4606 | const std::string& str) { |
4607 | return MakePolymorphicMatcher( |
4608 | internal::StrEqualityMatcher<std::string>(str, true, false)); |
4609 | } |
4610 | |
4611 | // Matches a string not equal to str, ignoring case. |
4612 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe( |
4613 | const std::string& str) { |
4614 | return MakePolymorphicMatcher( |
4615 | internal::StrEqualityMatcher<std::string>(str, false, false)); |
4616 | } |
4617 | |
4618 | // Creates a matcher that matches any string, std::string, or C string |
4619 | // that contains the given substring. |
4620 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr( |
4621 | const std::string& substring) { |
4622 | return MakePolymorphicMatcher( |
4623 | internal::HasSubstrMatcher<std::string>(substring)); |
4624 | } |
4625 | |
4626 | // Matches a string that starts with 'prefix' (case-sensitive). |
4627 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith( |
4628 | const std::string& prefix) { |
4629 | return MakePolymorphicMatcher( |
4630 | internal::StartsWithMatcher<std::string>(prefix)); |
4631 | } |
4632 | |
4633 | // Matches a string that ends with 'suffix' (case-sensitive). |
4634 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith( |
4635 | const std::string& suffix) { |
4636 | return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix)); |
4637 | } |
4638 | |
4639 | // Matches a string that fully matches regular expression 'regex'. |
4640 | // The matcher takes ownership of 'regex'. |
4641 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
4642 | const internal::RE* regex) { |
4643 | return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); |
4644 | } |
4645 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( |
4646 | const std::string& regex) { |
4647 | return MatchesRegex(new internal::RE(regex)); |
4648 | } |
4649 | |
4650 | // Matches a string that contains regular expression 'regex'. |
4651 | // The matcher takes ownership of 'regex'. |
4652 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
4653 | const internal::RE* regex) { |
4654 | return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); |
4655 | } |
4656 | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( |
4657 | const std::string& regex) { |
4658 | return ContainsRegex(new internal::RE(regex)); |
4659 | } |
4660 | |
4661 | #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
4662 | // Wide string matchers. |
4663 | |
4664 | // Matches a string equal to str. |
4665 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq( |
4666 | const std::wstring& str) { |
4667 | return MakePolymorphicMatcher( |
4668 | internal::StrEqualityMatcher<std::wstring>(str, true, true)); |
4669 | } |
4670 | |
4671 | // Matches a string not equal to str. |
4672 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe( |
4673 | const std::wstring& str) { |
4674 | return MakePolymorphicMatcher( |
4675 | internal::StrEqualityMatcher<std::wstring>(str, false, true)); |
4676 | } |
4677 | |
4678 | // Matches a string equal to str, ignoring case. |
4679 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
4680 | StrCaseEq(const std::wstring& str) { |
4681 | return MakePolymorphicMatcher( |
4682 | internal::StrEqualityMatcher<std::wstring>(str, true, false)); |
4683 | } |
4684 | |
4685 | // Matches a string not equal to str, ignoring case. |
4686 | inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > |
4687 | StrCaseNe(const std::wstring& str) { |
4688 | return MakePolymorphicMatcher( |
4689 | internal::StrEqualityMatcher<std::wstring>(str, false, false)); |
4690 | } |
4691 | |
4692 | // Creates a matcher that matches any ::wstring, std::wstring, or C wide string |
4693 | // that contains the given substring. |
4694 | inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr( |
4695 | const std::wstring& substring) { |
4696 | return MakePolymorphicMatcher( |
4697 | internal::HasSubstrMatcher<std::wstring>(substring)); |
4698 | } |
4699 | |
4700 | // Matches a string that starts with 'prefix' (case-sensitive). |
4701 | inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> > |
4702 | StartsWith(const std::wstring& prefix) { |
4703 | return MakePolymorphicMatcher( |
4704 | internal::StartsWithMatcher<std::wstring>(prefix)); |
4705 | } |
4706 | |
4707 | // Matches a string that ends with 'suffix' (case-sensitive). |
4708 | inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith( |
4709 | const std::wstring& suffix) { |
4710 | return MakePolymorphicMatcher( |
4711 | internal::EndsWithMatcher<std::wstring>(suffix)); |
4712 | } |
4713 | |
4714 | #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING |
4715 | |
4716 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4717 | // first field == the second field. |
4718 | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } |
4719 | |
4720 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4721 | // first field >= the second field. |
4722 | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } |
4723 | |
4724 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4725 | // first field > the second field. |
4726 | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } |
4727 | |
4728 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4729 | // first field <= the second field. |
4730 | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } |
4731 | |
4732 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4733 | // first field < the second field. |
4734 | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } |
4735 | |
4736 | // Creates a polymorphic matcher that matches a 2-tuple where the |
4737 | // first field != the second field. |
4738 | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } |
4739 | |
4740 | // Creates a polymorphic matcher that matches a 2-tuple where |
4741 | // FloatEq(first field) matches the second field. |
4742 | inline internal::FloatingEq2Matcher<float> FloatEq() { |
4743 | return internal::FloatingEq2Matcher<float>(); |
4744 | } |
4745 | |
4746 | // Creates a polymorphic matcher that matches a 2-tuple where |
4747 | // DoubleEq(first field) matches the second field. |
4748 | inline internal::FloatingEq2Matcher<double> DoubleEq() { |
4749 | return internal::FloatingEq2Matcher<double>(); |
4750 | } |
4751 | |
4752 | // Creates a polymorphic matcher that matches a 2-tuple where |
4753 | // FloatEq(first field) matches the second field with NaN equality. |
4754 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() { |
4755 | return internal::FloatingEq2Matcher<float>(true); |
4756 | } |
4757 | |
4758 | // Creates a polymorphic matcher that matches a 2-tuple where |
4759 | // DoubleEq(first field) matches the second field with NaN equality. |
4760 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() { |
4761 | return internal::FloatingEq2Matcher<double>(true); |
4762 | } |
4763 | |
4764 | // Creates a polymorphic matcher that matches a 2-tuple where |
4765 | // FloatNear(first field, max_abs_error) matches the second field. |
4766 | inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) { |
4767 | return internal::FloatingEq2Matcher<float>(max_abs_error); |
4768 | } |
4769 | |
4770 | // Creates a polymorphic matcher that matches a 2-tuple where |
4771 | // DoubleNear(first field, max_abs_error) matches the second field. |
4772 | inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) { |
4773 | return internal::FloatingEq2Matcher<double>(max_abs_error); |
4774 | } |
4775 | |
4776 | // Creates a polymorphic matcher that matches a 2-tuple where |
4777 | // FloatNear(first field, max_abs_error) matches the second field with NaN |
4778 | // equality. |
4779 | inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear( |
4780 | float max_abs_error) { |
4781 | return internal::FloatingEq2Matcher<float>(max_abs_error, true); |
4782 | } |
4783 | |
4784 | // Creates a polymorphic matcher that matches a 2-tuple where |
4785 | // DoubleNear(first field, max_abs_error) matches the second field with NaN |
4786 | // equality. |
4787 | inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear( |
4788 | double max_abs_error) { |
4789 | return internal::FloatingEq2Matcher<double>(max_abs_error, true); |
4790 | } |
4791 | |
4792 | // Creates a matcher that matches any value of type T that m doesn't |
4793 | // match. |
4794 | template <typename InnerMatcher> |
4795 | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { |
4796 | return internal::NotMatcher<InnerMatcher>(m); |
4797 | } |
4798 | |
4799 | // Returns a matcher that matches anything that satisfies the given |
4800 | // predicate. The predicate can be any unary function or functor |
4801 | // whose return type can be implicitly converted to bool. |
4802 | template <typename Predicate> |
4803 | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > |
4804 | Truly(Predicate pred) { |
4805 | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); |
4806 | } |
4807 | |
4808 | // Returns a matcher that matches the container size. The container must |
4809 | // support both size() and size_type which all STL-like containers provide. |
4810 | // Note that the parameter 'size' can be a value of type size_type as well as |
4811 | // matcher. For instance: |
4812 | // EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements. |
4813 | // EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2. |
4814 | template <typename SizeMatcher> |
4815 | inline internal::SizeIsMatcher<SizeMatcher> |
4816 | SizeIs(const SizeMatcher& size_matcher) { |
4817 | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); |
4818 | } |
4819 | |
4820 | // Returns a matcher that matches the distance between the container's begin() |
4821 | // iterator and its end() iterator, i.e. the size of the container. This matcher |
4822 | // can be used instead of SizeIs with containers such as std::forward_list which |
4823 | // do not implement size(). The container must provide const_iterator (with |
4824 | // valid iterator_traits), begin() and end(). |
4825 | template <typename DistanceMatcher> |
4826 | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> |
4827 | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { |
4828 | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); |
4829 | } |
4830 | |
4831 | // Returns a matcher that matches an equal container. |
4832 | // This matcher behaves like Eq(), but in the event of mismatch lists the |
4833 | // values that are included in one container but not the other. (Duplicate |
4834 | // values and order differences are not explained.) |
4835 | template <typename Container> |
4836 | inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT |
4837 | GTEST_REMOVE_CONST_(Container)> > |
4838 | ContainerEq(const Container& rhs) { |
4839 | // This following line is for working around a bug in MSVC 8.0, |
4840 | // which causes Container to be a const type sometimes. |
4841 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
4842 | return MakePolymorphicMatcher( |
4843 | internal::ContainerEqMatcher<RawContainer>(rhs)); |
4844 | } |
4845 | |
4846 | // Returns a matcher that matches a container that, when sorted using |
4847 | // the given comparator, matches container_matcher. |
4848 | template <typename Comparator, typename ContainerMatcher> |
4849 | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> |
4850 | WhenSortedBy(const Comparator& comparator, |
4851 | const ContainerMatcher& container_matcher) { |
4852 | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( |
4853 | comparator, container_matcher); |
4854 | } |
4855 | |
4856 | // Returns a matcher that matches a container that, when sorted using |
4857 | // the < operator, matches container_matcher. |
4858 | template <typename ContainerMatcher> |
4859 | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> |
4860 | WhenSorted(const ContainerMatcher& container_matcher) { |
4861 | return |
4862 | internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( |
4863 | internal::LessComparator(), container_matcher); |
4864 | } |
4865 | |
4866 | // Matches an STL-style container or a native array that contains the |
4867 | // same number of elements as in rhs, where its i-th element and rhs's |
4868 | // i-th element (as a pair) satisfy the given pair matcher, for all i. |
4869 | // TupleMatcher must be able to be safely cast to Matcher<tuple<const |
4870 | // T1&, const T2&> >, where T1 and T2 are the types of elements in the |
4871 | // LHS container and the RHS container respectively. |
4872 | template <typename TupleMatcher, typename Container> |
4873 | inline internal::PointwiseMatcher<TupleMatcher, |
4874 | GTEST_REMOVE_CONST_(Container)> |
4875 | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { |
4876 | // This following line is for working around a bug in MSVC 8.0, |
4877 | // which causes Container to be a const type sometimes (e.g. when |
4878 | // rhs is a const int[]).. |
4879 | typedef GTEST_REMOVE_CONST_(Container) RawContainer; |
4880 | return internal::PointwiseMatcher<TupleMatcher, RawContainer>( |
4881 | tuple_matcher, rhs); |
4882 | } |
4883 | |
4884 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
4885 | |
4886 | // Supports the Pointwise(m, {a, b, c}) syntax. |
4887 | template <typename TupleMatcher, typename T> |
4888 | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( |
4889 | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { |
4890 | return Pointwise(tuple_matcher, std::vector<T>(rhs)); |
4891 | } |
4892 | |
4893 | #endif // GTEST_HAS_STD_INITIALIZER_LIST_ |
4894 | |
4895 | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style |
4896 | // container or a native array that contains the same number of |
4897 | // elements as in rhs, where in some permutation of the container, its |
4898 | // i-th element and rhs's i-th element (as a pair) satisfy the given |
4899 | // pair matcher, for all i. Tuple2Matcher must be able to be safely |
4900 | // cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are |
4901 | // the types of elements in the LHS container and the RHS container |
4902 | // respectively. |
4903 | // |
4904 | // This is like Pointwise(pair_matcher, rhs), except that the element |
4905 | // order doesn't matter. |
4906 | template <typename Tuple2Matcher, typename RhsContainer> |
4907 | inline internal::UnorderedElementsAreArrayMatcher< |
4908 | typename internal::BoundSecondMatcher< |
4909 | Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( |
4910 | RhsContainer)>::type::value_type> > |
4911 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4912 | const RhsContainer& rhs_container) { |
4913 | // This following line is for working around a bug in MSVC 8.0, |
4914 | // which causes RhsContainer to be a const type sometimes (e.g. when |
4915 | // rhs_container is a const int[]). |
4916 | typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; |
4917 | |
4918 | // RhsView allows the same code to handle RhsContainer being a |
4919 | // STL-style container and it being a native C-style array. |
4920 | typedef typename internal::StlContainerView<RawRhsContainer> RhsView; |
4921 | typedef typename RhsView::type RhsStlContainer; |
4922 | typedef typename RhsStlContainer::value_type Second; |
4923 | const RhsStlContainer& rhs_stl_container = |
4924 | RhsView::ConstReference(rhs_container); |
4925 | |
4926 | // Create a matcher for each element in rhs_container. |
4927 | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; |
4928 | for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); |
4929 | it != rhs_stl_container.end(); ++it) { |
4930 | matchers.push_back( |
4931 | internal::MatcherBindSecond(tuple2_matcher, *it)); |
4932 | } |
4933 | |
4934 | // Delegate the work to UnorderedElementsAreArray(). |
4935 | return UnorderedElementsAreArray(matchers); |
4936 | } |
4937 | |
4938 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
4939 | |
4940 | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. |
4941 | template <typename Tuple2Matcher, typename T> |
4942 | inline internal::UnorderedElementsAreArrayMatcher< |
4943 | typename internal::BoundSecondMatcher<Tuple2Matcher, T> > |
4944 | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, |
4945 | std::initializer_list<T> rhs) { |
4946 | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); |
4947 | } |
4948 | |
4949 | #endif // GTEST_HAS_STD_INITIALIZER_LIST_ |
4950 | |
4951 | // Matches an STL-style container or a native array that contains at |
4952 | // least one element matching the given value or matcher. |
4953 | // |
4954 | // Examples: |
4955 | // ::std::set<int> page_ids; |
4956 | // page_ids.insert(3); |
4957 | // page_ids.insert(1); |
4958 | // EXPECT_THAT(page_ids, Contains(1)); |
4959 | // EXPECT_THAT(page_ids, Contains(Gt(2))); |
4960 | // EXPECT_THAT(page_ids, Not(Contains(4))); |
4961 | // |
4962 | // ::std::map<int, size_t> page_lengths; |
4963 | // page_lengths[1] = 100; |
4964 | // EXPECT_THAT(page_lengths, |
4965 | // Contains(::std::pair<const int, size_t>(1, 100))); |
4966 | // |
4967 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
4968 | // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); |
4969 | template <typename M> |
4970 | inline internal::ContainsMatcher<M> Contains(M matcher) { |
4971 | return internal::ContainsMatcher<M>(matcher); |
4972 | } |
4973 | |
4974 | // IsSupersetOf(iterator_first, iterator_last) |
4975 | // IsSupersetOf(pointer, count) |
4976 | // IsSupersetOf(array) |
4977 | // IsSupersetOf(container) |
4978 | // IsSupersetOf({e1, e2, ..., en}) |
4979 | // |
4980 | // IsSupersetOf() verifies that a surjective partial mapping onto a collection |
4981 | // of matchers exists. In other words, a container matches |
4982 | // IsSupersetOf({e1, ..., en}) if and only if there is a permutation |
4983 | // {y1, ..., yn} of some of the container's elements where y1 matches e1, |
4984 | // ..., and yn matches en. Obviously, the size of the container must be >= n |
4985 | // in order to have a match. Examples: |
4986 | // |
4987 | // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and |
4988 | // 1 matches Ne(0). |
4989 | // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches |
4990 | // both Eq(1) and Lt(2). The reason is that different matchers must be used |
4991 | // for elements in different slots of the container. |
4992 | // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches |
4993 | // Eq(1) and (the second) 1 matches Lt(2). |
4994 | // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first) |
4995 | // Gt(1) and 3 matches (the second) Gt(1). |
4996 | // |
4997 | // The matchers can be specified as an array, a pointer and count, a container, |
4998 | // an initializer list, or an STL iterator range. In each of these cases, the |
4999 | // underlying matchers can be either values or matchers. |
5000 | |
5001 | template <typename Iter> |
5002 | inline internal::UnorderedElementsAreArrayMatcher< |
5003 | typename ::std::iterator_traits<Iter>::value_type> |
5004 | IsSupersetOf(Iter first, Iter last) { |
5005 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
5006 | return internal::UnorderedElementsAreArrayMatcher<T>( |
5007 | internal::UnorderedMatcherRequire::Superset, first, last); |
5008 | } |
5009 | |
5010 | template <typename T> |
5011 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
5012 | const T* pointer, size_t count) { |
5013 | return IsSupersetOf(pointer, pointer + count); |
5014 | } |
5015 | |
5016 | template <typename T, size_t N> |
5017 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
5018 | const T (&array)[N]) { |
5019 | return IsSupersetOf(array, N); |
5020 | } |
5021 | |
5022 | template <typename Container> |
5023 | inline internal::UnorderedElementsAreArrayMatcher< |
5024 | typename Container::value_type> |
5025 | IsSupersetOf(const Container& container) { |
5026 | return IsSupersetOf(container.begin(), container.end()); |
5027 | } |
5028 | |
5029 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
5030 | template <typename T> |
5031 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf( |
5032 | ::std::initializer_list<T> xs) { |
5033 | return IsSupersetOf(xs.begin(), xs.end()); |
5034 | } |
5035 | #endif |
5036 | |
5037 | // IsSubsetOf(iterator_first, iterator_last) |
5038 | // IsSubsetOf(pointer, count) |
5039 | // IsSubsetOf(array) |
5040 | // IsSubsetOf(container) |
5041 | // IsSubsetOf({e1, e2, ..., en}) |
5042 | // |
5043 | // IsSubsetOf() verifies that an injective mapping onto a collection of matchers |
5044 | // exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and |
5045 | // only if there is a subset of matchers {m1, ..., mk} which would match the |
5046 | // container using UnorderedElementsAre. Obviously, the size of the container |
5047 | // must be <= n in order to have a match. Examples: |
5048 | // |
5049 | // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0). |
5050 | // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1 |
5051 | // matches Lt(0). |
5052 | // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both |
5053 | // match Gt(0). The reason is that different matchers must be used for |
5054 | // elements in different slots of the container. |
5055 | // |
5056 | // The matchers can be specified as an array, a pointer and count, a container, |
5057 | // an initializer list, or an STL iterator range. In each of these cases, the |
5058 | // underlying matchers can be either values or matchers. |
5059 | |
5060 | template <typename Iter> |
5061 | inline internal::UnorderedElementsAreArrayMatcher< |
5062 | typename ::std::iterator_traits<Iter>::value_type> |
5063 | IsSubsetOf(Iter first, Iter last) { |
5064 | typedef typename ::std::iterator_traits<Iter>::value_type T; |
5065 | return internal::UnorderedElementsAreArrayMatcher<T>( |
5066 | internal::UnorderedMatcherRequire::Subset, first, last); |
5067 | } |
5068 | |
5069 | template <typename T> |
5070 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
5071 | const T* pointer, size_t count) { |
5072 | return IsSubsetOf(pointer, pointer + count); |
5073 | } |
5074 | |
5075 | template <typename T, size_t N> |
5076 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
5077 | const T (&array)[N]) { |
5078 | return IsSubsetOf(array, N); |
5079 | } |
5080 | |
5081 | template <typename Container> |
5082 | inline internal::UnorderedElementsAreArrayMatcher< |
5083 | typename Container::value_type> |
5084 | IsSubsetOf(const Container& container) { |
5085 | return IsSubsetOf(container.begin(), container.end()); |
5086 | } |
5087 | |
5088 | #if GTEST_HAS_STD_INITIALIZER_LIST_ |
5089 | template <typename T> |
5090 | inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf( |
5091 | ::std::initializer_list<T> xs) { |
5092 | return IsSubsetOf(xs.begin(), xs.end()); |
5093 | } |
5094 | #endif |
5095 | |
5096 | // Matches an STL-style container or a native array that contains only |
5097 | // elements matching the given value or matcher. |
5098 | // |
5099 | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only |
5100 | // the messages are different. |
5101 | // |
5102 | // Examples: |
5103 | // ::std::set<int> page_ids; |
5104 | // // Each(m) matches an empty container, regardless of what m is. |
5105 | // EXPECT_THAT(page_ids, Each(Eq(1))); |
5106 | // EXPECT_THAT(page_ids, Each(Eq(77))); |
5107 | // |
5108 | // page_ids.insert(3); |
5109 | // EXPECT_THAT(page_ids, Each(Gt(0))); |
5110 | // EXPECT_THAT(page_ids, Not(Each(Gt(4)))); |
5111 | // page_ids.insert(1); |
5112 | // EXPECT_THAT(page_ids, Not(Each(Lt(2)))); |
5113 | // |
5114 | // ::std::map<int, size_t> page_lengths; |
5115 | // page_lengths[1] = 100; |
5116 | // page_lengths[2] = 200; |
5117 | // page_lengths[3] = 300; |
5118 | // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); |
5119 | // EXPECT_THAT(page_lengths, Each(Key(Le(3)))); |
5120 | // |
5121 | // const char* user_ids[] = { "joe", "mike", "tom" }; |
5122 | // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); |
5123 | template <typename M> |
5124 | inline internal::EachMatcher<M> Each(M matcher) { |
5125 | return internal::EachMatcher<M>(matcher); |
5126 | } |
5127 | |
5128 | // Key(inner_matcher) matches an std::pair whose 'first' field matches |
5129 | // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an |
5130 | // std::map that contains at least one element whose key is >= 5. |
5131 | template <typename M> |
5132 | inline internal::KeyMatcher<M> Key(M inner_matcher) { |
5133 | return internal::KeyMatcher<M>(inner_matcher); |
5134 | } |
5135 | |
5136 | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field |
5137 | // matches first_matcher and whose 'second' field matches second_matcher. For |
5138 | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used |
5139 | // to match a std::map<int, string> that contains exactly one element whose key |
5140 | // is >= 5 and whose value equals "foo". |
5141 | template <typename FirstMatcher, typename SecondMatcher> |
5142 | inline internal::PairMatcher<FirstMatcher, SecondMatcher> |
5143 | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { |
5144 | return internal::PairMatcher<FirstMatcher, SecondMatcher>( |
5145 | first_matcher, second_matcher); |
5146 | } |
5147 | |
5148 | // Returns a predicate that is satisfied by anything that matches the |
5149 | // given matcher. |
5150 | template <typename M> |
5151 | inline internal::MatcherAsPredicate<M> Matches(M matcher) { |
5152 | return internal::MatcherAsPredicate<M>(matcher); |
5153 | } |
5154 | |
5155 | // Returns true iff the value matches the matcher. |
5156 | template <typename T, typename M> |
5157 | inline bool Value(const T& value, M matcher) { |
5158 | return testing::Matches(matcher)(value); |
5159 | } |
5160 | |
5161 | // Matches the value against the given matcher and explains the match |
5162 | // result to listener. |
5163 | template <typename T, typename M> |
5164 | inline bool ExplainMatchResult( |
5165 | M matcher, const T& value, MatchResultListener* listener) { |
5166 | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); |
5167 | } |
5168 | |
5169 | // Returns a string representation of the given matcher. Useful for description |
5170 | // strings of matchers defined using MATCHER_P* macros that accept matchers as |
5171 | // their arguments. For example: |
5172 | // |
5173 | // MATCHER_P(XAndYThat, matcher, |
5174 | // "X that " + DescribeMatcher<int>(matcher, negation) + |
5175 | // " and Y that " + DescribeMatcher<double>(matcher, negation)) { |
5176 | // return ExplainMatchResult(matcher, arg.x(), result_listener) && |
5177 | // ExplainMatchResult(matcher, arg.y(), result_listener); |
5178 | // } |
5179 | template <typename T, typename M> |
5180 | std::string DescribeMatcher(const M& matcher, bool negation = false) { |
5181 | ::std::stringstream ss; |
5182 | Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher); |
5183 | if (negation) { |
5184 | monomorphic_matcher.DescribeNegationTo(&ss); |
5185 | } else { |
5186 | monomorphic_matcher.DescribeTo(&ss); |
5187 | } |
5188 | return ss.str(); |
5189 | } |
5190 | |
5191 | #if GTEST_LANG_CXX11 |
5192 | // Define variadic matcher versions. They are overloaded in |
5193 | // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. |
5194 | template <typename... Args> |
5195 | internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf( |
5196 | const Args&... matchers) { |
5197 | return internal::AllOfMatcher<typename std::decay<const Args&>::type...>( |
5198 | matchers...); |
5199 | } |
5200 | |
5201 | template <typename... Args> |
5202 | internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf( |
5203 | const Args&... matchers) { |
5204 | return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>( |
5205 | matchers...); |
5206 | } |
5207 | |
5208 | template <typename... Args> |
5209 | internal::ElementsAreMatcher<tuple<typename std::decay<const Args&>::type...>> |
5210 | ElementsAre(const Args&... matchers) { |
5211 | return internal::ElementsAreMatcher< |
5212 | tuple<typename std::decay<const Args&>::type...>>( |
5213 | make_tuple(matchers...)); |
5214 | } |
5215 | |
5216 | template <typename... Args> |
5217 | internal::UnorderedElementsAreMatcher< |
5218 | tuple<typename std::decay<const Args&>::type...>> |
5219 | UnorderedElementsAre(const Args&... matchers) { |
5220 | return internal::UnorderedElementsAreMatcher< |
5221 | tuple<typename std::decay<const Args&>::type...>>( |
5222 | make_tuple(matchers...)); |
5223 | } |
5224 | |
5225 | #endif // GTEST_LANG_CXX11 |
5226 | |
5227 | // AllArgs(m) is a synonym of m. This is useful in |
5228 | // |
5229 | // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); |
5230 | // |
5231 | // which is easier to read than |
5232 | // |
5233 | // EXPECT_CALL(foo, Bar(_, _)).With(Eq()); |
5234 | template <typename InnerMatcher> |
5235 | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } |
5236 | |
5237 | // Returns a matcher that matches the value of an optional<> type variable. |
5238 | // The matcher implementation only uses '!arg' and requires that the optional<> |
5239 | // type has a 'value_type' member type and that '*arg' is of type 'value_type' |
5240 | // and is printable using 'PrintToString'. It is compatible with |
5241 | // std::optional/std::experimental::optional. |
5242 | // Note that to compare an optional type variable against nullopt you should |
5243 | // use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the |
5244 | // optional value contains an optional itself. |
5245 | template <typename ValueMatcher> |
5246 | inline internal::OptionalMatcher<ValueMatcher> Optional( |
5247 | const ValueMatcher& value_matcher) { |
5248 | return internal::OptionalMatcher<ValueMatcher>(value_matcher); |
5249 | } |
5250 | |
5251 | // Returns a matcher that matches the value of a absl::any type variable. |
5252 | template <typename T> |
5253 | PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith( |
5254 | const Matcher<const T&>& matcher) { |
5255 | return MakePolymorphicMatcher( |
5256 | internal::any_cast_matcher::AnyCastMatcher<T>(matcher)); |
5257 | } |
5258 | |
5259 | // Returns a matcher that matches the value of a variant<> type variable. |
5260 | // The matcher implementation uses ADL to find the holds_alternative and get |
5261 | // functions. |
5262 | // It is compatible with std::variant. |
5263 | template <typename T> |
5264 | PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith( |
5265 | const Matcher<const T&>& matcher) { |
5266 | return MakePolymorphicMatcher( |
5267 | internal::variant_matcher::VariantMatcher<T>(matcher)); |
5268 | } |
5269 | |
5270 | // These macros allow using matchers to check values in Google Test |
5271 | // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) |
5272 | // succeed iff the value matches the matcher. If the assertion fails, |
5273 | // the value and the description of the matcher will be printed. |
5274 | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ |
5275 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5276 | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ |
5277 | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) |
5278 | |
5279 | } // namespace testing |
5280 | |
5281 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046 |
5282 | |
5283 | // Include any custom callback matchers added by the local installation. |
5284 | // We must include this header at the end to make sure it can use the |
5285 | // declarations from this file. |
5286 | #include "gmock/internal/custom/gmock-matchers.h" |
5287 | |
5288 | #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |
5289 | |