1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30
31// Google Mock - a framework for writing C++ mock classes.
32//
33// This file implements some commonly used argument matchers. More
34// matchers can be defined by the user implementing the
35// MatcherInterface<T> interface if necessary.
36
37// GOOGLETEST_CM0002 DO NOT DELETE
38
39#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
41
42#include <math.h>
43#include <algorithm>
44#include <iterator>
45#include <limits>
46#include <ostream> // NOLINT
47#include <sstream>
48#include <string>
49#include <utility>
50#include <vector>
51#include "gtest/gtest.h"
52#include "gmock/internal/gmock-internal-utils.h"
53#include "gmock/internal/gmock-port.h"
54
55#if GTEST_HAS_STD_INITIALIZER_LIST_
56# include <initializer_list> // NOLINT -- must be after gtest.h
57#endif
58
59#if _MSC_VER >= 1900
60GTEST_DISABLE_MSC_WARNINGS_PUSH_(
61 4251 5046 /* class A needs to have dll-interface to be used by clients of
62 class B */
63 /* Symbol involving type with internal linkage not defined */)
64#else //Pragma 5046 doesn't exist in version of MSC prior to 1900
65GTEST_DISABLE_MSC_WARNINGS_PUSH_(
66 4251 /* class A needs to have dll-interface to be used by clients of
67 class B */
68 /* Symbol involving type with internal linkage not defined */)
69#endif
70namespace testing {
71
72// To implement a matcher Foo for type T, define:
73// 1. a class FooMatcherImpl that implements the
74// MatcherInterface<T> interface, and
75// 2. a factory function that creates a Matcher<T> object from a
76// FooMatcherImpl*.
77//
78// The two-level delegation design makes it possible to allow a user
79// to write "v" instead of "Eq(v)" where a Matcher is expected, which
80// is impossible if we pass matchers by pointers. It also eases
81// ownership management as Matcher objects can now be copied like
82// plain values.
83
84// MatchResultListener is an abstract class. Its << operator can be
85// used by a matcher to explain why a value matches or doesn't match.
86//
87// FIXME: add method
88// bool InterestedInWhy(bool result) const;
89// to indicate whether the listener is interested in why the match
90// result is 'result'.
91class MatchResultListener {
92 public:
93 // Creates a listener object with the given underlying ostream. The
94 // listener does not own the ostream, and does not dereference it
95 // in the constructor or destructor.
96 explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
97 virtual ~MatchResultListener() = 0; // Makes this class abstract.
98
99 // Streams x to the underlying ostream; does nothing if the ostream
100 // is NULL.
101 template <typename T>
102 MatchResultListener& operator<<(const T& x) {
103 if (stream_ != NULL)
104 *stream_ << x;
105 return *this;
106 }
107
108 // Returns the underlying ostream.
109 ::std::ostream* stream() { return stream_; }
110
111 // Returns true iff the listener is interested in an explanation of
112 // the match result. A matcher's MatchAndExplain() method can use
113 // this information to avoid generating the explanation when no one
114 // intends to hear it.
115 bool IsInterested() const { return stream_ != NULL; }
116
117 private:
118 ::std::ostream* const stream_;
119
120 GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
121};
122
123inline MatchResultListener::~MatchResultListener() {
124}
125
126// An instance of a subclass of this knows how to describe itself as a
127// matcher.
128class MatcherDescriberInterface {
129 public:
130 virtual ~MatcherDescriberInterface() {}
131
132 // Describes this matcher to an ostream. The function should print
133 // a verb phrase that describes the property a value matching this
134 // matcher should have. The subject of the verb phrase is the value
135 // being matched. For example, the DescribeTo() method of the Gt(7)
136 // matcher prints "is greater than 7".
137 virtual void DescribeTo(::std::ostream* os) const = 0;
138
139 // Describes the negation of this matcher to an ostream. For
140 // example, if the description of this matcher is "is greater than
141 // 7", the negated description could be "is not greater than 7".
142 // You are not required to override this when implementing
143 // MatcherInterface, but it is highly advised so that your matcher
144 // can produce good error messages.
145 virtual void DescribeNegationTo(::std::ostream* os) const {
146 *os << "not (";
147 DescribeTo(os);
148 *os << ")";
149 }
150};
151
152// The implementation of a matcher.
153template <typename T>
154class MatcherInterface : public MatcherDescriberInterface {
155 public:
156 // Returns true iff the matcher matches x; also explains the match
157 // result to 'listener' if necessary (see the next paragraph), in
158 // the form of a non-restrictive relative clause ("which ...",
159 // "whose ...", etc) that describes x. For example, the
160 // MatchAndExplain() method of the Pointee(...) matcher should
161 // generate an explanation like "which points to ...".
162 //
163 // Implementations of MatchAndExplain() should add an explanation of
164 // the match result *if and only if* they can provide additional
165 // information that's not already present (or not obvious) in the
166 // print-out of x and the matcher's description. Whether the match
167 // succeeds is not a factor in deciding whether an explanation is
168 // needed, as sometimes the caller needs to print a failure message
169 // when the match succeeds (e.g. when the matcher is used inside
170 // Not()).
171 //
172 // For example, a "has at least 10 elements" matcher should explain
173 // what the actual element count is, regardless of the match result,
174 // as it is useful information to the reader; on the other hand, an
175 // "is empty" matcher probably only needs to explain what the actual
176 // size is when the match fails, as it's redundant to say that the
177 // size is 0 when the value is already known to be empty.
178 //
179 // You should override this method when defining a new matcher.
180 //
181 // It's the responsibility of the caller (Google Mock) to guarantee
182 // that 'listener' is not NULL. This helps to simplify a matcher's
183 // implementation when it doesn't care about the performance, as it
184 // can talk to 'listener' without checking its validity first.
185 // However, in order to implement dummy listeners efficiently,
186 // listener->stream() may be NULL.
187 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
188
189 // Inherits these methods from MatcherDescriberInterface:
190 // virtual void DescribeTo(::std::ostream* os) const = 0;
191 // virtual void DescribeNegationTo(::std::ostream* os) const;
192};
193
194namespace internal {
195
196// Converts a MatcherInterface<T> to a MatcherInterface<const T&>.
197template <typename T>
198class MatcherInterfaceAdapter : public MatcherInterface<const T&> {
199 public:
200 explicit MatcherInterfaceAdapter(const MatcherInterface<T>* impl)
201 : impl_(impl) {}
202 virtual ~MatcherInterfaceAdapter() { delete impl_; }
203
204 virtual void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
205
206 virtual void DescribeNegationTo(::std::ostream* os) const {
207 impl_->DescribeNegationTo(os);
208 }
209
210 virtual bool MatchAndExplain(const T& x,
211 MatchResultListener* listener) const {
212 return impl_->MatchAndExplain(x, listener);
213 }
214
215 private:
216 const MatcherInterface<T>* const impl_;
217
218 GTEST_DISALLOW_COPY_AND_ASSIGN_(MatcherInterfaceAdapter);
219};
220
221} // namespace internal
222
223// A match result listener that stores the explanation in a string.
224class StringMatchResultListener : public MatchResultListener {
225 public:
226 StringMatchResultListener() : MatchResultListener(&ss_) {}
227
228 // Returns the explanation accumulated so far.
229 std::string str() const { return ss_.str(); }
230
231 // Clears the explanation accumulated so far.
232 void Clear() { ss_.str(""); }
233
234 private:
235 ::std::stringstream ss_;
236
237 GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
238};
239
240namespace internal {
241
242struct AnyEq {
243 template <typename A, typename B>
244 bool operator()(const A& a, const B& b) const { return a == b; }
245};
246struct AnyNe {
247 template <typename A, typename B>
248 bool operator()(const A& a, const B& b) const { return a != b; }
249};
250struct AnyLt {
251 template <typename A, typename B>
252 bool operator()(const A& a, const B& b) const { return a < b; }
253};
254struct AnyGt {
255 template <typename A, typename B>
256 bool operator()(const A& a, const B& b) const { return a > b; }
257};
258struct AnyLe {
259 template <typename A, typename B>
260 bool operator()(const A& a, const B& b) const { return a <= b; }
261};
262struct AnyGe {
263 template <typename A, typename B>
264 bool operator()(const A& a, const B& b) const { return a >= b; }
265};
266
267// A match result listener that ignores the explanation.
268class DummyMatchResultListener : public MatchResultListener {
269 public:
270 DummyMatchResultListener() : MatchResultListener(NULL) {}
271
272 private:
273 GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
274};
275
276// A match result listener that forwards the explanation to a given
277// ostream. The difference between this and MatchResultListener is
278// that the former is concrete.
279class StreamMatchResultListener : public MatchResultListener {
280 public:
281 explicit StreamMatchResultListener(::std::ostream* os)
282 : MatchResultListener(os) {}
283
284 private:
285 GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
286};
287
288// An internal class for implementing Matcher<T>, which will derive
289// from it. We put functionalities common to all Matcher<T>
290// specializations here to avoid code duplication.
291template <typename T>
292class MatcherBase {
293 public:
294 // Returns true iff the matcher matches x; also explains the match
295 // result to 'listener'.
296 bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x,
297 MatchResultListener* listener) const {
298 return impl_->MatchAndExplain(x, listener);
299 }
300
301 // Returns true iff this matcher matches x.
302 bool Matches(GTEST_REFERENCE_TO_CONST_(T) x) const {
303 DummyMatchResultListener dummy;
304 return MatchAndExplain(x, &dummy);
305 }
306
307 // Describes this matcher to an ostream.
308 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
309
310 // Describes the negation of this matcher to an ostream.
311 void DescribeNegationTo(::std::ostream* os) const {
312 impl_->DescribeNegationTo(os);
313 }
314
315 // Explains why x matches, or doesn't match, the matcher.
316 void ExplainMatchResultTo(GTEST_REFERENCE_TO_CONST_(T) x,
317 ::std::ostream* os) const {
318 StreamMatchResultListener listener(os);
319 MatchAndExplain(x, &listener);
320 }
321
322 // Returns the describer for this matcher object; retains ownership
323 // of the describer, which is only guaranteed to be alive when
324 // this matcher object is alive.
325 const MatcherDescriberInterface* GetDescriber() const {
326 return impl_.get();
327 }
328
329 protected:
330 MatcherBase() {}
331
332 // Constructs a matcher from its implementation.
333 explicit MatcherBase(
334 const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl)
335 : impl_(impl) {}
336
337 template <typename U>
338 explicit MatcherBase(
339 const MatcherInterface<U>* impl,
340 typename internal::EnableIf<
341 !internal::IsSame<U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* =
342 NULL)
343 : impl_(new internal::MatcherInterfaceAdapter<U>(impl)) {}
344
345 virtual ~MatcherBase() {}
346
347 private:
348 // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
349 // interfaces. The former dynamically allocates a chunk of memory
350 // to hold the reference count, while the latter tracks all
351 // references using a circular linked list without allocating
352 // memory. It has been observed that linked_ptr performs better in
353 // typical scenarios. However, shared_ptr can out-perform
354 // linked_ptr when there are many more uses of the copy constructor
355 // than the default constructor.
356 //
357 // If performance becomes a problem, we should see if using
358 // shared_ptr helps.
359 ::testing::internal::linked_ptr<
360 const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> >
361 impl_;
362};
363
364} // namespace internal
365
366// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
367// object that can check whether a value of type T matches. The
368// implementation of Matcher<T> is just a linked_ptr to const
369// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
370// from Matcher!
371template <typename T>
372class Matcher : public internal::MatcherBase<T> {
373 public:
374 // Constructs a null matcher. Needed for storing Matcher objects in STL
375 // containers. A default-constructed matcher is not yet initialized. You
376 // cannot use it until a valid value has been assigned to it.
377 explicit Matcher() {} // NOLINT
378
379 // Constructs a matcher from its implementation.
380 explicit Matcher(const MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)>* impl)
381 : internal::MatcherBase<T>(impl) {}
382
383 template <typename U>
384 explicit Matcher(const MatcherInterface<U>* impl,
385 typename internal::EnableIf<!internal::IsSame<
386 U, GTEST_REFERENCE_TO_CONST_(U)>::value>::type* = NULL)
387 : internal::MatcherBase<T>(impl) {}
388
389 // Implicit constructor here allows people to write
390 // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
391 Matcher(T value); // NOLINT
392};
393
394// The following two specializations allow the user to write str
395// instead of Eq(str) and "foo" instead of Eq("foo") when a std::string
396// matcher is expected.
397template <>
398class GTEST_API_ Matcher<const std::string&>
399 : public internal::MatcherBase<const std::string&> {
400 public:
401 Matcher() {}
402
403 explicit Matcher(const MatcherInterface<const std::string&>* impl)
404 : internal::MatcherBase<const std::string&>(impl) {}
405
406 // Allows the user to write str instead of Eq(str) sometimes, where
407 // str is a std::string object.
408 Matcher(const std::string& s); // NOLINT
409
410#if GTEST_HAS_GLOBAL_STRING
411 // Allows the user to write str instead of Eq(str) sometimes, where
412 // str is a ::string object.
413 Matcher(const ::string& s); // NOLINT
414#endif // GTEST_HAS_GLOBAL_STRING
415
416 // Allows the user to write "foo" instead of Eq("foo") sometimes.
417 Matcher(const char* s); // NOLINT
418};
419
420template <>
421class GTEST_API_ Matcher<std::string>
422 : public internal::MatcherBase<std::string> {
423 public:
424 Matcher() {}
425
426 explicit Matcher(const MatcherInterface<const std::string&>* impl)
427 : internal::MatcherBase<std::string>(impl) {}
428 explicit Matcher(const MatcherInterface<std::string>* impl)
429 : internal::MatcherBase<std::string>(impl) {}
430
431 // Allows the user to write str instead of Eq(str) sometimes, where
432 // str is a string object.
433 Matcher(const std::string& s); // NOLINT
434
435#if GTEST_HAS_GLOBAL_STRING
436 // Allows the user to write str instead of Eq(str) sometimes, where
437 // str is a ::string object.
438 Matcher(const ::string& s); // NOLINT
439#endif // GTEST_HAS_GLOBAL_STRING
440
441 // Allows the user to write "foo" instead of Eq("foo") sometimes.
442 Matcher(const char* s); // NOLINT
443};
444
445#if GTEST_HAS_GLOBAL_STRING
446// The following two specializations allow the user to write str
447// instead of Eq(str) and "foo" instead of Eq("foo") when a ::string
448// matcher is expected.
449template <>
450class GTEST_API_ Matcher<const ::string&>
451 : public internal::MatcherBase<const ::string&> {
452 public:
453 Matcher() {}
454
455 explicit Matcher(const MatcherInterface<const ::string&>* impl)
456 : internal::MatcherBase<const ::string&>(impl) {}
457
458 // Allows the user to write str instead of Eq(str) sometimes, where
459 // str is a std::string object.
460 Matcher(const std::string& s); // NOLINT
461
462 // Allows the user to write str instead of Eq(str) sometimes, where
463 // str is a ::string object.
464 Matcher(const ::string& s); // NOLINT
465
466 // Allows the user to write "foo" instead of Eq("foo") sometimes.
467 Matcher(const char* s); // NOLINT
468};
469
470template <>
471class GTEST_API_ Matcher< ::string>
472 : public internal::MatcherBase< ::string> {
473 public:
474 Matcher() {}
475
476 explicit Matcher(const MatcherInterface<const ::string&>* impl)
477 : internal::MatcherBase< ::string>(impl) {}
478 explicit Matcher(const MatcherInterface< ::string>* impl)
479 : internal::MatcherBase< ::string>(impl) {}
480
481 // Allows the user to write str instead of Eq(str) sometimes, where
482 // str is a std::string object.
483 Matcher(const std::string& s); // NOLINT
484
485 // Allows the user to write str instead of Eq(str) sometimes, where
486 // str is a ::string object.
487 Matcher(const ::string& s); // NOLINT
488
489 // Allows the user to write "foo" instead of Eq("foo") sometimes.
490 Matcher(const char* s); // NOLINT
491};
492#endif // GTEST_HAS_GLOBAL_STRING
493
494#if GTEST_HAS_ABSL
495// The following two specializations allow the user to write str
496// instead of Eq(str) and "foo" instead of Eq("foo") when a absl::string_view
497// matcher is expected.
498template <>
499class GTEST_API_ Matcher<const absl::string_view&>
500 : public internal::MatcherBase<const absl::string_view&> {
501 public:
502 Matcher() {}
503
504 explicit Matcher(const MatcherInterface<const absl::string_view&>* impl)
505 : internal::MatcherBase<const absl::string_view&>(impl) {}
506
507 // Allows the user to write str instead of Eq(str) sometimes, where
508 // str is a std::string object.
509 Matcher(const std::string& s); // NOLINT
510
511#if GTEST_HAS_GLOBAL_STRING
512 // Allows the user to write str instead of Eq(str) sometimes, where
513 // str is a ::string object.
514 Matcher(const ::string& s); // NOLINT
515#endif // GTEST_HAS_GLOBAL_STRING
516
517 // Allows the user to write "foo" instead of Eq("foo") sometimes.
518 Matcher(const char* s); // NOLINT
519
520 // Allows the user to pass absl::string_views directly.
521 Matcher(absl::string_view s); // NOLINT
522};
523
524template <>
525class GTEST_API_ Matcher<absl::string_view>
526 : public internal::MatcherBase<absl::string_view> {
527 public:
528 Matcher() {}
529
530 explicit Matcher(const MatcherInterface<const absl::string_view&>* impl)
531 : internal::MatcherBase<absl::string_view>(impl) {}
532 explicit Matcher(const MatcherInterface<absl::string_view>* impl)
533 : internal::MatcherBase<absl::string_view>(impl) {}
534
535 // Allows the user to write str instead of Eq(str) sometimes, where
536 // str is a std::string object.
537 Matcher(const std::string& s); // NOLINT
538
539#if GTEST_HAS_GLOBAL_STRING
540 // Allows the user to write str instead of Eq(str) sometimes, where
541 // str is a ::string object.
542 Matcher(const ::string& s); // NOLINT
543#endif // GTEST_HAS_GLOBAL_STRING
544
545 // Allows the user to write "foo" instead of Eq("foo") sometimes.
546 Matcher(const char* s); // NOLINT
547
548 // Allows the user to pass absl::string_views directly.
549 Matcher(absl::string_view s); // NOLINT
550};
551#endif // GTEST_HAS_ABSL
552
553// Prints a matcher in a human-readable format.
554template <typename T>
555std::ostream& operator<<(std::ostream& os, const Matcher<T>& matcher) {
556 matcher.DescribeTo(&os);
557 return os;
558}
559
560// The PolymorphicMatcher class template makes it easy to implement a
561// polymorphic matcher (i.e. a matcher that can match values of more
562// than one type, e.g. Eq(n) and NotNull()).
563//
564// To define a polymorphic matcher, a user should provide an Impl
565// class that has a DescribeTo() method and a DescribeNegationTo()
566// method, and define a member function (or member function template)
567//
568// bool MatchAndExplain(const Value& value,
569// MatchResultListener* listener) const;
570//
571// See the definition of NotNull() for a complete example.
572template <class Impl>
573class PolymorphicMatcher {
574 public:
575 explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
576
577 // Returns a mutable reference to the underlying matcher
578 // implementation object.
579 Impl& mutable_impl() { return impl_; }
580
581 // Returns an immutable reference to the underlying matcher
582 // implementation object.
583 const Impl& impl() const { return impl_; }
584
585 template <typename T>
586 operator Matcher<T>() const {
587 return Matcher<T>(new MonomorphicImpl<GTEST_REFERENCE_TO_CONST_(T)>(impl_));
588 }
589
590 private:
591 template <typename T>
592 class MonomorphicImpl : public MatcherInterface<T> {
593 public:
594 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
595
596 virtual void DescribeTo(::std::ostream* os) const {
597 impl_.DescribeTo(os);
598 }
599
600 virtual void DescribeNegationTo(::std::ostream* os) const {
601 impl_.DescribeNegationTo(os);
602 }
603
604 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
605 return impl_.MatchAndExplain(x, listener);
606 }
607
608 private:
609 const Impl impl_;
610
611 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
612 };
613
614 Impl impl_;
615
616 GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
617};
618
619// Creates a matcher from its implementation. This is easier to use
620// than the Matcher<T> constructor as it doesn't require you to
621// explicitly write the template argument, e.g.
622//
623// MakeMatcher(foo);
624// vs
625// Matcher<const string&>(foo);
626template <typename T>
627inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
628 return Matcher<T>(impl);
629}
630
631// Creates a polymorphic matcher from its implementation. This is
632// easier to use than the PolymorphicMatcher<Impl> constructor as it
633// doesn't require you to explicitly write the template argument, e.g.
634//
635// MakePolymorphicMatcher(foo);
636// vs
637// PolymorphicMatcher<TypeOfFoo>(foo);
638template <class Impl>
639inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
640 return PolymorphicMatcher<Impl>(impl);
641}
642
643// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
644// and MUST NOT BE USED IN USER CODE!!!
645namespace internal {
646
647// The MatcherCastImpl class template is a helper for implementing
648// MatcherCast(). We need this helper in order to partially
649// specialize the implementation of MatcherCast() (C++ allows
650// class/struct templates to be partially specialized, but not
651// function templates.).
652
653// This general version is used when MatcherCast()'s argument is a
654// polymorphic matcher (i.e. something that can be converted to a
655// Matcher but is not one yet; for example, Eq(value)) or a value (for
656// example, "hello").
657template <typename T, typename M>
658class MatcherCastImpl {
659 public:
660 static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
661 // M can be a polymorphic matcher, in which case we want to use
662 // its conversion operator to create Matcher<T>. Or it can be a value
663 // that should be passed to the Matcher<T>'s constructor.
664 //
665 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
666 // polymorphic matcher because it'll be ambiguous if T has an implicit
667 // constructor from M (this usually happens when T has an implicit
668 // constructor from any type).
669 //
670 // It won't work to unconditionally implict_cast
671 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
672 // a user-defined conversion from M to T if one exists (assuming M is
673 // a value).
674 return CastImpl(
675 polymorphic_matcher_or_value,
676 BooleanConstant<
677 internal::ImplicitlyConvertible<M, Matcher<T> >::value>(),
678 BooleanConstant<
679 internal::ImplicitlyConvertible<M, T>::value>());
680 }
681
682 private:
683 template <bool Ignore>
684 static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
685 BooleanConstant<true> /* convertible_to_matcher */,
686 BooleanConstant<Ignore>) {
687 // M is implicitly convertible to Matcher<T>, which means that either
688 // M is a polymorphic matcher or Matcher<T> has an implicit constructor
689 // from M. In both cases using the implicit conversion will produce a
690 // matcher.
691 //
692 // Even if T has an implicit constructor from M, it won't be called because
693 // creating Matcher<T> would require a chain of two user-defined conversions
694 // (first to create T from M and then to create Matcher<T> from T).
695 return polymorphic_matcher_or_value;
696 }
697
698 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
699 // matcher. It's a value of a type implicitly convertible to T. Use direct
700 // initialization to create a matcher.
701 static Matcher<T> CastImpl(
702 const M& value, BooleanConstant<false> /* convertible_to_matcher */,
703 BooleanConstant<true> /* convertible_to_T */) {
704 return Matcher<T>(ImplicitCast_<T>(value));
705 }
706
707 // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
708 // polymorphic matcher Eq(value) in this case.
709 //
710 // Note that we first attempt to perform an implicit cast on the value and
711 // only fall back to the polymorphic Eq() matcher afterwards because the
712 // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
713 // which might be undefined even when Rhs is implicitly convertible to Lhs
714 // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
715 //
716 // We don't define this method inline as we need the declaration of Eq().
717 static Matcher<T> CastImpl(
718 const M& value, BooleanConstant<false> /* convertible_to_matcher */,
719 BooleanConstant<false> /* convertible_to_T */);
720};
721
722// This more specialized version is used when MatcherCast()'s argument
723// is already a Matcher. This only compiles when type T can be
724// statically converted to type U.
725template <typename T, typename U>
726class MatcherCastImpl<T, Matcher<U> > {
727 public:
728 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
729 return Matcher<T>(new Impl(source_matcher));
730 }
731
732 private:
733 class Impl : public MatcherInterface<T> {
734 public:
735 explicit Impl(const Matcher<U>& source_matcher)
736 : source_matcher_(source_matcher) {}
737
738 // We delegate the matching logic to the source matcher.
739 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
740#if GTEST_LANG_CXX11
741 using FromType = typename std::remove_cv<typename std::remove_pointer<
742 typename std::remove_reference<T>::type>::type>::type;
743 using ToType = typename std::remove_cv<typename std::remove_pointer<
744 typename std::remove_reference<U>::type>::type>::type;
745 // Do not allow implicitly converting base*/& to derived*/&.
746 static_assert(
747 // Do not trigger if only one of them is a pointer. That implies a
748 // regular conversion and not a down_cast.
749 (std::is_pointer<typename std::remove_reference<T>::type>::value !=
750 std::is_pointer<typename std::remove_reference<U>::type>::value) ||
751 std::is_same<FromType, ToType>::value ||
752 !std::is_base_of<FromType, ToType>::value,
753 "Can't implicitly convert from <base> to <derived>");
754#endif // GTEST_LANG_CXX11
755
756 return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
757 }
758
759 virtual void DescribeTo(::std::ostream* os) const {
760 source_matcher_.DescribeTo(os);
761 }
762
763 virtual void DescribeNegationTo(::std::ostream* os) const {
764 source_matcher_.DescribeNegationTo(os);
765 }
766
767 private:
768 const Matcher<U> source_matcher_;
769
770 GTEST_DISALLOW_ASSIGN_(Impl);
771 };
772};
773
774// This even more specialized version is used for efficiently casting
775// a matcher to its own type.
776template <typename T>
777class MatcherCastImpl<T, Matcher<T> > {
778 public:
779 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
780};
781
782} // namespace internal
783
784// In order to be safe and clear, casting between different matcher
785// types is done explicitly via MatcherCast<T>(m), which takes a
786// matcher m and returns a Matcher<T>. It compiles only when T can be
787// statically converted to the argument type of m.
788template <typename T, typename M>
789inline Matcher<T> MatcherCast(const M& matcher) {
790 return internal::MatcherCastImpl<T, M>::Cast(matcher);
791}
792
793// Implements SafeMatcherCast().
794//
795// We use an intermediate class to do the actual safe casting as Nokia's
796// Symbian compiler cannot decide between
797// template <T, M> ... (M) and
798// template <T, U> ... (const Matcher<U>&)
799// for function templates but can for member function templates.
800template <typename T>
801class SafeMatcherCastImpl {
802 public:
803 // This overload handles polymorphic matchers and values only since
804 // monomorphic matchers are handled by the next one.
805 template <typename M>
806 static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
807 return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
808 }
809
810 // This overload handles monomorphic matchers.
811 //
812 // In general, if type T can be implicitly converted to type U, we can
813 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
814 // contravariant): just keep a copy of the original Matcher<U>, convert the
815 // argument from type T to U, and then pass it to the underlying Matcher<U>.
816 // The only exception is when U is a reference and T is not, as the
817 // underlying Matcher<U> may be interested in the argument's address, which
818 // is not preserved in the conversion from T to U.
819 template <typename U>
820 static inline Matcher<T> Cast(const Matcher<U>& matcher) {
821 // Enforce that T can be implicitly converted to U.
822 GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
823 T_must_be_implicitly_convertible_to_U);
824 // Enforce that we are not converting a non-reference type T to a reference
825 // type U.
826 GTEST_COMPILE_ASSERT_(
827 internal::is_reference<T>::value || !internal::is_reference<U>::value,
828 cannot_convert_non_reference_arg_to_reference);
829 // In case both T and U are arithmetic types, enforce that the
830 // conversion is not lossy.
831 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
832 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
833 const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
834 const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
835 GTEST_COMPILE_ASSERT_(
836 kTIsOther || kUIsOther ||
837 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
838 conversion_of_arithmetic_types_must_be_lossless);
839 return MatcherCast<T>(matcher);
840 }
841};
842
843template <typename T, typename M>
844inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
845 return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
846}
847
848// A<T>() returns a matcher that matches any value of type T.
849template <typename T>
850Matcher<T> A();
851
852// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
853// and MUST NOT BE USED IN USER CODE!!!
854namespace internal {
855
856// If the explanation is not empty, prints it to the ostream.
857inline void PrintIfNotEmpty(const std::string& explanation,
858 ::std::ostream* os) {
859 if (explanation != "" && os != NULL) {
860 *os << ", " << explanation;
861 }
862}
863
864// Returns true if the given type name is easy to read by a human.
865// This is used to decide whether printing the type of a value might
866// be helpful.
867inline bool IsReadableTypeName(const std::string& type_name) {
868 // We consider a type name readable if it's short or doesn't contain
869 // a template or function type.
870 return (type_name.length() <= 20 ||
871 type_name.find_first_of("<(") == std::string::npos);
872}
873
874// Matches the value against the given matcher, prints the value and explains
875// the match result to the listener. Returns the match result.
876// 'listener' must not be NULL.
877// Value cannot be passed by const reference, because some matchers take a
878// non-const argument.
879template <typename Value, typename T>
880bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
881 MatchResultListener* listener) {
882 if (!listener->IsInterested()) {
883 // If the listener is not interested, we do not need to construct the
884 // inner explanation.
885 return matcher.Matches(value);
886 }
887
888 StringMatchResultListener inner_listener;
889 const bool match = matcher.MatchAndExplain(value, &inner_listener);
890
891 UniversalPrint(value, listener->stream());
892#if GTEST_HAS_RTTI
893 const std::string& type_name = GetTypeName<Value>();
894 if (IsReadableTypeName(type_name))
895 *listener->stream() << " (of type " << type_name << ")";
896#endif
897 PrintIfNotEmpty(inner_listener.str(), listener->stream());
898
899 return match;
900}
901
902// An internal helper class for doing compile-time loop on a tuple's
903// fields.
904template <size_t N>
905class TuplePrefix {
906 public:
907 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
908 // iff the first N fields of matcher_tuple matches the first N
909 // fields of value_tuple, respectively.
910 template <typename MatcherTuple, typename ValueTuple>
911 static bool Matches(const MatcherTuple& matcher_tuple,
912 const ValueTuple& value_tuple) {
913 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
914 && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
915 }
916
917 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
918 // describes failures in matching the first N fields of matchers
919 // against the first N fields of values. If there is no failure,
920 // nothing will be streamed to os.
921 template <typename MatcherTuple, typename ValueTuple>
922 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
923 const ValueTuple& values,
924 ::std::ostream* os) {
925 // First, describes failures in the first N - 1 fields.
926 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
927
928 // Then describes the failure (if any) in the (N - 1)-th (0-based)
929 // field.
930 typename tuple_element<N - 1, MatcherTuple>::type matcher =
931 get<N - 1>(matchers);
932 typedef typename tuple_element<N - 1, ValueTuple>::type Value;
933 GTEST_REFERENCE_TO_CONST_(Value) value = get<N - 1>(values);
934 StringMatchResultListener listener;
935 if (!matcher.MatchAndExplain(value, &listener)) {
936 // FIXME: include in the message the name of the parameter
937 // as used in MOCK_METHOD*() when possible.
938 *os << " Expected arg #" << N - 1 << ": ";
939 get<N - 1>(matchers).DescribeTo(os);
940 *os << "\n Actual: ";
941 // We remove the reference in type Value to prevent the
942 // universal printer from printing the address of value, which
943 // isn't interesting to the user most of the time. The
944 // matcher's MatchAndExplain() method handles the case when
945 // the address is interesting.
946 internal::UniversalPrint(value, os);
947 PrintIfNotEmpty(listener.str(), os);
948 *os << "\n";
949 }
950 }
951};
952
953// The base case.
954template <>
955class TuplePrefix<0> {
956 public:
957 template <typename MatcherTuple, typename ValueTuple>
958 static bool Matches(const MatcherTuple& /* matcher_tuple */,
959 const ValueTuple& /* value_tuple */) {
960 return true;
961 }
962
963 template <typename MatcherTuple, typename ValueTuple>
964 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
965 const ValueTuple& /* values */,
966 ::std::ostream* /* os */) {}
967};
968
969// TupleMatches(matcher_tuple, value_tuple) returns true iff all
970// matchers in matcher_tuple match the corresponding fields in
971// value_tuple. It is a compiler error if matcher_tuple and
972// value_tuple have different number of fields or incompatible field
973// types.
974template <typename MatcherTuple, typename ValueTuple>
975bool TupleMatches(const MatcherTuple& matcher_tuple,
976 const ValueTuple& value_tuple) {
977 // Makes sure that matcher_tuple and value_tuple have the same
978 // number of fields.
979 GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
980 tuple_size<ValueTuple>::value,
981 matcher_and_value_have_different_numbers_of_fields);
982 return TuplePrefix<tuple_size<ValueTuple>::value>::
983 Matches(matcher_tuple, value_tuple);
984}
985
986// Describes failures in matching matchers against values. If there
987// is no failure, nothing will be streamed to os.
988template <typename MatcherTuple, typename ValueTuple>
989void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
990 const ValueTuple& values,
991 ::std::ostream* os) {
992 TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
993 matchers, values, os);
994}
995
996// TransformTupleValues and its helper.
997//
998// TransformTupleValuesHelper hides the internal machinery that
999// TransformTupleValues uses to implement a tuple traversal.
1000template <typename Tuple, typename Func, typename OutIter>
1001class TransformTupleValuesHelper {
1002 private:
1003 typedef ::testing::tuple_size<Tuple> TupleSize;
1004
1005 public:
1006 // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
1007 // Returns the final value of 'out' in case the caller needs it.
1008 static OutIter Run(Func f, const Tuple& t, OutIter out) {
1009 return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
1010 }
1011
1012 private:
1013 template <typename Tup, size_t kRemainingSize>
1014 struct IterateOverTuple {
1015 OutIter operator() (Func f, const Tup& t, OutIter out) const {
1016 *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t));
1017 return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
1018 }
1019 };
1020 template <typename Tup>
1021 struct IterateOverTuple<Tup, 0> {
1022 OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
1023 return out;
1024 }
1025 };
1026};
1027
1028// Successively invokes 'f(element)' on each element of the tuple 't',
1029// appending each result to the 'out' iterator. Returns the final value
1030// of 'out'.
1031template <typename Tuple, typename Func, typename OutIter>
1032OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
1033 return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
1034}
1035
1036// Implements A<T>().
1037template <typename T>
1038class AnyMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> {
1039 public:
1040 virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) /* x */,
1041 MatchResultListener* /* listener */) const {
1042 return true;
1043 }
1044 virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
1045 virtual void DescribeNegationTo(::std::ostream* os) const {
1046 // This is mostly for completeness' safe, as it's not very useful
1047 // to write Not(A<bool>()). However we cannot completely rule out
1048 // such a possibility, and it doesn't hurt to be prepared.
1049 *os << "never matches";
1050 }
1051};
1052
1053// Implements _, a matcher that matches any value of any
1054// type. This is a polymorphic matcher, so we need a template type
1055// conversion operator to make it appearing as a Matcher<T> for any
1056// type T.
1057class AnythingMatcher {
1058 public:
1059 template <typename T>
1060 operator Matcher<T>() const { return A<T>(); }
1061};
1062
1063// Implements a matcher that compares a given value with a
1064// pre-supplied value using one of the ==, <=, <, etc, operators. The
1065// two values being compared don't have to have the same type.
1066//
1067// The matcher defined here is polymorphic (for example, Eq(5) can be
1068// used to match an int, a short, a double, etc). Therefore we use
1069// a template type conversion operator in the implementation.
1070//
1071// The following template definition assumes that the Rhs parameter is
1072// a "bare" type (i.e. neither 'const T' nor 'T&').
1073template <typename D, typename Rhs, typename Op>
1074class ComparisonBase {
1075 public:
1076 explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {}
1077 template <typename Lhs>
1078 operator Matcher<Lhs>() const {
1079 return MakeMatcher(new Impl<Lhs>(rhs_));
1080 }
1081
1082 private:
1083 template <typename Lhs>
1084 class Impl : public MatcherInterface<Lhs> {
1085 public:
1086 explicit Impl(const Rhs& rhs) : rhs_(rhs) {}
1087 virtual bool MatchAndExplain(
1088 Lhs lhs, MatchResultListener* /* listener */) const {
1089 return Op()(lhs, rhs_);
1090 }
1091 virtual void DescribeTo(::std::ostream* os) const {
1092 *os << D::Desc() << " ";
1093 UniversalPrint(rhs_, os);
1094 }
1095 virtual void DescribeNegationTo(::std::ostream* os) const {
1096 *os << D::NegatedDesc() << " ";
1097 UniversalPrint(rhs_, os);
1098 }
1099 private:
1100 Rhs rhs_;
1101 GTEST_DISALLOW_ASSIGN_(Impl);
1102 };
1103 Rhs rhs_;
1104 GTEST_DISALLOW_ASSIGN_(ComparisonBase);
1105};
1106
1107template <typename Rhs>
1108class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> {
1109 public:
1110 explicit EqMatcher(const Rhs& rhs)
1111 : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { }
1112 static const char* Desc() { return "is equal to"; }
1113 static const char* NegatedDesc() { return "isn't equal to"; }
1114};
1115template <typename Rhs>
1116class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> {
1117 public:
1118 explicit NeMatcher(const Rhs& rhs)
1119 : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { }
1120 static const char* Desc() { return "isn't equal to"; }
1121 static const char* NegatedDesc() { return "is equal to"; }
1122};
1123template <typename Rhs>
1124class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> {
1125 public:
1126 explicit LtMatcher(const Rhs& rhs)
1127 : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { }
1128 static const char* Desc() { return "is <"; }
1129 static const char* NegatedDesc() { return "isn't <"; }
1130};
1131template <typename Rhs>
1132class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> {
1133 public:
1134 explicit GtMatcher(const Rhs& rhs)
1135 : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { }
1136 static const char* Desc() { return "is >"; }
1137 static const char* NegatedDesc() { return "isn't >"; }
1138};
1139template <typename Rhs>
1140class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> {
1141 public:
1142 explicit LeMatcher(const Rhs& rhs)
1143 : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { }
1144 static const char* Desc() { return "is <="; }
1145 static const char* NegatedDesc() { return "isn't <="; }
1146};
1147template <typename Rhs>
1148class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> {
1149 public:
1150 explicit GeMatcher(const Rhs& rhs)
1151 : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { }
1152 static const char* Desc() { return "is >="; }
1153 static const char* NegatedDesc() { return "isn't >="; }
1154};
1155
1156// Implements the polymorphic IsNull() matcher, which matches any raw or smart
1157// pointer that is NULL.
1158class IsNullMatcher {
1159 public:
1160 template <typename Pointer>
1161 bool MatchAndExplain(const Pointer& p,
1162 MatchResultListener* /* listener */) const {
1163#if GTEST_LANG_CXX11
1164 return p == nullptr;
1165#else // GTEST_LANG_CXX11
1166 return GetRawPointer(p) == NULL;
1167#endif // GTEST_LANG_CXX11
1168 }
1169
1170 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
1171 void DescribeNegationTo(::std::ostream* os) const {
1172 *os << "isn't NULL";
1173 }
1174};
1175
1176// Implements the polymorphic NotNull() matcher, which matches any raw or smart
1177// pointer that is not NULL.
1178class NotNullMatcher {
1179 public:
1180 template <typename Pointer>
1181 bool MatchAndExplain(const Pointer& p,
1182 MatchResultListener* /* listener */) const {
1183#if GTEST_LANG_CXX11
1184 return p != nullptr;
1185#else // GTEST_LANG_CXX11
1186 return GetRawPointer(p) != NULL;
1187#endif // GTEST_LANG_CXX11
1188 }
1189
1190 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
1191 void DescribeNegationTo(::std::ostream* os) const {
1192 *os << "is NULL";
1193 }
1194};
1195
1196// Ref(variable) matches any argument that is a reference to
1197// 'variable'. This matcher is polymorphic as it can match any
1198// super type of the type of 'variable'.
1199//
1200// The RefMatcher template class implements Ref(variable). It can
1201// only be instantiated with a reference type. This prevents a user
1202// from mistakenly using Ref(x) to match a non-reference function
1203// argument. For example, the following will righteously cause a
1204// compiler error:
1205//
1206// int n;
1207// Matcher<int> m1 = Ref(n); // This won't compile.
1208// Matcher<int&> m2 = Ref(n); // This will compile.
1209template <typename T>
1210class RefMatcher;
1211
1212template <typename T>
1213class RefMatcher<T&> {
1214 // Google Mock is a generic framework and thus needs to support
1215 // mocking any function types, including those that take non-const
1216 // reference arguments. Therefore the template parameter T (and
1217 // Super below) can be instantiated to either a const type or a
1218 // non-const type.
1219 public:
1220 // RefMatcher() takes a T& instead of const T&, as we want the
1221 // compiler to catch using Ref(const_value) as a matcher for a
1222 // non-const reference.
1223 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
1224
1225 template <typename Super>
1226 operator Matcher<Super&>() const {
1227 // By passing object_ (type T&) to Impl(), which expects a Super&,
1228 // we make sure that Super is a super type of T. In particular,
1229 // this catches using Ref(const_value) as a matcher for a
1230 // non-const reference, as you cannot implicitly convert a const
1231 // reference to a non-const reference.
1232 return MakeMatcher(new Impl<Super>(object_));
1233 }
1234
1235 private:
1236 template <typename Super>
1237 class Impl : public MatcherInterface<Super&> {
1238 public:
1239 explicit Impl(Super& x) : object_(x) {} // NOLINT
1240
1241 // MatchAndExplain() takes a Super& (as opposed to const Super&)
1242 // in order to match the interface MatcherInterface<Super&>.
1243 virtual bool MatchAndExplain(
1244 Super& x, MatchResultListener* listener) const {
1245 *listener << "which is located @" << static_cast<const void*>(&x);
1246 return &x == &object_;
1247 }
1248
1249 virtual void DescribeTo(::std::ostream* os) const {
1250 *os << "references the variable ";
1251 UniversalPrinter<Super&>::Print(object_, os);
1252 }
1253
1254 virtual void DescribeNegationTo(::std::ostream* os) const {
1255 *os << "does not reference the variable ";
1256 UniversalPrinter<Super&>::Print(object_, os);
1257 }
1258
1259 private:
1260 const Super& object_;
1261
1262 GTEST_DISALLOW_ASSIGN_(Impl);
1263 };
1264
1265 T& object_;
1266
1267 GTEST_DISALLOW_ASSIGN_(RefMatcher);
1268};
1269
1270// Polymorphic helper functions for narrow and wide string matchers.
1271inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
1272 return String::CaseInsensitiveCStringEquals(lhs, rhs);
1273}
1274
1275inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
1276 const wchar_t* rhs) {
1277 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
1278}
1279
1280// String comparison for narrow or wide strings that can have embedded NUL
1281// characters.
1282template <typename StringType>
1283bool CaseInsensitiveStringEquals(const StringType& s1,
1284 const StringType& s2) {
1285 // Are the heads equal?
1286 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
1287 return false;
1288 }
1289
1290 // Skip the equal heads.
1291 const typename StringType::value_type nul = 0;
1292 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
1293
1294 // Are we at the end of either s1 or s2?
1295 if (i1 == StringType::npos || i2 == StringType::npos) {
1296 return i1 == i2;
1297 }
1298
1299 // Are the tails equal?
1300 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
1301}
1302
1303// String matchers.
1304
1305// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
1306template <typename StringType>
1307class StrEqualityMatcher {
1308 public:
1309 StrEqualityMatcher(const StringType& str, bool expect_eq,
1310 bool case_sensitive)
1311 : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
1312
1313#if GTEST_HAS_ABSL
1314 bool MatchAndExplain(const absl::string_view& s,
1315 MatchResultListener* listener) const {
1316 if (s.data() == NULL) {
1317 return !expect_eq_;
1318 }
1319 // This should fail to compile if absl::string_view is used with wide
1320 // strings.
1321 const StringType& str = string(s);
1322 return MatchAndExplain(str, listener);
1323 }
1324#endif // GTEST_HAS_ABSL
1325
1326 // Accepts pointer types, particularly:
1327 // const char*
1328 // char*
1329 // const wchar_t*
1330 // wchar_t*
1331 template <typename CharType>
1332 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1333 if (s == NULL) {
1334 return !expect_eq_;
1335 }
1336 return MatchAndExplain(StringType(s), listener);
1337 }
1338
1339 // Matches anything that can convert to StringType.
1340 //
1341 // This is a template, not just a plain function with const StringType&,
1342 // because absl::string_view has some interfering non-explicit constructors.
1343 template <typename MatcheeStringType>
1344 bool MatchAndExplain(const MatcheeStringType& s,
1345 MatchResultListener* /* listener */) const {
1346 const StringType& s2(s);
1347 const bool eq = case_sensitive_ ? s2 == string_ :
1348 CaseInsensitiveStringEquals(s2, string_);
1349 return expect_eq_ == eq;
1350 }
1351
1352 void DescribeTo(::std::ostream* os) const {
1353 DescribeToHelper(expect_eq_, os);
1354 }
1355
1356 void DescribeNegationTo(::std::ostream* os) const {
1357 DescribeToHelper(!expect_eq_, os);
1358 }
1359
1360 private:
1361 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
1362 *os << (expect_eq ? "is " : "isn't ");
1363 *os << "equal to ";
1364 if (!case_sensitive_) {
1365 *os << "(ignoring case) ";
1366 }
1367 UniversalPrint(string_, os);
1368 }
1369
1370 const StringType string_;
1371 const bool expect_eq_;
1372 const bool case_sensitive_;
1373
1374 GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
1375};
1376
1377// Implements the polymorphic HasSubstr(substring) matcher, which
1378// can be used as a Matcher<T> as long as T can be converted to a
1379// string.
1380template <typename StringType>
1381class HasSubstrMatcher {
1382 public:
1383 explicit HasSubstrMatcher(const StringType& substring)
1384 : substring_(substring) {}
1385
1386#if GTEST_HAS_ABSL
1387 bool MatchAndExplain(const absl::string_view& s,
1388 MatchResultListener* listener) const {
1389 if (s.data() == NULL) {
1390 return false;
1391 }
1392 // This should fail to compile if absl::string_view is used with wide
1393 // strings.
1394 const StringType& str = string(s);
1395 return MatchAndExplain(str, listener);
1396 }
1397#endif // GTEST_HAS_ABSL
1398
1399 // Accepts pointer types, particularly:
1400 // const char*
1401 // char*
1402 // const wchar_t*
1403 // wchar_t*
1404 template <typename CharType>
1405 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1406 return s != NULL && MatchAndExplain(StringType(s), listener);
1407 }
1408
1409 // Matches anything that can convert to StringType.
1410 //
1411 // This is a template, not just a plain function with const StringType&,
1412 // because absl::string_view has some interfering non-explicit constructors.
1413 template <typename MatcheeStringType>
1414 bool MatchAndExplain(const MatcheeStringType& s,
1415 MatchResultListener* /* listener */) const {
1416 const StringType& s2(s);
1417 return s2.find(substring_) != StringType::npos;
1418 }
1419
1420 // Describes what this matcher matches.
1421 void DescribeTo(::std::ostream* os) const {
1422 *os << "has substring ";
1423 UniversalPrint(substring_, os);
1424 }
1425
1426 void DescribeNegationTo(::std::ostream* os) const {
1427 *os << "has no substring ";
1428 UniversalPrint(substring_, os);
1429 }
1430
1431 private:
1432 const StringType substring_;
1433
1434 GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
1435};
1436
1437// Implements the polymorphic StartsWith(substring) matcher, which
1438// can be used as a Matcher<T> as long as T can be converted to a
1439// string.
1440template <typename StringType>
1441class StartsWithMatcher {
1442 public:
1443 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1444 }
1445
1446#if GTEST_HAS_ABSL
1447 bool MatchAndExplain(const absl::string_view& s,
1448 MatchResultListener* listener) const {
1449 if (s.data() == NULL) {
1450 return false;
1451 }
1452 // This should fail to compile if absl::string_view is used with wide
1453 // strings.
1454 const StringType& str = string(s);
1455 return MatchAndExplain(str, listener);
1456 }
1457#endif // GTEST_HAS_ABSL
1458
1459 // Accepts pointer types, particularly:
1460 // const char*
1461 // char*
1462 // const wchar_t*
1463 // wchar_t*
1464 template <typename CharType>
1465 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1466 return s != NULL && MatchAndExplain(StringType(s), listener);
1467 }
1468
1469 // Matches anything that can convert to StringType.
1470 //
1471 // This is a template, not just a plain function with const StringType&,
1472 // because absl::string_view has some interfering non-explicit constructors.
1473 template <typename MatcheeStringType>
1474 bool MatchAndExplain(const MatcheeStringType& s,
1475 MatchResultListener* /* listener */) const {
1476 const StringType& s2(s);
1477 return s2.length() >= prefix_.length() &&
1478 s2.substr(0, prefix_.length()) == prefix_;
1479 }
1480
1481 void DescribeTo(::std::ostream* os) const {
1482 *os << "starts with ";
1483 UniversalPrint(prefix_, os);
1484 }
1485
1486 void DescribeNegationTo(::std::ostream* os) const {
1487 *os << "doesn't start with ";
1488 UniversalPrint(prefix_, os);
1489 }
1490
1491 private:
1492 const StringType prefix_;
1493
1494 GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1495};
1496
1497// Implements the polymorphic EndsWith(substring) matcher, which
1498// can be used as a Matcher<T> as long as T can be converted to a
1499// string.
1500template <typename StringType>
1501class EndsWithMatcher {
1502 public:
1503 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1504
1505#if GTEST_HAS_ABSL
1506 bool MatchAndExplain(const absl::string_view& s,
1507 MatchResultListener* listener) const {
1508 if (s.data() == NULL) {
1509 return false;
1510 }
1511 // This should fail to compile if absl::string_view is used with wide
1512 // strings.
1513 const StringType& str = string(s);
1514 return MatchAndExplain(str, listener);
1515 }
1516#endif // GTEST_HAS_ABSL
1517
1518 // Accepts pointer types, particularly:
1519 // const char*
1520 // char*
1521 // const wchar_t*
1522 // wchar_t*
1523 template <typename CharType>
1524 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1525 return s != NULL && MatchAndExplain(StringType(s), listener);
1526 }
1527
1528 // Matches anything that can convert to StringType.
1529 //
1530 // This is a template, not just a plain function with const StringType&,
1531 // because absl::string_view has some interfering non-explicit constructors.
1532 template <typename MatcheeStringType>
1533 bool MatchAndExplain(const MatcheeStringType& s,
1534 MatchResultListener* /* listener */) const {
1535 const StringType& s2(s);
1536 return s2.length() >= suffix_.length() &&
1537 s2.substr(s2.length() - suffix_.length()) == suffix_;
1538 }
1539
1540 void DescribeTo(::std::ostream* os) const {
1541 *os << "ends with ";
1542 UniversalPrint(suffix_, os);
1543 }
1544
1545 void DescribeNegationTo(::std::ostream* os) const {
1546 *os << "doesn't end with ";
1547 UniversalPrint(suffix_, os);
1548 }
1549
1550 private:
1551 const StringType suffix_;
1552
1553 GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1554};
1555
1556// Implements polymorphic matchers MatchesRegex(regex) and
1557// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1558// T can be converted to a string.
1559class MatchesRegexMatcher {
1560 public:
1561 MatchesRegexMatcher(const RE* regex, bool full_match)
1562 : regex_(regex), full_match_(full_match) {}
1563
1564#if GTEST_HAS_ABSL
1565 bool MatchAndExplain(const absl::string_view& s,
1566 MatchResultListener* listener) const {
1567 return s.data() && MatchAndExplain(string(s), listener);
1568 }
1569#endif // GTEST_HAS_ABSL
1570
1571 // Accepts pointer types, particularly:
1572 // const char*
1573 // char*
1574 // const wchar_t*
1575 // wchar_t*
1576 template <typename CharType>
1577 bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1578 return s != NULL && MatchAndExplain(std::string(s), listener);
1579 }
1580
1581 // Matches anything that can convert to std::string.
1582 //
1583 // This is a template, not just a plain function with const std::string&,
1584 // because absl::string_view has some interfering non-explicit constructors.
1585 template <class MatcheeStringType>
1586 bool MatchAndExplain(const MatcheeStringType& s,
1587 MatchResultListener* /* listener */) const {
1588 const std::string& s2(s);
1589 return full_match_ ? RE::FullMatch(s2, *regex_) :
1590 RE::PartialMatch(s2, *regex_);
1591 }
1592
1593 void DescribeTo(::std::ostream* os) const {
1594 *os << (full_match_ ? "matches" : "contains")
1595 << " regular expression ";
1596 UniversalPrinter<std::string>::Print(regex_->pattern(), os);
1597 }
1598
1599 void DescribeNegationTo(::std::ostream* os) const {
1600 *os << "doesn't " << (full_match_ ? "match" : "contain")
1601 << " regular expression ";
1602 UniversalPrinter<std::string>::Print(regex_->pattern(), os);
1603 }
1604
1605 private:
1606 const internal::linked_ptr<const RE> regex_;
1607 const bool full_match_;
1608
1609 GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1610};
1611
1612// Implements a matcher that compares the two fields of a 2-tuple
1613// using one of the ==, <=, <, etc, operators. The two fields being
1614// compared don't have to have the same type.
1615//
1616// The matcher defined here is polymorphic (for example, Eq() can be
1617// used to match a tuple<int, short>, a tuple<const long&, double>,
1618// etc). Therefore we use a template type conversion operator in the
1619// implementation.
1620template <typename D, typename Op>
1621class PairMatchBase {
1622 public:
1623 template <typename T1, typename T2>
1624 operator Matcher< ::testing::tuple<T1, T2> >() const {
1625 return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >);
1626 }
1627 template <typename T1, typename T2>
1628 operator Matcher<const ::testing::tuple<T1, T2>&>() const {
1629 return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>);
1630 }
1631
1632 private:
1633 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
1634 return os << D::Desc();
1635 }
1636
1637 template <typename Tuple>
1638 class Impl : public MatcherInterface<Tuple> {
1639 public:
1640 virtual bool MatchAndExplain(
1641 Tuple args,
1642 MatchResultListener* /* listener */) const {
1643 return Op()(::testing::get<0>(args), ::testing::get<1>(args));
1644 }
1645 virtual void DescribeTo(::std::ostream* os) const {
1646 *os << "are " << GetDesc;
1647 }
1648 virtual void DescribeNegationTo(::std::ostream* os) const {
1649 *os << "aren't " << GetDesc;
1650 }
1651 };
1652};
1653
1654class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1655 public:
1656 static const char* Desc() { return "an equal pair"; }
1657};
1658class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1659 public:
1660 static const char* Desc() { return "an unequal pair"; }
1661};
1662class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1663 public:
1664 static const char* Desc() { return "a pair where the first < the second"; }
1665};
1666class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1667 public:
1668 static const char* Desc() { return "a pair where the first > the second"; }
1669};
1670class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1671 public:
1672 static const char* Desc() { return "a pair where the first <= the second"; }
1673};
1674class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1675 public:
1676 static const char* Desc() { return "a pair where the first >= the second"; }
1677};
1678
1679// Implements the Not(...) matcher for a particular argument type T.
1680// We do not nest it inside the NotMatcher class template, as that
1681// will prevent different instantiations of NotMatcher from sharing
1682// the same NotMatcherImpl<T> class.
1683template <typename T>
1684class NotMatcherImpl : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> {
1685 public:
1686 explicit NotMatcherImpl(const Matcher<T>& matcher)
1687 : matcher_(matcher) {}
1688
1689 virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x,
1690 MatchResultListener* listener) const {
1691 return !matcher_.MatchAndExplain(x, listener);
1692 }
1693
1694 virtual void DescribeTo(::std::ostream* os) const {
1695 matcher_.DescribeNegationTo(os);
1696 }
1697
1698 virtual void DescribeNegationTo(::std::ostream* os) const {
1699 matcher_.DescribeTo(os);
1700 }
1701
1702 private:
1703 const Matcher<T> matcher_;
1704
1705 GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1706};
1707
1708// Implements the Not(m) matcher, which matches a value that doesn't
1709// match matcher m.
1710template <typename InnerMatcher>
1711class NotMatcher {
1712 public:
1713 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1714
1715 // This template type conversion operator allows Not(m) to be used
1716 // to match any type m can match.
1717 template <typename T>
1718 operator Matcher<T>() const {
1719 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1720 }
1721
1722 private:
1723 InnerMatcher matcher_;
1724
1725 GTEST_DISALLOW_ASSIGN_(NotMatcher);
1726};
1727
1728// Implements the AllOf(m1, m2) matcher for a particular argument type
1729// T. We do not nest it inside the BothOfMatcher class template, as
1730// that will prevent different instantiations of BothOfMatcher from
1731// sharing the same BothOfMatcherImpl<T> class.
1732template <typename T>
1733class AllOfMatcherImpl
1734 : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> {
1735 public:
1736 explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
1737 : matchers_(internal::move(matchers)) {}
1738
1739 virtual void DescribeTo(::std::ostream* os) const {
1740 *os << "(";
1741 for (size_t i = 0; i < matchers_.size(); ++i) {
1742 if (i != 0) *os << ") and (";
1743 matchers_[i].DescribeTo(os);
1744 }
1745 *os << ")";
1746 }
1747
1748 virtual void DescribeNegationTo(::std::ostream* os) const {
1749 *os << "(";
1750 for (size_t i = 0; i < matchers_.size(); ++i) {
1751 if (i != 0) *os << ") or (";
1752 matchers_[i].DescribeNegationTo(os);
1753 }
1754 *os << ")";
1755 }
1756
1757 virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x,
1758 MatchResultListener* listener) const {
1759 // If either matcher1_ or matcher2_ doesn't match x, we only need
1760 // to explain why one of them fails.
1761 std::string all_match_result;
1762
1763 for (size_t i = 0; i < matchers_.size(); ++i) {
1764 StringMatchResultListener slistener;
1765 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1766 if (all_match_result.empty()) {
1767 all_match_result = slistener.str();
1768 } else {
1769 std::string result = slistener.str();
1770 if (!result.empty()) {
1771 all_match_result += ", and ";
1772 all_match_result += result;
1773 }
1774 }
1775 } else {
1776 *listener << slistener.str();
1777 return false;
1778 }
1779 }
1780
1781 // Otherwise we need to explain why *both* of them match.
1782 *listener << all_match_result;
1783 return true;
1784 }
1785
1786 private:
1787 const std::vector<Matcher<T> > matchers_;
1788
1789 GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl);
1790};
1791
1792#if GTEST_LANG_CXX11
1793// VariadicMatcher is used for the variadic implementation of
1794// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1795// CombiningMatcher<T> is used to recursively combine the provided matchers
1796// (of type Args...).
1797template <template <typename T> class CombiningMatcher, typename... Args>
1798class VariadicMatcher {
1799 public:
1800 VariadicMatcher(const Args&... matchers) // NOLINT
1801 : matchers_(matchers...) {
1802 static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1803 }
1804
1805 // This template type conversion operator allows an
1806 // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1807 // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1808 template <typename T>
1809 operator Matcher<T>() const {
1810 std::vector<Matcher<T> > values;
1811 CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1812 return Matcher<T>(new CombiningMatcher<T>(internal::move(values)));
1813 }
1814
1815 private:
1816 template <typename T, size_t I>
1817 void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
1818 std::integral_constant<size_t, I>) const {
1819 values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1820 CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1821 }
1822
1823 template <typename T>
1824 void CreateVariadicMatcher(
1825 std::vector<Matcher<T> >*,
1826 std::integral_constant<size_t, sizeof...(Args)>) const {}
1827
1828 tuple<Args...> matchers_;
1829
1830 GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
1831};
1832
1833template <typename... Args>
1834using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1835
1836#endif // GTEST_LANG_CXX11
1837
1838// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1839// matches a value that matches all of the matchers m_1, ..., and m_n.
1840template <typename Matcher1, typename Matcher2>
1841class BothOfMatcher {
1842 public:
1843 BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1844 : matcher1_(matcher1), matcher2_(matcher2) {}
1845
1846 // This template type conversion operator allows a
1847 // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1848 // both Matcher1 and Matcher2 can match.
1849 template <typename T>
1850 operator Matcher<T>() const {
1851 std::vector<Matcher<T> > values;
1852 values.push_back(SafeMatcherCast<T>(matcher1_));
1853 values.push_back(SafeMatcherCast<T>(matcher2_));
1854 return Matcher<T>(new AllOfMatcherImpl<T>(internal::move(values)));
1855 }
1856
1857 private:
1858 Matcher1 matcher1_;
1859 Matcher2 matcher2_;
1860
1861 GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1862};
1863
1864// Implements the AnyOf(m1, m2) matcher for a particular argument type
1865// T. We do not nest it inside the AnyOfMatcher class template, as
1866// that will prevent different instantiations of AnyOfMatcher from
1867// sharing the same EitherOfMatcherImpl<T> class.
1868template <typename T>
1869class AnyOfMatcherImpl
1870 : public MatcherInterface<GTEST_REFERENCE_TO_CONST_(T)> {
1871 public:
1872 explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
1873 : matchers_(internal::move(matchers)) {}
1874
1875 virtual void DescribeTo(::std::ostream* os) const {
1876 *os << "(";
1877 for (size_t i = 0; i < matchers_.size(); ++i) {
1878 if (i != 0) *os << ") or (";
1879 matchers_[i].DescribeTo(os);
1880 }
1881 *os << ")";
1882 }
1883
1884 virtual void DescribeNegationTo(::std::ostream* os) const {
1885 *os << "(";
1886 for (size_t i = 0; i < matchers_.size(); ++i) {
1887 if (i != 0) *os << ") and (";
1888 matchers_[i].DescribeNegationTo(os);
1889 }
1890 *os << ")";
1891 }
1892
1893 virtual bool MatchAndExplain(GTEST_REFERENCE_TO_CONST_(T) x,
1894 MatchResultListener* listener) const {
1895 std::string no_match_result;
1896
1897 // If either matcher1_ or matcher2_ matches x, we just need to
1898 // explain why *one* of them matches.
1899 for (size_t i = 0; i < matchers_.size(); ++i) {
1900 StringMatchResultListener slistener;
1901 if (matchers_[i].MatchAndExplain(x, &slistener)) {
1902 *listener << slistener.str();
1903 return true;
1904 } else {
1905 if (no_match_result.empty()) {
1906 no_match_result = slistener.str();
1907 } else {
1908 std::string result = slistener.str();
1909 if (!result.empty()) {
1910 no_match_result += ", and ";
1911 no_match_result += result;
1912 }
1913 }
1914 }
1915 }
1916
1917 // Otherwise we need to explain why *both* of them fail.
1918 *listener << no_match_result;
1919 return false;
1920 }
1921
1922 private:
1923 const std::vector<Matcher<T> > matchers_;
1924
1925 GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl);
1926};
1927
1928#if GTEST_LANG_CXX11
1929// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1930template <typename... Args>
1931using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1932
1933#endif // GTEST_LANG_CXX11
1934
1935// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1936// matches a value that matches at least one of the matchers m_1, ...,
1937// and m_n.
1938template <typename Matcher1, typename Matcher2>
1939class EitherOfMatcher {
1940 public:
1941 EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1942 : matcher1_(matcher1), matcher2_(matcher2) {}
1943
1944 // This template type conversion operator allows a
1945 // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1946 // both Matcher1 and Matcher2 can match.
1947 template <typename T>
1948 operator Matcher<T>() const {
1949 std::vector<Matcher<T> > values;
1950 values.push_back(SafeMatcherCast<T>(matcher1_));
1951 values.push_back(SafeMatcherCast<T>(matcher2_));
1952 return Matcher<T>(new AnyOfMatcherImpl<T>(internal::move(values)));
1953 }
1954
1955 private:
1956 Matcher1 matcher1_;
1957 Matcher2 matcher2_;
1958
1959 GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1960};
1961
1962// Used for implementing Truly(pred), which turns a predicate into a
1963// matcher.
1964template <typename Predicate>
1965class TrulyMatcher {
1966 public:
1967 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1968
1969 // This method template allows Truly(pred) to be used as a matcher
1970 // for type T where T is the argument type of predicate 'pred'. The
1971 // argument is passed by reference as the predicate may be
1972 // interested in the address of the argument.
1973 template <typename T>
1974 bool MatchAndExplain(T& x, // NOLINT
1975 MatchResultListener* /* listener */) const {
1976 // Without the if-statement, MSVC sometimes warns about converting
1977 // a value to bool (warning 4800).
1978 //
1979 // We cannot write 'return !!predicate_(x);' as that doesn't work
1980 // when predicate_(x) returns a class convertible to bool but
1981 // having no operator!().
1982 if (predicate_(x))
1983 return true;
1984 return false;
1985 }
1986
1987 void DescribeTo(::std::ostream* os) const {
1988 *os << "satisfies the given predicate";
1989 }
1990
1991 void DescribeNegationTo(::std::ostream* os) const {
1992 *os << "doesn't satisfy the given predicate";
1993 }
1994
1995 private:
1996 Predicate predicate_;
1997
1998 GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1999};
2000
2001// Used for implementing Matches(matcher), which turns a matcher into
2002// a predicate.
2003template <typename M>
2004class MatcherAsPredicate {
2005 public:
2006 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
2007
2008 // This template operator() allows Matches(m) to be used as a
2009 // predicate on type T where m is a matcher on type T.
2010 //
2011 // The argument x is passed by reference instead of by value, as
2012 // some matcher may be interested in its address (e.g. as in
2013 // Matches(Ref(n))(x)).
2014 template <typename T>
2015 bool operator()(const T& x) const {
2016 // We let matcher_ commit to a particular type here instead of
2017 // when the MatcherAsPredicate object was constructed. This
2018 // allows us to write Matches(m) where m is a polymorphic matcher
2019 // (e.g. Eq(5)).
2020 //
2021 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
2022 // compile when matcher_ has type Matcher<const T&>; if we write
2023 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
2024 // when matcher_ has type Matcher<T>; if we just write
2025 // matcher_.Matches(x), it won't compile when matcher_ is
2026 // polymorphic, e.g. Eq(5).
2027 //
2028 // MatcherCast<const T&>() is necessary for making the code work
2029 // in all of the above situations.
2030 return MatcherCast<const T&>(matcher_).Matches(x);
2031 }
2032
2033 private:
2034 M matcher_;
2035
2036 GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
2037};
2038
2039// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
2040// argument M must be a type that can be converted to a matcher.
2041template <typename M>
2042class PredicateFormatterFromMatcher {
2043 public:
2044 explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {}
2045
2046 // This template () operator allows a PredicateFormatterFromMatcher
2047 // object to act as a predicate-formatter suitable for using with
2048 // Google Test's EXPECT_PRED_FORMAT1() macro.
2049 template <typename T>
2050 AssertionResult operator()(const char* value_text, const T& x) const {
2051 // We convert matcher_ to a Matcher<const T&> *now* instead of
2052 // when the PredicateFormatterFromMatcher object was constructed,
2053 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
2054 // know which type to instantiate it to until we actually see the
2055 // type of x here.
2056 //
2057 // We write SafeMatcherCast<const T&>(matcher_) instead of
2058 // Matcher<const T&>(matcher_), as the latter won't compile when
2059 // matcher_ has type Matcher<T> (e.g. An<int>()).
2060 // We don't write MatcherCast<const T&> either, as that allows
2061 // potentially unsafe downcasting of the matcher argument.
2062 const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
2063 StringMatchResultListener listener;
2064 if (MatchPrintAndExplain(x, matcher, &listener))
2065 return AssertionSuccess();
2066
2067 ::std::stringstream ss;
2068 ss << "Value of: " << value_text << "\n"
2069 << "Expected: ";
2070 matcher.DescribeTo(&ss);
2071 ss << "\n Actual: " << listener.str();
2072 return AssertionFailure() << ss.str();
2073 }
2074
2075 private:
2076 const M matcher_;
2077
2078 GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
2079};
2080
2081// A helper function for converting a matcher to a predicate-formatter
2082// without the user needing to explicitly write the type. This is
2083// used for implementing ASSERT_THAT() and EXPECT_THAT().
2084// Implementation detail: 'matcher' is received by-value to force decaying.
2085template <typename M>
2086inline PredicateFormatterFromMatcher<M>
2087MakePredicateFormatterFromMatcher(M matcher) {
2088 return PredicateFormatterFromMatcher<M>(internal::move(matcher));
2089}
2090
2091// Implements the polymorphic floating point equality matcher, which matches
2092// two float values using ULP-based approximation or, optionally, a
2093// user-specified epsilon. The template is meant to be instantiated with
2094// FloatType being either float or double.
2095template <typename FloatType>
2096class FloatingEqMatcher {
2097 public:
2098 // Constructor for FloatingEqMatcher.
2099 // The matcher's input will be compared with expected. The matcher treats two
2100 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
2101 // equality comparisons between NANs will always return false. We specify a
2102 // negative max_abs_error_ term to indicate that ULP-based approximation will
2103 // be used for comparison.
2104 FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
2105 expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
2106 }
2107
2108 // Constructor that supports a user-specified max_abs_error that will be used
2109 // for comparison instead of ULP-based approximation. The max absolute
2110 // should be non-negative.
2111 FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
2112 FloatType max_abs_error)
2113 : expected_(expected),
2114 nan_eq_nan_(nan_eq_nan),
2115 max_abs_error_(max_abs_error) {
2116 GTEST_CHECK_(max_abs_error >= 0)
2117 << ", where max_abs_error is" << max_abs_error;
2118 }
2119
2120 // Implements floating point equality matcher as a Matcher<T>.
2121 template <typename T>
2122 class Impl : public MatcherInterface<T> {
2123 public:
2124 Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
2125 : expected_(expected),
2126 nan_eq_nan_(nan_eq_nan),
2127 max_abs_error_(max_abs_error) {}
2128
2129 virtual bool MatchAndExplain(T value,
2130 MatchResultListener* listener) const {
2131 const FloatingPoint<FloatType> actual(value), expected(expected_);
2132
2133 // Compares NaNs first, if nan_eq_nan_ is true.
2134 if (actual.is_nan() || expected.is_nan()) {
2135 if (actual.is_nan() && expected.is_nan()) {
2136 return nan_eq_nan_;
2137 }
2138 // One is nan; the other is not nan.
2139 return false;
2140 }
2141 if (HasMaxAbsError()) {
2142 // We perform an equality check so that inf will match inf, regardless
2143 // of error bounds. If the result of value - expected_ would result in
2144 // overflow or if either value is inf, the default result is infinity,
2145 // which should only match if max_abs_error_ is also infinity.
2146 if (value == expected_) {
2147 return true;
2148 }
2149
2150 const FloatType diff = value - expected_;
2151 if (fabs(diff) <= max_abs_error_) {
2152 return true;
2153 }
2154
2155 if (listener->IsInterested()) {
2156 *listener << "which is " << diff << " from " << expected_;
2157 }
2158 return false;
2159 } else {
2160 return actual.AlmostEquals(expected);
2161 }
2162 }
2163
2164 virtual void DescribeTo(::std::ostream* os) const {
2165 // os->precision() returns the previously set precision, which we
2166 // store to restore the ostream to its original configuration
2167 // after outputting.
2168 const ::std::streamsize old_precision = os->precision(
2169 ::std::numeric_limits<FloatType>::digits10 + 2);
2170 if (FloatingPoint<FloatType>(expected_).is_nan()) {
2171 if (nan_eq_nan_) {
2172 *os << "is NaN";
2173 } else {
2174 *os << "never matches";
2175 }
2176 } else {
2177 *os << "is approximately " << expected_;
2178 if (HasMaxAbsError()) {
2179 *os << " (absolute error <= " << max_abs_error_ << ")";
2180 }
2181 }
2182 os->precision(old_precision);
2183 }
2184
2185 virtual void DescribeNegationTo(::std::ostream* os) const {
2186 // As before, get original precision.
2187 const ::std::streamsize old_precision = os->precision(
2188 ::std::numeric_limits<FloatType>::digits10 + 2);
2189 if (FloatingPoint<FloatType>(expected_).is_nan()) {
2190 if (nan_eq_nan_) {
2191 *os << "isn't NaN";
2192 } else {
2193 *os << "is anything";
2194 }
2195 } else {
2196 *os << "isn't approximately " << expected_;
2197 if (HasMaxAbsError()) {
2198 *os << " (absolute error > " << max_abs_error_ << ")";
2199 }
2200 }
2201 // Restore original precision.
2202 os->precision(old_precision);
2203 }
2204
2205 private:
2206 bool HasMaxAbsError() const {
2207 return max_abs_error_ >= 0;
2208 }
2209
2210 const FloatType expected_;
2211 const bool nan_eq_nan_;
2212 // max_abs_error will be used for value comparison when >= 0.
2213 const FloatType max_abs_error_;
2214
2215 GTEST_DISALLOW_ASSIGN_(Impl);
2216 };
2217
2218 // The following 3 type conversion operators allow FloatEq(expected) and
2219 // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
2220 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
2221 // (While Google's C++ coding style doesn't allow arguments passed
2222 // by non-const reference, we may see them in code not conforming to
2223 // the style. Therefore Google Mock needs to support them.)
2224 operator Matcher<FloatType>() const {
2225 return MakeMatcher(
2226 new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
2227 }
2228
2229 operator Matcher<const FloatType&>() const {
2230 return MakeMatcher(
2231 new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2232 }
2233
2234 operator Matcher<FloatType&>() const {
2235 return MakeMatcher(
2236 new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2237 }
2238
2239 private:
2240 const FloatType expected_;
2241 const bool nan_eq_nan_;
2242 // max_abs_error will be used for value comparison when >= 0.
2243 const FloatType max_abs_error_;
2244
2245 GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
2246};
2247
2248// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
2249// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
2250// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
2251// against y. The former implements "Eq", the latter "Near". At present, there
2252// is no version that compares NaNs as equal.
2253template <typename FloatType>
2254class FloatingEq2Matcher {
2255 public:
2256 FloatingEq2Matcher() { Init(-1, false); }
2257
2258 explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
2259
2260 explicit FloatingEq2Matcher(FloatType max_abs_error) {
2261 Init(max_abs_error, false);
2262 }
2263
2264 FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
2265 Init(max_abs_error, nan_eq_nan);
2266 }
2267
2268 template <typename T1, typename T2>
2269 operator Matcher< ::testing::tuple<T1, T2> >() const {
2270 return MakeMatcher(
2271 new Impl< ::testing::tuple<T1, T2> >(max_abs_error_, nan_eq_nan_));
2272 }
2273 template <typename T1, typename T2>
2274 operator Matcher<const ::testing::tuple<T1, T2>&>() const {
2275 return MakeMatcher(
2276 new Impl<const ::testing::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
2277 }
2278
2279 private:
2280 static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
2281 return os << "an almost-equal pair";
2282 }
2283
2284 template <typename Tuple>
2285 class Impl : public MatcherInterface<Tuple> {
2286 public:
2287 Impl(FloatType max_abs_error, bool nan_eq_nan) :
2288 max_abs_error_(max_abs_error),
2289 nan_eq_nan_(nan_eq_nan) {}
2290
2291 virtual bool MatchAndExplain(Tuple args,
2292 MatchResultListener* listener) const {
2293 if (max_abs_error_ == -1) {
2294 FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_);
2295 return static_cast<Matcher<FloatType> >(fm).MatchAndExplain(
2296 ::testing::get<1>(args), listener);
2297 } else {
2298 FloatingEqMatcher<FloatType> fm(::testing::get<0>(args), nan_eq_nan_,
2299 max_abs_error_);
2300 return static_cast<Matcher<FloatType> >(fm).MatchAndExplain(
2301 ::testing::get<1>(args), listener);
2302 }
2303 }
2304 virtual void DescribeTo(::std::ostream* os) const {
2305 *os << "are " << GetDesc;
2306 }
2307 virtual void DescribeNegationTo(::std::ostream* os) const {
2308 *os << "aren't " << GetDesc;
2309 }
2310
2311 private:
2312 FloatType max_abs_error_;
2313 const bool nan_eq_nan_;
2314 };
2315
2316 void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
2317 max_abs_error_ = max_abs_error_val;
2318 nan_eq_nan_ = nan_eq_nan_val;
2319 }
2320 FloatType max_abs_error_;
2321 bool nan_eq_nan_;
2322};
2323
2324// Implements the Pointee(m) matcher for matching a pointer whose
2325// pointee matches matcher m. The pointer can be either raw or smart.
2326template <typename InnerMatcher>
2327class PointeeMatcher {
2328 public:
2329 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
2330
2331 // This type conversion operator template allows Pointee(m) to be
2332 // used as a matcher for any pointer type whose pointee type is
2333 // compatible with the inner matcher, where type Pointer can be
2334 // either a raw pointer or a smart pointer.
2335 //
2336 // The reason we do this instead of relying on
2337 // MakePolymorphicMatcher() is that the latter is not flexible
2338 // enough for implementing the DescribeTo() method of Pointee().
2339 template <typename Pointer>
2340 operator Matcher<Pointer>() const {
2341 return Matcher<Pointer>(
2342 new Impl<GTEST_REFERENCE_TO_CONST_(Pointer)>(matcher_));
2343 }
2344
2345 private:
2346 // The monomorphic implementation that works for a particular pointer type.
2347 template <typename Pointer>
2348 class Impl : public MatcherInterface<Pointer> {
2349 public:
2350 typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT
2351 GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
2352
2353 explicit Impl(const InnerMatcher& matcher)
2354 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
2355
2356 virtual void DescribeTo(::std::ostream* os) const {
2357 *os << "points to a value that ";
2358 matcher_.DescribeTo(os);
2359 }
2360
2361 virtual void DescribeNegationTo(::std::ostream* os) const {
2362 *os << "does not point to a value that ";
2363 matcher_.DescribeTo(os);
2364 }
2365
2366 virtual bool MatchAndExplain(Pointer pointer,
2367 MatchResultListener* listener) const {
2368 if (GetRawPointer(pointer) == NULL)
2369 return false;
2370
2371 *listener << "which points to ";
2372 return MatchPrintAndExplain(*pointer, matcher_, listener);
2373 }
2374
2375 private:
2376 const Matcher<const Pointee&> matcher_;
2377
2378 GTEST_DISALLOW_ASSIGN_(Impl);
2379 };
2380
2381 const InnerMatcher matcher_;
2382
2383 GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
2384};
2385
2386#if GTEST_HAS_RTTI
2387// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
2388// reference that matches inner_matcher when dynamic_cast<T> is applied.
2389// The result of dynamic_cast<To> is forwarded to the inner matcher.
2390// If To is a pointer and the cast fails, the inner matcher will receive NULL.
2391// If To is a reference and the cast fails, this matcher returns false
2392// immediately.
2393template <typename To>
2394class WhenDynamicCastToMatcherBase {
2395 public:
2396 explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2397 : matcher_(matcher) {}
2398
2399 void DescribeTo(::std::ostream* os) const {
2400 GetCastTypeDescription(os);
2401 matcher_.DescribeTo(os);
2402 }
2403
2404 void DescribeNegationTo(::std::ostream* os) const {
2405 GetCastTypeDescription(os);
2406 matcher_.DescribeNegationTo(os);
2407 }
2408
2409 protected:
2410 const Matcher<To> matcher_;
2411
2412 static std::string GetToName() {
2413 return GetTypeName<To>();
2414 }
2415
2416 private:
2417 static void GetCastTypeDescription(::std::ostream* os) {
2418 *os << "when dynamic_cast to " << GetToName() << ", ";
2419 }
2420
2421 GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase);
2422};
2423
2424// Primary template.
2425// To is a pointer. Cast and forward the result.
2426template <typename To>
2427class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2428 public:
2429 explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2430 : WhenDynamicCastToMatcherBase<To>(matcher) {}
2431
2432 template <typename From>
2433 bool MatchAndExplain(From from, MatchResultListener* listener) const {
2434 // FIXME: Add more detail on failures. ie did the dyn_cast fail?
2435 To to = dynamic_cast<To>(from);
2436 return MatchPrintAndExplain(to, this->matcher_, listener);
2437 }
2438};
2439
2440// Specialize for references.
2441// In this case we return false if the dynamic_cast fails.
2442template <typename To>
2443class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2444 public:
2445 explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2446 : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2447
2448 template <typename From>
2449 bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2450 // We don't want an std::bad_cast here, so do the cast with pointers.
2451 To* to = dynamic_cast<To*>(&from);
2452 if (to == NULL) {
2453 *listener << "which cannot be dynamic_cast to " << this->GetToName();
2454 return false;
2455 }
2456 return MatchPrintAndExplain(*to, this->matcher_, listener);
2457 }
2458};
2459#endif // GTEST_HAS_RTTI
2460
2461// Implements the Field() matcher for matching a field (i.e. member
2462// variable) of an object.
2463template <typename Class, typename FieldType>
2464class FieldMatcher {
2465 public:
2466 FieldMatcher(FieldType Class::*field,
2467 const Matcher<const FieldType&>& matcher)
2468 : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2469
2470 FieldMatcher(const std::string& field_name, FieldType Class::*field,
2471 const Matcher<const FieldType&>& matcher)
2472 : field_(field),
2473 matcher_(matcher),
2474 whose_field_("whose field `" + field_name + "` ") {}
2475
2476 void DescribeTo(::std::ostream* os) const {
2477 *os << "is an object " << whose_field_;
2478 matcher_.DescribeTo(os);
2479 }
2480
2481 void DescribeNegationTo(::std::ostream* os) const {
2482 *os << "is an object " << whose_field_;
2483 matcher_.DescribeNegationTo(os);
2484 }
2485
2486 template <typename T>
2487 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2488 return MatchAndExplainImpl(
2489 typename ::testing::internal::
2490 is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2491 value, listener);
2492 }
2493
2494 private:
2495 // The first argument of MatchAndExplainImpl() is needed to help
2496 // Symbian's C++ compiler choose which overload to use. Its type is
2497 // true_type iff the Field() matcher is used to match a pointer.
2498 bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2499 MatchResultListener* listener) const {
2500 *listener << whose_field_ << "is ";
2501 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2502 }
2503
2504 bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2505 MatchResultListener* listener) const {
2506 if (p == NULL)
2507 return false;
2508
2509 *listener << "which points to an object ";
2510 // Since *p has a field, it must be a class/struct/union type and
2511 // thus cannot be a pointer. Therefore we pass false_type() as
2512 // the first argument.
2513 return MatchAndExplainImpl(false_type(), *p, listener);
2514 }
2515
2516 const FieldType Class::*field_;
2517 const Matcher<const FieldType&> matcher_;
2518
2519 // Contains either "whose given field " if the name of the field is unknown
2520 // or "whose field `name_of_field` " if the name is known.
2521 const std::string whose_field_;
2522
2523 GTEST_DISALLOW_ASSIGN_(FieldMatcher);
2524};
2525
2526// Implements the Property() matcher for matching a property
2527// (i.e. return value of a getter method) of an object.
2528//
2529// Property is a const-qualified member function of Class returning
2530// PropertyType.
2531template <typename Class, typename PropertyType, typename Property>
2532class PropertyMatcher {
2533 public:
2534 // The property may have a reference type, so 'const PropertyType&'
2535 // may cause double references and fail to compile. That's why we
2536 // need GTEST_REFERENCE_TO_CONST, which works regardless of
2537 // PropertyType being a reference or not.
2538 typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
2539
2540 PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2541 : property_(property),
2542 matcher_(matcher),
2543 whose_property_("whose given property ") {}
2544
2545 PropertyMatcher(const std::string& property_name, Property property,
2546 const Matcher<RefToConstProperty>& matcher)
2547 : property_(property),
2548 matcher_(matcher),
2549 whose_property_("whose property `" + property_name + "` ") {}
2550
2551 void DescribeTo(::std::ostream* os) const {
2552 *os << "is an object " << whose_property_;
2553 matcher_.DescribeTo(os);
2554 }
2555
2556 void DescribeNegationTo(::std::ostream* os) const {
2557 *os << "is an object " << whose_property_;
2558 matcher_.DescribeNegationTo(os);
2559 }
2560
2561 template <typename T>
2562 bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2563 return MatchAndExplainImpl(
2564 typename ::testing::internal::
2565 is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2566 value, listener);
2567 }
2568
2569 private:
2570 // The first argument of MatchAndExplainImpl() is needed to help
2571 // Symbian's C++ compiler choose which overload to use. Its type is
2572 // true_type iff the Property() matcher is used to match a pointer.
2573 bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2574 MatchResultListener* listener) const {
2575 *listener << whose_property_ << "is ";
2576 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2577 // which takes a non-const reference as argument.
2578#if defined(_PREFAST_ ) && _MSC_VER == 1800
2579 // Workaround bug in VC++ 2013's /analyze parser.
2580 // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move
2581 posix::Abort(); // To make sure it is never run.
2582 return false;
2583#else
2584 RefToConstProperty result = (obj.*property_)();
2585 return MatchPrintAndExplain(result, matcher_, listener);
2586#endif
2587 }
2588
2589 bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2590 MatchResultListener* listener) const {
2591 if (p == NULL)
2592 return false;
2593
2594 *listener << "which points to an object ";
2595 // Since *p has a property method, it must be a class/struct/union
2596 // type and thus cannot be a pointer. Therefore we pass
2597 // false_type() as the first argument.
2598 return MatchAndExplainImpl(false_type(), *p, listener);
2599 }
2600
2601 Property property_;
2602 const Matcher<RefToConstProperty> matcher_;
2603
2604 // Contains either "whose given property " if the name of the property is
2605 // unknown or "whose property `name_of_property` " if the name is known.
2606 const std::string whose_property_;
2607
2608 GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
2609};
2610
2611// Type traits specifying various features of different functors for ResultOf.
2612// The default template specifies features for functor objects.
2613template <typename Functor>
2614struct CallableTraits {
2615 typedef Functor StorageType;
2616
2617 static void CheckIsValid(Functor /* functor */) {}
2618
2619#if GTEST_LANG_CXX11
2620 template <typename T>
2621 static auto Invoke(Functor f, T arg) -> decltype(f(arg)) { return f(arg); }
2622#else
2623 typedef typename Functor::result_type ResultType;
2624 template <typename T>
2625 static ResultType Invoke(Functor f, T arg) { return f(arg); }
2626#endif
2627};
2628
2629// Specialization for function pointers.
2630template <typename ArgType, typename ResType>
2631struct CallableTraits<ResType(*)(ArgType)> {
2632 typedef ResType ResultType;
2633 typedef ResType(*StorageType)(ArgType);
2634
2635 static void CheckIsValid(ResType(*f)(ArgType)) {
2636 GTEST_CHECK_(f != NULL)
2637 << "NULL function pointer is passed into ResultOf().";
2638 }
2639 template <typename T>
2640 static ResType Invoke(ResType(*f)(ArgType), T arg) {
2641 return (*f)(arg);
2642 }
2643};
2644
2645// Implements the ResultOf() matcher for matching a return value of a
2646// unary function of an object.
2647template <typename Callable, typename InnerMatcher>
2648class ResultOfMatcher {
2649 public:
2650 ResultOfMatcher(Callable callable, InnerMatcher matcher)
2651 : callable_(internal::move(callable)), matcher_(internal::move(matcher)) {
2652 CallableTraits<Callable>::CheckIsValid(callable_);
2653 }
2654
2655 template <typename T>
2656 operator Matcher<T>() const {
2657 return Matcher<T>(new Impl<T>(callable_, matcher_));
2658 }
2659
2660 private:
2661 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2662
2663 template <typename T>
2664 class Impl : public MatcherInterface<T> {
2665#if GTEST_LANG_CXX11
2666 using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2667 std::declval<CallableStorageType>(), std::declval<T>()));
2668#else
2669 typedef typename CallableTraits<Callable>::ResultType ResultType;
2670#endif
2671
2672 public:
2673 template <typename M>
2674 Impl(const CallableStorageType& callable, const M& matcher)
2675 : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
2676
2677 virtual void DescribeTo(::std::ostream* os) const {
2678 *os << "is mapped by the given callable to a value that ";
2679 matcher_.DescribeTo(os);
2680 }
2681
2682 virtual void DescribeNegationTo(::std::ostream* os) const {
2683 *os << "is mapped by the given callable to a value that ";
2684 matcher_.DescribeNegationTo(os);
2685 }
2686
2687 virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
2688 *listener << "which is mapped by the given callable to ";
2689 // Cannot pass the return value directly to MatchPrintAndExplain, which
2690 // takes a non-const reference as argument.
2691 // Also, specifying template argument explicitly is needed because T could
2692 // be a non-const reference (e.g. Matcher<Uncopyable&>).
2693 ResultType result =
2694 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2695 return MatchPrintAndExplain(result, matcher_, listener);
2696 }
2697
2698 private:
2699 // Functors often define operator() as non-const method even though
2700 // they are actually stateless. But we need to use them even when
2701 // 'this' is a const pointer. It's the user's responsibility not to
2702 // use stateful callables with ResultOf(), which doesn't guarantee
2703 // how many times the callable will be invoked.
2704 mutable CallableStorageType callable_;
2705 const Matcher<ResultType> matcher_;
2706
2707 GTEST_DISALLOW_ASSIGN_(Impl);
2708 }; // class Impl
2709
2710 const CallableStorageType callable_;
2711 const InnerMatcher matcher_;
2712
2713 GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
2714};
2715
2716// Implements a matcher that checks the size of an STL-style container.
2717template <typename SizeMatcher>
2718class SizeIsMatcher {
2719 public:
2720 explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2721 : size_matcher_(size_matcher) {
2722 }
2723
2724 template <typename Container>
2725 operator Matcher<Container>() const {
2726 return MakeMatcher(new Impl<Container>(size_matcher_));
2727 }
2728
2729 template <typename Container>
2730 class Impl : public MatcherInterface<Container> {
2731 public:
2732 typedef internal::StlContainerView<
2733 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2734 typedef typename ContainerView::type::size_type SizeType;
2735 explicit Impl(const SizeMatcher& size_matcher)
2736 : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2737
2738 virtual void DescribeTo(::std::ostream* os) const {
2739 *os << "size ";
2740 size_matcher_.DescribeTo(os);
2741 }
2742 virtual void DescribeNegationTo(::std::ostream* os) const {
2743 *os << "size ";
2744 size_matcher_.DescribeNegationTo(os);
2745 }
2746
2747 virtual bool MatchAndExplain(Container container,
2748 MatchResultListener* listener) const {
2749 SizeType size = container.size();
2750 StringMatchResultListener size_listener;
2751 const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2752 *listener
2753 << "whose size " << size << (result ? " matches" : " doesn't match");
2754 PrintIfNotEmpty(size_listener.str(), listener->stream());
2755 return result;
2756 }
2757
2758 private:
2759 const Matcher<SizeType> size_matcher_;
2760 GTEST_DISALLOW_ASSIGN_(Impl);
2761 };
2762
2763 private:
2764 const SizeMatcher size_matcher_;
2765 GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
2766};
2767
2768// Implements a matcher that checks the begin()..end() distance of an STL-style
2769// container.
2770template <typename DistanceMatcher>
2771class BeginEndDistanceIsMatcher {
2772 public:
2773 explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2774 : distance_matcher_(distance_matcher) {}
2775
2776 template <typename Container>
2777 operator Matcher<Container>() const {
2778 return MakeMatcher(new Impl<Container>(distance_matcher_));
2779 }
2780
2781 template <typename Container>
2782 class Impl : public MatcherInterface<Container> {
2783 public:
2784 typedef internal::StlContainerView<
2785 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2786 typedef typename std::iterator_traits<
2787 typename ContainerView::type::const_iterator>::difference_type
2788 DistanceType;
2789 explicit Impl(const DistanceMatcher& distance_matcher)
2790 : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2791
2792 virtual void DescribeTo(::std::ostream* os) const {
2793 *os << "distance between begin() and end() ";
2794 distance_matcher_.DescribeTo(os);
2795 }
2796 virtual void DescribeNegationTo(::std::ostream* os) const {
2797 *os << "distance between begin() and end() ";
2798 distance_matcher_.DescribeNegationTo(os);
2799 }
2800
2801 virtual bool MatchAndExplain(Container container,
2802 MatchResultListener* listener) const {
2803#if GTEST_HAS_STD_BEGIN_AND_END_
2804 using std::begin;
2805 using std::end;
2806 DistanceType distance = std::distance(begin(container), end(container));
2807#else
2808 DistanceType distance = std::distance(container.begin(), container.end());
2809#endif
2810 StringMatchResultListener distance_listener;
2811 const bool result =
2812 distance_matcher_.MatchAndExplain(distance, &distance_listener);
2813 *listener << "whose distance between begin() and end() " << distance
2814 << (result ? " matches" : " doesn't match");
2815 PrintIfNotEmpty(distance_listener.str(), listener->stream());
2816 return result;
2817 }
2818
2819 private:
2820 const Matcher<DistanceType> distance_matcher_;
2821 GTEST_DISALLOW_ASSIGN_(Impl);
2822 };
2823
2824 private:
2825 const DistanceMatcher distance_matcher_;
2826 GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher);
2827};
2828
2829// Implements an equality matcher for any STL-style container whose elements
2830// support ==. This matcher is like Eq(), but its failure explanations provide
2831// more detailed information that is useful when the container is used as a set.
2832// The failure message reports elements that are in one of the operands but not
2833// the other. The failure messages do not report duplicate or out-of-order
2834// elements in the containers (which don't properly matter to sets, but can
2835// occur if the containers are vectors or lists, for example).
2836//
2837// Uses the container's const_iterator, value_type, operator ==,
2838// begin(), and end().
2839template <typename Container>
2840class ContainerEqMatcher {
2841 public:
2842 typedef internal::StlContainerView<Container> View;
2843 typedef typename View::type StlContainer;
2844 typedef typename View::const_reference StlContainerReference;
2845
2846 // We make a copy of expected in case the elements in it are modified
2847 // after this matcher is created.
2848 explicit ContainerEqMatcher(const Container& expected)
2849 : expected_(View::Copy(expected)) {
2850 // Makes sure the user doesn't instantiate this class template
2851 // with a const or reference type.
2852 (void)testing::StaticAssertTypeEq<Container,
2853 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
2854 }
2855
2856 void DescribeTo(::std::ostream* os) const {
2857 *os << "equals ";
2858 UniversalPrint(expected_, os);
2859 }
2860 void DescribeNegationTo(::std::ostream* os) const {
2861 *os << "does not equal ";
2862 UniversalPrint(expected_, os);
2863 }
2864
2865 template <typename LhsContainer>
2866 bool MatchAndExplain(const LhsContainer& lhs,
2867 MatchResultListener* listener) const {
2868 // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
2869 // that causes LhsContainer to be a const type sometimes.
2870 typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
2871 LhsView;
2872 typedef typename LhsView::type LhsStlContainer;
2873 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2874 if (lhs_stl_container == expected_)
2875 return true;
2876
2877 ::std::ostream* const os = listener->stream();
2878 if (os != NULL) {
2879 // Something is different. Check for extra values first.
2880 bool printed_header = false;
2881 for (typename LhsStlContainer::const_iterator it =
2882 lhs_stl_container.begin();
2883 it != lhs_stl_container.end(); ++it) {
2884 if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2885 expected_.end()) {
2886 if (printed_header) {
2887 *os << ", ";
2888 } else {
2889 *os << "which has these unexpected elements: ";
2890 printed_header = true;
2891 }
2892 UniversalPrint(*it, os);
2893 }
2894 }
2895
2896 // Now check for missing values.
2897 bool printed_header2 = false;
2898 for (typename StlContainer::const_iterator it = expected_.begin();
2899 it != expected_.end(); ++it) {
2900 if (internal::ArrayAwareFind(
2901 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2902 lhs_stl_container.end()) {
2903 if (printed_header2) {
2904 *os << ", ";
2905 } else {
2906 *os << (printed_header ? ",\nand" : "which")
2907 << " doesn't have these expected elements: ";
2908 printed_header2 = true;
2909 }
2910 UniversalPrint(*it, os);
2911 }
2912 }
2913 }
2914
2915 return false;
2916 }
2917
2918 private:
2919 const StlContainer expected_;
2920
2921 GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
2922};
2923
2924// A comparator functor that uses the < operator to compare two values.
2925struct LessComparator {
2926 template <typename T, typename U>
2927 bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2928};
2929
2930// Implements WhenSortedBy(comparator, container_matcher).
2931template <typename Comparator, typename ContainerMatcher>
2932class WhenSortedByMatcher {
2933 public:
2934 WhenSortedByMatcher(const Comparator& comparator,
2935 const ContainerMatcher& matcher)
2936 : comparator_(comparator), matcher_(matcher) {}
2937
2938 template <typename LhsContainer>
2939 operator Matcher<LhsContainer>() const {
2940 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2941 }
2942
2943 template <typename LhsContainer>
2944 class Impl : public MatcherInterface<LhsContainer> {
2945 public:
2946 typedef internal::StlContainerView<
2947 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2948 typedef typename LhsView::type LhsStlContainer;
2949 typedef typename LhsView::const_reference LhsStlContainerReference;
2950 // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2951 // so that we can match associative containers.
2952 typedef typename RemoveConstFromKey<
2953 typename LhsStlContainer::value_type>::type LhsValue;
2954
2955 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2956 : comparator_(comparator), matcher_(matcher) {}
2957
2958 virtual void DescribeTo(::std::ostream* os) const {
2959 *os << "(when sorted) ";
2960 matcher_.DescribeTo(os);
2961 }
2962
2963 virtual void DescribeNegationTo(::std::ostream* os) const {
2964 *os << "(when sorted) ";
2965 matcher_.DescribeNegationTo(os);
2966 }
2967
2968 virtual bool MatchAndExplain(LhsContainer lhs,
2969 MatchResultListener* listener) const {
2970 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2971 ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2972 lhs_stl_container.end());
2973 ::std::sort(
2974 sorted_container.begin(), sorted_container.end(), comparator_);
2975
2976 if (!listener->IsInterested()) {
2977 // If the listener is not interested, we do not need to
2978 // construct the inner explanation.
2979 return matcher_.Matches(sorted_container);
2980 }
2981
2982 *listener << "which is ";
2983 UniversalPrint(sorted_container, listener->stream());
2984 *listener << " when sorted";
2985
2986 StringMatchResultListener inner_listener;
2987 const bool match = matcher_.MatchAndExplain(sorted_container,
2988 &inner_listener);
2989 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2990 return match;
2991 }
2992
2993 private:
2994 const Comparator comparator_;
2995 const Matcher<const ::std::vector<LhsValue>&> matcher_;
2996
2997 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2998 };
2999
3000 private:
3001 const Comparator comparator_;
3002 const ContainerMatcher matcher_;
3003
3004 GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
3005};
3006
3007// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
3008// must be able to be safely cast to Matcher<tuple<const T1&, const
3009// T2&> >, where T1 and T2 are the types of elements in the LHS
3010// container and the RHS container respectively.
3011template <typename TupleMatcher, typename RhsContainer>
3012class PointwiseMatcher {
3013 GTEST_COMPILE_ASSERT_(
3014 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
3015 use_UnorderedPointwise_with_hash_tables);
3016
3017 public:
3018 typedef internal::StlContainerView<RhsContainer> RhsView;
3019 typedef typename RhsView::type RhsStlContainer;
3020 typedef typename RhsStlContainer::value_type RhsValue;
3021
3022 // Like ContainerEq, we make a copy of rhs in case the elements in
3023 // it are modified after this matcher is created.
3024 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
3025 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
3026 // Makes sure the user doesn't instantiate this class template
3027 // with a const or reference type.
3028 (void)testing::StaticAssertTypeEq<RhsContainer,
3029 GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
3030 }
3031
3032 template <typename LhsContainer>
3033 operator Matcher<LhsContainer>() const {
3034 GTEST_COMPILE_ASSERT_(
3035 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
3036 use_UnorderedPointwise_with_hash_tables_);
3037
3038 return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
3039 }
3040
3041 template <typename LhsContainer>
3042 class Impl : public MatcherInterface<LhsContainer> {
3043 public:
3044 typedef internal::StlContainerView<
3045 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
3046 typedef typename LhsView::type LhsStlContainer;
3047 typedef typename LhsView::const_reference LhsStlContainerReference;
3048 typedef typename LhsStlContainer::value_type LhsValue;
3049 // We pass the LHS value and the RHS value to the inner matcher by
3050 // reference, as they may be expensive to copy. We must use tuple
3051 // instead of pair here, as a pair cannot hold references (C++ 98,
3052 // 20.2.2 [lib.pairs]).
3053 typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
3054
3055 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
3056 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
3057 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
3058 rhs_(rhs) {}
3059
3060 virtual void DescribeTo(::std::ostream* os) const {
3061 *os << "contains " << rhs_.size()
3062 << " values, where each value and its corresponding value in ";
3063 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
3064 *os << " ";
3065 mono_tuple_matcher_.DescribeTo(os);
3066 }
3067 virtual void DescribeNegationTo(::std::ostream* os) const {
3068 *os << "doesn't contain exactly " << rhs_.size()
3069 << " values, or contains a value x at some index i"
3070 << " where x and the i-th value of ";
3071 UniversalPrint(rhs_, os);
3072 *os << " ";
3073 mono_tuple_matcher_.DescribeNegationTo(os);
3074 }
3075
3076 virtual bool MatchAndExplain(LhsContainer lhs,
3077 MatchResultListener* listener) const {
3078 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
3079 const size_t actual_size = lhs_stl_container.size();
3080 if (actual_size != rhs_.size()) {
3081 *listener << "which contains " << actual_size << " values";
3082 return false;
3083 }
3084
3085 typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
3086 typename RhsStlContainer::const_iterator right = rhs_.begin();
3087 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
3088 if (listener->IsInterested()) {
3089 StringMatchResultListener inner_listener;
3090 // Create InnerMatcherArg as a temporarily object to avoid it outlives
3091 // *left and *right. Dereference or the conversion to `const T&` may
3092 // return temp objects, e.g for vector<bool>.
3093 if (!mono_tuple_matcher_.MatchAndExplain(
3094 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
3095 ImplicitCast_<const RhsValue&>(*right)),
3096 &inner_listener)) {
3097 *listener << "where the value pair (";
3098 UniversalPrint(*left, listener->stream());
3099 *listener << ", ";
3100 UniversalPrint(*right, listener->stream());
3101 *listener << ") at index #" << i << " don't match";
3102 PrintIfNotEmpty(inner_listener.str(), listener->stream());
3103 return false;
3104 }
3105 } else {
3106 if (!mono_tuple_matcher_.Matches(
3107 InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
3108 ImplicitCast_<const RhsValue&>(*right))))
3109 return false;
3110 }
3111 }
3112
3113 return true;
3114 }
3115
3116 private:
3117 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
3118 const RhsStlContainer rhs_;
3119
3120 GTEST_DISALLOW_ASSIGN_(Impl);
3121 };
3122
3123 private:
3124 const TupleMatcher tuple_matcher_;
3125 const RhsStlContainer rhs_;
3126
3127 GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
3128};
3129
3130// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
3131template <typename Container>
3132class QuantifierMatcherImpl : public MatcherInterface<Container> {
3133 public:
3134 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3135 typedef StlContainerView<RawContainer> View;
3136 typedef typename View::type StlContainer;
3137 typedef typename View::const_reference StlContainerReference;
3138 typedef typename StlContainer::value_type Element;
3139
3140 template <typename InnerMatcher>
3141 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
3142 : inner_matcher_(
3143 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
3144
3145 // Checks whether:
3146 // * All elements in the container match, if all_elements_should_match.
3147 // * Any element in the container matches, if !all_elements_should_match.
3148 bool MatchAndExplainImpl(bool all_elements_should_match,
3149 Container container,
3150 MatchResultListener* listener) const {
3151 StlContainerReference stl_container = View::ConstReference(container);
3152 size_t i = 0;
3153 for (typename StlContainer::const_iterator it = stl_container.begin();
3154 it != stl_container.end(); ++it, ++i) {
3155 StringMatchResultListener inner_listener;
3156 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
3157
3158 if (matches != all_elements_should_match) {
3159 *listener << "whose element #" << i
3160 << (matches ? " matches" : " doesn't match");
3161 PrintIfNotEmpty(inner_listener.str(), listener->stream());
3162 return !all_elements_should_match;
3163 }
3164 }
3165 return all_elements_should_match;
3166 }
3167
3168 protected:
3169 const Matcher<const Element&> inner_matcher_;
3170
3171 GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
3172};
3173
3174// Implements Contains(element_matcher) for the given argument type Container.
3175// Symmetric to EachMatcherImpl.
3176template <typename Container>
3177class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
3178 public:
3179 template <typename InnerMatcher>
3180 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
3181 : QuantifierMatcherImpl<Container>(inner_matcher) {}
3182
3183 // Describes what this matcher does.
3184 virtual void DescribeTo(::std::ostream* os) const {
3185 *os << "contains at least one element that ";
3186 this->inner_matcher_.DescribeTo(os);
3187 }
3188
3189 virtual void DescribeNegationTo(::std::ostream* os) const {
3190 *os << "doesn't contain any element that ";
3191 this->inner_matcher_.DescribeTo(os);
3192 }
3193
3194 virtual bool MatchAndExplain(Container container,
3195 MatchResultListener* listener) const {
3196 return this->MatchAndExplainImpl(false, container, listener);
3197 }
3198
3199 private:
3200 GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
3201};
3202
3203// Implements Each(element_matcher) for the given argument type Container.
3204// Symmetric to ContainsMatcherImpl.
3205template <typename Container>
3206class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
3207 public:
3208 template <typename InnerMatcher>
3209 explicit EachMatcherImpl(InnerMatcher inner_matcher)
3210 : QuantifierMatcherImpl<Container>(inner_matcher) {}
3211
3212 // Describes what this matcher does.
3213 virtual void DescribeTo(::std::ostream* os) const {
3214 *os << "only contains elements that ";
3215 this->inner_matcher_.DescribeTo(os);
3216 }
3217
3218 virtual void DescribeNegationTo(::std::ostream* os) const {
3219 *os << "contains some element that ";
3220 this->inner_matcher_.DescribeNegationTo(os);
3221 }
3222
3223 virtual bool MatchAndExplain(Container container,
3224 MatchResultListener* listener) const {
3225 return this->MatchAndExplainImpl(true, container, listener);
3226 }
3227
3228 private:
3229 GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
3230};
3231
3232// Implements polymorphic Contains(element_matcher).
3233template <typename M>
3234class ContainsMatcher {
3235 public:
3236 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
3237
3238 template <typename Container>
3239 operator Matcher<Container>() const {
3240 return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
3241 }
3242
3243 private:
3244 const M inner_matcher_;
3245
3246 GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
3247};
3248
3249// Implements polymorphic Each(element_matcher).
3250template <typename M>
3251class EachMatcher {
3252 public:
3253 explicit EachMatcher(M m) : inner_matcher_(m) {}
3254
3255 template <typename Container>
3256 operator Matcher<Container>() const {
3257 return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
3258 }
3259
3260 private:
3261 const M inner_matcher_;
3262
3263 GTEST_DISALLOW_ASSIGN_(EachMatcher);
3264};
3265
3266struct Rank1 {};
3267struct Rank0 : Rank1 {};
3268
3269namespace pair_getters {
3270#if GTEST_LANG_CXX11
3271using std::get;
3272template <typename T>
3273auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
3274 return get<0>(x);
3275}
3276template <typename T>
3277auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
3278 return x.first;
3279}
3280
3281template <typename T>
3282auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
3283 return get<1>(x);
3284}
3285template <typename T>
3286auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
3287 return x.second;
3288}
3289#else
3290template <typename T>
3291typename T::first_type& First(T& x, Rank0) { // NOLINT
3292 return x.first;
3293}
3294template <typename T>
3295const typename T::first_type& First(const T& x, Rank0) {
3296 return x.first;
3297}
3298
3299template <typename T>
3300typename T::second_type& Second(T& x, Rank0) { // NOLINT
3301 return x.second;
3302}
3303template <typename T>
3304const typename T::second_type& Second(const T& x, Rank0) {
3305 return x.second;
3306}
3307#endif // GTEST_LANG_CXX11
3308} // namespace pair_getters
3309
3310// Implements Key(inner_matcher) for the given argument pair type.
3311// Key(inner_matcher) matches an std::pair whose 'first' field matches
3312// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
3313// std::map that contains at least one element whose key is >= 5.
3314template <typename PairType>
3315class KeyMatcherImpl : public MatcherInterface<PairType> {
3316 public:
3317 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3318 typedef typename RawPairType::first_type KeyType;
3319
3320 template <typename InnerMatcher>
3321 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
3322 : inner_matcher_(
3323 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
3324 }
3325
3326 // Returns true iff 'key_value.first' (the key) matches the inner matcher.
3327 virtual bool MatchAndExplain(PairType key_value,
3328 MatchResultListener* listener) const {
3329 StringMatchResultListener inner_listener;
3330 const bool match = inner_matcher_.MatchAndExplain(
3331 pair_getters::First(key_value, Rank0()), &inner_listener);
3332 const std::string explanation = inner_listener.str();
3333 if (explanation != "") {
3334 *listener << "whose first field is a value " << explanation;
3335 }
3336 return match;
3337 }
3338
3339 // Describes what this matcher does.
3340 virtual void DescribeTo(::std::ostream* os) const {
3341 *os << "has a key that ";
3342 inner_matcher_.DescribeTo(os);
3343 }
3344
3345 // Describes what the negation of this matcher does.
3346 virtual void DescribeNegationTo(::std::ostream* os) const {
3347 *os << "doesn't have a key that ";
3348 inner_matcher_.DescribeTo(os);
3349 }
3350
3351 private:
3352 const Matcher<const KeyType&> inner_matcher_;
3353
3354 GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
3355};
3356
3357// Implements polymorphic Key(matcher_for_key).
3358template <typename M>
3359class KeyMatcher {
3360 public:
3361 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
3362
3363 template <typename PairType>
3364 operator Matcher<PairType>() const {
3365 return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
3366 }
3367
3368 private:
3369 const M matcher_for_key_;
3370
3371 GTEST_DISALLOW_ASSIGN_(KeyMatcher);
3372};
3373
3374// Implements Pair(first_matcher, second_matcher) for the given argument pair
3375// type with its two matchers. See Pair() function below.
3376template <typename PairType>
3377class PairMatcherImpl : public MatcherInterface<PairType> {
3378 public:
3379 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3380 typedef typename RawPairType::first_type FirstType;
3381 typedef typename RawPairType::second_type SecondType;
3382
3383 template <typename FirstMatcher, typename SecondMatcher>
3384 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3385 : first_matcher_(
3386 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3387 second_matcher_(
3388 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
3389 }
3390
3391 // Describes what this matcher does.
3392 virtual void DescribeTo(::std::ostream* os) const {
3393 *os << "has a first field that ";
3394 first_matcher_.DescribeTo(os);
3395 *os << ", and has a second field that ";
3396 second_matcher_.DescribeTo(os);
3397 }
3398
3399 // Describes what the negation of this matcher does.
3400 virtual void DescribeNegationTo(::std::ostream* os) const {
3401 *os << "has a first field that ";
3402 first_matcher_.DescribeNegationTo(os);
3403 *os << ", or has a second field that ";
3404 second_matcher_.DescribeNegationTo(os);
3405 }
3406
3407 // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
3408 // matches second_matcher.
3409 virtual bool MatchAndExplain(PairType a_pair,
3410 MatchResultListener* listener) const {
3411 if (!listener->IsInterested()) {
3412 // If the listener is not interested, we don't need to construct the
3413 // explanation.
3414 return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3415 second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3416 }
3417 StringMatchResultListener first_inner_listener;
3418 if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3419 &first_inner_listener)) {
3420 *listener << "whose first field does not match";
3421 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3422 return false;
3423 }
3424 StringMatchResultListener second_inner_listener;
3425 if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3426 &second_inner_listener)) {
3427 *listener << "whose second field does not match";
3428 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3429 return false;
3430 }
3431 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3432 listener);
3433 return true;
3434 }
3435
3436 private:
3437 void ExplainSuccess(const std::string& first_explanation,
3438 const std::string& second_explanation,
3439 MatchResultListener* listener) const {
3440 *listener << "whose both fields match";
3441 if (first_explanation != "") {
3442 *listener << ", where the first field is a value " << first_explanation;
3443 }
3444 if (second_explanation != "") {
3445 *listener << ", ";
3446 if (first_explanation != "") {
3447 *listener << "and ";
3448 } else {
3449 *listener << "where ";
3450 }
3451 *listener << "the second field is a value " << second_explanation;
3452 }
3453 }
3454
3455 const Matcher<const FirstType&> first_matcher_;
3456 const Matcher<const SecondType&> second_matcher_;
3457
3458 GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
3459};
3460
3461// Implements polymorphic Pair(first_matcher, second_matcher).
3462template <typename FirstMatcher, typename SecondMatcher>
3463class PairMatcher {
3464 public:
3465 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3466 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3467
3468 template <typename PairType>
3469 operator Matcher<PairType> () const {
3470 return MakeMatcher(
3471 new PairMatcherImpl<PairType>(
3472 first_matcher_, second_matcher_));
3473 }
3474
3475 private:
3476 const FirstMatcher first_matcher_;
3477 const SecondMatcher second_matcher_;
3478
3479 GTEST_DISALLOW_ASSIGN_(PairMatcher);
3480};
3481
3482// Implements ElementsAre() and ElementsAreArray().
3483template <typename Container>
3484class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3485 public:
3486 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3487 typedef internal::StlContainerView<RawContainer> View;
3488 typedef typename View::type StlContainer;
3489 typedef typename View::const_reference StlContainerReference;
3490 typedef typename StlContainer::value_type Element;
3491
3492 // Constructs the matcher from a sequence of element values or
3493 // element matchers.
3494 template <typename InputIter>
3495 ElementsAreMatcherImpl(InputIter first, InputIter last) {
3496 while (first != last) {
3497 matchers_.push_back(MatcherCast<const Element&>(*first++));
3498 }
3499 }
3500
3501 // Describes what this matcher does.
3502 virtual void DescribeTo(::std::ostream* os) const {
3503 if (count() == 0) {
3504 *os << "is empty";
3505 } else if (count() == 1) {
3506 *os << "has 1 element that ";
3507 matchers_[0].DescribeTo(os);
3508 } else {
3509 *os << "has " << Elements(count()) << " where\n";
3510 for (size_t i = 0; i != count(); ++i) {
3511 *os << "element #" << i << " ";
3512 matchers_[i].DescribeTo(os);
3513 if (i + 1 < count()) {
3514 *os << ",\n";
3515 }
3516 }
3517 }
3518 }
3519
3520 // Describes what the negation of this matcher does.
3521 virtual void DescribeNegationTo(::std::ostream* os) const {
3522 if (count() == 0) {
3523 *os << "isn't empty";
3524 return;
3525 }
3526
3527 *os << "doesn't have " << Elements(count()) << ", or\n";
3528 for (size_t i = 0; i != count(); ++i) {
3529 *os << "element #" << i << " ";
3530 matchers_[i].DescribeNegationTo(os);
3531 if (i + 1 < count()) {
3532 *os << ", or\n";
3533 }
3534 }
3535 }
3536
3537 virtual bool MatchAndExplain(Container container,
3538 MatchResultListener* listener) const {
3539 // To work with stream-like "containers", we must only walk
3540 // through the elements in one pass.
3541
3542 const bool listener_interested = listener->IsInterested();
3543
3544 // explanations[i] is the explanation of the element at index i.
3545 ::std::vector<std::string> explanations(count());
3546 StlContainerReference stl_container = View::ConstReference(container);
3547 typename StlContainer::const_iterator it = stl_container.begin();
3548 size_t exam_pos = 0;
3549 bool mismatch_found = false; // Have we found a mismatched element yet?
3550
3551 // Go through the elements and matchers in pairs, until we reach
3552 // the end of either the elements or the matchers, or until we find a
3553 // mismatch.
3554 for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3555 bool match; // Does the current element match the current matcher?
3556 if (listener_interested) {
3557 StringMatchResultListener s;
3558 match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3559 explanations[exam_pos] = s.str();
3560 } else {
3561 match = matchers_[exam_pos].Matches(*it);
3562 }
3563
3564 if (!match) {
3565 mismatch_found = true;
3566 break;
3567 }
3568 }
3569 // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3570
3571 // Find how many elements the actual container has. We avoid
3572 // calling size() s.t. this code works for stream-like "containers"
3573 // that don't define size().
3574 size_t actual_count = exam_pos;
3575 for (; it != stl_container.end(); ++it) {
3576 ++actual_count;
3577 }
3578
3579 if (actual_count != count()) {
3580 // The element count doesn't match. If the container is empty,
3581 // there's no need to explain anything as Google Mock already
3582 // prints the empty container. Otherwise we just need to show
3583 // how many elements there actually are.
3584 if (listener_interested && (actual_count != 0)) {
3585 *listener << "which has " << Elements(actual_count);
3586 }
3587 return false;
3588 }
3589
3590 if (mismatch_found) {
3591 // The element count matches, but the exam_pos-th element doesn't match.
3592 if (listener_interested) {
3593 *listener << "whose element #" << exam_pos << " doesn't match";
3594 PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3595 }
3596 return false;
3597 }
3598
3599 // Every element matches its expectation. We need to explain why
3600 // (the obvious ones can be skipped).
3601 if (listener_interested) {
3602 bool reason_printed = false;
3603 for (size_t i = 0; i != count(); ++i) {
3604 const std::string& s = explanations[i];
3605 if (!s.empty()) {
3606 if (reason_printed) {
3607 *listener << ",\nand ";
3608 }
3609 *listener << "whose element #" << i << " matches, " << s;
3610 reason_printed = true;
3611 }
3612 }
3613 }
3614 return true;
3615 }
3616
3617 private:
3618 static Message Elements(size_t count) {
3619 return Message() << count << (count == 1 ? " element" : " elements");
3620 }
3621
3622 size_t count() const { return matchers_.size(); }
3623
3624 ::std::vector<Matcher<const Element&> > matchers_;
3625
3626 GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
3627};
3628
3629// Connectivity matrix of (elements X matchers), in element-major order.
3630// Initially, there are no edges.
3631// Use NextGraph() to iterate over all possible edge configurations.
3632// Use Randomize() to generate a random edge configuration.
3633class GTEST_API_ MatchMatrix {
3634 public:
3635 MatchMatrix(size_t num_elements, size_t num_matchers)
3636 : num_elements_(num_elements),
3637 num_matchers_(num_matchers),
3638 matched_(num_elements_* num_matchers_, 0) {
3639 }
3640
3641 size_t LhsSize() const { return num_elements_; }
3642 size_t RhsSize() const { return num_matchers_; }
3643 bool HasEdge(size_t ilhs, size_t irhs) const {
3644 return matched_[SpaceIndex(ilhs, irhs)] == 1;
3645 }
3646 void SetEdge(size_t ilhs, size_t irhs, bool b) {
3647 matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3648 }
3649
3650 // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3651 // adds 1 to that number; returns false if incrementing the graph left it
3652 // empty.
3653 bool NextGraph();
3654
3655 void Randomize();
3656
3657 std::string DebugString() const;
3658
3659 private:
3660 size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3661 return ilhs * num_matchers_ + irhs;
3662 }
3663
3664 size_t num_elements_;
3665 size_t num_matchers_;
3666
3667 // Each element is a char interpreted as bool. They are stored as a
3668 // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3669 // a (ilhs, irhs) matrix coordinate into an offset.
3670 ::std::vector<char> matched_;
3671};
3672
3673typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3674typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3675
3676// Returns a maximum bipartite matching for the specified graph 'g'.
3677// The matching is represented as a vector of {element, matcher} pairs.
3678GTEST_API_ ElementMatcherPairs
3679FindMaxBipartiteMatching(const MatchMatrix& g);
3680
3681struct UnorderedMatcherRequire {
3682 enum Flags {
3683 Superset = 1 << 0,
3684 Subset = 1 << 1,
3685 ExactMatch = Superset | Subset,
3686 };
3687};
3688
3689// Untyped base class for implementing UnorderedElementsAre. By
3690// putting logic that's not specific to the element type here, we
3691// reduce binary bloat and increase compilation speed.
3692class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3693 protected:
3694 explicit UnorderedElementsAreMatcherImplBase(
3695 UnorderedMatcherRequire::Flags matcher_flags)
3696 : match_flags_(matcher_flags) {}
3697
3698 // A vector of matcher describers, one for each element matcher.
3699 // Does not own the describers (and thus can be used only when the
3700 // element matchers are alive).
3701 typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3702
3703 // Describes this UnorderedElementsAre matcher.
3704 void DescribeToImpl(::std::ostream* os) const;
3705
3706 // Describes the negation of this UnorderedElementsAre matcher.
3707 void DescribeNegationToImpl(::std::ostream* os) const;
3708
3709 bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3710 const MatchMatrix& matrix,
3711 MatchResultListener* listener) const;
3712
3713 bool FindPairing(const MatchMatrix& matrix,
3714 MatchResultListener* listener) const;
3715
3716 MatcherDescriberVec& matcher_describers() {
3717 return matcher_describers_;
3718 }
3719
3720 static Message Elements(size_t n) {
3721 return Message() << n << " element" << (n == 1 ? "" : "s");
3722 }
3723
3724 UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3725
3726 private:
3727 UnorderedMatcherRequire::Flags match_flags_;
3728 MatcherDescriberVec matcher_describers_;
3729
3730 GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
3731};
3732
3733// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3734// IsSupersetOf.
3735template <typename Container>
3736class UnorderedElementsAreMatcherImpl
3737 : public MatcherInterface<Container>,
3738 public UnorderedElementsAreMatcherImplBase {
3739 public:
3740 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3741 typedef internal::StlContainerView<RawContainer> View;
3742 typedef typename View::type StlContainer;
3743 typedef typename View::const_reference StlContainerReference;
3744 typedef typename StlContainer::const_iterator StlContainerConstIterator;
3745 typedef typename StlContainer::value_type Element;
3746
3747 template <typename InputIter>
3748 UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3749 InputIter first, InputIter last)
3750 : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3751 for (; first != last; ++first) {
3752 matchers_.push_back(MatcherCast<const Element&>(*first));
3753 matcher_describers().push_back(matchers_.back().GetDescriber());
3754 }
3755 }
3756
3757 // Describes what this matcher does.
3758 virtual void DescribeTo(::std::ostream* os) const {
3759 return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3760 }
3761
3762 // Describes what the negation of this matcher does.
3763 virtual void DescribeNegationTo(::std::ostream* os) const {
3764 return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3765 }
3766
3767 virtual bool MatchAndExplain(Container container,
3768 MatchResultListener* listener) const {
3769 StlContainerReference stl_container = View::ConstReference(container);
3770 ::std::vector<std::string> element_printouts;
3771 MatchMatrix matrix =
3772 AnalyzeElements(stl_container.begin(), stl_container.end(),
3773 &element_printouts, listener);
3774
3775 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
3776 return true;
3777 }
3778
3779 if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
3780 if (matrix.LhsSize() != matrix.RhsSize()) {
3781 // The element count doesn't match. If the container is empty,
3782 // there's no need to explain anything as Google Mock already
3783 // prints the empty container. Otherwise we just need to show
3784 // how many elements there actually are.
3785 if (matrix.LhsSize() != 0 && listener->IsInterested()) {
3786 *listener << "which has " << Elements(matrix.LhsSize());
3787 }
3788 return false;
3789 }
3790 }
3791
3792 return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3793 FindPairing(matrix, listener);
3794 }
3795
3796 private:
3797 template <typename ElementIter>
3798 MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3799 ::std::vector<std::string>* element_printouts,
3800 MatchResultListener* listener) const {
3801 element_printouts->clear();
3802 ::std::vector<char> did_match;
3803 size_t num_elements = 0;
3804 for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3805 if (listener->IsInterested()) {
3806 element_printouts->push_back(PrintToString(*elem_first));
3807 }
3808 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3809 did_match.push_back(Matches(matchers_[irhs])(*elem_first));
3810 }
3811 }
3812
3813 MatchMatrix matrix(num_elements, matchers_.size());
3814 ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3815 for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3816 for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3817 matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3818 }
3819 }
3820 return matrix;
3821 }
3822
3823 ::std::vector<Matcher<const Element&> > matchers_;
3824
3825 GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
3826};
3827
3828// Functor for use in TransformTuple.
3829// Performs MatcherCast<Target> on an input argument of any type.
3830template <typename Target>
3831struct CastAndAppendTransform {
3832 template <typename Arg>
3833 Matcher<Target> operator()(const Arg& a) const {
3834 return MatcherCast<Target>(a);
3835 }
3836};
3837
3838// Implements UnorderedElementsAre.
3839template <typename MatcherTuple>
3840class UnorderedElementsAreMatcher {
3841 public:
3842 explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3843 : matchers_(args) {}
3844
3845 template <typename Container>
3846 operator Matcher<Container>() const {
3847 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3848 typedef typename internal::StlContainerView<RawContainer>::type View;
3849 typedef typename View::value_type Element;
3850 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3851 MatcherVec matchers;
3852 matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3853 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3854 ::std::back_inserter(matchers));
3855 return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
3856 UnorderedMatcherRequire::ExactMatch, matchers.begin(), matchers.end()));
3857 }
3858
3859 private:
3860 const MatcherTuple matchers_;
3861 GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
3862};
3863
3864// Implements ElementsAre.
3865template <typename MatcherTuple>
3866class ElementsAreMatcher {
3867 public:
3868 explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3869
3870 template <typename Container>
3871 operator Matcher<Container>() const {
3872 GTEST_COMPILE_ASSERT_(
3873 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3874 ::testing::tuple_size<MatcherTuple>::value < 2,
3875 use_UnorderedElementsAre_with_hash_tables);
3876
3877 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3878 typedef typename internal::StlContainerView<RawContainer>::type View;
3879 typedef typename View::value_type Element;
3880 typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3881 MatcherVec matchers;
3882 matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3883 TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3884 ::std::back_inserter(matchers));
3885 return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3886 matchers.begin(), matchers.end()));
3887 }
3888
3889 private:
3890 const MatcherTuple matchers_;
3891 GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
3892};
3893
3894// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3895template <typename T>
3896class UnorderedElementsAreArrayMatcher {
3897 public:
3898 template <typename Iter>
3899 UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3900 Iter first, Iter last)
3901 : match_flags_(match_flags), matchers_(first, last) {}
3902
3903 template <typename Container>
3904 operator Matcher<Container>() const {
3905 return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
3906 match_flags_, matchers_.begin(), matchers_.end()));
3907 }
3908
3909 private:
3910 UnorderedMatcherRequire::Flags match_flags_;
3911 ::std::vector<T> matchers_;
3912
3913 GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
3914};
3915
3916// Implements ElementsAreArray().
3917template <typename T>
3918class ElementsAreArrayMatcher {
3919 public:
3920 template <typename Iter>
3921 ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3922
3923 template <typename Container>
3924 operator Matcher<Container>() const {
3925 GTEST_COMPILE_ASSERT_(
3926 !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3927 use_UnorderedElementsAreArray_with_hash_tables);
3928
3929 return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3930 matchers_.begin(), matchers_.end()));
3931 }
3932
3933 private:
3934 const ::std::vector<T> matchers_;
3935
3936 GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
3937};
3938
3939// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3940// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3941// second) is a polymorphic matcher that matches a value x iff tm
3942// matches tuple (x, second). Useful for implementing
3943// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3944//
3945// BoundSecondMatcher is copyable and assignable, as we need to put
3946// instances of this class in a vector when implementing
3947// UnorderedPointwise().
3948template <typename Tuple2Matcher, typename Second>
3949class BoundSecondMatcher {
3950 public:
3951 BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3952 : tuple2_matcher_(tm), second_value_(second) {}
3953
3954 template <typename T>
3955 operator Matcher<T>() const {
3956 return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3957 }
3958
3959 // We have to define this for UnorderedPointwise() to compile in
3960 // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3961 // which requires the elements to be assignable in C++98. The
3962 // compiler cannot generate the operator= for us, as Tuple2Matcher
3963 // and Second may not be assignable.
3964 //
3965 // However, this should never be called, so the implementation just
3966 // need to assert.
3967 void operator=(const BoundSecondMatcher& /*rhs*/) {
3968 GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3969 }
3970
3971 private:
3972 template <typename T>
3973 class Impl : public MatcherInterface<T> {
3974 public:
3975 typedef ::testing::tuple<T, Second> ArgTuple;
3976
3977 Impl(const Tuple2Matcher& tm, const Second& second)
3978 : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3979 second_value_(second) {}
3980
3981 virtual void DescribeTo(::std::ostream* os) const {
3982 *os << "and ";
3983 UniversalPrint(second_value_, os);
3984 *os << " ";
3985 mono_tuple2_matcher_.DescribeTo(os);
3986 }
3987
3988 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
3989 return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3990 listener);
3991 }
3992
3993 private:
3994 const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3995 const Second second_value_;
3996
3997 GTEST_DISALLOW_ASSIGN_(Impl);
3998 };
3999
4000 const Tuple2Matcher tuple2_matcher_;
4001 const Second second_value_;
4002};
4003
4004// Given a 2-tuple matcher tm and a value second,
4005// MatcherBindSecond(tm, second) returns a matcher that matches a
4006// value x iff tm matches tuple (x, second). Useful for implementing
4007// UnorderedPointwise() in terms of UnorderedElementsAreArray().
4008template <typename Tuple2Matcher, typename Second>
4009BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
4010 const Tuple2Matcher& tm, const Second& second) {
4011 return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
4012}
4013
4014// Returns the description for a matcher defined using the MATCHER*()
4015// macro where the user-supplied description string is "", if
4016// 'negation' is false; otherwise returns the description of the
4017// negation of the matcher. 'param_values' contains a list of strings
4018// that are the print-out of the matcher's parameters.
4019GTEST_API_ std::string FormatMatcherDescription(bool negation,
4020 const char* matcher_name,
4021 const Strings& param_values);
4022
4023// Implements a matcher that checks the value of a optional<> type variable.
4024template <typename ValueMatcher>
4025class OptionalMatcher {
4026 public:
4027 explicit OptionalMatcher(const ValueMatcher& value_matcher)
4028 : value_matcher_(value_matcher) {}
4029
4030 template <typename Optional>
4031 operator Matcher<Optional>() const {
4032 return MakeMatcher(new Impl<Optional>(value_matcher_));
4033 }
4034
4035 template <typename Optional>
4036 class Impl : public MatcherInterface<Optional> {
4037 public:
4038 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
4039 typedef typename OptionalView::value_type ValueType;
4040 explicit Impl(const ValueMatcher& value_matcher)
4041 : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
4042
4043 virtual void DescribeTo(::std::ostream* os) const {
4044 *os << "value ";
4045 value_matcher_.DescribeTo(os);
4046 }
4047
4048 virtual void DescribeNegationTo(::std::ostream* os) const {
4049 *os << "value ";
4050 value_matcher_.DescribeNegationTo(os);
4051 }
4052
4053 virtual bool MatchAndExplain(Optional optional,
4054 MatchResultListener* listener) const {
4055 if (!optional) {
4056 *listener << "which is not engaged";
4057 return false;
4058 }
4059 const ValueType& value = *optional;
4060 StringMatchResultListener value_listener;
4061 const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
4062 *listener << "whose value " << PrintToString(value)
4063 << (match ? " matches" : " doesn't match");
4064 PrintIfNotEmpty(value_listener.str(), listener->stream());
4065 return match;
4066 }
4067
4068 private:
4069 const Matcher<ValueType> value_matcher_;
4070 GTEST_DISALLOW_ASSIGN_(Impl);
4071 };
4072
4073 private:
4074 const ValueMatcher value_matcher_;
4075 GTEST_DISALLOW_ASSIGN_(OptionalMatcher);
4076};
4077
4078namespace variant_matcher {
4079// Overloads to allow VariantMatcher to do proper ADL lookup.
4080template <typename T>
4081void holds_alternative() {}
4082template <typename T>
4083void get() {}
4084
4085// Implements a matcher that checks the value of a variant<> type variable.
4086template <typename T>
4087class VariantMatcher {
4088 public:
4089 explicit VariantMatcher(::testing::Matcher<const T&> matcher)
4090 : matcher_(internal::move(matcher)) {}
4091
4092 template <typename Variant>
4093 bool MatchAndExplain(const Variant& value,
4094 ::testing::MatchResultListener* listener) const {
4095 if (!listener->IsInterested()) {
4096 return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
4097 }
4098
4099 if (!holds_alternative<T>(value)) {
4100 *listener << "whose value is not of type '" << GetTypeName() << "'";
4101 return false;
4102 }
4103
4104 const T& elem = get<T>(value);
4105 StringMatchResultListener elem_listener;
4106 const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
4107 *listener << "whose value " << PrintToString(elem)
4108 << (match ? " matches" : " doesn't match");
4109 PrintIfNotEmpty(elem_listener.str(), listener->stream());
4110 return match;
4111 }
4112
4113 void DescribeTo(std::ostream* os) const {
4114 *os << "is a variant<> with value of type '" << GetTypeName()
4115 << "' and the value ";
4116 matcher_.DescribeTo(os);
4117 }
4118
4119 void DescribeNegationTo(std::ostream* os) const {
4120 *os << "is a variant<> with value of type other than '" << GetTypeName()
4121 << "' or the value ";
4122 matcher_.DescribeNegationTo(os);
4123 }
4124
4125 private:
4126 static std::string GetTypeName() {
4127#if GTEST_HAS_RTTI
4128 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4129 return internal::GetTypeName<T>());
4130#endif
4131 return "the element type";
4132 }
4133
4134 const ::testing::Matcher<const T&> matcher_;
4135};
4136
4137} // namespace variant_matcher
4138
4139namespace any_cast_matcher {
4140
4141// Overloads to allow AnyCastMatcher to do proper ADL lookup.
4142template <typename T>
4143void any_cast() {}
4144
4145// Implements a matcher that any_casts the value.
4146template <typename T>
4147class AnyCastMatcher {
4148 public:
4149 explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4150 : matcher_(matcher) {}
4151
4152 template <typename AnyType>
4153 bool MatchAndExplain(const AnyType& value,
4154 ::testing::MatchResultListener* listener) const {
4155 if (!listener->IsInterested()) {
4156 const T* ptr = any_cast<T>(&value);
4157 return ptr != NULL && matcher_.Matches(*ptr);
4158 }
4159
4160 const T* elem = any_cast<T>(&value);
4161 if (elem == NULL) {
4162 *listener << "whose value is not of type '" << GetTypeName() << "'";
4163 return false;
4164 }
4165
4166 StringMatchResultListener elem_listener;
4167 const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4168 *listener << "whose value " << PrintToString(*elem)
4169 << (match ? " matches" : " doesn't match");
4170 PrintIfNotEmpty(elem_listener.str(), listener->stream());
4171 return match;
4172 }
4173
4174 void DescribeTo(std::ostream* os) const {
4175 *os << "is an 'any' type with value of type '" << GetTypeName()
4176 << "' and the value ";
4177 matcher_.DescribeTo(os);
4178 }
4179
4180 void DescribeNegationTo(std::ostream* os) const {
4181 *os << "is an 'any' type with value of type other than '" << GetTypeName()
4182 << "' or the value ";
4183 matcher_.DescribeNegationTo(os);
4184 }
4185
4186 private:
4187 static std::string GetTypeName() {
4188#if GTEST_HAS_RTTI
4189 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4190 return internal::GetTypeName<T>());
4191#endif
4192 return "the element type";
4193 }
4194
4195 const ::testing::Matcher<const T&> matcher_;
4196};
4197
4198} // namespace any_cast_matcher
4199} // namespace internal
4200
4201// ElementsAreArray(iterator_first, iterator_last)
4202// ElementsAreArray(pointer, count)
4203// ElementsAreArray(array)
4204// ElementsAreArray(container)
4205// ElementsAreArray({ e1, e2, ..., en })
4206//
4207// The ElementsAreArray() functions are like ElementsAre(...), except
4208// that they are given a homogeneous sequence rather than taking each
4209// element as a function argument. The sequence can be specified as an
4210// array, a pointer and count, a vector, an initializer list, or an
4211// STL iterator range. In each of these cases, the underlying sequence
4212// can be either a sequence of values or a sequence of matchers.
4213//
4214// All forms of ElementsAreArray() make a copy of the input matcher sequence.
4215
4216template <typename Iter>
4217inline internal::ElementsAreArrayMatcher<
4218 typename ::std::iterator_traits<Iter>::value_type>
4219ElementsAreArray(Iter first, Iter last) {
4220 typedef typename ::std::iterator_traits<Iter>::value_type T;
4221 return internal::ElementsAreArrayMatcher<T>(first, last);
4222}
4223
4224template <typename T>
4225inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
4226 const T* pointer, size_t count) {
4227 return ElementsAreArray(pointer, pointer + count);
4228}
4229
4230template <typename T, size_t N>
4231inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
4232 const T (&array)[N]) {
4233 return ElementsAreArray(array, N);
4234}
4235
4236template <typename Container>
4237inline internal::ElementsAreArrayMatcher<typename Container::value_type>
4238ElementsAreArray(const Container& container) {
4239 return ElementsAreArray(container.begin(), container.end());
4240}
4241
4242#if GTEST_HAS_STD_INITIALIZER_LIST_
4243template <typename T>
4244inline internal::ElementsAreArrayMatcher<T>
4245ElementsAreArray(::std::initializer_list<T> xs) {
4246 return ElementsAreArray(xs.begin(), xs.end());
4247}
4248#endif
4249
4250// UnorderedElementsAreArray(iterator_first, iterator_last)
4251// UnorderedElementsAreArray(pointer, count)
4252// UnorderedElementsAreArray(array)
4253// UnorderedElementsAreArray(container)
4254// UnorderedElementsAreArray({ e1, e2, ..., en })
4255//
4256// UnorderedElementsAreArray() verifies that a bijective mapping onto a
4257// collection of matchers exists.
4258//
4259// The matchers can be specified as an array, a pointer and count, a container,
4260// an initializer list, or an STL iterator range. In each of these cases, the
4261// underlying matchers can be either values or matchers.
4262
4263template <typename Iter>
4264inline internal::UnorderedElementsAreArrayMatcher<
4265 typename ::std::iterator_traits<Iter>::value_type>
4266UnorderedElementsAreArray(Iter first, Iter last) {
4267 typedef typename ::std::iterator_traits<Iter>::value_type T;
4268 return internal::UnorderedElementsAreArrayMatcher<T>(
4269 internal::UnorderedMatcherRequire::ExactMatch, first, last);
4270}
4271
4272template <typename T>
4273inline internal::UnorderedElementsAreArrayMatcher<T>
4274UnorderedElementsAreArray(const T* pointer, size_t count) {
4275 return UnorderedElementsAreArray(pointer, pointer + count);
4276}
4277
4278template <typename T, size_t N>
4279inline internal::UnorderedElementsAreArrayMatcher<T>
4280UnorderedElementsAreArray(const T (&array)[N]) {
4281 return UnorderedElementsAreArray(array, N);
4282}
4283
4284template <typename Container>
4285inline internal::UnorderedElementsAreArrayMatcher<
4286 typename Container::value_type>
4287UnorderedElementsAreArray(const Container& container) {
4288 return UnorderedElementsAreArray(container.begin(), container.end());
4289}
4290
4291#if GTEST_HAS_STD_INITIALIZER_LIST_
4292template <typename T>
4293inline internal::UnorderedElementsAreArrayMatcher<T>
4294UnorderedElementsAreArray(::std::initializer_list<T> xs) {
4295 return UnorderedElementsAreArray(xs.begin(), xs.end());
4296}
4297#endif
4298
4299// _ is a matcher that matches anything of any type.
4300//
4301// This definition is fine as:
4302//
4303// 1. The C++ standard permits using the name _ in a namespace that
4304// is not the global namespace or ::std.
4305// 2. The AnythingMatcher class has no data member or constructor,
4306// so it's OK to create global variables of this type.
4307// 3. c-style has approved of using _ in this case.
4308const internal::AnythingMatcher _ = {};
4309// Creates a matcher that matches any value of the given type T.
4310template <typename T>
4311inline Matcher<T> A() {
4312 return Matcher<T>(new internal::AnyMatcherImpl<T>());
4313}
4314
4315// Creates a matcher that matches any value of the given type T.
4316template <typename T>
4317inline Matcher<T> An() { return A<T>(); }
4318
4319// Creates a polymorphic matcher that matches anything equal to x.
4320// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
4321// wouldn't compile.
4322template <typename T>
4323inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
4324
4325// Constructs a Matcher<T> from a 'value' of type T. The constructed
4326// matcher matches any value that's equal to 'value'.
4327template <typename T>
4328Matcher<T>::Matcher(T value) { *this = Eq(value); }
4329
4330template <typename T, typename M>
4331Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4332 const M& value,
4333 internal::BooleanConstant<false> /* convertible_to_matcher */,
4334 internal::BooleanConstant<false> /* convertible_to_T */) {
4335 return Eq(value);
4336}
4337
4338// Creates a monomorphic matcher that matches anything with type Lhs
4339// and equal to rhs. A user may need to use this instead of Eq(...)
4340// in order to resolve an overloading ambiguity.
4341//
4342// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
4343// or Matcher<T>(x), but more readable than the latter.
4344//
4345// We could define similar monomorphic matchers for other comparison
4346// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
4347// it yet as those are used much less than Eq() in practice. A user
4348// can always write Matcher<T>(Lt(5)) to be explicit about the type,
4349// for example.
4350template <typename Lhs, typename Rhs>
4351inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
4352
4353// Creates a polymorphic matcher that matches anything >= x.
4354template <typename Rhs>
4355inline internal::GeMatcher<Rhs> Ge(Rhs x) {
4356 return internal::GeMatcher<Rhs>(x);
4357}
4358
4359// Creates a polymorphic matcher that matches anything > x.
4360template <typename Rhs>
4361inline internal::GtMatcher<Rhs> Gt(Rhs x) {
4362 return internal::GtMatcher<Rhs>(x);
4363}
4364
4365// Creates a polymorphic matcher that matches anything <= x.
4366template <typename Rhs>
4367inline internal::LeMatcher<Rhs> Le(Rhs x) {
4368 return internal::LeMatcher<Rhs>(x);
4369}
4370
4371// Creates a polymorphic matcher that matches anything < x.
4372template <typename Rhs>
4373inline internal::LtMatcher<Rhs> Lt(Rhs x) {
4374 return internal::LtMatcher<Rhs>(x);
4375}
4376
4377// Creates a polymorphic matcher that matches anything != x.
4378template <typename Rhs>
4379inline internal::NeMatcher<Rhs> Ne(Rhs x) {
4380 return internal::NeMatcher<Rhs>(x);
4381}
4382
4383// Creates a polymorphic matcher that matches any NULL pointer.
4384inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
4385 return MakePolymorphicMatcher(internal::IsNullMatcher());
4386}
4387
4388// Creates a polymorphic matcher that matches any non-NULL pointer.
4389// This is convenient as Not(NULL) doesn't compile (the compiler
4390// thinks that that expression is comparing a pointer with an integer).
4391inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
4392 return MakePolymorphicMatcher(internal::NotNullMatcher());
4393}
4394
4395// Creates a polymorphic matcher that matches any argument that
4396// references variable x.
4397template <typename T>
4398inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
4399 return internal::RefMatcher<T&>(x);
4400}
4401
4402// Creates a matcher that matches any double argument approximately
4403// equal to rhs, where two NANs are considered unequal.
4404inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4405 return internal::FloatingEqMatcher<double>(rhs, false);
4406}
4407
4408// Creates a matcher that matches any double argument approximately
4409// equal to rhs, including NaN values when rhs is NaN.
4410inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4411 return internal::FloatingEqMatcher<double>(rhs, true);
4412}
4413
4414// Creates a matcher that matches any double argument approximately equal to
4415// rhs, up to the specified max absolute error bound, where two NANs are
4416// considered unequal. The max absolute error bound must be non-negative.
4417inline internal::FloatingEqMatcher<double> DoubleNear(
4418 double rhs, double max_abs_error) {
4419 return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4420}
4421
4422// Creates a matcher that matches any double argument approximately equal to
4423// rhs, up to the specified max absolute error bound, including NaN values when
4424// rhs is NaN. The max absolute error bound must be non-negative.
4425inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4426 double rhs, double max_abs_error) {
4427 return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4428}
4429
4430// Creates a matcher that matches any float argument approximately
4431// equal to rhs, where two NANs are considered unequal.
4432inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4433 return internal::FloatingEqMatcher<float>(rhs, false);
4434}
4435
4436// Creates a matcher that matches any float argument approximately
4437// equal to rhs, including NaN values when rhs is NaN.
4438inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4439 return internal::FloatingEqMatcher<float>(rhs, true);
4440}
4441
4442// Creates a matcher that matches any float argument approximately equal to
4443// rhs, up to the specified max absolute error bound, where two NANs are
4444// considered unequal. The max absolute error bound must be non-negative.
4445inline internal::FloatingEqMatcher<float> FloatNear(
4446 float rhs, float max_abs_error) {
4447 return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4448}
4449
4450// Creates a matcher that matches any float argument approximately equal to
4451// rhs, up to the specified max absolute error bound, including NaN values when
4452// rhs is NaN. The max absolute error bound must be non-negative.
4453inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4454 float rhs, float max_abs_error) {
4455 return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4456}
4457
4458// Creates a matcher that matches a pointer (raw or smart) that points
4459// to a value that matches inner_matcher.
4460template <typename InnerMatcher>
4461inline internal::PointeeMatcher<InnerMatcher> Pointee(
4462 const InnerMatcher& inner_matcher) {
4463 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4464}
4465
4466#if GTEST_HAS_RTTI
4467// Creates a matcher that matches a pointer or reference that matches
4468// inner_matcher when dynamic_cast<To> is applied.
4469// The result of dynamic_cast<To> is forwarded to the inner matcher.
4470// If To is a pointer and the cast fails, the inner matcher will receive NULL.
4471// If To is a reference and the cast fails, this matcher returns false
4472// immediately.
4473template <typename To>
4474inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
4475WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4476 return MakePolymorphicMatcher(
4477 internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4478}
4479#endif // GTEST_HAS_RTTI
4480
4481// Creates a matcher that matches an object whose given field matches
4482// 'matcher'. For example,
4483// Field(&Foo::number, Ge(5))
4484// matches a Foo object x iff x.number >= 5.
4485template <typename Class, typename FieldType, typename FieldMatcher>
4486inline PolymorphicMatcher<
4487 internal::FieldMatcher<Class, FieldType> > Field(
4488 FieldType Class::*field, const FieldMatcher& matcher) {
4489 return MakePolymorphicMatcher(
4490 internal::FieldMatcher<Class, FieldType>(
4491 field, MatcherCast<const FieldType&>(matcher)));
4492 // The call to MatcherCast() is required for supporting inner
4493 // matchers of compatible types. For example, it allows
4494 // Field(&Foo::bar, m)
4495 // to compile where bar is an int32 and m is a matcher for int64.
4496}
4497
4498// Same as Field() but also takes the name of the field to provide better error
4499// messages.
4500template <typename Class, typename FieldType, typename FieldMatcher>
4501inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
4502 const std::string& field_name, FieldType Class::*field,
4503 const FieldMatcher& matcher) {
4504 return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4505 field_name, field, MatcherCast<const FieldType&>(matcher)));
4506}
4507
4508// Creates a matcher that matches an object whose given property
4509// matches 'matcher'. For example,
4510// Property(&Foo::str, StartsWith("hi"))
4511// matches a Foo object x iff x.str() starts with "hi".
4512template <typename Class, typename PropertyType, typename PropertyMatcher>
4513inline PolymorphicMatcher<internal::PropertyMatcher<
4514 Class, PropertyType, PropertyType (Class::*)() const> >
4515Property(PropertyType (Class::*property)() const,
4516 const PropertyMatcher& matcher) {
4517 return MakePolymorphicMatcher(
4518 internal::PropertyMatcher<Class, PropertyType,
4519 PropertyType (Class::*)() const>(
4520 property,
4521 MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
4522 // The call to MatcherCast() is required for supporting inner
4523 // matchers of compatible types. For example, it allows
4524 // Property(&Foo::bar, m)
4525 // to compile where bar() returns an int32 and m is a matcher for int64.
4526}
4527
4528// Same as Property() above, but also takes the name of the property to provide
4529// better error messages.
4530template <typename Class, typename PropertyType, typename PropertyMatcher>
4531inline PolymorphicMatcher<internal::PropertyMatcher<
4532 Class, PropertyType, PropertyType (Class::*)() const> >
4533Property(const std::string& property_name,
4534 PropertyType (Class::*property)() const,
4535 const PropertyMatcher& matcher) {
4536 return MakePolymorphicMatcher(
4537 internal::PropertyMatcher<Class, PropertyType,
4538 PropertyType (Class::*)() const>(
4539 property_name, property,
4540 MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
4541}
4542
4543#if GTEST_LANG_CXX11
4544// The same as above but for reference-qualified member functions.
4545template <typename Class, typename PropertyType, typename PropertyMatcher>
4546inline PolymorphicMatcher<internal::PropertyMatcher<
4547 Class, PropertyType, PropertyType (Class::*)() const &> >
4548Property(PropertyType (Class::*property)() const &,
4549 const PropertyMatcher& matcher) {
4550 return MakePolymorphicMatcher(
4551 internal::PropertyMatcher<Class, PropertyType,
4552 PropertyType (Class::*)() const &>(
4553 property,
4554 MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
4555}
4556
4557// Three-argument form for reference-qualified member functions.
4558template <typename Class, typename PropertyType, typename PropertyMatcher>
4559inline PolymorphicMatcher<internal::PropertyMatcher<
4560 Class, PropertyType, PropertyType (Class::*)() const &> >
4561Property(const std::string& property_name,
4562 PropertyType (Class::*property)() const &,
4563 const PropertyMatcher& matcher) {
4564 return MakePolymorphicMatcher(
4565 internal::PropertyMatcher<Class, PropertyType,
4566 PropertyType (Class::*)() const &>(
4567 property_name, property,
4568 MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
4569}
4570#endif
4571
4572// Creates a matcher that matches an object iff the result of applying
4573// a callable to x matches 'matcher'.
4574// For example,
4575// ResultOf(f, StartsWith("hi"))
4576// matches a Foo object x iff f(x) starts with "hi".
4577// `callable` parameter can be a function, function pointer, or a functor. It is
4578// required to keep no state affecting the results of the calls on it and make
4579// no assumptions about how many calls will be made. Any state it keeps must be
4580// protected from the concurrent access.
4581template <typename Callable, typename InnerMatcher>
4582internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4583 Callable callable, InnerMatcher matcher) {
4584 return internal::ResultOfMatcher<Callable, InnerMatcher>(
4585 internal::move(callable), internal::move(matcher));
4586}
4587
4588// String matchers.
4589
4590// Matches a string equal to str.
4591inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
4592 const std::string& str) {
4593 return MakePolymorphicMatcher(
4594 internal::StrEqualityMatcher<std::string>(str, true, true));
4595}
4596
4597// Matches a string not equal to str.
4598inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
4599 const std::string& str) {
4600 return MakePolymorphicMatcher(
4601 internal::StrEqualityMatcher<std::string>(str, false, true));
4602}
4603
4604// Matches a string equal to str, ignoring case.
4605inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
4606 const std::string& str) {
4607 return MakePolymorphicMatcher(
4608 internal::StrEqualityMatcher<std::string>(str, true, false));
4609}
4610
4611// Matches a string not equal to str, ignoring case.
4612inline PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
4613 const std::string& str) {
4614 return MakePolymorphicMatcher(
4615 internal::StrEqualityMatcher<std::string>(str, false, false));
4616}
4617
4618// Creates a matcher that matches any string, std::string, or C string
4619// that contains the given substring.
4620inline PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
4621 const std::string& substring) {
4622 return MakePolymorphicMatcher(
4623 internal::HasSubstrMatcher<std::string>(substring));
4624}
4625
4626// Matches a string that starts with 'prefix' (case-sensitive).
4627inline PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
4628 const std::string& prefix) {
4629 return MakePolymorphicMatcher(
4630 internal::StartsWithMatcher<std::string>(prefix));
4631}
4632
4633// Matches a string that ends with 'suffix' (case-sensitive).
4634inline PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
4635 const std::string& suffix) {
4636 return MakePolymorphicMatcher(internal::EndsWithMatcher<std::string>(suffix));
4637}
4638
4639// Matches a string that fully matches regular expression 'regex'.
4640// The matcher takes ownership of 'regex'.
4641inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4642 const internal::RE* regex) {
4643 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
4644}
4645inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4646 const std::string& regex) {
4647 return MatchesRegex(new internal::RE(regex));
4648}
4649
4650// Matches a string that contains regular expression 'regex'.
4651// The matcher takes ownership of 'regex'.
4652inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4653 const internal::RE* regex) {
4654 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
4655}
4656inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4657 const std::string& regex) {
4658 return ContainsRegex(new internal::RE(regex));
4659}
4660
4661#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4662// Wide string matchers.
4663
4664// Matches a string equal to str.
4665inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
4666 const std::wstring& str) {
4667 return MakePolymorphicMatcher(
4668 internal::StrEqualityMatcher<std::wstring>(str, true, true));
4669}
4670
4671// Matches a string not equal to str.
4672inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
4673 const std::wstring& str) {
4674 return MakePolymorphicMatcher(
4675 internal::StrEqualityMatcher<std::wstring>(str, false, true));
4676}
4677
4678// Matches a string equal to str, ignoring case.
4679inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4680StrCaseEq(const std::wstring& str) {
4681 return MakePolymorphicMatcher(
4682 internal::StrEqualityMatcher<std::wstring>(str, true, false));
4683}
4684
4685// Matches a string not equal to str, ignoring case.
4686inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
4687StrCaseNe(const std::wstring& str) {
4688 return MakePolymorphicMatcher(
4689 internal::StrEqualityMatcher<std::wstring>(str, false, false));
4690}
4691
4692// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4693// that contains the given substring.
4694inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
4695 const std::wstring& substring) {
4696 return MakePolymorphicMatcher(
4697 internal::HasSubstrMatcher<std::wstring>(substring));
4698}
4699
4700// Matches a string that starts with 'prefix' (case-sensitive).
4701inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
4702StartsWith(const std::wstring& prefix) {
4703 return MakePolymorphicMatcher(
4704 internal::StartsWithMatcher<std::wstring>(prefix));
4705}
4706
4707// Matches a string that ends with 'suffix' (case-sensitive).
4708inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
4709 const std::wstring& suffix) {
4710 return MakePolymorphicMatcher(
4711 internal::EndsWithMatcher<std::wstring>(suffix));
4712}
4713
4714#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4715
4716// Creates a polymorphic matcher that matches a 2-tuple where the
4717// first field == the second field.
4718inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4719
4720// Creates a polymorphic matcher that matches a 2-tuple where the
4721// first field >= the second field.
4722inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4723
4724// Creates a polymorphic matcher that matches a 2-tuple where the
4725// first field > the second field.
4726inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4727
4728// Creates a polymorphic matcher that matches a 2-tuple where the
4729// first field <= the second field.
4730inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4731
4732// Creates a polymorphic matcher that matches a 2-tuple where the
4733// first field < the second field.
4734inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4735
4736// Creates a polymorphic matcher that matches a 2-tuple where the
4737// first field != the second field.
4738inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4739
4740// Creates a polymorphic matcher that matches a 2-tuple where
4741// FloatEq(first field) matches the second field.
4742inline internal::FloatingEq2Matcher<float> FloatEq() {
4743 return internal::FloatingEq2Matcher<float>();
4744}
4745
4746// Creates a polymorphic matcher that matches a 2-tuple where
4747// DoubleEq(first field) matches the second field.
4748inline internal::FloatingEq2Matcher<double> DoubleEq() {
4749 return internal::FloatingEq2Matcher<double>();
4750}
4751
4752// Creates a polymorphic matcher that matches a 2-tuple where
4753// FloatEq(first field) matches the second field with NaN equality.
4754inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4755 return internal::FloatingEq2Matcher<float>(true);
4756}
4757
4758// Creates a polymorphic matcher that matches a 2-tuple where
4759// DoubleEq(first field) matches the second field with NaN equality.
4760inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4761 return internal::FloatingEq2Matcher<double>(true);
4762}
4763
4764// Creates a polymorphic matcher that matches a 2-tuple where
4765// FloatNear(first field, max_abs_error) matches the second field.
4766inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4767 return internal::FloatingEq2Matcher<float>(max_abs_error);
4768}
4769
4770// Creates a polymorphic matcher that matches a 2-tuple where
4771// DoubleNear(first field, max_abs_error) matches the second field.
4772inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4773 return internal::FloatingEq2Matcher<double>(max_abs_error);
4774}
4775
4776// Creates a polymorphic matcher that matches a 2-tuple where
4777// FloatNear(first field, max_abs_error) matches the second field with NaN
4778// equality.
4779inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4780 float max_abs_error) {
4781 return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4782}
4783
4784// Creates a polymorphic matcher that matches a 2-tuple where
4785// DoubleNear(first field, max_abs_error) matches the second field with NaN
4786// equality.
4787inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4788 double max_abs_error) {
4789 return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4790}
4791
4792// Creates a matcher that matches any value of type T that m doesn't
4793// match.
4794template <typename InnerMatcher>
4795inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4796 return internal::NotMatcher<InnerMatcher>(m);
4797}
4798
4799// Returns a matcher that matches anything that satisfies the given
4800// predicate. The predicate can be any unary function or functor
4801// whose return type can be implicitly converted to bool.
4802template <typename Predicate>
4803inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4804Truly(Predicate pred) {
4805 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4806}
4807
4808// Returns a matcher that matches the container size. The container must
4809// support both size() and size_type which all STL-like containers provide.
4810// Note that the parameter 'size' can be a value of type size_type as well as
4811// matcher. For instance:
4812// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
4813// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
4814template <typename SizeMatcher>
4815inline internal::SizeIsMatcher<SizeMatcher>
4816SizeIs(const SizeMatcher& size_matcher) {
4817 return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4818}
4819
4820// Returns a matcher that matches the distance between the container's begin()
4821// iterator and its end() iterator, i.e. the size of the container. This matcher
4822// can be used instead of SizeIs with containers such as std::forward_list which
4823// do not implement size(). The container must provide const_iterator (with
4824// valid iterator_traits), begin() and end().
4825template <typename DistanceMatcher>
4826inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4827BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4828 return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4829}
4830
4831// Returns a matcher that matches an equal container.
4832// This matcher behaves like Eq(), but in the event of mismatch lists the
4833// values that are included in one container but not the other. (Duplicate
4834// values and order differences are not explained.)
4835template <typename Container>
4836inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT
4837 GTEST_REMOVE_CONST_(Container)> >
4838 ContainerEq(const Container& rhs) {
4839 // This following line is for working around a bug in MSVC 8.0,
4840 // which causes Container to be a const type sometimes.
4841 typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4842 return MakePolymorphicMatcher(
4843 internal::ContainerEqMatcher<RawContainer>(rhs));
4844}
4845
4846// Returns a matcher that matches a container that, when sorted using
4847// the given comparator, matches container_matcher.
4848template <typename Comparator, typename ContainerMatcher>
4849inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4850WhenSortedBy(const Comparator& comparator,
4851 const ContainerMatcher& container_matcher) {
4852 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4853 comparator, container_matcher);
4854}
4855
4856// Returns a matcher that matches a container that, when sorted using
4857// the < operator, matches container_matcher.
4858template <typename ContainerMatcher>
4859inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4860WhenSorted(const ContainerMatcher& container_matcher) {
4861 return
4862 internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4863 internal::LessComparator(), container_matcher);
4864}
4865
4866// Matches an STL-style container or a native array that contains the
4867// same number of elements as in rhs, where its i-th element and rhs's
4868// i-th element (as a pair) satisfy the given pair matcher, for all i.
4869// TupleMatcher must be able to be safely cast to Matcher<tuple<const
4870// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4871// LHS container and the RHS container respectively.
4872template <typename TupleMatcher, typename Container>
4873inline internal::PointwiseMatcher<TupleMatcher,
4874 GTEST_REMOVE_CONST_(Container)>
4875Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4876 // This following line is for working around a bug in MSVC 8.0,
4877 // which causes Container to be a const type sometimes (e.g. when
4878 // rhs is a const int[])..
4879 typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4880 return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
4881 tuple_matcher, rhs);
4882}
4883
4884#if GTEST_HAS_STD_INITIALIZER_LIST_
4885
4886// Supports the Pointwise(m, {a, b, c}) syntax.
4887template <typename TupleMatcher, typename T>
4888inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4889 const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4890 return Pointwise(tuple_matcher, std::vector<T>(rhs));
4891}
4892
4893#endif // GTEST_HAS_STD_INITIALIZER_LIST_
4894
4895// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4896// container or a native array that contains the same number of
4897// elements as in rhs, where in some permutation of the container, its
4898// i-th element and rhs's i-th element (as a pair) satisfy the given
4899// pair matcher, for all i. Tuple2Matcher must be able to be safely
4900// cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are
4901// the types of elements in the LHS container and the RHS container
4902// respectively.
4903//
4904// This is like Pointwise(pair_matcher, rhs), except that the element
4905// order doesn't matter.
4906template <typename Tuple2Matcher, typename RhsContainer>
4907inline internal::UnorderedElementsAreArrayMatcher<
4908 typename internal::BoundSecondMatcher<
4909 Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_(
4910 RhsContainer)>::type::value_type> >
4911UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4912 const RhsContainer& rhs_container) {
4913 // This following line is for working around a bug in MSVC 8.0,
4914 // which causes RhsContainer to be a const type sometimes (e.g. when
4915 // rhs_container is a const int[]).
4916 typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer;
4917
4918 // RhsView allows the same code to handle RhsContainer being a
4919 // STL-style container and it being a native C-style array.
4920 typedef typename internal::StlContainerView<RawRhsContainer> RhsView;
4921 typedef typename RhsView::type RhsStlContainer;
4922 typedef typename RhsStlContainer::value_type Second;
4923 const RhsStlContainer& rhs_stl_container =
4924 RhsView::ConstReference(rhs_container);
4925
4926 // Create a matcher for each element in rhs_container.
4927 ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4928 for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4929 it != rhs_stl_container.end(); ++it) {
4930 matchers.push_back(
4931 internal::MatcherBindSecond(tuple2_matcher, *it));
4932 }
4933
4934 // Delegate the work to UnorderedElementsAreArray().
4935 return UnorderedElementsAreArray(matchers);
4936}
4937
4938#if GTEST_HAS_STD_INITIALIZER_LIST_
4939
4940// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4941template <typename Tuple2Matcher, typename T>
4942inline internal::UnorderedElementsAreArrayMatcher<
4943 typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4944UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4945 std::initializer_list<T> rhs) {
4946 return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4947}
4948
4949#endif // GTEST_HAS_STD_INITIALIZER_LIST_
4950
4951// Matches an STL-style container or a native array that contains at
4952// least one element matching the given value or matcher.
4953//
4954// Examples:
4955// ::std::set<int> page_ids;
4956// page_ids.insert(3);
4957// page_ids.insert(1);
4958// EXPECT_THAT(page_ids, Contains(1));
4959// EXPECT_THAT(page_ids, Contains(Gt(2)));
4960// EXPECT_THAT(page_ids, Not(Contains(4)));
4961//
4962// ::std::map<int, size_t> page_lengths;
4963// page_lengths[1] = 100;
4964// EXPECT_THAT(page_lengths,
4965// Contains(::std::pair<const int, size_t>(1, 100)));
4966//
4967// const char* user_ids[] = { "joe", "mike", "tom" };
4968// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4969template <typename M>
4970inline internal::ContainsMatcher<M> Contains(M matcher) {
4971 return internal::ContainsMatcher<M>(matcher);
4972}
4973
4974// IsSupersetOf(iterator_first, iterator_last)
4975// IsSupersetOf(pointer, count)
4976// IsSupersetOf(array)
4977// IsSupersetOf(container)
4978// IsSupersetOf({e1, e2, ..., en})
4979//
4980// IsSupersetOf() verifies that a surjective partial mapping onto a collection
4981// of matchers exists. In other words, a container matches
4982// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4983// {y1, ..., yn} of some of the container's elements where y1 matches e1,
4984// ..., and yn matches en. Obviously, the size of the container must be >= n
4985// in order to have a match. Examples:
4986//
4987// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4988// 1 matches Ne(0).
4989// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4990// both Eq(1) and Lt(2). The reason is that different matchers must be used
4991// for elements in different slots of the container.
4992// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4993// Eq(1) and (the second) 1 matches Lt(2).
4994// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4995// Gt(1) and 3 matches (the second) Gt(1).
4996//
4997// The matchers can be specified as an array, a pointer and count, a container,
4998// an initializer list, or an STL iterator range. In each of these cases, the
4999// underlying matchers can be either values or matchers.
5000
5001template <typename Iter>
5002inline internal::UnorderedElementsAreArrayMatcher<
5003 typename ::std::iterator_traits<Iter>::value_type>
5004IsSupersetOf(Iter first, Iter last) {
5005 typedef typename ::std::iterator_traits<Iter>::value_type T;
5006 return internal::UnorderedElementsAreArrayMatcher<T>(
5007 internal::UnorderedMatcherRequire::Superset, first, last);
5008}
5009
5010template <typename T>
5011inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5012 const T* pointer, size_t count) {
5013 return IsSupersetOf(pointer, pointer + count);
5014}
5015
5016template <typename T, size_t N>
5017inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5018 const T (&array)[N]) {
5019 return IsSupersetOf(array, N);
5020}
5021
5022template <typename Container>
5023inline internal::UnorderedElementsAreArrayMatcher<
5024 typename Container::value_type>
5025IsSupersetOf(const Container& container) {
5026 return IsSupersetOf(container.begin(), container.end());
5027}
5028
5029#if GTEST_HAS_STD_INITIALIZER_LIST_
5030template <typename T>
5031inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
5032 ::std::initializer_list<T> xs) {
5033 return IsSupersetOf(xs.begin(), xs.end());
5034}
5035#endif
5036
5037// IsSubsetOf(iterator_first, iterator_last)
5038// IsSubsetOf(pointer, count)
5039// IsSubsetOf(array)
5040// IsSubsetOf(container)
5041// IsSubsetOf({e1, e2, ..., en})
5042//
5043// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
5044// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
5045// only if there is a subset of matchers {m1, ..., mk} which would match the
5046// container using UnorderedElementsAre. Obviously, the size of the container
5047// must be <= n in order to have a match. Examples:
5048//
5049// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
5050// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
5051// matches Lt(0).
5052// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
5053// match Gt(0). The reason is that different matchers must be used for
5054// elements in different slots of the container.
5055//
5056// The matchers can be specified as an array, a pointer and count, a container,
5057// an initializer list, or an STL iterator range. In each of these cases, the
5058// underlying matchers can be either values or matchers.
5059
5060template <typename Iter>
5061inline internal::UnorderedElementsAreArrayMatcher<
5062 typename ::std::iterator_traits<Iter>::value_type>
5063IsSubsetOf(Iter first, Iter last) {
5064 typedef typename ::std::iterator_traits<Iter>::value_type T;
5065 return internal::UnorderedElementsAreArrayMatcher<T>(
5066 internal::UnorderedMatcherRequire::Subset, first, last);
5067}
5068
5069template <typename T>
5070inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5071 const T* pointer, size_t count) {
5072 return IsSubsetOf(pointer, pointer + count);
5073}
5074
5075template <typename T, size_t N>
5076inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5077 const T (&array)[N]) {
5078 return IsSubsetOf(array, N);
5079}
5080
5081template <typename Container>
5082inline internal::UnorderedElementsAreArrayMatcher<
5083 typename Container::value_type>
5084IsSubsetOf(const Container& container) {
5085 return IsSubsetOf(container.begin(), container.end());
5086}
5087
5088#if GTEST_HAS_STD_INITIALIZER_LIST_
5089template <typename T>
5090inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
5091 ::std::initializer_list<T> xs) {
5092 return IsSubsetOf(xs.begin(), xs.end());
5093}
5094#endif
5095
5096// Matches an STL-style container or a native array that contains only
5097// elements matching the given value or matcher.
5098//
5099// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
5100// the messages are different.
5101//
5102// Examples:
5103// ::std::set<int> page_ids;
5104// // Each(m) matches an empty container, regardless of what m is.
5105// EXPECT_THAT(page_ids, Each(Eq(1)));
5106// EXPECT_THAT(page_ids, Each(Eq(77)));
5107//
5108// page_ids.insert(3);
5109// EXPECT_THAT(page_ids, Each(Gt(0)));
5110// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
5111// page_ids.insert(1);
5112// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
5113//
5114// ::std::map<int, size_t> page_lengths;
5115// page_lengths[1] = 100;
5116// page_lengths[2] = 200;
5117// page_lengths[3] = 300;
5118// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
5119// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
5120//
5121// const char* user_ids[] = { "joe", "mike", "tom" };
5122// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
5123template <typename M>
5124inline internal::EachMatcher<M> Each(M matcher) {
5125 return internal::EachMatcher<M>(matcher);
5126}
5127
5128// Key(inner_matcher) matches an std::pair whose 'first' field matches
5129// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
5130// std::map that contains at least one element whose key is >= 5.
5131template <typename M>
5132inline internal::KeyMatcher<M> Key(M inner_matcher) {
5133 return internal::KeyMatcher<M>(inner_matcher);
5134}
5135
5136// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
5137// matches first_matcher and whose 'second' field matches second_matcher. For
5138// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
5139// to match a std::map<int, string> that contains exactly one element whose key
5140// is >= 5 and whose value equals "foo".
5141template <typename FirstMatcher, typename SecondMatcher>
5142inline internal::PairMatcher<FirstMatcher, SecondMatcher>
5143Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
5144 return internal::PairMatcher<FirstMatcher, SecondMatcher>(
5145 first_matcher, second_matcher);
5146}
5147
5148// Returns a predicate that is satisfied by anything that matches the
5149// given matcher.
5150template <typename M>
5151inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5152 return internal::MatcherAsPredicate<M>(matcher);
5153}
5154
5155// Returns true iff the value matches the matcher.
5156template <typename T, typename M>
5157inline bool Value(const T& value, M matcher) {
5158 return testing::Matches(matcher)(value);
5159}
5160
5161// Matches the value against the given matcher and explains the match
5162// result to listener.
5163template <typename T, typename M>
5164inline bool ExplainMatchResult(
5165 M matcher, const T& value, MatchResultListener* listener) {
5166 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5167}
5168
5169// Returns a string representation of the given matcher. Useful for description
5170// strings of matchers defined using MATCHER_P* macros that accept matchers as
5171// their arguments. For example:
5172//
5173// MATCHER_P(XAndYThat, matcher,
5174// "X that " + DescribeMatcher<int>(matcher, negation) +
5175// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
5176// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5177// ExplainMatchResult(matcher, arg.y(), result_listener);
5178// }
5179template <typename T, typename M>
5180std::string DescribeMatcher(const M& matcher, bool negation = false) {
5181 ::std::stringstream ss;
5182 Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5183 if (negation) {
5184 monomorphic_matcher.DescribeNegationTo(&ss);
5185 } else {
5186 monomorphic_matcher.DescribeTo(&ss);
5187 }
5188 return ss.str();
5189}
5190
5191#if GTEST_LANG_CXX11
5192// Define variadic matcher versions. They are overloaded in
5193// gmock-generated-matchers.h for the cases supported by pre C++11 compilers.
5194template <typename... Args>
5195internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5196 const Args&... matchers) {
5197 return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5198 matchers...);
5199}
5200
5201template <typename... Args>
5202internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5203 const Args&... matchers) {
5204 return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5205 matchers...);
5206}
5207
5208template <typename... Args>
5209internal::ElementsAreMatcher<tuple<typename std::decay<const Args&>::type...>>
5210ElementsAre(const Args&... matchers) {
5211 return internal::ElementsAreMatcher<
5212 tuple<typename std::decay<const Args&>::type...>>(
5213 make_tuple(matchers...));
5214}
5215
5216template <typename... Args>
5217internal::UnorderedElementsAreMatcher<
5218 tuple<typename std::decay<const Args&>::type...>>
5219UnorderedElementsAre(const Args&... matchers) {
5220 return internal::UnorderedElementsAreMatcher<
5221 tuple<typename std::decay<const Args&>::type...>>(
5222 make_tuple(matchers...));
5223}
5224
5225#endif // GTEST_LANG_CXX11
5226
5227// AllArgs(m) is a synonym of m. This is useful in
5228//
5229// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5230//
5231// which is easier to read than
5232//
5233// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5234template <typename InnerMatcher>
5235inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
5236
5237// Returns a matcher that matches the value of an optional<> type variable.
5238// The matcher implementation only uses '!arg' and requires that the optional<>
5239// type has a 'value_type' member type and that '*arg' is of type 'value_type'
5240// and is printable using 'PrintToString'. It is compatible with
5241// std::optional/std::experimental::optional.
5242// Note that to compare an optional type variable against nullopt you should
5243// use Eq(nullopt) and not Optional(Eq(nullopt)). The latter implies that the
5244// optional value contains an optional itself.
5245template <typename ValueMatcher>
5246inline internal::OptionalMatcher<ValueMatcher> Optional(
5247 const ValueMatcher& value_matcher) {
5248 return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5249}
5250
5251// Returns a matcher that matches the value of a absl::any type variable.
5252template <typename T>
5253PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
5254 const Matcher<const T&>& matcher) {
5255 return MakePolymorphicMatcher(
5256 internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5257}
5258
5259// Returns a matcher that matches the value of a variant<> type variable.
5260// The matcher implementation uses ADL to find the holds_alternative and get
5261// functions.
5262// It is compatible with std::variant.
5263template <typename T>
5264PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
5265 const Matcher<const T&>& matcher) {
5266 return MakePolymorphicMatcher(
5267 internal::variant_matcher::VariantMatcher<T>(matcher));
5268}
5269
5270// These macros allow using matchers to check values in Google Test
5271// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5272// succeed iff the value matches the matcher. If the assertion fails,
5273// the value and the description of the matcher will be printed.
5274#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
5275 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5276#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
5277 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5278
5279} // namespace testing
5280
5281GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
5282
5283// Include any custom callback matchers added by the local installation.
5284// We must include this header at the end to make sure it can use the
5285// declarations from this file.
5286#include "gmock/internal/custom/gmock-matchers.h"
5287
5288#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5289