| 1 | // Copyright 2010 the V8 project authors. All rights reserved. | 
|---|
| 2 | // Redistribution and use in source and binary forms, with or without | 
|---|
| 3 | // modification, are permitted provided that the following conditions are | 
|---|
| 4 | // met: | 
|---|
| 5 | // | 
|---|
| 6 | //     * Redistributions of source code must retain the above copyright | 
|---|
| 7 | //       notice, this list of conditions and the following disclaimer. | 
|---|
| 8 | //     * Redistributions in binary form must reproduce the above | 
|---|
| 9 | //       copyright notice, this list of conditions and the following | 
|---|
| 10 | //       disclaimer in the documentation and/or other materials provided | 
|---|
| 11 | //       with the distribution. | 
|---|
| 12 | //     * Neither the name of Google Inc. nor the names of its | 
|---|
| 13 | //       contributors may be used to endorse or promote products derived | 
|---|
| 14 | //       from this software without specific prior written permission. | 
|---|
| 15 | // | 
|---|
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|---|
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|---|
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|---|
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|---|
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|---|
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|---|
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|---|
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|---|
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|---|
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|---|
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|---|
| 27 |  | 
|---|
| 28 | #include "bignum.h" | 
|---|
| 29 | #include "utils.h" | 
|---|
| 30 |  | 
|---|
| 31 | namespace double_conversion { | 
|---|
| 32 |  | 
|---|
| 33 | Bignum::Bignum() | 
|---|
| 34 | : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { | 
|---|
| 35 | for (int i = 0; i < kBigitCapacity; ++i) { | 
|---|
| 36 | bigits_[i] = 0; | 
|---|
| 37 | } | 
|---|
| 38 | } | 
|---|
| 39 |  | 
|---|
| 40 |  | 
|---|
| 41 | template<typename S> | 
|---|
| 42 | static int BitSize(S value) { | 
|---|
| 43 | (void) value;  // Mark variable as used. | 
|---|
| 44 | return 8 * sizeof(value); | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | // Guaranteed to lie in one Bigit. | 
|---|
| 48 | void Bignum::AssignUInt16(uint16_t value) { | 
|---|
| 49 | ASSERT(kBigitSize >= BitSize(value)); | 
|---|
| 50 | Zero(); | 
|---|
| 51 | if (value == 0) return; | 
|---|
| 52 |  | 
|---|
| 53 | EnsureCapacity(1); | 
|---|
| 54 | bigits_[0] = value; | 
|---|
| 55 | used_digits_ = 1; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 |  | 
|---|
| 59 | void Bignum::AssignUInt64(uint64_t value) { | 
|---|
| 60 | const int kUInt64Size = 64; | 
|---|
| 61 |  | 
|---|
| 62 | Zero(); | 
|---|
| 63 | if (value == 0) return; | 
|---|
| 64 |  | 
|---|
| 65 | int needed_bigits = kUInt64Size / kBigitSize + 1; | 
|---|
| 66 | EnsureCapacity(needed_bigits); | 
|---|
| 67 | for (int i = 0; i < needed_bigits; ++i) { | 
|---|
| 68 | bigits_[i] = value & kBigitMask; | 
|---|
| 69 | value = value >> kBigitSize; | 
|---|
| 70 | } | 
|---|
| 71 | used_digits_ = needed_bigits; | 
|---|
| 72 | Clamp(); | 
|---|
| 73 | } | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 | void Bignum::AssignBignum(const Bignum& other) { | 
|---|
| 77 | exponent_ = other.exponent_; | 
|---|
| 78 | for (int i = 0; i < other.used_digits_; ++i) { | 
|---|
| 79 | bigits_[i] = other.bigits_[i]; | 
|---|
| 80 | } | 
|---|
| 81 | // Clear the excess digits (if there were any). | 
|---|
| 82 | for (int i = other.used_digits_; i < used_digits_; ++i) { | 
|---|
| 83 | bigits_[i] = 0; | 
|---|
| 84 | } | 
|---|
| 85 | used_digits_ = other.used_digits_; | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 |  | 
|---|
| 89 | static uint64_t ReadUInt64(Vector<const char> buffer, | 
|---|
| 90 | int from, | 
|---|
| 91 | int digits_to_read) { | 
|---|
| 92 | uint64_t result = 0; | 
|---|
| 93 | for (int i = from; i < from + digits_to_read; ++i) { | 
|---|
| 94 | int digit = buffer[i] - '0'; | 
|---|
| 95 | ASSERT(0 <= digit && digit <= 9); | 
|---|
| 96 | result = result * 10 + digit; | 
|---|
| 97 | } | 
|---|
| 98 | return result; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | void Bignum::AssignDecimalString(Vector<const char> value) { | 
|---|
| 103 | // 2^64 = 18446744073709551616 > 10^19 | 
|---|
| 104 | const int kMaxUint64DecimalDigits = 19; | 
|---|
| 105 | Zero(); | 
|---|
| 106 | int length = value.length(); | 
|---|
| 107 | int pos = 0; | 
|---|
| 108 | // Let's just say that each digit needs 4 bits. | 
|---|
| 109 | while (length >= kMaxUint64DecimalDigits) { | 
|---|
| 110 | uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); | 
|---|
| 111 | pos += kMaxUint64DecimalDigits; | 
|---|
| 112 | length -= kMaxUint64DecimalDigits; | 
|---|
| 113 | MultiplyByPowerOfTen(kMaxUint64DecimalDigits); | 
|---|
| 114 | AddUInt64(digits); | 
|---|
| 115 | } | 
|---|
| 116 | uint64_t digits = ReadUInt64(value, pos, length); | 
|---|
| 117 | MultiplyByPowerOfTen(length); | 
|---|
| 118 | AddUInt64(digits); | 
|---|
| 119 | Clamp(); | 
|---|
| 120 | } | 
|---|
| 121 |  | 
|---|
| 122 |  | 
|---|
| 123 | static int HexCharValue(char c) { | 
|---|
| 124 | if ('0' <= c && c <= '9') return c - '0'; | 
|---|
| 125 | if ('a' <= c && c <= 'f') return 10 + c - 'a'; | 
|---|
| 126 | ASSERT('A' <= c && c <= 'F'); | 
|---|
| 127 | return 10 + c - 'A'; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 |  | 
|---|
| 131 | void Bignum::AssignHexString(Vector<const char> value) { | 
|---|
| 132 | Zero(); | 
|---|
| 133 | int length = value.length(); | 
|---|
| 134 |  | 
|---|
| 135 | int needed_bigits = length * 4 / kBigitSize + 1; | 
|---|
| 136 | EnsureCapacity(needed_bigits); | 
|---|
| 137 | int string_index = length - 1; | 
|---|
| 138 | for (int i = 0; i < needed_bigits - 1; ++i) { | 
|---|
| 139 | // These bigits are guaranteed to be "full". | 
|---|
| 140 | Chunk current_bigit = 0; | 
|---|
| 141 | for (int j = 0; j < kBigitSize / 4; j++) { | 
|---|
| 142 | current_bigit += HexCharValue(value[string_index--]) << (j * 4); | 
|---|
| 143 | } | 
|---|
| 144 | bigits_[i] = current_bigit; | 
|---|
| 145 | } | 
|---|
| 146 | used_digits_ = needed_bigits - 1; | 
|---|
| 147 |  | 
|---|
| 148 | Chunk most_significant_bigit = 0;  // Could be = 0; | 
|---|
| 149 | for (int j = 0; j <= string_index; ++j) { | 
|---|
| 150 | most_significant_bigit <<= 4; | 
|---|
| 151 | most_significant_bigit += HexCharValue(value[j]); | 
|---|
| 152 | } | 
|---|
| 153 | if (most_significant_bigit != 0) { | 
|---|
| 154 | bigits_[used_digits_] = most_significant_bigit; | 
|---|
| 155 | used_digits_++; | 
|---|
| 156 | } | 
|---|
| 157 | Clamp(); | 
|---|
| 158 | } | 
|---|
| 159 |  | 
|---|
| 160 |  | 
|---|
| 161 | void Bignum::AddUInt64(uint64_t operand) { | 
|---|
| 162 | if (operand == 0) return; | 
|---|
| 163 | Bignum other; | 
|---|
| 164 | other.AssignUInt64(operand); | 
|---|
| 165 | AddBignum(other); | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 |  | 
|---|
| 169 | void Bignum::AddBignum(const Bignum& other) { | 
|---|
| 170 | ASSERT(IsClamped()); | 
|---|
| 171 | ASSERT(other.IsClamped()); | 
|---|
| 172 |  | 
|---|
| 173 | // If this has a greater exponent than other append zero-bigits to this. | 
|---|
| 174 | // After this call exponent_ <= other.exponent_. | 
|---|
| 175 | Align(other); | 
|---|
| 176 |  | 
|---|
| 177 | // There are two possibilities: | 
|---|
| 178 | //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent) | 
|---|
| 179 | //     bbbbb 00000000 | 
|---|
| 180 | //   ---------------- | 
|---|
| 181 | //   ccccccccccc 0000 | 
|---|
| 182 | // or | 
|---|
| 183 | //    aaaaaaaaaa 0000 | 
|---|
| 184 | //  bbbbbbbbb 0000000 | 
|---|
| 185 | //  ----------------- | 
|---|
| 186 | //  cccccccccccc 0000 | 
|---|
| 187 | // In both cases we might need a carry bigit. | 
|---|
| 188 |  | 
|---|
| 189 | EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); | 
|---|
| 190 | Chunk carry = 0; | 
|---|
| 191 | int bigit_pos = other.exponent_ - exponent_; | 
|---|
| 192 | ASSERT(bigit_pos >= 0); | 
|---|
| 193 | for (int i = 0; i < other.used_digits_; ++i) { | 
|---|
| 194 | Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; | 
|---|
| 195 | bigits_[bigit_pos] = sum & kBigitMask; | 
|---|
| 196 | carry = sum >> kBigitSize; | 
|---|
| 197 | bigit_pos++; | 
|---|
| 198 | } | 
|---|
| 199 |  | 
|---|
| 200 | while (carry != 0) { | 
|---|
| 201 | Chunk sum = bigits_[bigit_pos] + carry; | 
|---|
| 202 | bigits_[bigit_pos] = sum & kBigitMask; | 
|---|
| 203 | carry = sum >> kBigitSize; | 
|---|
| 204 | bigit_pos++; | 
|---|
| 205 | } | 
|---|
| 206 | used_digits_ = Max(bigit_pos, used_digits_); | 
|---|
| 207 | ASSERT(IsClamped()); | 
|---|
| 208 | } | 
|---|
| 209 |  | 
|---|
| 210 |  | 
|---|
| 211 | void Bignum::SubtractBignum(const Bignum& other) { | 
|---|
| 212 | ASSERT(IsClamped()); | 
|---|
| 213 | ASSERT(other.IsClamped()); | 
|---|
| 214 | // We require this to be bigger than other. | 
|---|
| 215 | ASSERT(LessEqual(other, *this)); | 
|---|
| 216 |  | 
|---|
| 217 | Align(other); | 
|---|
| 218 |  | 
|---|
| 219 | int offset = other.exponent_ - exponent_; | 
|---|
| 220 | Chunk borrow = 0; | 
|---|
| 221 | int i; | 
|---|
| 222 | for (i = 0; i < other.used_digits_; ++i) { | 
|---|
| 223 | ASSERT((borrow == 0) || (borrow == 1)); | 
|---|
| 224 | Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; | 
|---|
| 225 | bigits_[i + offset] = difference & kBigitMask; | 
|---|
| 226 | borrow = difference >> (kChunkSize - 1); | 
|---|
| 227 | } | 
|---|
| 228 | while (borrow != 0) { | 
|---|
| 229 | Chunk difference = bigits_[i + offset] - borrow; | 
|---|
| 230 | bigits_[i + offset] = difference & kBigitMask; | 
|---|
| 231 | borrow = difference >> (kChunkSize - 1); | 
|---|
| 232 | ++i; | 
|---|
| 233 | } | 
|---|
| 234 | Clamp(); | 
|---|
| 235 | } | 
|---|
| 236 |  | 
|---|
| 237 |  | 
|---|
| 238 | void Bignum::ShiftLeft(int shift_amount) { | 
|---|
| 239 | if (used_digits_ == 0) return; | 
|---|
| 240 | exponent_ += shift_amount / kBigitSize; | 
|---|
| 241 | int local_shift = shift_amount % kBigitSize; | 
|---|
| 242 | EnsureCapacity(used_digits_ + 1); | 
|---|
| 243 | BigitsShiftLeft(local_shift); | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 |  | 
|---|
| 247 | void Bignum::MultiplyByUInt32(uint32_t factor) { | 
|---|
| 248 | if (factor == 1) return; | 
|---|
| 249 | if (factor == 0) { | 
|---|
| 250 | Zero(); | 
|---|
| 251 | return; | 
|---|
| 252 | } | 
|---|
| 253 | if (used_digits_ == 0) return; | 
|---|
| 254 |  | 
|---|
| 255 | // The product of a bigit with the factor is of size kBigitSize + 32. | 
|---|
| 256 | // Assert that this number + 1 (for the carry) fits into double chunk. | 
|---|
| 257 | ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); | 
|---|
| 258 | DoubleChunk carry = 0; | 
|---|
| 259 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 260 | DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; | 
|---|
| 261 | bigits_[i] = static_cast<Chunk>(product & kBigitMask); | 
|---|
| 262 | carry = (product >> kBigitSize); | 
|---|
| 263 | } | 
|---|
| 264 | while (carry != 0) { | 
|---|
| 265 | EnsureCapacity(used_digits_ + 1); | 
|---|
| 266 | bigits_[used_digits_] = carry & kBigitMask; | 
|---|
| 267 | used_digits_++; | 
|---|
| 268 | carry >>= kBigitSize; | 
|---|
| 269 | } | 
|---|
| 270 | } | 
|---|
| 271 |  | 
|---|
| 272 |  | 
|---|
| 273 | void Bignum::MultiplyByUInt64(uint64_t factor) { | 
|---|
| 274 | if (factor == 1) return; | 
|---|
| 275 | if (factor == 0) { | 
|---|
| 276 | Zero(); | 
|---|
| 277 | return; | 
|---|
| 278 | } | 
|---|
| 279 | ASSERT(kBigitSize < 32); | 
|---|
| 280 | uint64_t carry = 0; | 
|---|
| 281 | uint64_t low = factor & 0xFFFFFFFF; | 
|---|
| 282 | uint64_t high = factor >> 32; | 
|---|
| 283 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 284 | uint64_t product_low = low * bigits_[i]; | 
|---|
| 285 | uint64_t product_high = high * bigits_[i]; | 
|---|
| 286 | uint64_t tmp = (carry & kBigitMask) + product_low; | 
|---|
| 287 | bigits_[i] = tmp & kBigitMask; | 
|---|
| 288 | carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + | 
|---|
| 289 | (product_high << (32 - kBigitSize)); | 
|---|
| 290 | } | 
|---|
| 291 | while (carry != 0) { | 
|---|
| 292 | EnsureCapacity(used_digits_ + 1); | 
|---|
| 293 | bigits_[used_digits_] = carry & kBigitMask; | 
|---|
| 294 | used_digits_++; | 
|---|
| 295 | carry >>= kBigitSize; | 
|---|
| 296 | } | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 |  | 
|---|
| 300 | void Bignum::MultiplyByPowerOfTen(int exponent) { | 
|---|
| 301 | const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); | 
|---|
| 302 | const uint16_t kFive1 = 5; | 
|---|
| 303 | const uint16_t kFive2 = kFive1 * 5; | 
|---|
| 304 | const uint16_t kFive3 = kFive2 * 5; | 
|---|
| 305 | const uint16_t kFive4 = kFive3 * 5; | 
|---|
| 306 | const uint16_t kFive5 = kFive4 * 5; | 
|---|
| 307 | const uint16_t kFive6 = kFive5 * 5; | 
|---|
| 308 | const uint32_t kFive7 = kFive6 * 5; | 
|---|
| 309 | const uint32_t kFive8 = kFive7 * 5; | 
|---|
| 310 | const uint32_t kFive9 = kFive8 * 5; | 
|---|
| 311 | const uint32_t kFive10 = kFive9 * 5; | 
|---|
| 312 | const uint32_t kFive11 = kFive10 * 5; | 
|---|
| 313 | const uint32_t kFive12 = kFive11 * 5; | 
|---|
| 314 | const uint32_t kFive13 = kFive12 * 5; | 
|---|
| 315 | const uint32_t kFive1_to_12[] = | 
|---|
| 316 | { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, | 
|---|
| 317 | kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; | 
|---|
| 318 |  | 
|---|
| 319 | ASSERT(exponent >= 0); | 
|---|
| 320 | if (exponent == 0) return; | 
|---|
| 321 | if (used_digits_ == 0) return; | 
|---|
| 322 |  | 
|---|
| 323 | // We shift by exponent at the end just before returning. | 
|---|
| 324 | int remaining_exponent = exponent; | 
|---|
| 325 | while (remaining_exponent >= 27) { | 
|---|
| 326 | MultiplyByUInt64(kFive27); | 
|---|
| 327 | remaining_exponent -= 27; | 
|---|
| 328 | } | 
|---|
| 329 | while (remaining_exponent >= 13) { | 
|---|
| 330 | MultiplyByUInt32(kFive13); | 
|---|
| 331 | remaining_exponent -= 13; | 
|---|
| 332 | } | 
|---|
| 333 | if (remaining_exponent > 0) { | 
|---|
| 334 | MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); | 
|---|
| 335 | } | 
|---|
| 336 | ShiftLeft(exponent); | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 |  | 
|---|
| 340 | void Bignum::Square() { | 
|---|
| 341 | ASSERT(IsClamped()); | 
|---|
| 342 | int product_length = 2 * used_digits_; | 
|---|
| 343 | EnsureCapacity(product_length); | 
|---|
| 344 |  | 
|---|
| 345 | // Comba multiplication: compute each column separately. | 
|---|
| 346 | // Example: r = a2a1a0 * b2b1b0. | 
|---|
| 347 | //    r =  1    * a0b0 + | 
|---|
| 348 | //        10    * (a1b0 + a0b1) + | 
|---|
| 349 | //        100   * (a2b0 + a1b1 + a0b2) + | 
|---|
| 350 | //        1000  * (a2b1 + a1b2) + | 
|---|
| 351 | //        10000 * a2b2 | 
|---|
| 352 | // | 
|---|
| 353 | // In the worst case we have to accumulate nb-digits products of digit*digit. | 
|---|
| 354 | // | 
|---|
| 355 | // Assert that the additional number of bits in a DoubleChunk are enough to | 
|---|
| 356 | // sum up used_digits of Bigit*Bigit. | 
|---|
| 357 | if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { | 
|---|
| 358 | UNIMPLEMENTED(); | 
|---|
| 359 | } | 
|---|
| 360 | DoubleChunk accumulator = 0; | 
|---|
| 361 | // First shift the digits so we don't overwrite them. | 
|---|
| 362 | int copy_offset = used_digits_; | 
|---|
| 363 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 364 | bigits_[copy_offset + i] = bigits_[i]; | 
|---|
| 365 | } | 
|---|
| 366 | // We have two loops to avoid some 'if's in the loop. | 
|---|
| 367 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 368 | // Process temporary digit i with power i. | 
|---|
| 369 | // The sum of the two indices must be equal to i. | 
|---|
| 370 | int bigit_index1 = i; | 
|---|
| 371 | int bigit_index2 = 0; | 
|---|
| 372 | // Sum all of the sub-products. | 
|---|
| 373 | while (bigit_index1 >= 0) { | 
|---|
| 374 | Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | 
|---|
| 375 | Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | 
|---|
| 376 | accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | 
|---|
| 377 | bigit_index1--; | 
|---|
| 378 | bigit_index2++; | 
|---|
| 379 | } | 
|---|
| 380 | bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | 
|---|
| 381 | accumulator >>= kBigitSize; | 
|---|
| 382 | } | 
|---|
| 383 | for (int i = used_digits_; i < product_length; ++i) { | 
|---|
| 384 | int bigit_index1 = used_digits_ - 1; | 
|---|
| 385 | int bigit_index2 = i - bigit_index1; | 
|---|
| 386 | // Invariant: sum of both indices is again equal to i. | 
|---|
| 387 | // Inner loop runs 0 times on last iteration, emptying accumulator. | 
|---|
| 388 | while (bigit_index2 < used_digits_) { | 
|---|
| 389 | Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | 
|---|
| 390 | Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | 
|---|
| 391 | accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | 
|---|
| 392 | bigit_index1--; | 
|---|
| 393 | bigit_index2++; | 
|---|
| 394 | } | 
|---|
| 395 | // The overwritten bigits_[i] will never be read in further loop iterations, | 
|---|
| 396 | // because bigit_index1 and bigit_index2 are always greater | 
|---|
| 397 | // than i - used_digits_. | 
|---|
| 398 | bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | 
|---|
| 399 | accumulator >>= kBigitSize; | 
|---|
| 400 | } | 
|---|
| 401 | // Since the result was guaranteed to lie inside the number the | 
|---|
| 402 | // accumulator must be 0 now. | 
|---|
| 403 | ASSERT(accumulator == 0); | 
|---|
| 404 |  | 
|---|
| 405 | // Don't forget to update the used_digits and the exponent. | 
|---|
| 406 | used_digits_ = product_length; | 
|---|
| 407 | exponent_ *= 2; | 
|---|
| 408 | Clamp(); | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 |  | 
|---|
| 412 | void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { | 
|---|
| 413 | ASSERT(base != 0); | 
|---|
| 414 | ASSERT(power_exponent >= 0); | 
|---|
| 415 | if (power_exponent == 0) { | 
|---|
| 416 | AssignUInt16(1); | 
|---|
| 417 | return; | 
|---|
| 418 | } | 
|---|
| 419 | Zero(); | 
|---|
| 420 | int shifts = 0; | 
|---|
| 421 | // We expect base to be in range 2-32, and most often to be 10. | 
|---|
| 422 | // It does not make much sense to implement different algorithms for counting | 
|---|
| 423 | // the bits. | 
|---|
| 424 | while ((base & 1) == 0) { | 
|---|
| 425 | base >>= 1; | 
|---|
| 426 | shifts++; | 
|---|
| 427 | } | 
|---|
| 428 | int bit_size = 0; | 
|---|
| 429 | int tmp_base = base; | 
|---|
| 430 | while (tmp_base != 0) { | 
|---|
| 431 | tmp_base >>= 1; | 
|---|
| 432 | bit_size++; | 
|---|
| 433 | } | 
|---|
| 434 | int final_size = bit_size * power_exponent; | 
|---|
| 435 | // 1 extra bigit for the shifting, and one for rounded final_size. | 
|---|
| 436 | EnsureCapacity(final_size / kBigitSize + 2); | 
|---|
| 437 |  | 
|---|
| 438 | // Left to Right exponentiation. | 
|---|
| 439 | int mask = 1; | 
|---|
| 440 | while (power_exponent >= mask) mask <<= 1; | 
|---|
| 441 |  | 
|---|
| 442 | // The mask is now pointing to the bit above the most significant 1-bit of | 
|---|
| 443 | // power_exponent. | 
|---|
| 444 | // Get rid of first 1-bit; | 
|---|
| 445 | mask >>= 2; | 
|---|
| 446 | uint64_t this_value = base; | 
|---|
| 447 |  | 
|---|
| 448 | bool delayed_multipliciation = false; | 
|---|
| 449 | const uint64_t max_32bits = 0xFFFFFFFF; | 
|---|
| 450 | while (mask != 0 && this_value <= max_32bits) { | 
|---|
| 451 | this_value = this_value * this_value; | 
|---|
| 452 | // Verify that there is enough space in this_value to perform the | 
|---|
| 453 | // multiplication.  The first bit_size bits must be 0. | 
|---|
| 454 | if ((power_exponent & mask) != 0) { | 
|---|
| 455 | uint64_t base_bits_mask = | 
|---|
| 456 | ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); | 
|---|
| 457 | bool high_bits_zero = (this_value & base_bits_mask) == 0; | 
|---|
| 458 | if (high_bits_zero) { | 
|---|
| 459 | this_value *= base; | 
|---|
| 460 | } else { | 
|---|
| 461 | delayed_multipliciation = true; | 
|---|
| 462 | } | 
|---|
| 463 | } | 
|---|
| 464 | mask >>= 1; | 
|---|
| 465 | } | 
|---|
| 466 | AssignUInt64(this_value); | 
|---|
| 467 | if (delayed_multipliciation) { | 
|---|
| 468 | MultiplyByUInt32(base); | 
|---|
| 469 | } | 
|---|
| 470 |  | 
|---|
| 471 | // Now do the same thing as a bignum. | 
|---|
| 472 | while (mask != 0) { | 
|---|
| 473 | Square(); | 
|---|
| 474 | if ((power_exponent & mask) != 0) { | 
|---|
| 475 | MultiplyByUInt32(base); | 
|---|
| 476 | } | 
|---|
| 477 | mask >>= 1; | 
|---|
| 478 | } | 
|---|
| 479 |  | 
|---|
| 480 | // And finally add the saved shifts. | 
|---|
| 481 | ShiftLeft(shifts * power_exponent); | 
|---|
| 482 | } | 
|---|
| 483 |  | 
|---|
| 484 |  | 
|---|
| 485 | // Precondition: this/other < 16bit. | 
|---|
| 486 | uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { | 
|---|
| 487 | ASSERT(IsClamped()); | 
|---|
| 488 | ASSERT(other.IsClamped()); | 
|---|
| 489 | ASSERT(other.used_digits_ > 0); | 
|---|
| 490 |  | 
|---|
| 491 | // Easy case: if we have less digits than the divisor than the result is 0. | 
|---|
| 492 | // Note: this handles the case where this == 0, too. | 
|---|
| 493 | if (BigitLength() < other.BigitLength()) { | 
|---|
| 494 | return 0; | 
|---|
| 495 | } | 
|---|
| 496 |  | 
|---|
| 497 | Align(other); | 
|---|
| 498 |  | 
|---|
| 499 | uint16_t result = 0; | 
|---|
| 500 |  | 
|---|
| 501 | // Start by removing multiples of 'other' until both numbers have the same | 
|---|
| 502 | // number of digits. | 
|---|
| 503 | while (BigitLength() > other.BigitLength()) { | 
|---|
| 504 | // This naive approach is extremely inefficient if `this` divided by other | 
|---|
| 505 | // is big. This function is implemented for doubleToString where | 
|---|
| 506 | // the result should be small (less than 10). | 
|---|
| 507 | ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); | 
|---|
| 508 | ASSERT(bigits_[used_digits_ - 1] < 0x10000); | 
|---|
| 509 | // Remove the multiples of the first digit. | 
|---|
| 510 | // Example this = 23 and other equals 9. -> Remove 2 multiples. | 
|---|
| 511 | result += static_cast<uint16_t>(bigits_[used_digits_ - 1]); | 
|---|
| 512 | SubtractTimes(other, bigits_[used_digits_ - 1]); | 
|---|
| 513 | } | 
|---|
| 514 |  | 
|---|
| 515 | ASSERT(BigitLength() == other.BigitLength()); | 
|---|
| 516 |  | 
|---|
| 517 | // Both bignums are at the same length now. | 
|---|
| 518 | // Since other has more than 0 digits we know that the access to | 
|---|
| 519 | // bigits_[used_digits_ - 1] is safe. | 
|---|
| 520 | Chunk this_bigit = bigits_[used_digits_ - 1]; | 
|---|
| 521 | Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; | 
|---|
| 522 |  | 
|---|
| 523 | if (other.used_digits_ == 1) { | 
|---|
| 524 | // Shortcut for easy (and common) case. | 
|---|
| 525 | int quotient = this_bigit / other_bigit; | 
|---|
| 526 | bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; | 
|---|
| 527 | ASSERT(quotient < 0x10000); | 
|---|
| 528 | result += static_cast<uint16_t>(quotient); | 
|---|
| 529 | Clamp(); | 
|---|
| 530 | return result; | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | int division_estimate = this_bigit / (other_bigit + 1); | 
|---|
| 534 | ASSERT(division_estimate < 0x10000); | 
|---|
| 535 | result += static_cast<uint16_t>(division_estimate); | 
|---|
| 536 | SubtractTimes(other, division_estimate); | 
|---|
| 537 |  | 
|---|
| 538 | if (other_bigit * (division_estimate + 1) > this_bigit) { | 
|---|
| 539 | // No need to even try to subtract. Even if other's remaining digits were 0 | 
|---|
| 540 | // another subtraction would be too much. | 
|---|
| 541 | return result; | 
|---|
| 542 | } | 
|---|
| 543 |  | 
|---|
| 544 | while (LessEqual(other, *this)) { | 
|---|
| 545 | SubtractBignum(other); | 
|---|
| 546 | result++; | 
|---|
| 547 | } | 
|---|
| 548 | return result; | 
|---|
| 549 | } | 
|---|
| 550 |  | 
|---|
| 551 |  | 
|---|
| 552 | template<typename S> | 
|---|
| 553 | static int SizeInHexChars(S number) { | 
|---|
| 554 | ASSERT(number > 0); | 
|---|
| 555 | int result = 0; | 
|---|
| 556 | while (number != 0) { | 
|---|
| 557 | number >>= 4; | 
|---|
| 558 | result++; | 
|---|
| 559 | } | 
|---|
| 560 | return result; | 
|---|
| 561 | } | 
|---|
| 562 |  | 
|---|
| 563 |  | 
|---|
| 564 | static char HexCharOfValue(int value) { | 
|---|
| 565 | ASSERT(0 <= value && value <= 16); | 
|---|
| 566 | if (value < 10) return static_cast<char>(value + '0'); | 
|---|
| 567 | return static_cast<char>(value - 10 + 'A'); | 
|---|
| 568 | } | 
|---|
| 569 |  | 
|---|
| 570 |  | 
|---|
| 571 | bool Bignum::ToHexString(char* buffer, int buffer_size) const { | 
|---|
| 572 | ASSERT(IsClamped()); | 
|---|
| 573 | // Each bigit must be printable as separate hex-character. | 
|---|
| 574 | ASSERT(kBigitSize % 4 == 0); | 
|---|
| 575 | const int kHexCharsPerBigit = kBigitSize / 4; | 
|---|
| 576 |  | 
|---|
| 577 | if (used_digits_ == 0) { | 
|---|
| 578 | if (buffer_size < 2) return false; | 
|---|
| 579 | buffer[0] = '0'; | 
|---|
| 580 | buffer[1] = '\0'; | 
|---|
| 581 | return true; | 
|---|
| 582 | } | 
|---|
| 583 | // We add 1 for the terminating '\0' character. | 
|---|
| 584 | int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + | 
|---|
| 585 | SizeInHexChars(bigits_[used_digits_ - 1]) + 1; | 
|---|
| 586 | if (needed_chars > buffer_size) return false; | 
|---|
| 587 | int string_index = needed_chars - 1; | 
|---|
| 588 | buffer[string_index--] = '\0'; | 
|---|
| 589 | for (int i = 0; i < exponent_; ++i) { | 
|---|
| 590 | for (int j = 0; j < kHexCharsPerBigit; ++j) { | 
|---|
| 591 | buffer[string_index--] = '0'; | 
|---|
| 592 | } | 
|---|
| 593 | } | 
|---|
| 594 | for (int i = 0; i < used_digits_ - 1; ++i) { | 
|---|
| 595 | Chunk current_bigit = bigits_[i]; | 
|---|
| 596 | for (int j = 0; j < kHexCharsPerBigit; ++j) { | 
|---|
| 597 | buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); | 
|---|
| 598 | current_bigit >>= 4; | 
|---|
| 599 | } | 
|---|
| 600 | } | 
|---|
| 601 | // And finally the last bigit. | 
|---|
| 602 | Chunk most_significant_bigit = bigits_[used_digits_ - 1]; | 
|---|
| 603 | while (most_significant_bigit != 0) { | 
|---|
| 604 | buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); | 
|---|
| 605 | most_significant_bigit >>= 4; | 
|---|
| 606 | } | 
|---|
| 607 | return true; | 
|---|
| 608 | } | 
|---|
| 609 |  | 
|---|
| 610 |  | 
|---|
| 611 | Bignum::Chunk Bignum::BigitAt(int index) const { | 
|---|
| 612 | if (index >= BigitLength()) return 0; | 
|---|
| 613 | if (index < exponent_) return 0; | 
|---|
| 614 | return bigits_[index - exponent_]; | 
|---|
| 615 | } | 
|---|
| 616 |  | 
|---|
| 617 |  | 
|---|
| 618 | int Bignum::Compare(const Bignum& a, const Bignum& b) { | 
|---|
| 619 | ASSERT(a.IsClamped()); | 
|---|
| 620 | ASSERT(b.IsClamped()); | 
|---|
| 621 | int bigit_length_a = a.BigitLength(); | 
|---|
| 622 | int bigit_length_b = b.BigitLength(); | 
|---|
| 623 | if (bigit_length_a < bigit_length_b) return -1; | 
|---|
| 624 | if (bigit_length_a > bigit_length_b) return +1; | 
|---|
| 625 | for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { | 
|---|
| 626 | Chunk bigit_a = a.BigitAt(i); | 
|---|
| 627 | Chunk bigit_b = b.BigitAt(i); | 
|---|
| 628 | if (bigit_a < bigit_b) return -1; | 
|---|
| 629 | if (bigit_a > bigit_b) return +1; | 
|---|
| 630 | // Otherwise they are equal up to this digit. Try the next digit. | 
|---|
| 631 | } | 
|---|
| 632 | return 0; | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 |  | 
|---|
| 636 | int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { | 
|---|
| 637 | ASSERT(a.IsClamped()); | 
|---|
| 638 | ASSERT(b.IsClamped()); | 
|---|
| 639 | ASSERT(c.IsClamped()); | 
|---|
| 640 | if (a.BigitLength() < b.BigitLength()) { | 
|---|
| 641 | return PlusCompare(b, a, c); | 
|---|
| 642 | } | 
|---|
| 643 | if (a.BigitLength() + 1 < c.BigitLength()) return -1; | 
|---|
| 644 | if (a.BigitLength() > c.BigitLength()) return +1; | 
|---|
| 645 | // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than | 
|---|
| 646 | // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one | 
|---|
| 647 | // of 'a'. | 
|---|
| 648 | if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { | 
|---|
| 649 | return -1; | 
|---|
| 650 | } | 
|---|
| 651 |  | 
|---|
| 652 | Chunk borrow = 0; | 
|---|
| 653 | // Starting at min_exponent all digits are == 0. So no need to compare them. | 
|---|
| 654 | int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); | 
|---|
| 655 | for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { | 
|---|
| 656 | Chunk chunk_a = a.BigitAt(i); | 
|---|
| 657 | Chunk chunk_b = b.BigitAt(i); | 
|---|
| 658 | Chunk chunk_c = c.BigitAt(i); | 
|---|
| 659 | Chunk sum = chunk_a + chunk_b; | 
|---|
| 660 | if (sum > chunk_c + borrow) { | 
|---|
| 661 | return +1; | 
|---|
| 662 | } else { | 
|---|
| 663 | borrow = chunk_c + borrow - sum; | 
|---|
| 664 | if (borrow > 1) return -1; | 
|---|
| 665 | borrow <<= kBigitSize; | 
|---|
| 666 | } | 
|---|
| 667 | } | 
|---|
| 668 | if (borrow == 0) return 0; | 
|---|
| 669 | return -1; | 
|---|
| 670 | } | 
|---|
| 671 |  | 
|---|
| 672 |  | 
|---|
| 673 | void Bignum::Clamp() { | 
|---|
| 674 | while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { | 
|---|
| 675 | used_digits_--; | 
|---|
| 676 | } | 
|---|
| 677 | if (used_digits_ == 0) { | 
|---|
| 678 | // Zero. | 
|---|
| 679 | exponent_ = 0; | 
|---|
| 680 | } | 
|---|
| 681 | } | 
|---|
| 682 |  | 
|---|
| 683 |  | 
|---|
| 684 | bool Bignum::IsClamped() const { | 
|---|
| 685 | return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; | 
|---|
| 686 | } | 
|---|
| 687 |  | 
|---|
| 688 |  | 
|---|
| 689 | void Bignum::Zero() { | 
|---|
| 690 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 691 | bigits_[i] = 0; | 
|---|
| 692 | } | 
|---|
| 693 | used_digits_ = 0; | 
|---|
| 694 | exponent_ = 0; | 
|---|
| 695 | } | 
|---|
| 696 |  | 
|---|
| 697 |  | 
|---|
| 698 | void Bignum::Align(const Bignum& other) { | 
|---|
| 699 | if (exponent_ > other.exponent_) { | 
|---|
| 700 | // If "X" represents a "hidden" digit (by the exponent) then we are in the | 
|---|
| 701 | // following case (a == this, b == other): | 
|---|
| 702 | // a:  aaaaaaXXXX   or a:   aaaaaXXX | 
|---|
| 703 | // b:     bbbbbbX      b: bbbbbbbbXX | 
|---|
| 704 | // We replace some of the hidden digits (X) of a with 0 digits. | 
|---|
| 705 | // a:  aaaaaa000X   or a:   aaaaa0XX | 
|---|
| 706 | int zero_digits = exponent_ - other.exponent_; | 
|---|
| 707 | EnsureCapacity(used_digits_ + zero_digits); | 
|---|
| 708 | for (int i = used_digits_ - 1; i >= 0; --i) { | 
|---|
| 709 | bigits_[i + zero_digits] = bigits_[i]; | 
|---|
| 710 | } | 
|---|
| 711 | for (int i = 0; i < zero_digits; ++i) { | 
|---|
| 712 | bigits_[i] = 0; | 
|---|
| 713 | } | 
|---|
| 714 | used_digits_ += zero_digits; | 
|---|
| 715 | exponent_ -= zero_digits; | 
|---|
| 716 | ASSERT(used_digits_ >= 0); | 
|---|
| 717 | ASSERT(exponent_ >= 0); | 
|---|
| 718 | } | 
|---|
| 719 | } | 
|---|
| 720 |  | 
|---|
| 721 |  | 
|---|
| 722 | void Bignum::BigitsShiftLeft(int shift_amount) { | 
|---|
| 723 | ASSERT(shift_amount < kBigitSize); | 
|---|
| 724 | ASSERT(shift_amount >= 0); | 
|---|
| 725 | Chunk carry = 0; | 
|---|
| 726 | for (int i = 0; i < used_digits_; ++i) { | 
|---|
| 727 | Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); | 
|---|
| 728 | bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; | 
|---|
| 729 | carry = new_carry; | 
|---|
| 730 | } | 
|---|
| 731 | if (carry != 0) { | 
|---|
| 732 | bigits_[used_digits_] = carry; | 
|---|
| 733 | used_digits_++; | 
|---|
| 734 | } | 
|---|
| 735 | } | 
|---|
| 736 |  | 
|---|
| 737 |  | 
|---|
| 738 | void Bignum::SubtractTimes(const Bignum& other, int factor) { | 
|---|
| 739 | ASSERT(exponent_ <= other.exponent_); | 
|---|
| 740 | if (factor < 3) { | 
|---|
| 741 | for (int i = 0; i < factor; ++i) { | 
|---|
| 742 | SubtractBignum(other); | 
|---|
| 743 | } | 
|---|
| 744 | return; | 
|---|
| 745 | } | 
|---|
| 746 | Chunk borrow = 0; | 
|---|
| 747 | int exponent_diff = other.exponent_ - exponent_; | 
|---|
| 748 | for (int i = 0; i < other.used_digits_; ++i) { | 
|---|
| 749 | DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; | 
|---|
| 750 | DoubleChunk remove = borrow + product; | 
|---|
| 751 | Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); | 
|---|
| 752 | bigits_[i + exponent_diff] = difference & kBigitMask; | 
|---|
| 753 | borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + | 
|---|
| 754 | (remove >> kBigitSize)); | 
|---|
| 755 | } | 
|---|
| 756 | for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { | 
|---|
| 757 | if (borrow == 0) return; | 
|---|
| 758 | Chunk difference = bigits_[i] - borrow; | 
|---|
| 759 | bigits_[i] = difference & kBigitMask; | 
|---|
| 760 | borrow = difference >> (kChunkSize - 1); | 
|---|
| 761 | } | 
|---|
| 762 | Clamp(); | 
|---|
| 763 | } | 
|---|
| 764 |  | 
|---|
| 765 |  | 
|---|
| 766 | }  // namespace double_conversion | 
|---|
| 767 |  | 
|---|