1 | /* deflate.c -- compress data using the deflation algorithm |
2 | * Copyright (C) 1995-2005 Jean-loup Gailly. |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | * ALGORITHM |
8 | * |
9 | * The "deflation" process depends on being able to identify portions |
10 | * of the input text which are identical to earlier input (within a |
11 | * sliding window trailing behind the input currently being processed). |
12 | * |
13 | * The most straightforward technique turns out to be the fastest for |
14 | * most input files: try all possible matches and select the longest. |
15 | * The key feature of this algorithm is that insertions into the string |
16 | * dictionary are very simple and thus fast, and deletions are avoided |
17 | * completely. Insertions are performed at each input character, whereas |
18 | * string matches are performed only when the previous match ends. So it |
19 | * is preferable to spend more time in matches to allow very fast string |
20 | * insertions and avoid deletions. The matching algorithm for small |
21 | * strings is inspired from that of Rabin & Karp. A brute force approach |
22 | * is used to find longer strings when a small match has been found. |
23 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze |
24 | * (by Leonid Broukhis). |
25 | * A previous version of this file used a more sophisticated algorithm |
26 | * (by Fiala and Greene) which is guaranteed to run in linear amortized |
27 | * time, but has a larger average cost, uses more memory and is patented. |
28 | * However the F&G algorithm may be faster for some highly redundant |
29 | * files if the parameter max_chain_length (described below) is too large. |
30 | * |
31 | * ACKNOWLEDGEMENTS |
32 | * |
33 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and |
34 | * I found it in 'freeze' written by Leonid Broukhis. |
35 | * Thanks to many people for bug reports and testing. |
36 | * |
37 | * REFERENCES |
38 | * |
39 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". |
40 | * Available in http://www.ietf.org/rfc/rfc1951.txt |
41 | * |
42 | * A description of the Rabin and Karp algorithm is given in the book |
43 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. |
44 | * |
45 | * Fiala,E.R., and Greene,D.H. |
46 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 |
47 | * |
48 | */ |
49 | |
50 | /* @(#) $Id: //poco/Main/Foundation/src/deflate.c#8 $ */ |
51 | |
52 | #include "deflate.h" |
53 | |
54 | const char deflate_copyright[] = |
55 | " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly " ; |
56 | /* |
57 | If you use the zlib library in a product, an acknowledgment is welcome |
58 | in the documentation of your product. If for some reason you cannot |
59 | include such an acknowledgment, I would appreciate that you keep this |
60 | copyright string in the executable of your product. |
61 | */ |
62 | |
63 | /* =========================================================================== |
64 | * Function prototypes. |
65 | */ |
66 | typedef enum { |
67 | need_more, /* block not completed, need more input or more output */ |
68 | block_done, /* block flush performed */ |
69 | finish_started, /* finish started, need only more output at next deflate */ |
70 | finish_done /* finish done, accept no more input or output */ |
71 | } block_state; |
72 | |
73 | typedef block_state (*compress_func) OF((deflate_state *s, int flush)); |
74 | /* Compression function. Returns the block state after the call. */ |
75 | |
76 | local void fill_window OF((deflate_state *s)); |
77 | local block_state deflate_stored OF((deflate_state *s, int flush)); |
78 | local block_state deflate_fast OF((deflate_state *s, int flush)); |
79 | #ifndef FASTEST |
80 | local block_state deflate_slow OF((deflate_state *s, int flush)); |
81 | #endif |
82 | local void lm_init OF((deflate_state *s)); |
83 | local void putShortMSB OF((deflate_state *s, uInt b)); |
84 | local void flush_pending OF((z_streamp strm)); |
85 | local int read_buf OF((z_streamp strm, Bytef *buf, unsigned size)); |
86 | #ifndef FASTEST |
87 | #ifdef ASMV |
88 | void match_init OF((void)); /* asm code initialization */ |
89 | uInt longest_match OF((deflate_state *s, IPos cur_match)); |
90 | #else |
91 | local uInt longest_match OF((deflate_state *s, IPos cur_match)); |
92 | #endif |
93 | #endif |
94 | local uInt longest_match_fast OF((deflate_state *s, IPos cur_match)); |
95 | |
96 | #ifdef ZLIB_DEBUG |
97 | local void check_match OF((deflate_state *s, IPos start, IPos match, |
98 | int length)); |
99 | #endif |
100 | |
101 | /* =========================================================================== |
102 | * Local data |
103 | */ |
104 | |
105 | #define NIL 0 |
106 | /* Tail of hash chains */ |
107 | |
108 | #ifndef TOO_FAR |
109 | # define TOO_FAR 4096 |
110 | #endif |
111 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ |
112 | |
113 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) |
114 | /* Minimum amount of lookahead, except at the end of the input file. |
115 | * See deflate.c for comments about the MIN_MATCH+1. |
116 | */ |
117 | |
118 | /* Values for max_lazy_match, good_match and max_chain_length, depending on |
119 | * the desired pack level (0..9). The values given below have been tuned to |
120 | * exclude worst case performance for pathological files. Better values may be |
121 | * found for specific files. |
122 | */ |
123 | typedef struct config_s { |
124 | ush good_length; /* reduce lazy search above this match length */ |
125 | ush max_lazy; /* do not perform lazy search above this match length */ |
126 | ush nice_length; /* quit search above this match length */ |
127 | ush max_chain; |
128 | compress_func func; |
129 | } config; |
130 | |
131 | #ifdef FASTEST |
132 | local const config configuration_table[2] = { |
133 | /* good lazy nice chain */ |
134 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
135 | /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ |
136 | #else |
137 | local const config configuration_table[10] = { |
138 | /* good lazy nice chain */ |
139 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ |
140 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ |
141 | /* 2 */ {4, 5, 16, 8, deflate_fast}, |
142 | /* 3 */ {4, 6, 32, 32, deflate_fast}, |
143 | |
144 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ |
145 | /* 5 */ {8, 16, 32, 32, deflate_slow}, |
146 | /* 6 */ {8, 16, 128, 128, deflate_slow}, |
147 | /* 7 */ {8, 32, 128, 256, deflate_slow}, |
148 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, |
149 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ |
150 | #endif |
151 | |
152 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 |
153 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different |
154 | * meaning. |
155 | */ |
156 | |
157 | #define EQUAL 0 |
158 | /* result of memcmp for equal strings */ |
159 | |
160 | #ifndef NO_DUMMY_DECL |
161 | struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ |
162 | #endif |
163 | |
164 | /* =========================================================================== |
165 | * Update a hash value with the given input byte |
166 | * IN assertion: all calls to to UPDATE_HASH are made with consecutive |
167 | * input characters, so that a running hash key can be computed from the |
168 | * previous key instead of complete recalculation each time. |
169 | */ |
170 | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) |
171 | |
172 | |
173 | /* =========================================================================== |
174 | * Insert string str in the dictionary and set match_head to the previous head |
175 | * of the hash chain (the most recent string with same hash key). Return |
176 | * the previous length of the hash chain. |
177 | * If this file is compiled with -DFASTEST, the compression level is forced |
178 | * to 1, and no hash chains are maintained. |
179 | * IN assertion: all calls to to INSERT_STRING are made with consecutive |
180 | * input characters and the first MIN_MATCH bytes of str are valid |
181 | * (except for the last MIN_MATCH-1 bytes of the input file). |
182 | */ |
183 | #ifdef FASTEST |
184 | #define INSERT_STRING(s, str, match_head) \ |
185 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
186 | match_head = s->head[s->ins_h], \ |
187 | s->head[s->ins_h] = (Pos)(str)) |
188 | #else |
189 | #define INSERT_STRING(s, str, match_head) \ |
190 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ |
191 | match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ |
192 | s->head[s->ins_h] = (Pos)(str)) |
193 | #endif |
194 | |
195 | /* =========================================================================== |
196 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). |
197 | * prev[] will be initialized on the fly. |
198 | */ |
199 | #define CLEAR_HASH(s) \ |
200 | s->head[s->hash_size-1] = NIL; \ |
201 | zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); |
202 | |
203 | /* ========================================================================= */ |
204 | int ZEXPORT deflateInit_(strm, level, version, stream_size) |
205 | z_streamp strm; |
206 | int level; |
207 | const char *version; |
208 | int stream_size; |
209 | { |
210 | return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, |
211 | Z_DEFAULT_STRATEGY, version, stream_size); |
212 | /* To do: ignore strm->next_in if we use it as window */ |
213 | } |
214 | |
215 | /* ========================================================================= */ |
216 | int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy, |
217 | version, stream_size) |
218 | z_streamp strm; |
219 | int level; |
220 | int method; |
221 | int windowBits; |
222 | int memLevel; |
223 | int strategy; |
224 | const char *version; |
225 | int stream_size; |
226 | { |
227 | deflate_state *s; |
228 | int wrap = 1; |
229 | static const char my_version[] = ZLIB_VERSION; |
230 | |
231 | ushf *overlay; |
232 | /* We overlay pending_buf and d_buf+l_buf. This works since the average |
233 | * output size for (length,distance) codes is <= 24 bits. |
234 | */ |
235 | |
236 | if (version == Z_NULL || version[0] != my_version[0] || |
237 | stream_size != sizeof(z_stream)) { |
238 | return Z_VERSION_ERROR; |
239 | } |
240 | if (strm == Z_NULL) return Z_STREAM_ERROR; |
241 | |
242 | strm->msg = Z_NULL; |
243 | if (strm->zalloc == (alloc_func)0) { |
244 | strm->zalloc = zcalloc; |
245 | strm->opaque = (voidpf)0; |
246 | } |
247 | if (strm->zfree == (free_func)0) strm->zfree = zcfree; |
248 | |
249 | #ifdef FASTEST |
250 | if (level != 0) level = 1; |
251 | #else |
252 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
253 | #endif |
254 | |
255 | if (windowBits < 0) { /* suppress zlib wrapper */ |
256 | wrap = 0; |
257 | windowBits = -windowBits; |
258 | } |
259 | #ifdef GZIP |
260 | else if (windowBits > 15) { |
261 | wrap = 2; /* write gzip wrapper instead */ |
262 | windowBits -= 16; |
263 | } |
264 | #endif |
265 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || |
266 | windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || |
267 | strategy < 0 || strategy > Z_FIXED) { |
268 | return Z_STREAM_ERROR; |
269 | } |
270 | if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ |
271 | s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); |
272 | if (s == Z_NULL) return Z_MEM_ERROR; |
273 | strm->state = (struct internal_state FAR *)s; |
274 | s->strm = strm; |
275 | |
276 | s->wrap = wrap; |
277 | s->gzhead = Z_NULL; |
278 | s->w_bits = windowBits; |
279 | s->w_size = 1 << s->w_bits; |
280 | s->w_mask = s->w_size - 1; |
281 | |
282 | s->hash_bits = memLevel + 7; |
283 | s->hash_size = 1 << s->hash_bits; |
284 | s->hash_mask = s->hash_size - 1; |
285 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); |
286 | |
287 | s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); |
288 | s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); |
289 | s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); |
290 | |
291 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ |
292 | |
293 | overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2); |
294 | s->pending_buf = (uchf *) overlay; |
295 | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); |
296 | |
297 | if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || |
298 | s->pending_buf == Z_NULL) { |
299 | s->status = FINISH_STATE; |
300 | strm->msg = (char*)ERR_MSG(Z_MEM_ERROR); |
301 | deflateEnd (strm); |
302 | return Z_MEM_ERROR; |
303 | } |
304 | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); |
305 | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; |
306 | |
307 | s->level = level; |
308 | s->strategy = strategy; |
309 | s->method = (Byte)method; |
310 | |
311 | return deflateReset(strm); |
312 | } |
313 | |
314 | /* ========================================================================= */ |
315 | int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength) |
316 | z_streamp strm; |
317 | const Bytef *dictionary; |
318 | uInt dictLength; |
319 | { |
320 | deflate_state *s; |
321 | uInt length = dictLength; |
322 | uInt n; |
323 | IPos hash_head = 0; |
324 | |
325 | if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL || |
326 | strm->state->wrap == 2 || |
327 | (strm->state->wrap == 1 && strm->state->status != INIT_STATE)) |
328 | return Z_STREAM_ERROR; |
329 | |
330 | s = strm->state; |
331 | if (s->wrap) |
332 | strm->adler = adler32(strm->adler, dictionary, dictLength); |
333 | |
334 | if (length < MIN_MATCH) return Z_OK; |
335 | if (length > MAX_DIST(s)) { |
336 | length = MAX_DIST(s); |
337 | dictionary += dictLength - length; /* use the tail of the dictionary */ |
338 | } |
339 | zmemcpy(s->window, dictionary, length); |
340 | s->strstart = length; |
341 | s->block_start = (long)length; |
342 | |
343 | /* Insert all strings in the hash table (except for the last two bytes). |
344 | * s->lookahead stays null, so s->ins_h will be recomputed at the next |
345 | * call of fill_window. |
346 | */ |
347 | s->ins_h = s->window[0]; |
348 | UPDATE_HASH(s, s->ins_h, s->window[1]); |
349 | for (n = 0; n <= length - MIN_MATCH; n++) { |
350 | INSERT_STRING(s, n, hash_head); |
351 | } |
352 | if (hash_head) hash_head = 0; /* to make compiler happy */ |
353 | return Z_OK; |
354 | } |
355 | |
356 | /* ========================================================================= */ |
357 | int ZEXPORT deflateReset (strm) |
358 | z_streamp strm; |
359 | { |
360 | deflate_state *s; |
361 | |
362 | if (strm == Z_NULL || strm->state == Z_NULL || |
363 | strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) { |
364 | return Z_STREAM_ERROR; |
365 | } |
366 | |
367 | strm->total_in = strm->total_out = 0; |
368 | strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ |
369 | strm->data_type = Z_UNKNOWN; |
370 | |
371 | s = (deflate_state *)strm->state; |
372 | s->pending = 0; |
373 | s->pending_out = s->pending_buf; |
374 | |
375 | if (s->wrap < 0) { |
376 | s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ |
377 | } |
378 | s->status = s->wrap ? INIT_STATE : BUSY_STATE; |
379 | strm->adler = |
380 | #ifdef GZIP |
381 | s->wrap == 2 ? crc32(0L, Z_NULL, 0) : |
382 | #endif |
383 | adler32(0L, Z_NULL, 0); |
384 | s->last_flush = Z_NO_FLUSH; |
385 | |
386 | _tr_init(s); |
387 | lm_init(s); |
388 | |
389 | return Z_OK; |
390 | } |
391 | |
392 | /* ========================================================================= */ |
393 | int ZEXPORT (strm, head) |
394 | z_streamp strm; |
395 | gz_headerp head; |
396 | { |
397 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
398 | if (strm->state->wrap != 2) return Z_STREAM_ERROR; |
399 | strm->state->gzhead = head; |
400 | return Z_OK; |
401 | } |
402 | |
403 | /* ========================================================================= */ |
404 | int ZEXPORT deflatePrime (strm, bits, value) |
405 | z_streamp strm; |
406 | int bits; |
407 | int value; |
408 | { |
409 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
410 | strm->state->bi_valid = bits; |
411 | strm->state->bi_buf = (ush)(value & ((1 << bits) - 1)); |
412 | return Z_OK; |
413 | } |
414 | |
415 | /* ========================================================================= */ |
416 | int ZEXPORT deflateParams(strm, level, strategy) |
417 | z_streamp strm; |
418 | int level; |
419 | int strategy; |
420 | { |
421 | deflate_state *s; |
422 | compress_func func; |
423 | int err = Z_OK; |
424 | |
425 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
426 | s = strm->state; |
427 | |
428 | #ifdef FASTEST |
429 | if (level != 0) level = 1; |
430 | #else |
431 | if (level == Z_DEFAULT_COMPRESSION) level = 6; |
432 | #endif |
433 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { |
434 | return Z_STREAM_ERROR; |
435 | } |
436 | func = configuration_table[s->level].func; |
437 | |
438 | if (func != configuration_table[level].func && strm->total_in != 0) { |
439 | /* Flush the last buffer: */ |
440 | err = deflate(strm, Z_PARTIAL_FLUSH); |
441 | } |
442 | if (s->level != level) { |
443 | s->level = level; |
444 | s->max_lazy_match = configuration_table[level].max_lazy; |
445 | s->good_match = configuration_table[level].good_length; |
446 | s->nice_match = configuration_table[level].nice_length; |
447 | s->max_chain_length = configuration_table[level].max_chain; |
448 | } |
449 | s->strategy = strategy; |
450 | return err; |
451 | } |
452 | |
453 | /* ========================================================================= */ |
454 | int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain) |
455 | z_streamp strm; |
456 | int good_length; |
457 | int max_lazy; |
458 | int nice_length; |
459 | int max_chain; |
460 | { |
461 | deflate_state *s; |
462 | |
463 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
464 | s = strm->state; |
465 | s->good_match = good_length; |
466 | s->max_lazy_match = max_lazy; |
467 | s->nice_match = nice_length; |
468 | s->max_chain_length = max_chain; |
469 | return Z_OK; |
470 | } |
471 | |
472 | /* ========================================================================= |
473 | * For the default windowBits of 15 and memLevel of 8, this function returns |
474 | * a close to exact, as well as small, upper bound on the compressed size. |
475 | * They are coded as constants here for a reason--if the #define's are |
476 | * changed, then this function needs to be changed as well. The return |
477 | * value for 15 and 8 only works for those exact settings. |
478 | * |
479 | * For any setting other than those defaults for windowBits and memLevel, |
480 | * the value returned is a conservative worst case for the maximum expansion |
481 | * resulting from using fixed blocks instead of stored blocks, which deflate |
482 | * can emit on compressed data for some combinations of the parameters. |
483 | * |
484 | * This function could be more sophisticated to provide closer upper bounds |
485 | * for every combination of windowBits and memLevel, as well as wrap. |
486 | * But even the conservative upper bound of about 14% expansion does not |
487 | * seem onerous for output buffer allocation. |
488 | */ |
489 | uLong ZEXPORT deflateBound(strm, sourceLen) |
490 | z_streamp strm; |
491 | uLong sourceLen; |
492 | { |
493 | deflate_state *s; |
494 | uLong destLen; |
495 | |
496 | /* conservative upper bound */ |
497 | destLen = sourceLen + |
498 | ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11; |
499 | |
500 | /* if can't get parameters, return conservative bound */ |
501 | if (strm == Z_NULL || strm->state == Z_NULL) |
502 | return destLen; |
503 | |
504 | /* if not default parameters, return conservative bound */ |
505 | s = strm->state; |
506 | if (s->w_bits != 15 || s->hash_bits != 8 + 7) |
507 | return destLen; |
508 | |
509 | /* default settings: return tight bound for that case */ |
510 | return compressBound(sourceLen); |
511 | } |
512 | |
513 | /* ========================================================================= |
514 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. |
515 | * IN assertion: the stream state is correct and there is enough room in |
516 | * pending_buf. |
517 | */ |
518 | local void putShortMSB (s, b) |
519 | deflate_state *s; |
520 | uInt b; |
521 | { |
522 | put_byte(s, (Byte)(b >> 8)); |
523 | put_byte(s, (Byte)(b & 0xff)); |
524 | } |
525 | |
526 | /* ========================================================================= |
527 | * Flush as much pending output as possible. All deflate() output goes |
528 | * through this function so some applications may wish to modify it |
529 | * to avoid allocating a large strm->next_out buffer and copying into it. |
530 | * (See also read_buf()). |
531 | */ |
532 | local void flush_pending(strm) |
533 | z_streamp strm; |
534 | { |
535 | unsigned len = strm->state->pending; |
536 | |
537 | if (len > strm->avail_out) len = strm->avail_out; |
538 | if (len == 0) return; |
539 | |
540 | zmemcpy(strm->next_out, strm->state->pending_out, len); |
541 | strm->next_out += len; |
542 | strm->state->pending_out += len; |
543 | strm->total_out += len; |
544 | strm->avail_out -= len; |
545 | strm->state->pending -= len; |
546 | if (strm->state->pending == 0) { |
547 | strm->state->pending_out = strm->state->pending_buf; |
548 | } |
549 | } |
550 | |
551 | /* ========================================================================= */ |
552 | int ZEXPORT deflate (strm, flush) |
553 | z_streamp strm; |
554 | int flush; |
555 | { |
556 | int old_flush; /* value of flush param for previous deflate call */ |
557 | deflate_state *s; |
558 | |
559 | if (strm == Z_NULL || strm->state == Z_NULL || |
560 | flush > Z_FINISH || flush < 0) { |
561 | return Z_STREAM_ERROR; |
562 | } |
563 | s = strm->state; |
564 | |
565 | if (strm->next_out == Z_NULL || |
566 | (strm->next_in == Z_NULL && strm->avail_in != 0) || |
567 | (s->status == FINISH_STATE && flush != Z_FINISH)) { |
568 | ERR_RETURN(strm, Z_STREAM_ERROR); |
569 | } |
570 | if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); |
571 | |
572 | s->strm = strm; /* just in case */ |
573 | old_flush = s->last_flush; |
574 | s->last_flush = flush; |
575 | |
576 | /* Write the header */ |
577 | if (s->status == INIT_STATE) { |
578 | #ifdef GZIP |
579 | if (s->wrap == 2) { |
580 | strm->adler = crc32(0L, Z_NULL, 0); |
581 | put_byte(s, 31); |
582 | put_byte(s, 139); |
583 | put_byte(s, 8); |
584 | if (s->gzhead == NULL) { |
585 | put_byte(s, 0); |
586 | put_byte(s, 0); |
587 | put_byte(s, 0); |
588 | put_byte(s, 0); |
589 | put_byte(s, 0); |
590 | put_byte(s, s->level == 9 ? 2 : |
591 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
592 | 4 : 0)); |
593 | put_byte(s, OS_CODE); |
594 | s->status = BUSY_STATE; |
595 | } |
596 | else { |
597 | put_byte(s, (s->gzhead->text ? 1 : 0) + |
598 | (s->gzhead->hcrc ? 2 : 0) + |
599 | (s->gzhead->extra == Z_NULL ? 0 : 4) + |
600 | (s->gzhead->name == Z_NULL ? 0 : 8) + |
601 | (s->gzhead->comment == Z_NULL ? 0 : 16) |
602 | ); |
603 | put_byte(s, (Byte)(s->gzhead->time & 0xff)); |
604 | put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); |
605 | put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); |
606 | put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); |
607 | put_byte(s, s->level == 9 ? 2 : |
608 | (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? |
609 | 4 : 0)); |
610 | put_byte(s, s->gzhead->os & 0xff); |
611 | if (s->gzhead->extra != NULL) { |
612 | put_byte(s, s->gzhead->extra_len & 0xff); |
613 | put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); |
614 | } |
615 | if (s->gzhead->hcrc) |
616 | strm->adler = crc32(strm->adler, s->pending_buf, |
617 | s->pending); |
618 | s->gzindex = 0; |
619 | s->status = EXTRA_STATE; |
620 | } |
621 | } |
622 | else |
623 | #endif |
624 | { |
625 | uInt = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; |
626 | uInt level_flags; |
627 | |
628 | if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) |
629 | level_flags = 0; |
630 | else if (s->level < 6) |
631 | level_flags = 1; |
632 | else if (s->level == 6) |
633 | level_flags = 2; |
634 | else |
635 | level_flags = 3; |
636 | header |= (level_flags << 6); |
637 | if (s->strstart != 0) header |= PRESET_DICT; |
638 | header += 31 - (header % 31); |
639 | |
640 | s->status = BUSY_STATE; |
641 | putShortMSB(s, header); |
642 | |
643 | /* Save the adler32 of the preset dictionary: */ |
644 | if (s->strstart != 0) { |
645 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
646 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
647 | } |
648 | strm->adler = adler32(0L, Z_NULL, 0); |
649 | } |
650 | } |
651 | #ifdef GZIP |
652 | if (s->status == EXTRA_STATE) { |
653 | if (s->gzhead->extra != NULL) { |
654 | uInt beg = s->pending; /* start of bytes to update crc */ |
655 | |
656 | while (s->gzindex < (s->gzhead->extra_len & 0xffff)) { |
657 | if (s->pending == s->pending_buf_size) { |
658 | if (s->gzhead->hcrc && s->pending > beg) |
659 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
660 | s->pending - beg); |
661 | flush_pending(strm); |
662 | beg = s->pending; |
663 | if (s->pending == s->pending_buf_size) |
664 | break; |
665 | } |
666 | put_byte(s, s->gzhead->extra[s->gzindex]); |
667 | s->gzindex++; |
668 | } |
669 | if (s->gzhead->hcrc && s->pending > beg) |
670 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
671 | s->pending - beg); |
672 | if (s->gzindex == s->gzhead->extra_len) { |
673 | s->gzindex = 0; |
674 | s->status = NAME_STATE; |
675 | } |
676 | } |
677 | else |
678 | s->status = NAME_STATE; |
679 | } |
680 | if (s->status == NAME_STATE) { |
681 | if (s->gzhead->name != NULL) { |
682 | uInt beg = s->pending; /* start of bytes to update crc */ |
683 | int val; |
684 | |
685 | do { |
686 | if (s->pending == s->pending_buf_size) { |
687 | if (s->gzhead->hcrc && s->pending > beg) |
688 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
689 | s->pending - beg); |
690 | flush_pending(strm); |
691 | beg = s->pending; |
692 | if (s->pending == s->pending_buf_size) { |
693 | val = 1; |
694 | break; |
695 | } |
696 | } |
697 | val = s->gzhead->name[s->gzindex++]; |
698 | put_byte(s, val); |
699 | } while (val != 0); |
700 | if (s->gzhead->hcrc && s->pending > beg) |
701 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
702 | s->pending - beg); |
703 | if (val == 0) { |
704 | s->gzindex = 0; |
705 | s->status = COMMENT_STATE; |
706 | } |
707 | } |
708 | else |
709 | s->status = COMMENT_STATE; |
710 | } |
711 | if (s->status == COMMENT_STATE) { |
712 | if (s->gzhead->comment != NULL) { |
713 | uInt beg = s->pending; /* start of bytes to update crc */ |
714 | int val; |
715 | |
716 | do { |
717 | if (s->pending == s->pending_buf_size) { |
718 | if (s->gzhead->hcrc && s->pending > beg) |
719 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
720 | s->pending - beg); |
721 | flush_pending(strm); |
722 | beg = s->pending; |
723 | if (s->pending == s->pending_buf_size) { |
724 | val = 1; |
725 | break; |
726 | } |
727 | } |
728 | val = s->gzhead->comment[s->gzindex++]; |
729 | put_byte(s, val); |
730 | } while (val != 0); |
731 | if (s->gzhead->hcrc && s->pending > beg) |
732 | strm->adler = crc32(strm->adler, s->pending_buf + beg, |
733 | s->pending - beg); |
734 | if (val == 0) |
735 | s->status = HCRC_STATE; |
736 | } |
737 | else |
738 | s->status = HCRC_STATE; |
739 | } |
740 | if (s->status == HCRC_STATE) { |
741 | if (s->gzhead->hcrc) { |
742 | if (s->pending + 2 > s->pending_buf_size) |
743 | flush_pending(strm); |
744 | if (s->pending + 2 <= s->pending_buf_size) { |
745 | put_byte(s, (Byte)(strm->adler & 0xff)); |
746 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
747 | strm->adler = crc32(0L, Z_NULL, 0); |
748 | s->status = BUSY_STATE; |
749 | } |
750 | } |
751 | else |
752 | s->status = BUSY_STATE; |
753 | } |
754 | #endif |
755 | |
756 | /* Flush as much pending output as possible */ |
757 | if (s->pending != 0) { |
758 | flush_pending(strm); |
759 | if (strm->avail_out == 0) { |
760 | /* Since avail_out is 0, deflate will be called again with |
761 | * more output space, but possibly with both pending and |
762 | * avail_in equal to zero. There won't be anything to do, |
763 | * but this is not an error situation so make sure we |
764 | * return OK instead of BUF_ERROR at next call of deflate: |
765 | */ |
766 | s->last_flush = -1; |
767 | return Z_OK; |
768 | } |
769 | |
770 | /* Make sure there is something to do and avoid duplicate consecutive |
771 | * flushes. For repeated and useless calls with Z_FINISH, we keep |
772 | * returning Z_STREAM_END instead of Z_BUF_ERROR. |
773 | */ |
774 | } else if (strm->avail_in == 0 && flush <= old_flush && |
775 | flush != Z_FINISH) { |
776 | ERR_RETURN(strm, Z_BUF_ERROR); |
777 | } |
778 | |
779 | /* User must not provide more input after the first FINISH: */ |
780 | if (s->status == FINISH_STATE && strm->avail_in != 0) { |
781 | ERR_RETURN(strm, Z_BUF_ERROR); |
782 | } |
783 | |
784 | /* Start a new block or continue the current one. |
785 | */ |
786 | if (strm->avail_in != 0 || s->lookahead != 0 || |
787 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { |
788 | block_state bstate; |
789 | |
790 | bstate = (*(configuration_table[s->level].func))(s, flush); |
791 | |
792 | if (bstate == finish_started || bstate == finish_done) { |
793 | s->status = FINISH_STATE; |
794 | } |
795 | if (bstate == need_more || bstate == finish_started) { |
796 | if (strm->avail_out == 0) { |
797 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ |
798 | } |
799 | return Z_OK; |
800 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call |
801 | * of deflate should use the same flush parameter to make sure |
802 | * that the flush is complete. So we don't have to output an |
803 | * empty block here, this will be done at next call. This also |
804 | * ensures that for a very small output buffer, we emit at most |
805 | * one empty block. |
806 | */ |
807 | } |
808 | if (bstate == block_done) { |
809 | if (flush == Z_PARTIAL_FLUSH) { |
810 | _tr_align(s); |
811 | } else { /* FULL_FLUSH or SYNC_FLUSH */ |
812 | _tr_stored_block(s, (char*)0, 0L, 0); |
813 | /* For a full flush, this empty block will be recognized |
814 | * as a special marker by inflate_sync(). |
815 | */ |
816 | if (flush == Z_FULL_FLUSH) { |
817 | CLEAR_HASH(s); /* forget history */ |
818 | } |
819 | } |
820 | flush_pending(strm); |
821 | if (strm->avail_out == 0) { |
822 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ |
823 | return Z_OK; |
824 | } |
825 | } |
826 | } |
827 | Assert(strm->avail_out > 0, "bug2" ); |
828 | |
829 | if (flush != Z_FINISH) return Z_OK; |
830 | if (s->wrap <= 0) return Z_STREAM_END; |
831 | |
832 | /* Write the trailer */ |
833 | #ifdef GZIP |
834 | if (s->wrap == 2) { |
835 | put_byte(s, (Byte)(strm->adler & 0xff)); |
836 | put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); |
837 | put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); |
838 | put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); |
839 | put_byte(s, (Byte)(strm->total_in & 0xff)); |
840 | put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); |
841 | put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); |
842 | put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); |
843 | } |
844 | else |
845 | #endif |
846 | { |
847 | putShortMSB(s, (uInt)(strm->adler >> 16)); |
848 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); |
849 | } |
850 | flush_pending(strm); |
851 | /* If avail_out is zero, the application will call deflate again |
852 | * to flush the rest. |
853 | */ |
854 | if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ |
855 | return s->pending != 0 ? Z_OK : Z_STREAM_END; |
856 | } |
857 | |
858 | /* ========================================================================= */ |
859 | int ZEXPORT deflateEnd (strm) |
860 | z_streamp strm; |
861 | { |
862 | int status; |
863 | |
864 | if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; |
865 | |
866 | status = strm->state->status; |
867 | if (status != INIT_STATE && |
868 | status != EXTRA_STATE && |
869 | status != NAME_STATE && |
870 | status != COMMENT_STATE && |
871 | status != HCRC_STATE && |
872 | status != BUSY_STATE && |
873 | status != FINISH_STATE) { |
874 | return Z_STREAM_ERROR; |
875 | } |
876 | |
877 | /* Deallocate in reverse order of allocations: */ |
878 | TRY_FREE(strm, strm->state->pending_buf); |
879 | TRY_FREE(strm, strm->state->head); |
880 | TRY_FREE(strm, strm->state->prev); |
881 | TRY_FREE(strm, strm->state->window); |
882 | |
883 | ZFREE(strm, strm->state); |
884 | strm->state = Z_NULL; |
885 | |
886 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; |
887 | } |
888 | |
889 | /* ========================================================================= |
890 | * Copy the source state to the destination state. |
891 | * To simplify the source, this is not supported for 16-bit MSDOS (which |
892 | * doesn't have enough memory anyway to duplicate compression states). |
893 | */ |
894 | int ZEXPORT deflateCopy (dest, source) |
895 | z_streamp dest; |
896 | z_streamp source; |
897 | { |
898 | #ifdef MAXSEG_64K |
899 | return Z_STREAM_ERROR; |
900 | #else |
901 | deflate_state *ds; |
902 | deflate_state *ss; |
903 | ushf *overlay; |
904 | |
905 | |
906 | if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { |
907 | return Z_STREAM_ERROR; |
908 | } |
909 | |
910 | ss = source->state; |
911 | |
912 | zmemcpy(dest, source, sizeof(z_stream)); |
913 | |
914 | ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); |
915 | if (ds == Z_NULL) return Z_MEM_ERROR; |
916 | dest->state = (struct internal_state FAR *) ds; |
917 | zmemcpy(ds, ss, sizeof(deflate_state)); |
918 | ds->strm = dest; |
919 | |
920 | ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); |
921 | ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); |
922 | ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); |
923 | overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2); |
924 | ds->pending_buf = (uchf *) overlay; |
925 | |
926 | if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || |
927 | ds->pending_buf == Z_NULL) { |
928 | deflateEnd (dest); |
929 | return Z_MEM_ERROR; |
930 | } |
931 | /* following zmemcpy do not work for 16-bit MSDOS */ |
932 | zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); |
933 | zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); |
934 | zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); |
935 | zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); |
936 | |
937 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); |
938 | ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); |
939 | ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; |
940 | |
941 | ds->l_desc.dyn_tree = ds->dyn_ltree; |
942 | ds->d_desc.dyn_tree = ds->dyn_dtree; |
943 | ds->bl_desc.dyn_tree = ds->bl_tree; |
944 | |
945 | return Z_OK; |
946 | #endif /* MAXSEG_64K */ |
947 | } |
948 | |
949 | /* =========================================================================== |
950 | * Read a new buffer from the current input stream, update the adler32 |
951 | * and total number of bytes read. All deflate() input goes through |
952 | * this function so some applications may wish to modify it to avoid |
953 | * allocating a large strm->next_in buffer and copying from it. |
954 | * (See also flush_pending()). |
955 | */ |
956 | local int read_buf(strm, buf, size) |
957 | z_streamp strm; |
958 | Bytef *buf; |
959 | unsigned size; |
960 | { |
961 | unsigned len = strm->avail_in; |
962 | |
963 | if (len > size) len = size; |
964 | if (len == 0) return 0; |
965 | |
966 | strm->avail_in -= len; |
967 | |
968 | if (strm->state->wrap == 1) { |
969 | strm->adler = adler32(strm->adler, strm->next_in, len); |
970 | } |
971 | #ifdef GZIP |
972 | else if (strm->state->wrap == 2) { |
973 | strm->adler = crc32(strm->adler, strm->next_in, len); |
974 | } |
975 | #endif |
976 | zmemcpy(buf, strm->next_in, len); |
977 | strm->next_in += len; |
978 | strm->total_in += len; |
979 | |
980 | return (int)len; |
981 | } |
982 | |
983 | /* =========================================================================== |
984 | * Initialize the "longest match" routines for a new zlib stream |
985 | */ |
986 | local void lm_init (s) |
987 | deflate_state *s; |
988 | { |
989 | s->window_size = (ulg)2L*s->w_size; |
990 | |
991 | CLEAR_HASH(s); |
992 | |
993 | /* Set the default configuration parameters: |
994 | */ |
995 | s->max_lazy_match = configuration_table[s->level].max_lazy; |
996 | s->good_match = configuration_table[s->level].good_length; |
997 | s->nice_match = configuration_table[s->level].nice_length; |
998 | s->max_chain_length = configuration_table[s->level].max_chain; |
999 | |
1000 | s->strstart = 0; |
1001 | s->block_start = 0L; |
1002 | s->lookahead = 0; |
1003 | s->match_length = s->prev_length = MIN_MATCH-1; |
1004 | s->match_available = 0; |
1005 | s->ins_h = 0; |
1006 | #ifndef FASTEST |
1007 | #ifdef ASMV |
1008 | match_init(); /* initialize the asm code */ |
1009 | #endif |
1010 | #endif |
1011 | } |
1012 | |
1013 | #ifndef FASTEST |
1014 | /* =========================================================================== |
1015 | * Set match_start to the longest match starting at the given string and |
1016 | * return its length. Matches shorter or equal to prev_length are discarded, |
1017 | * in which case the result is equal to prev_length and match_start is |
1018 | * garbage. |
1019 | * IN assertions: cur_match is the head of the hash chain for the current |
1020 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 |
1021 | * OUT assertion: the match length is not greater than s->lookahead. |
1022 | */ |
1023 | #ifndef ASMV |
1024 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or |
1025 | * match.S. The code will be functionally equivalent. |
1026 | */ |
1027 | local uInt longest_match(s, cur_match) |
1028 | deflate_state *s; |
1029 | IPos cur_match; /* current match */ |
1030 | { |
1031 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ |
1032 | register Bytef *scan = s->window + s->strstart; /* current string */ |
1033 | register Bytef *match; /* matched string */ |
1034 | register int len; /* length of current match */ |
1035 | int best_len = s->prev_length; /* best match length so far */ |
1036 | int nice_match = s->nice_match; /* stop if match long enough */ |
1037 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? |
1038 | s->strstart - (IPos)MAX_DIST(s) : NIL; |
1039 | /* Stop when cur_match becomes <= limit. To simplify the code, |
1040 | * we prevent matches with the string of window index 0. |
1041 | */ |
1042 | Posf *prev = s->prev; |
1043 | uInt wmask = s->w_mask; |
1044 | |
1045 | #ifdef UNALIGNED_OK |
1046 | /* Compare two bytes at a time. Note: this is not always beneficial. |
1047 | * Try with and without -DUNALIGNED_OK to check. |
1048 | */ |
1049 | register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; |
1050 | register ush scan_start = *(ushf*)scan; |
1051 | register ush scan_end = *(ushf*)(scan+best_len-1); |
1052 | #else |
1053 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1054 | register Byte scan_end1 = scan[best_len-1]; |
1055 | register Byte scan_end = scan[best_len]; |
1056 | #endif |
1057 | |
1058 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1059 | * It is easy to get rid of this optimization if necessary. |
1060 | */ |
1061 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever" ); |
1062 | |
1063 | /* Do not waste too much time if we already have a good match: */ |
1064 | if (s->prev_length >= s->good_match) { |
1065 | chain_length >>= 2; |
1066 | } |
1067 | /* Do not look for matches beyond the end of the input. This is necessary |
1068 | * to make deflate deterministic. |
1069 | */ |
1070 | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; |
1071 | |
1072 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead" ); |
1073 | |
1074 | do { |
1075 | Assert(cur_match < s->strstart, "no future" ); |
1076 | match = s->window + cur_match; |
1077 | |
1078 | /* Skip to next match if the match length cannot increase |
1079 | * or if the match length is less than 2. Note that the checks below |
1080 | * for insufficient lookahead only occur occasionally for performance |
1081 | * reasons. Therefore uninitialized memory will be accessed, and |
1082 | * conditional jumps will be made that depend on those values. |
1083 | * However the length of the match is limited to the lookahead, so |
1084 | * the output of deflate is not affected by the uninitialized values. |
1085 | */ |
1086 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) |
1087 | /* This code assumes sizeof(unsigned short) == 2. Do not use |
1088 | * UNALIGNED_OK if your compiler uses a different size. |
1089 | */ |
1090 | if (*(ushf*)(match+best_len-1) != scan_end || |
1091 | *(ushf*)match != scan_start) continue; |
1092 | |
1093 | /* It is not necessary to compare scan[2] and match[2] since they are |
1094 | * always equal when the other bytes match, given that the hash keys |
1095 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at |
1096 | * strstart+3, +5, ... up to strstart+257. We check for insufficient |
1097 | * lookahead only every 4th comparison; the 128th check will be made |
1098 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is |
1099 | * necessary to put more guard bytes at the end of the window, or |
1100 | * to check more often for insufficient lookahead. |
1101 | */ |
1102 | Assert(scan[2] == match[2], "scan[2]?" ); |
1103 | scan++, match++; |
1104 | do { |
1105 | } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1106 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1107 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1108 | *(ushf*)(scan+=2) == *(ushf*)(match+=2) && |
1109 | scan < strend); |
1110 | /* The funny "do {}" generates better code on most compilers */ |
1111 | |
1112 | /* Here, scan <= window+strstart+257 */ |
1113 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1114 | if (*scan == *match) scan++; |
1115 | |
1116 | len = (MAX_MATCH - 1) - (int)(strend-scan); |
1117 | scan = strend - (MAX_MATCH-1); |
1118 | |
1119 | #else /* UNALIGNED_OK */ |
1120 | |
1121 | if (match[best_len] != scan_end || |
1122 | match[best_len-1] != scan_end1 || |
1123 | *match != *scan || |
1124 | *++match != scan[1]) continue; |
1125 | |
1126 | /* The check at best_len-1 can be removed because it will be made |
1127 | * again later. (This heuristic is not always a win.) |
1128 | * It is not necessary to compare scan[2] and match[2] since they |
1129 | * are always equal when the other bytes match, given that |
1130 | * the hash keys are equal and that HASH_BITS >= 8. |
1131 | */ |
1132 | scan += 2, match++; |
1133 | Assert(*scan == *match, "match[2]?" ); |
1134 | |
1135 | /* We check for insufficient lookahead only every 8th comparison; |
1136 | * the 256th check will be made at strstart+258. |
1137 | */ |
1138 | do { |
1139 | } while (*++scan == *++match && *++scan == *++match && |
1140 | *++scan == *++match && *++scan == *++match && |
1141 | *++scan == *++match && *++scan == *++match && |
1142 | *++scan == *++match && *++scan == *++match && |
1143 | scan < strend); |
1144 | |
1145 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1146 | |
1147 | len = MAX_MATCH - (int)(strend - scan); |
1148 | scan = strend - MAX_MATCH; |
1149 | |
1150 | #endif /* UNALIGNED_OK */ |
1151 | |
1152 | if (len > best_len) { |
1153 | s->match_start = cur_match; |
1154 | best_len = len; |
1155 | if (len >= nice_match) break; |
1156 | #ifdef UNALIGNED_OK |
1157 | scan_end = *(ushf*)(scan+best_len-1); |
1158 | #else |
1159 | scan_end1 = scan[best_len-1]; |
1160 | scan_end = scan[best_len]; |
1161 | #endif |
1162 | } |
1163 | } while ((cur_match = prev[cur_match & wmask]) > limit |
1164 | && --chain_length != 0); |
1165 | |
1166 | if ((uInt)best_len <= s->lookahead) return (uInt)best_len; |
1167 | return s->lookahead; |
1168 | } |
1169 | #endif /* ASMV */ |
1170 | #endif /* FASTEST */ |
1171 | |
1172 | /* --------------------------------------------------------------------------- |
1173 | * Optimized version for level == 1 or strategy == Z_RLE only |
1174 | */ |
1175 | local uInt longest_match_fast(s, cur_match) |
1176 | deflate_state *s; |
1177 | IPos cur_match; /* current match */ |
1178 | { |
1179 | register Bytef *scan = s->window + s->strstart; /* current string */ |
1180 | register Bytef *match; /* matched string */ |
1181 | register int len; /* length of current match */ |
1182 | register Bytef *strend = s->window + s->strstart + MAX_MATCH; |
1183 | |
1184 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. |
1185 | * It is easy to get rid of this optimization if necessary. |
1186 | */ |
1187 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever" ); |
1188 | |
1189 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead" ); |
1190 | |
1191 | Assert(cur_match < s->strstart, "no future" ); |
1192 | |
1193 | match = s->window + cur_match; |
1194 | |
1195 | /* Return failure if the match length is less than 2: |
1196 | */ |
1197 | if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; |
1198 | |
1199 | /* The check at best_len-1 can be removed because it will be made |
1200 | * again later. (This heuristic is not always a win.) |
1201 | * It is not necessary to compare scan[2] and match[2] since they |
1202 | * are always equal when the other bytes match, given that |
1203 | * the hash keys are equal and that HASH_BITS >= 8. |
1204 | */ |
1205 | scan += 2, match += 2; |
1206 | Assert(*scan == *match, "match[2]?" ); |
1207 | |
1208 | /* We check for insufficient lookahead only every 8th comparison; |
1209 | * the 256th check will be made at strstart+258. |
1210 | */ |
1211 | do { |
1212 | } while (*++scan == *++match && *++scan == *++match && |
1213 | *++scan == *++match && *++scan == *++match && |
1214 | *++scan == *++match && *++scan == *++match && |
1215 | *++scan == *++match && *++scan == *++match && |
1216 | scan < strend); |
1217 | |
1218 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan" ); |
1219 | |
1220 | len = MAX_MATCH - (int)(strend - scan); |
1221 | |
1222 | if (len < MIN_MATCH) return MIN_MATCH - 1; |
1223 | |
1224 | s->match_start = cur_match; |
1225 | return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; |
1226 | } |
1227 | |
1228 | #ifdef ZLIB_DEBUG |
1229 | /* =========================================================================== |
1230 | * Check that the match at match_start is indeed a match. |
1231 | */ |
1232 | local void check_match(s, start, match, length) |
1233 | deflate_state *s; |
1234 | IPos start, match; |
1235 | int length; |
1236 | { |
1237 | /* check that the match is indeed a match */ |
1238 | if (zmemcmp(s->window + match, |
1239 | s->window + start, length) != EQUAL) { |
1240 | fprintf(stderr, " start %u, match %u, length %d\n" , |
1241 | start, match, length); |
1242 | do { |
1243 | fprintf(stderr, "%c%c" , s->window[match++], s->window[start++]); |
1244 | } while (--length != 0); |
1245 | z_error("invalid match" ); |
1246 | } |
1247 | if (z_verbose > 1) { |
1248 | fprintf(stderr,"\\[%d,%d]" , start-match, length); |
1249 | do { putc(s->window[start++], stderr); } while (--length != 0); |
1250 | } |
1251 | } |
1252 | #else |
1253 | # define check_match(s, start, match, length) |
1254 | #endif /* DEBUG */ |
1255 | |
1256 | /* =========================================================================== |
1257 | * Fill the window when the lookahead becomes insufficient. |
1258 | * Updates strstart and lookahead. |
1259 | * |
1260 | * IN assertion: lookahead < MIN_LOOKAHEAD |
1261 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD |
1262 | * At least one byte has been read, or avail_in == 0; reads are |
1263 | * performed for at least two bytes (required for the zip translate_eol |
1264 | * option -- not supported here). |
1265 | */ |
1266 | local void fill_window(s) |
1267 | deflate_state *s; |
1268 | { |
1269 | register unsigned n, m; |
1270 | register Posf *p; |
1271 | unsigned more; /* Amount of free space at the end of the window. */ |
1272 | uInt wsize = s->w_size; |
1273 | |
1274 | do { |
1275 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); |
1276 | |
1277 | /* Deal with !@#$% 64K limit: */ |
1278 | if (sizeof(int) <= 2) { |
1279 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { |
1280 | more = wsize; |
1281 | |
1282 | } else if (more == (unsigned)(-1)) { |
1283 | /* Very unlikely, but possible on 16 bit machine if |
1284 | * strstart == 0 && lookahead == 1 (input done a byte at time) |
1285 | */ |
1286 | more--; |
1287 | } |
1288 | } |
1289 | |
1290 | /* If the window is almost full and there is insufficient lookahead, |
1291 | * move the upper half to the lower one to make room in the upper half. |
1292 | */ |
1293 | if (s->strstart >= wsize+MAX_DIST(s)) { |
1294 | |
1295 | zmemcpy(s->window, s->window+wsize, (unsigned)wsize); |
1296 | s->match_start -= wsize; |
1297 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ |
1298 | s->block_start -= (long) wsize; |
1299 | |
1300 | /* Slide the hash table (could be avoided with 32 bit values |
1301 | at the expense of memory usage). We slide even when level == 0 |
1302 | to keep the hash table consistent if we switch back to level > 0 |
1303 | later. (Using level 0 permanently is not an optimal usage of |
1304 | zlib, so we don't care about this pathological case.) |
1305 | */ |
1306 | /* %%% avoid this when Z_RLE */ |
1307 | n = s->hash_size; |
1308 | p = &s->head[n]; |
1309 | do { |
1310 | m = *--p; |
1311 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
1312 | } while (--n); |
1313 | |
1314 | n = wsize; |
1315 | #ifndef FASTEST |
1316 | p = &s->prev[n]; |
1317 | do { |
1318 | m = *--p; |
1319 | *p = (Pos)(m >= wsize ? m-wsize : NIL); |
1320 | /* If n is not on any hash chain, prev[n] is garbage but |
1321 | * its value will never be used. |
1322 | */ |
1323 | } while (--n); |
1324 | #endif |
1325 | more += wsize; |
1326 | } |
1327 | if (s->strm->avail_in == 0) return; |
1328 | |
1329 | /* If there was no sliding: |
1330 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && |
1331 | * more == window_size - lookahead - strstart |
1332 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) |
1333 | * => more >= window_size - 2*WSIZE + 2 |
1334 | * In the BIG_MEM or MMAP case (not yet supported), |
1335 | * window_size == input_size + MIN_LOOKAHEAD && |
1336 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. |
1337 | * Otherwise, window_size == 2*WSIZE so more >= 2. |
1338 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. |
1339 | */ |
1340 | Assert(more >= 2, "more < 2" ); |
1341 | |
1342 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); |
1343 | s->lookahead += n; |
1344 | |
1345 | /* Initialize the hash value now that we have some input: */ |
1346 | if (s->lookahead >= MIN_MATCH) { |
1347 | s->ins_h = s->window[s->strstart]; |
1348 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1349 | #if MIN_MATCH != 3 |
1350 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1351 | #endif |
1352 | } |
1353 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, |
1354 | * but this is not important since only literal bytes will be emitted. |
1355 | */ |
1356 | |
1357 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); |
1358 | } |
1359 | |
1360 | /* =========================================================================== |
1361 | * Flush the current block, with given end-of-file flag. |
1362 | * IN assertion: strstart is set to the end of the current match. |
1363 | */ |
1364 | #define FLUSH_BLOCK_ONLY(s, eof) { \ |
1365 | _tr_flush_block(s, (s->block_start >= 0L ? \ |
1366 | (charf *)&s->window[(unsigned)s->block_start] : \ |
1367 | (charf *)Z_NULL), \ |
1368 | (ulg)((long)s->strstart - s->block_start), \ |
1369 | (eof)); \ |
1370 | s->block_start = s->strstart; \ |
1371 | flush_pending(s->strm); \ |
1372 | Tracev((stderr,"[FLUSH]")); \ |
1373 | } |
1374 | |
1375 | /* Same but force premature exit if necessary. */ |
1376 | #define FLUSH_BLOCK(s, eof) { \ |
1377 | FLUSH_BLOCK_ONLY(s, eof); \ |
1378 | if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ |
1379 | } |
1380 | |
1381 | /* =========================================================================== |
1382 | * Copy without compression as much as possible from the input stream, return |
1383 | * the current block state. |
1384 | * This function does not insert new strings in the dictionary since |
1385 | * uncompressible data is probably not useful. This function is used |
1386 | * only for the level=0 compression option. |
1387 | * NOTE: this function should be optimized to avoid extra copying from |
1388 | * window to pending_buf. |
1389 | */ |
1390 | local block_state deflate_stored(s, flush) |
1391 | deflate_state *s; |
1392 | int flush; |
1393 | { |
1394 | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited |
1395 | * to pending_buf_size, and each stored block has a 5 byte header: |
1396 | */ |
1397 | ulg max_block_size = 0xffff; |
1398 | ulg max_start; |
1399 | |
1400 | if (max_block_size > s->pending_buf_size - 5) { |
1401 | max_block_size = s->pending_buf_size - 5; |
1402 | } |
1403 | |
1404 | /* Copy as much as possible from input to output: */ |
1405 | for (;;) { |
1406 | /* Fill the window as much as possible: */ |
1407 | if (s->lookahead <= 1) { |
1408 | |
1409 | Assert(s->strstart < s->w_size+MAX_DIST(s) || |
1410 | s->block_start >= (long)s->w_size, "slide too late" ); |
1411 | |
1412 | fill_window(s); |
1413 | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; |
1414 | |
1415 | if (s->lookahead == 0) break; /* flush the current block */ |
1416 | } |
1417 | Assert(s->block_start >= 0L, "block gone" ); |
1418 | |
1419 | s->strstart += s->lookahead; |
1420 | s->lookahead = 0; |
1421 | |
1422 | /* Emit a stored block if pending_buf will be full: */ |
1423 | max_start = s->block_start + max_block_size; |
1424 | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { |
1425 | /* strstart == 0 is possible when wraparound on 16-bit machine */ |
1426 | s->lookahead = (uInt)(s->strstart - max_start); |
1427 | s->strstart = (uInt)max_start; |
1428 | FLUSH_BLOCK(s, 0); |
1429 | } |
1430 | /* Flush if we may have to slide, otherwise block_start may become |
1431 | * negative and the data will be gone: |
1432 | */ |
1433 | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { |
1434 | FLUSH_BLOCK(s, 0); |
1435 | } |
1436 | } |
1437 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1438 | return flush == Z_FINISH ? finish_done : block_done; |
1439 | } |
1440 | |
1441 | /* =========================================================================== |
1442 | * Compress as much as possible from the input stream, return the current |
1443 | * block state. |
1444 | * This function does not perform lazy evaluation of matches and inserts |
1445 | * new strings in the dictionary only for unmatched strings or for short |
1446 | * matches. It is used only for the fast compression options. |
1447 | */ |
1448 | local block_state deflate_fast(s, flush) |
1449 | deflate_state *s; |
1450 | int flush; |
1451 | { |
1452 | IPos hash_head = NIL; /* head of the hash chain */ |
1453 | int bflush; /* set if current block must be flushed */ |
1454 | |
1455 | for (;;) { |
1456 | /* Make sure that we always have enough lookahead, except |
1457 | * at the end of the input file. We need MAX_MATCH bytes |
1458 | * for the next match, plus MIN_MATCH bytes to insert the |
1459 | * string following the next match. |
1460 | */ |
1461 | if (s->lookahead < MIN_LOOKAHEAD) { |
1462 | fill_window(s); |
1463 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1464 | return need_more; |
1465 | } |
1466 | if (s->lookahead == 0) break; /* flush the current block */ |
1467 | } |
1468 | |
1469 | /* Insert the string window[strstart .. strstart+2] in the |
1470 | * dictionary, and set hash_head to the head of the hash chain: |
1471 | */ |
1472 | if (s->lookahead >= MIN_MATCH) { |
1473 | INSERT_STRING(s, s->strstart, hash_head); |
1474 | } |
1475 | |
1476 | /* Find the longest match, discarding those <= prev_length. |
1477 | * At this point we have always match_length < MIN_MATCH |
1478 | */ |
1479 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { |
1480 | /* To simplify the code, we prevent matches with the string |
1481 | * of window index 0 (in particular we have to avoid a match |
1482 | * of the string with itself at the start of the input file). |
1483 | */ |
1484 | #ifdef FASTEST |
1485 | if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) || |
1486 | (s->strategy == Z_RLE && s->strstart - hash_head == 1)) { |
1487 | s->match_length = longest_match_fast (s, hash_head); |
1488 | } |
1489 | #else |
1490 | if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) { |
1491 | s->match_length = longest_match (s, hash_head); |
1492 | } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) { |
1493 | s->match_length = longest_match_fast (s, hash_head); |
1494 | } |
1495 | #endif |
1496 | /* longest_match() or longest_match_fast() sets match_start */ |
1497 | } |
1498 | if (s->match_length >= MIN_MATCH) { |
1499 | check_match(s, s->strstart, s->match_start, s->match_length); |
1500 | |
1501 | _tr_tally_dist(s, s->strstart - s->match_start, |
1502 | s->match_length - MIN_MATCH, bflush); |
1503 | |
1504 | s->lookahead -= s->match_length; |
1505 | |
1506 | /* Insert new strings in the hash table only if the match length |
1507 | * is not too large. This saves time but degrades compression. |
1508 | */ |
1509 | #ifndef FASTEST |
1510 | if (s->match_length <= s->max_insert_length && |
1511 | s->lookahead >= MIN_MATCH) { |
1512 | s->match_length--; /* string at strstart already in table */ |
1513 | do { |
1514 | s->strstart++; |
1515 | INSERT_STRING(s, s->strstart, hash_head); |
1516 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are |
1517 | * always MIN_MATCH bytes ahead. |
1518 | */ |
1519 | } while (--s->match_length != 0); |
1520 | s->strstart++; |
1521 | } else |
1522 | #endif |
1523 | { |
1524 | s->strstart += s->match_length; |
1525 | s->match_length = 0; |
1526 | s->ins_h = s->window[s->strstart]; |
1527 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); |
1528 | #if MIN_MATCH != 3 |
1529 | Call UPDATE_HASH() MIN_MATCH-3 more times |
1530 | #endif |
1531 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not |
1532 | * matter since it will be recomputed at next deflate call. |
1533 | */ |
1534 | } |
1535 | } else { |
1536 | /* No match, output a literal byte */ |
1537 | Tracevv((stderr,"%c" , s->window[s->strstart])); |
1538 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
1539 | s->lookahead--; |
1540 | s->strstart++; |
1541 | } |
1542 | if (bflush) FLUSH_BLOCK(s, 0); |
1543 | } |
1544 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1545 | return flush == Z_FINISH ? finish_done : block_done; |
1546 | } |
1547 | |
1548 | #ifndef FASTEST |
1549 | /* =========================================================================== |
1550 | * Same as above, but achieves better compression. We use a lazy |
1551 | * evaluation for matches: a match is finally adopted only if there is |
1552 | * no better match at the next window position. |
1553 | */ |
1554 | local block_state deflate_slow(s, flush) |
1555 | deflate_state *s; |
1556 | int flush; |
1557 | { |
1558 | IPos hash_head = NIL; /* head of hash chain */ |
1559 | int bflush; /* set if current block must be flushed */ |
1560 | |
1561 | /* Process the input block. */ |
1562 | for (;;) { |
1563 | /* Make sure that we always have enough lookahead, except |
1564 | * at the end of the input file. We need MAX_MATCH bytes |
1565 | * for the next match, plus MIN_MATCH bytes to insert the |
1566 | * string following the next match. |
1567 | */ |
1568 | if (s->lookahead < MIN_LOOKAHEAD) { |
1569 | fill_window(s); |
1570 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { |
1571 | return need_more; |
1572 | } |
1573 | if (s->lookahead == 0) break; /* flush the current block */ |
1574 | } |
1575 | |
1576 | /* Insert the string window[strstart .. strstart+2] in the |
1577 | * dictionary, and set hash_head to the head of the hash chain: |
1578 | */ |
1579 | if (s->lookahead >= MIN_MATCH) { |
1580 | INSERT_STRING(s, s->strstart, hash_head); |
1581 | } |
1582 | |
1583 | /* Find the longest match, discarding those <= prev_length. |
1584 | */ |
1585 | s->prev_length = s->match_length, s->prev_match = s->match_start; |
1586 | s->match_length = MIN_MATCH-1; |
1587 | |
1588 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && |
1589 | s->strstart - hash_head <= MAX_DIST(s)) { |
1590 | /* To simplify the code, we prevent matches with the string |
1591 | * of window index 0 (in particular we have to avoid a match |
1592 | * of the string with itself at the start of the input file). |
1593 | */ |
1594 | if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) { |
1595 | s->match_length = longest_match (s, hash_head); |
1596 | } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) { |
1597 | s->match_length = longest_match_fast (s, hash_head); |
1598 | } |
1599 | /* longest_match() or longest_match_fast() sets match_start */ |
1600 | |
1601 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED |
1602 | #if TOO_FAR <= 32767 |
1603 | || (s->match_length == MIN_MATCH && |
1604 | s->strstart - s->match_start > TOO_FAR) |
1605 | #endif |
1606 | )) { |
1607 | |
1608 | /* If prev_match is also MIN_MATCH, match_start is garbage |
1609 | * but we will ignore the current match anyway. |
1610 | */ |
1611 | s->match_length = MIN_MATCH-1; |
1612 | } |
1613 | } |
1614 | /* If there was a match at the previous step and the current |
1615 | * match is not better, output the previous match: |
1616 | */ |
1617 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { |
1618 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; |
1619 | /* Do not insert strings in hash table beyond this. */ |
1620 | |
1621 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); |
1622 | |
1623 | _tr_tally_dist(s, s->strstart -1 - s->prev_match, |
1624 | s->prev_length - MIN_MATCH, bflush); |
1625 | |
1626 | /* Insert in hash table all strings up to the end of the match. |
1627 | * strstart-1 and strstart are already inserted. If there is not |
1628 | * enough lookahead, the last two strings are not inserted in |
1629 | * the hash table. |
1630 | */ |
1631 | s->lookahead -= s->prev_length-1; |
1632 | s->prev_length -= 2; |
1633 | do { |
1634 | if (++s->strstart <= max_insert) { |
1635 | INSERT_STRING(s, s->strstart, hash_head); |
1636 | } |
1637 | } while (--s->prev_length != 0); |
1638 | s->match_available = 0; |
1639 | s->match_length = MIN_MATCH-1; |
1640 | s->strstart++; |
1641 | |
1642 | if (bflush) FLUSH_BLOCK(s, 0); |
1643 | |
1644 | } else if (s->match_available) { |
1645 | /* If there was no match at the previous position, output a |
1646 | * single literal. If there was a match but the current match |
1647 | * is longer, truncate the previous match to a single literal. |
1648 | */ |
1649 | Tracevv((stderr,"%c" , s->window[s->strstart-1])); |
1650 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1651 | if (bflush) { |
1652 | FLUSH_BLOCK_ONLY(s, 0); |
1653 | } |
1654 | s->strstart++; |
1655 | s->lookahead--; |
1656 | if (s->strm->avail_out == 0) return need_more; |
1657 | } else { |
1658 | /* There is no previous match to compare with, wait for |
1659 | * the next step to decide. |
1660 | */ |
1661 | s->match_available = 1; |
1662 | s->strstart++; |
1663 | s->lookahead--; |
1664 | } |
1665 | } |
1666 | Assert (flush != Z_NO_FLUSH, "no flush?" ); |
1667 | if (s->match_available) { |
1668 | Tracevv((stderr,"%c" , s->window[s->strstart-1])); |
1669 | _tr_tally_lit(s, s->window[s->strstart-1], bflush); |
1670 | s->match_available = 0; |
1671 | } |
1672 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1673 | return flush == Z_FINISH ? finish_done : block_done; |
1674 | } |
1675 | #endif /* FASTEST */ |
1676 | |
1677 | #if 0 |
1678 | /* =========================================================================== |
1679 | * For Z_RLE, simply look for runs of bytes, generate matches only of distance |
1680 | * one. Do not maintain a hash table. (It will be regenerated if this run of |
1681 | * deflate switches away from Z_RLE.) |
1682 | */ |
1683 | local block_state deflate_rle(s, flush) |
1684 | deflate_state *s; |
1685 | int flush; |
1686 | { |
1687 | int bflush; /* set if current block must be flushed */ |
1688 | uInt run; /* length of run */ |
1689 | uInt max; /* maximum length of run */ |
1690 | uInt prev; /* byte at distance one to match */ |
1691 | Bytef *scan; /* scan for end of run */ |
1692 | |
1693 | for (;;) { |
1694 | /* Make sure that we always have enough lookahead, except |
1695 | * at the end of the input file. We need MAX_MATCH bytes |
1696 | * for the longest encodable run. |
1697 | */ |
1698 | if (s->lookahead < MAX_MATCH) { |
1699 | fill_window(s); |
1700 | if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) { |
1701 | return need_more; |
1702 | } |
1703 | if (s->lookahead == 0) break; /* flush the current block */ |
1704 | } |
1705 | |
1706 | /* See how many times the previous byte repeats */ |
1707 | run = 0; |
1708 | if (s->strstart > 0) { /* if there is a previous byte, that is */ |
1709 | max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH; |
1710 | scan = s->window + s->strstart - 1; |
1711 | prev = *scan++; |
1712 | do { |
1713 | if (*scan++ != prev) |
1714 | break; |
1715 | } while (++run < max); |
1716 | } |
1717 | |
1718 | /* Emit match if have run of MIN_MATCH or longer, else emit literal */ |
1719 | if (run >= MIN_MATCH) { |
1720 | check_match(s, s->strstart, s->strstart - 1, run); |
1721 | _tr_tally_dist(s, 1, run - MIN_MATCH, bflush); |
1722 | s->lookahead -= run; |
1723 | s->strstart += run; |
1724 | } else { |
1725 | /* No match, output a literal byte */ |
1726 | Tracevv((stderr,"%c" , s->window[s->strstart])); |
1727 | _tr_tally_lit (s, s->window[s->strstart], bflush); |
1728 | s->lookahead--; |
1729 | s->strstart++; |
1730 | } |
1731 | if (bflush) FLUSH_BLOCK(s, 0); |
1732 | } |
1733 | FLUSH_BLOCK(s, flush == Z_FINISH); |
1734 | return flush == Z_FINISH ? finish_done : block_done; |
1735 | } |
1736 | #endif |
1737 | |