1 | /* infback.c -- inflate using a call-back interface |
2 | * Copyright (C) 1995-2005 Mark Adler |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | This code is largely copied from inflate.c. Normally either infback.o or |
8 | inflate.o would be linked into an application--not both. The interface |
9 | with inffast.c is retained so that optimized assembler-coded versions of |
10 | inflate_fast() can be used with either inflate.c or infback.c. |
11 | */ |
12 | |
13 | #include "zutil.h" |
14 | #include "inftrees.h" |
15 | #include "inflate.h" |
16 | #include "inffast.h" |
17 | |
18 | /* function prototypes */ |
19 | local void fixedtables OF((struct inflate_state FAR *state)); |
20 | |
21 | /* |
22 | strm provides memory allocation functions in zalloc and zfree, or |
23 | Z_NULL to use the library memory allocation functions. |
24 | |
25 | windowBits is in the range 8..15, and window is a user-supplied |
26 | window and output buffer that is 2**windowBits bytes. |
27 | */ |
28 | int ZEXPORT inflateBackInit_(strm, windowBits, window, version, stream_size) |
29 | z_streamp strm; |
30 | int windowBits; |
31 | unsigned char FAR *window; |
32 | const char *version; |
33 | int stream_size; |
34 | { |
35 | struct inflate_state FAR *state; |
36 | |
37 | if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || |
38 | stream_size != (int)(sizeof(z_stream))) |
39 | return Z_VERSION_ERROR; |
40 | if (strm == Z_NULL || window == Z_NULL || |
41 | windowBits < 8 || windowBits > 15) |
42 | return Z_STREAM_ERROR; |
43 | strm->msg = Z_NULL; /* in case we return an error */ |
44 | if (strm->zalloc == (alloc_func)0) { |
45 | strm->zalloc = zcalloc; |
46 | strm->opaque = (voidpf)0; |
47 | } |
48 | if (strm->zfree == (free_func)0) strm->zfree = zcfree; |
49 | state = (struct inflate_state FAR *)ZALLOC(strm, 1, |
50 | sizeof(struct inflate_state)); |
51 | if (state == Z_NULL) return Z_MEM_ERROR; |
52 | Tracev((stderr, "inflate: allocated\n" )); |
53 | strm->state = (struct internal_state FAR *)state; |
54 | state->dmax = 32768U; |
55 | state->wbits = windowBits; |
56 | state->wsize = 1U << windowBits; |
57 | state->window = window; |
58 | state->write = 0; |
59 | state->whave = 0; |
60 | return Z_OK; |
61 | } |
62 | |
63 | /* |
64 | Return state with length and distance decoding tables and index sizes set to |
65 | fixed code decoding. Normally this returns fixed tables from inffixed.h. |
66 | If BUILDFIXED is defined, then instead this routine builds the tables the |
67 | first time it's called, and returns those tables the first time and |
68 | thereafter. This reduces the size of the code by about 2K bytes, in |
69 | exchange for a little execution time. However, BUILDFIXED should not be |
70 | used for threaded applications, since the rewriting of the tables and virgin |
71 | may not be thread-safe. |
72 | */ |
73 | local void fixedtables(state) |
74 | struct inflate_state FAR *state; |
75 | { |
76 | #ifdef BUILDFIXED |
77 | static int virgin = 1; |
78 | static code *lenfix, *distfix; |
79 | static code fixed[544]; |
80 | |
81 | /* build fixed huffman tables if first call (may not be thread safe) */ |
82 | if (virgin) { |
83 | unsigned sym, bits; |
84 | static code *next; |
85 | |
86 | /* literal/length table */ |
87 | sym = 0; |
88 | while (sym < 144) state->lens[sym++] = 8; |
89 | while (sym < 256) state->lens[sym++] = 9; |
90 | while (sym < 280) state->lens[sym++] = 7; |
91 | while (sym < 288) state->lens[sym++] = 8; |
92 | next = fixed; |
93 | lenfix = next; |
94 | bits = 9; |
95 | inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); |
96 | |
97 | /* distance table */ |
98 | sym = 0; |
99 | while (sym < 32) state->lens[sym++] = 5; |
100 | distfix = next; |
101 | bits = 5; |
102 | inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); |
103 | |
104 | /* do this just once */ |
105 | virgin = 0; |
106 | } |
107 | #else /* !BUILDFIXED */ |
108 | # include "inffixed.h" |
109 | #endif /* BUILDFIXED */ |
110 | state->lencode = lenfix; |
111 | state->lenbits = 9; |
112 | state->distcode = distfix; |
113 | state->distbits = 5; |
114 | } |
115 | |
116 | /* Macros for inflateBack(): */ |
117 | |
118 | /* Load returned state from inflate_fast() */ |
119 | #define LOAD() \ |
120 | do { \ |
121 | put = strm->next_out; \ |
122 | left = strm->avail_out; \ |
123 | next = strm->next_in; \ |
124 | have = strm->avail_in; \ |
125 | hold = state->hold; \ |
126 | bits = state->bits; \ |
127 | } while (0) |
128 | |
129 | /* Set state from registers for inflate_fast() */ |
130 | #define RESTORE() \ |
131 | do { \ |
132 | strm->next_out = put; \ |
133 | strm->avail_out = left; \ |
134 | strm->next_in = next; \ |
135 | strm->avail_in = have; \ |
136 | state->hold = hold; \ |
137 | state->bits = bits; \ |
138 | } while (0) |
139 | |
140 | /* Clear the input bit accumulator */ |
141 | #define INITBITS() \ |
142 | do { \ |
143 | hold = 0; \ |
144 | bits = 0; \ |
145 | } while (0) |
146 | |
147 | /* Assure that some input is available. If input is requested, but denied, |
148 | then return a Z_BUF_ERROR from inflateBack(). */ |
149 | #define PULL() \ |
150 | do { \ |
151 | if (have == 0) { \ |
152 | have = in(in_desc, &next); \ |
153 | if (have == 0) { \ |
154 | next = Z_NULL; \ |
155 | ret = Z_BUF_ERROR; \ |
156 | goto inf_leave; \ |
157 | } \ |
158 | } \ |
159 | } while (0) |
160 | |
161 | /* Get a byte of input into the bit accumulator, or return from inflateBack() |
162 | with an error if there is no input available. */ |
163 | #define PULLBYTE() \ |
164 | do { \ |
165 | PULL(); \ |
166 | have--; \ |
167 | hold += (unsigned long)(*next++) << bits; \ |
168 | bits += 8; \ |
169 | } while (0) |
170 | |
171 | /* Assure that there are at least n bits in the bit accumulator. If there is |
172 | not enough available input to do that, then return from inflateBack() with |
173 | an error. */ |
174 | #define NEEDBITS(n) \ |
175 | do { \ |
176 | while (bits < (unsigned)(n)) \ |
177 | PULLBYTE(); \ |
178 | } while (0) |
179 | |
180 | /* Return the low n bits of the bit accumulator (n < 16) */ |
181 | #define BITS(n) \ |
182 | ((unsigned)hold & ((1U << (n)) - 1)) |
183 | |
184 | /* Remove n bits from the bit accumulator */ |
185 | #define DROPBITS(n) \ |
186 | do { \ |
187 | hold >>= (n); \ |
188 | bits -= (unsigned)(n); \ |
189 | } while (0) |
190 | |
191 | /* Remove zero to seven bits as needed to go to a byte boundary */ |
192 | #define BYTEBITS() \ |
193 | do { \ |
194 | hold >>= bits & 7; \ |
195 | bits -= bits & 7; \ |
196 | } while (0) |
197 | |
198 | /* Assure that some output space is available, by writing out the window |
199 | if it's full. If the write fails, return from inflateBack() with a |
200 | Z_BUF_ERROR. */ |
201 | #define ROOM() \ |
202 | do { \ |
203 | if (left == 0) { \ |
204 | put = state->window; \ |
205 | left = state->wsize; \ |
206 | state->whave = left; \ |
207 | if (out(out_desc, put, left)) { \ |
208 | ret = Z_BUF_ERROR; \ |
209 | goto inf_leave; \ |
210 | } \ |
211 | } \ |
212 | } while (0) |
213 | |
214 | /* |
215 | strm provides the memory allocation functions and window buffer on input, |
216 | and provides information on the unused input on return. For Z_DATA_ERROR |
217 | returns, strm will also provide an error message. |
218 | |
219 | in() and out() are the call-back input and output functions. When |
220 | inflateBack() needs more input, it calls in(). When inflateBack() has |
221 | filled the window with output, or when it completes with data in the |
222 | window, it calls out() to write out the data. The application must not |
223 | change the provided input until in() is called again or inflateBack() |
224 | returns. The application must not change the window/output buffer until |
225 | inflateBack() returns. |
226 | |
227 | in() and out() are called with a descriptor parameter provided in the |
228 | inflateBack() call. This parameter can be a structure that provides the |
229 | information required to do the read or write, as well as accumulated |
230 | information on the input and output such as totals and check values. |
231 | |
232 | in() should return zero on failure. out() should return non-zero on |
233 | failure. If either in() or out() fails, than inflateBack() returns a |
234 | Z_BUF_ERROR. strm->next_in can be checked for Z_NULL to see whether it |
235 | was in() or out() that caused in the error. Otherwise, inflateBack() |
236 | returns Z_STREAM_END on success, Z_DATA_ERROR for an deflate format |
237 | error, or Z_MEM_ERROR if it could not allocate memory for the state. |
238 | inflateBack() can also return Z_STREAM_ERROR if the input parameters |
239 | are not correct, i.e. strm is Z_NULL or the state was not initialized. |
240 | */ |
241 | int ZEXPORT inflateBack(strm, in, in_desc, out, out_desc) |
242 | z_streamp strm; |
243 | in_func in; |
244 | void FAR *in_desc; |
245 | out_func out; |
246 | void FAR *out_desc; |
247 | { |
248 | struct inflate_state FAR *state; |
249 | unsigned char FAR *next; /* next input */ |
250 | unsigned char FAR *put; /* next output */ |
251 | unsigned have, left; /* available input and output */ |
252 | unsigned long hold; /* bit buffer */ |
253 | unsigned bits; /* bits in bit buffer */ |
254 | unsigned copy; /* number of stored or match bytes to copy */ |
255 | unsigned char FAR *from; /* where to copy match bytes from */ |
256 | code this; /* current decoding table entry */ |
257 | code last; /* parent table entry */ |
258 | unsigned len; /* length to copy for repeats, bits to drop */ |
259 | int ret; /* return code */ |
260 | static const unsigned short order[19] = /* permutation of code lengths */ |
261 | {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
262 | |
263 | /* Check that the strm exists and that the state was initialized */ |
264 | if (strm == Z_NULL || strm->state == Z_NULL) |
265 | return Z_STREAM_ERROR; |
266 | state = (struct inflate_state FAR *)strm->state; |
267 | |
268 | /* Reset the state */ |
269 | strm->msg = Z_NULL; |
270 | state->mode = TYPE; |
271 | state->last = 0; |
272 | state->whave = 0; |
273 | next = strm->next_in; |
274 | have = next != Z_NULL ? strm->avail_in : 0; |
275 | hold = 0; |
276 | bits = 0; |
277 | put = state->window; |
278 | left = state->wsize; |
279 | |
280 | /* Inflate until end of block marked as last */ |
281 | for (;;) |
282 | switch (state->mode) { |
283 | case TYPE: |
284 | /* determine and dispatch block type */ |
285 | if (state->last) { |
286 | BYTEBITS(); |
287 | state->mode = DONE; |
288 | break; |
289 | } |
290 | NEEDBITS(3); |
291 | state->last = BITS(1); |
292 | DROPBITS(1); |
293 | switch (BITS(2)) { |
294 | case 0: /* stored block */ |
295 | Tracev((stderr, "inflate: stored block%s\n" , |
296 | state->last ? " (last)" : "" )); |
297 | state->mode = STORED; |
298 | break; |
299 | case 1: /* fixed block */ |
300 | fixedtables(state); |
301 | Tracev((stderr, "inflate: fixed codes block%s\n" , |
302 | state->last ? " (last)" : "" )); |
303 | state->mode = LEN; /* decode codes */ |
304 | break; |
305 | case 2: /* dynamic block */ |
306 | Tracev((stderr, "inflate: dynamic codes block%s\n" , |
307 | state->last ? " (last)" : "" )); |
308 | state->mode = TABLE; |
309 | break; |
310 | case 3: |
311 | strm->msg = (char *)"invalid block type" ; |
312 | state->mode = BAD; |
313 | } |
314 | DROPBITS(2); |
315 | break; |
316 | |
317 | case STORED: |
318 | /* get and verify stored block length */ |
319 | BYTEBITS(); /* go to byte boundary */ |
320 | NEEDBITS(32); |
321 | if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { |
322 | strm->msg = (char *)"invalid stored block lengths" ; |
323 | state->mode = BAD; |
324 | break; |
325 | } |
326 | state->length = (unsigned)hold & 0xffff; |
327 | Tracev((stderr, "inflate: stored length %u\n" , |
328 | state->length)); |
329 | INITBITS(); |
330 | |
331 | /* copy stored block from input to output */ |
332 | while (state->length != 0) { |
333 | copy = state->length; |
334 | PULL(); |
335 | ROOM(); |
336 | if (copy > have) copy = have; |
337 | if (copy > left) copy = left; |
338 | zmemcpy(put, next, copy); |
339 | have -= copy; |
340 | next += copy; |
341 | left -= copy; |
342 | put += copy; |
343 | state->length -= copy; |
344 | } |
345 | Tracev((stderr, "inflate: stored end\n" )); |
346 | state->mode = TYPE; |
347 | break; |
348 | |
349 | case TABLE: |
350 | /* get dynamic table entries descriptor */ |
351 | NEEDBITS(14); |
352 | state->nlen = BITS(5) + 257; |
353 | DROPBITS(5); |
354 | state->ndist = BITS(5) + 1; |
355 | DROPBITS(5); |
356 | state->ncode = BITS(4) + 4; |
357 | DROPBITS(4); |
358 | #ifndef PKZIP_BUG_WORKAROUND |
359 | if (state->nlen > 286 || state->ndist > 30) { |
360 | strm->msg = (char *)"too many length or distance symbols" ; |
361 | state->mode = BAD; |
362 | break; |
363 | } |
364 | #endif |
365 | Tracev((stderr, "inflate: table sizes ok\n" )); |
366 | |
367 | /* get code length code lengths (not a typo) */ |
368 | state->have = 0; |
369 | while (state->have < state->ncode) { |
370 | NEEDBITS(3); |
371 | state->lens[order[state->have++]] = (unsigned short)BITS(3); |
372 | DROPBITS(3); |
373 | } |
374 | while (state->have < 19) |
375 | state->lens[order[state->have++]] = 0; |
376 | state->next = state->codes; |
377 | state->lencode = (code const FAR *)(state->next); |
378 | state->lenbits = 7; |
379 | ret = inflate_table(CODES, state->lens, 19, &(state->next), |
380 | &(state->lenbits), state->work); |
381 | if (ret) { |
382 | strm->msg = (char *)"invalid code lengths set" ; |
383 | state->mode = BAD; |
384 | break; |
385 | } |
386 | Tracev((stderr, "inflate: code lengths ok\n" )); |
387 | |
388 | /* get length and distance code code lengths */ |
389 | state->have = 0; |
390 | while (state->have < state->nlen + state->ndist) { |
391 | for (;;) { |
392 | this = state->lencode[BITS(state->lenbits)]; |
393 | if ((unsigned)(this.bits) <= bits) break; |
394 | PULLBYTE(); |
395 | } |
396 | if (this.val < 16) { |
397 | NEEDBITS(this.bits); |
398 | DROPBITS(this.bits); |
399 | state->lens[state->have++] = this.val; |
400 | } |
401 | else { |
402 | if (this.val == 16) { |
403 | NEEDBITS(this.bits + 2); |
404 | DROPBITS(this.bits); |
405 | if (state->have == 0) { |
406 | strm->msg = (char *)"invalid bit length repeat" ; |
407 | state->mode = BAD; |
408 | break; |
409 | } |
410 | len = (unsigned)(state->lens[state->have - 1]); |
411 | copy = 3 + BITS(2); |
412 | DROPBITS(2); |
413 | } |
414 | else if (this.val == 17) { |
415 | NEEDBITS(this.bits + 3); |
416 | DROPBITS(this.bits); |
417 | len = 0; |
418 | copy = 3 + BITS(3); |
419 | DROPBITS(3); |
420 | } |
421 | else { |
422 | NEEDBITS(this.bits + 7); |
423 | DROPBITS(this.bits); |
424 | len = 0; |
425 | copy = 11 + BITS(7); |
426 | DROPBITS(7); |
427 | } |
428 | if (state->have + copy > state->nlen + state->ndist) { |
429 | strm->msg = (char *)"invalid bit length repeat" ; |
430 | state->mode = BAD; |
431 | break; |
432 | } |
433 | while (copy--) |
434 | state->lens[state->have++] = (unsigned short)len; |
435 | } |
436 | } |
437 | |
438 | /* handle error breaks in while */ |
439 | if (state->mode == BAD) break; |
440 | |
441 | /* build code tables */ |
442 | state->next = state->codes; |
443 | state->lencode = (code const FAR *)(state->next); |
444 | state->lenbits = 9; |
445 | ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), |
446 | &(state->lenbits), state->work); |
447 | if (ret) { |
448 | strm->msg = (char *)"invalid literal/lengths set" ; |
449 | state->mode = BAD; |
450 | break; |
451 | } |
452 | state->distcode = (code const FAR *)(state->next); |
453 | state->distbits = 6; |
454 | ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, |
455 | &(state->next), &(state->distbits), state->work); |
456 | if (ret) { |
457 | strm->msg = (char *)"invalid distances set" ; |
458 | state->mode = BAD; |
459 | break; |
460 | } |
461 | Tracev((stderr, "inflate: codes ok\n" )); |
462 | state->mode = LEN; |
463 | |
464 | case LEN: |
465 | /* use inflate_fast() if we have enough input and output */ |
466 | if (have >= 6 && left >= 258) { |
467 | RESTORE(); |
468 | if (state->whave < state->wsize) |
469 | state->whave = state->wsize - left; |
470 | inflate_fast(strm, state->wsize); |
471 | LOAD(); |
472 | break; |
473 | } |
474 | |
475 | /* get a literal, length, or end-of-block code */ |
476 | for (;;) { |
477 | this = state->lencode[BITS(state->lenbits)]; |
478 | if ((unsigned)(this.bits) <= bits) break; |
479 | PULLBYTE(); |
480 | } |
481 | if (this.op && (this.op & 0xf0) == 0) { |
482 | last = this; |
483 | for (;;) { |
484 | this = state->lencode[last.val + |
485 | (BITS(last.bits + last.op) >> last.bits)]; |
486 | if ((unsigned)(last.bits + this.bits) <= bits) break; |
487 | PULLBYTE(); |
488 | } |
489 | DROPBITS(last.bits); |
490 | } |
491 | DROPBITS(this.bits); |
492 | state->length = (unsigned)this.val; |
493 | |
494 | /* process literal */ |
495 | if (this.op == 0) { |
496 | Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ? |
497 | "inflate: literal '%c'\n" : |
498 | "inflate: literal 0x%02x\n" , this.val)); |
499 | ROOM(); |
500 | *put++ = (unsigned char)(state->length); |
501 | left--; |
502 | state->mode = LEN; |
503 | break; |
504 | } |
505 | |
506 | /* process end of block */ |
507 | if (this.op & 32) { |
508 | Tracevv((stderr, "inflate: end of block\n" )); |
509 | state->mode = TYPE; |
510 | break; |
511 | } |
512 | |
513 | /* invalid code */ |
514 | if (this.op & 64) { |
515 | strm->msg = (char *)"invalid literal/length code" ; |
516 | state->mode = BAD; |
517 | break; |
518 | } |
519 | |
520 | /* length code -- get extra bits, if any */ |
521 | state->extra = (unsigned)(this.op) & 15; |
522 | if (state->extra != 0) { |
523 | NEEDBITS(state->extra); |
524 | state->length += BITS(state->extra); |
525 | DROPBITS(state->extra); |
526 | } |
527 | Tracevv((stderr, "inflate: length %u\n" , state->length)); |
528 | |
529 | /* get distance code */ |
530 | for (;;) { |
531 | this = state->distcode[BITS(state->distbits)]; |
532 | if ((unsigned)(this.bits) <= bits) break; |
533 | PULLBYTE(); |
534 | } |
535 | if ((this.op & 0xf0) == 0) { |
536 | last = this; |
537 | for (;;) { |
538 | this = state->distcode[last.val + |
539 | (BITS(last.bits + last.op) >> last.bits)]; |
540 | if ((unsigned)(last.bits + this.bits) <= bits) break; |
541 | PULLBYTE(); |
542 | } |
543 | DROPBITS(last.bits); |
544 | } |
545 | DROPBITS(this.bits); |
546 | if (this.op & 64) { |
547 | strm->msg = (char *)"invalid distance code" ; |
548 | state->mode = BAD; |
549 | break; |
550 | } |
551 | state->offset = (unsigned)this.val; |
552 | |
553 | /* get distance extra bits, if any */ |
554 | state->extra = (unsigned)(this.op) & 15; |
555 | if (state->extra != 0) { |
556 | NEEDBITS(state->extra); |
557 | state->offset += BITS(state->extra); |
558 | DROPBITS(state->extra); |
559 | } |
560 | if (state->offset > state->wsize - (state->whave < state->wsize ? |
561 | left : 0)) { |
562 | strm->msg = (char *)"invalid distance too far back" ; |
563 | state->mode = BAD; |
564 | break; |
565 | } |
566 | Tracevv((stderr, "inflate: distance %u\n" , state->offset)); |
567 | |
568 | /* copy match from window to output */ |
569 | do { |
570 | ROOM(); |
571 | copy = state->wsize - state->offset; |
572 | if (copy < left) { |
573 | from = put + copy; |
574 | copy = left - copy; |
575 | } |
576 | else { |
577 | from = put - state->offset; |
578 | copy = left; |
579 | } |
580 | if (copy > state->length) copy = state->length; |
581 | state->length -= copy; |
582 | left -= copy; |
583 | do { |
584 | *put++ = *from++; |
585 | } while (--copy); |
586 | } while (state->length != 0); |
587 | break; |
588 | |
589 | case DONE: |
590 | /* inflate stream terminated properly -- write leftover output */ |
591 | ret = Z_STREAM_END; |
592 | if (left < state->wsize) { |
593 | if (out(out_desc, state->window, state->wsize - left)) |
594 | ret = Z_BUF_ERROR; |
595 | } |
596 | goto inf_leave; |
597 | |
598 | case BAD: |
599 | ret = Z_DATA_ERROR; |
600 | goto inf_leave; |
601 | |
602 | default: /* can't happen, but makes compilers happy */ |
603 | ret = Z_STREAM_ERROR; |
604 | goto inf_leave; |
605 | } |
606 | |
607 | /* Return unused input */ |
608 | inf_leave: |
609 | strm->next_in = next; |
610 | strm->avail_in = have; |
611 | return ret; |
612 | } |
613 | |
614 | int ZEXPORT inflateBackEnd(strm) |
615 | z_streamp strm; |
616 | { |
617 | if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) |
618 | return Z_STREAM_ERROR; |
619 | ZFREE(strm, strm->state); |
620 | strm->state = Z_NULL; |
621 | Tracev((stderr, "inflate: end\n" )); |
622 | return Z_OK; |
623 | } |
624 | |