1 | /* trees.c -- output deflated data using Huffman coding |
2 | * Copyright (C) 1995-2005 Jean-loup Gailly |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | */ |
5 | |
6 | /* |
7 | * ALGORITHM |
8 | * |
9 | * The "deflation" process uses several Huffman trees. The more |
10 | * common source values are represented by shorter bit sequences. |
11 | * |
12 | * Each code tree is stored in a compressed form which is itself |
13 | * a Huffman encoding of the lengths of all the code strings (in |
14 | * ascending order by source values). The actual code strings are |
15 | * reconstructed from the lengths in the inflate process, as described |
16 | * in the deflate specification. |
17 | * |
18 | * REFERENCES |
19 | * |
20 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
21 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
22 | * |
23 | * Storer, James A. |
24 | * Data Compression: Methods and Theory, pp. 49-50. |
25 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
26 | * |
27 | * Sedgewick, R. |
28 | * Algorithms, p290. |
29 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
30 | */ |
31 | |
32 | /* @(#) $Id: //poco/Main/Foundation/src/trees.c#9 $ */ |
33 | |
34 | /* #define GEN_TREES_H */ |
35 | |
36 | #if defined(_MSC_VER) |
37 | #pragma warning(disable:4267) // conversion from ... possble loss of data |
38 | #endif |
39 | |
40 | #include "deflate.h" |
41 | |
42 | #ifdef ZLIB_DEBUG |
43 | # include <ctype.h> |
44 | #endif |
45 | |
46 | /* =========================================================================== |
47 | * Constants |
48 | */ |
49 | |
50 | #define MAX_BL_BITS 7 |
51 | /* Bit length codes must not exceed MAX_BL_BITS bits */ |
52 | |
53 | #define END_BLOCK 256 |
54 | /* end of block literal code */ |
55 | |
56 | #define REP_3_6 16 |
57 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
58 | |
59 | #define REPZ_3_10 17 |
60 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
61 | |
62 | #define REPZ_11_138 18 |
63 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
64 | |
65 | local const int [LENGTH_CODES] /* extra bits for each length code */ |
66 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
67 | |
68 | local const int [D_CODES] /* extra bits for each distance code */ |
69 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
70 | |
71 | local const int [BL_CODES]/* extra bits for each bit length code */ |
72 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
73 | |
74 | local const uch bl_order[BL_CODES] |
75 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
76 | /* The lengths of the bit length codes are sent in order of decreasing |
77 | * probability, to avoid transmitting the lengths for unused bit length codes. |
78 | */ |
79 | |
80 | #define Buf_size (8 * 2*sizeof(char)) |
81 | /* Number of bits used within bi_buf. (bi_buf might be implemented on |
82 | * more than 16 bits on some systems.) |
83 | */ |
84 | |
85 | /* =========================================================================== |
86 | * Local data. These are initialized only once. |
87 | */ |
88 | |
89 | #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
90 | |
91 | #if defined(GEN_TREES_H) || !defined(STDC) |
92 | /* non ANSI compilers may not accept trees.h */ |
93 | |
94 | local ct_data static_ltree[L_CODES+2]; |
95 | /* The static literal tree. Since the bit lengths are imposed, there is no |
96 | * need for the L_CODES extra codes used during heap construction. However |
97 | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
98 | * below). |
99 | */ |
100 | |
101 | local ct_data static_dtree[D_CODES]; |
102 | /* The static distance tree. (Actually a trivial tree since all codes use |
103 | * 5 bits.) |
104 | */ |
105 | |
106 | uch _dist_code[DIST_CODE_LEN]; |
107 | /* Distance codes. The first 256 values correspond to the distances |
108 | * 3 .. 258, the last 256 values correspond to the top 8 bits of |
109 | * the 15 bit distances. |
110 | */ |
111 | |
112 | uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
113 | /* length code for each normalized match length (0 == MIN_MATCH) */ |
114 | |
115 | local int base_length[LENGTH_CODES]; |
116 | /* First normalized length for each code (0 = MIN_MATCH) */ |
117 | |
118 | local int base_dist[D_CODES]; |
119 | /* First normalized distance for each code (0 = distance of 1) */ |
120 | |
121 | #else |
122 | # include "trees.h" |
123 | #endif /* GEN_TREES_H */ |
124 | |
125 | struct static_tree_desc_s { |
126 | const ct_data *static_tree; /* static tree or NULL */ |
127 | const intf *; /* extra bits for each code or NULL */ |
128 | int ; /* base index for extra_bits */ |
129 | int elems; /* max number of elements in the tree */ |
130 | int max_length; /* max bit length for the codes */ |
131 | }; |
132 | |
133 | local static_tree_desc static_l_desc = |
134 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
135 | |
136 | local static_tree_desc static_d_desc = |
137 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
138 | |
139 | local static_tree_desc static_bl_desc = |
140 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
141 | |
142 | /* =========================================================================== |
143 | * Local (static) routines in this file. |
144 | */ |
145 | |
146 | local void tr_static_init OF((void)); |
147 | local void init_block OF((deflate_state *s)); |
148 | local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
149 | local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
150 | local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
151 | local void build_tree OF((deflate_state *s, tree_desc *desc)); |
152 | local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
153 | local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
154 | local int build_bl_tree OF((deflate_state *s)); |
155 | local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
156 | int blcodes)); |
157 | local void compress_block OF((deflate_state *s, ct_data *ltree, |
158 | ct_data *dtree)); |
159 | local void set_data_type OF((deflate_state *s)); |
160 | local unsigned bi_reverse OF((unsigned value, int length)); |
161 | local void bi_windup OF((deflate_state *s)); |
162 | local void bi_flush OF((deflate_state *s)); |
163 | local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
164 | int )); |
165 | |
166 | #ifdef GEN_TREES_H |
167 | local void gen_trees_header OF((void)); |
168 | #endif |
169 | |
170 | #ifndef ZLIB_DEBUG |
171 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
172 | /* Send a code of the given tree. c and tree must not have side effects */ |
173 | |
174 | #else /* DEBUG */ |
175 | # define send_code(s, c, tree) \ |
176 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
177 | send_bits(s, tree[c].Code, tree[c].Len); } |
178 | #endif |
179 | |
180 | /* =========================================================================== |
181 | * Output a short LSB first on the stream. |
182 | * IN assertion: there is enough room in pendingBuf. |
183 | */ |
184 | #define put_short(s, w) { \ |
185 | put_byte(s, (uch)((w) & 0xff)); \ |
186 | put_byte(s, (uch)((ush)(w) >> 8)); \ |
187 | } |
188 | |
189 | /* =========================================================================== |
190 | * Send a value on a given number of bits. |
191 | * IN assertion: length <= 16 and value fits in length bits. |
192 | */ |
193 | #ifdef ZLIB_DEBUG |
194 | local void send_bits OF((deflate_state *s, int value, int length)); |
195 | |
196 | local void send_bits(s, value, length) |
197 | deflate_state *s; |
198 | int value; /* value to send */ |
199 | int length; /* number of bits */ |
200 | { |
201 | Tracevv((stderr," l %2d v %4x " , length, value)); |
202 | Assert(length > 0 && length <= 15, "invalid length" ); |
203 | s->bits_sent += (ulg)length; |
204 | |
205 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
206 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
207 | * unused bits in value. |
208 | */ |
209 | if (s->bi_valid > (int)Buf_size - length) { |
210 | s->bi_buf |= (value << s->bi_valid); |
211 | put_short(s, s->bi_buf); |
212 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
213 | s->bi_valid += length - Buf_size; |
214 | } else { |
215 | s->bi_buf |= value << s->bi_valid; |
216 | s->bi_valid += length; |
217 | } |
218 | } |
219 | #else /* !DEBUG */ |
220 | |
221 | #define send_bits(s, value, length) \ |
222 | { int len = length;\ |
223 | if (s->bi_valid > (int)Buf_size - len) {\ |
224 | int val = value;\ |
225 | s->bi_buf |= (val << s->bi_valid);\ |
226 | put_short(s, s->bi_buf);\ |
227 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
228 | s->bi_valid += len - Buf_size;\ |
229 | } else {\ |
230 | s->bi_buf |= (value) << s->bi_valid;\ |
231 | s->bi_valid += len;\ |
232 | }\ |
233 | } |
234 | #endif /* DEBUG */ |
235 | |
236 | |
237 | /* the arguments must not have side effects */ |
238 | |
239 | /* =========================================================================== |
240 | * Initialize the various 'constant' tables. |
241 | */ |
242 | local void tr_static_init() |
243 | { |
244 | #if defined(GEN_TREES_H) || !defined(STDC) |
245 | static int static_init_done = 0; |
246 | int n; /* iterates over tree elements */ |
247 | int bits; /* bit counter */ |
248 | int length; /* length value */ |
249 | int code; /* code value */ |
250 | int dist; /* distance index */ |
251 | ush bl_count[MAX_BITS+1]; |
252 | /* number of codes at each bit length for an optimal tree */ |
253 | |
254 | if (static_init_done) return; |
255 | |
256 | /* For some embedded targets, global variables are not initialized: */ |
257 | static_l_desc.static_tree = static_ltree; |
258 | static_l_desc.extra_bits = extra_lbits; |
259 | static_d_desc.static_tree = static_dtree; |
260 | static_d_desc.extra_bits = extra_dbits; |
261 | static_bl_desc.extra_bits = extra_blbits; |
262 | |
263 | /* Initialize the mapping length (0..255) -> length code (0..28) */ |
264 | length = 0; |
265 | for (code = 0; code < LENGTH_CODES-1; code++) { |
266 | base_length[code] = length; |
267 | for (n = 0; n < (1<<extra_lbits[code]); n++) { |
268 | _length_code[length++] = (uch)code; |
269 | } |
270 | } |
271 | Assert (length == 256, "tr_static_init: length != 256" ); |
272 | /* Note that the length 255 (match length 258) can be represented |
273 | * in two different ways: code 284 + 5 bits or code 285, so we |
274 | * overwrite length_code[255] to use the best encoding: |
275 | */ |
276 | _length_code[length-1] = (uch)code; |
277 | |
278 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
279 | dist = 0; |
280 | for (code = 0 ; code < 16; code++) { |
281 | base_dist[code] = dist; |
282 | for (n = 0; n < (1<<extra_dbits[code]); n++) { |
283 | _dist_code[dist++] = (uch)code; |
284 | } |
285 | } |
286 | Assert (dist == 256, "tr_static_init: dist != 256" ); |
287 | dist >>= 7; /* from now on, all distances are divided by 128 */ |
288 | for ( ; code < D_CODES; code++) { |
289 | base_dist[code] = dist << 7; |
290 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
291 | _dist_code[256 + dist++] = (uch)code; |
292 | } |
293 | } |
294 | Assert (dist == 256, "tr_static_init: 256+dist != 512" ); |
295 | |
296 | /* Construct the codes of the static literal tree */ |
297 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
298 | n = 0; |
299 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
300 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
301 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
302 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
303 | /* Codes 286 and 287 do not exist, but we must include them in the |
304 | * tree construction to get a canonical Huffman tree (longest code |
305 | * all ones) |
306 | */ |
307 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
308 | |
309 | /* The static distance tree is trivial: */ |
310 | for (n = 0; n < D_CODES; n++) { |
311 | static_dtree[n].Len = 5; |
312 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
313 | } |
314 | static_init_done = 1; |
315 | |
316 | # ifdef GEN_TREES_H |
317 | gen_trees_header(); |
318 | # endif |
319 | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
320 | } |
321 | |
322 | /* =========================================================================== |
323 | * Genererate the file trees.h describing the static trees. |
324 | */ |
325 | #ifdef GEN_TREES_H |
326 | # ifndef DEBUG |
327 | # include <stdio.h> |
328 | # endif |
329 | |
330 | # define SEPARATOR(i, last, width) \ |
331 | ((i) == (last)? "\n};\n\n" : \ |
332 | ((i) % (width) == (width)-1 ? ",\n" : ", ")) |
333 | |
334 | void gen_trees_header() |
335 | { |
336 | FILE *header = fopen("trees.h" , "w" ); |
337 | int i; |
338 | |
339 | Assert (header != NULL, "Can't open trees.h" ); |
340 | fprintf(header, |
341 | "/* header created automatically with -DGEN_TREES_H */\n\n" ); |
342 | |
343 | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n" ); |
344 | for (i = 0; i < L_CODES+2; i++) { |
345 | fprintf(header, "{{%3u},{%3u}}%s" , static_ltree[i].Code, |
346 | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
347 | } |
348 | |
349 | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n" ); |
350 | for (i = 0; i < D_CODES; i++) { |
351 | fprintf(header, "{{%2u},{%2u}}%s" , static_dtree[i].Code, |
352 | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
353 | } |
354 | |
355 | fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n" ); |
356 | for (i = 0; i < DIST_CODE_LEN; i++) { |
357 | fprintf(header, "%2u%s" , _dist_code[i], |
358 | SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
359 | } |
360 | |
361 | fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n" ); |
362 | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
363 | fprintf(header, "%2u%s" , _length_code[i], |
364 | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
365 | } |
366 | |
367 | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n" ); |
368 | for (i = 0; i < LENGTH_CODES; i++) { |
369 | fprintf(header, "%1u%s" , base_length[i], |
370 | SEPARATOR(i, LENGTH_CODES-1, 20)); |
371 | } |
372 | |
373 | fprintf(header, "local const int base_dist[D_CODES] = {\n" ); |
374 | for (i = 0; i < D_CODES; i++) { |
375 | fprintf(header, "%5u%s" , base_dist[i], |
376 | SEPARATOR(i, D_CODES-1, 10)); |
377 | } |
378 | |
379 | fclose(header); |
380 | } |
381 | #endif /* GEN_TREES_H */ |
382 | |
383 | /* =========================================================================== |
384 | * Initialize the tree data structures for a new zlib stream. |
385 | */ |
386 | void _tr_init(s) |
387 | deflate_state *s; |
388 | { |
389 | tr_static_init(); |
390 | |
391 | s->l_desc.dyn_tree = s->dyn_ltree; |
392 | s->l_desc.stat_desc = &static_l_desc; |
393 | |
394 | s->d_desc.dyn_tree = s->dyn_dtree; |
395 | s->d_desc.stat_desc = &static_d_desc; |
396 | |
397 | s->bl_desc.dyn_tree = s->bl_tree; |
398 | s->bl_desc.stat_desc = &static_bl_desc; |
399 | |
400 | s->bi_buf = 0; |
401 | s->bi_valid = 0; |
402 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
403 | #ifdef ZLIB_DEBUG |
404 | s->compressed_len = 0L; |
405 | s->bits_sent = 0L; |
406 | #endif |
407 | |
408 | /* Initialize the first block of the first file: */ |
409 | init_block(s); |
410 | } |
411 | |
412 | /* =========================================================================== |
413 | * Initialize a new block. |
414 | */ |
415 | local void init_block(s) |
416 | deflate_state *s; |
417 | { |
418 | int n; /* iterates over tree elements */ |
419 | |
420 | /* Initialize the trees. */ |
421 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
422 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
423 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
424 | |
425 | s->dyn_ltree[END_BLOCK].Freq = 1; |
426 | s->opt_len = s->static_len = 0L; |
427 | s->last_lit = s->matches = 0; |
428 | } |
429 | |
430 | #define SMALLEST 1 |
431 | /* Index within the heap array of least frequent node in the Huffman tree */ |
432 | |
433 | |
434 | /* =========================================================================== |
435 | * Remove the smallest element from the heap and recreate the heap with |
436 | * one less element. Updates heap and heap_len. |
437 | */ |
438 | #define pqremove(s, tree, top) \ |
439 | {\ |
440 | top = s->heap[SMALLEST]; \ |
441 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
442 | pqdownheap(s, tree, SMALLEST); \ |
443 | } |
444 | |
445 | /* =========================================================================== |
446 | * Compares to subtrees, using the tree depth as tie breaker when |
447 | * the subtrees have equal frequency. This minimizes the worst case length. |
448 | */ |
449 | #define smaller(tree, n, m, depth) \ |
450 | (tree[n].Freq < tree[m].Freq || \ |
451 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
452 | |
453 | /* =========================================================================== |
454 | * Restore the heap property by moving down the tree starting at node k, |
455 | * exchanging a node with the smallest of its two sons if necessary, stopping |
456 | * when the heap property is re-established (each father smaller than its |
457 | * two sons). |
458 | */ |
459 | local void pqdownheap(s, tree, k) |
460 | deflate_state *s; |
461 | ct_data *tree; /* the tree to restore */ |
462 | int k; /* node to move down */ |
463 | { |
464 | int v = s->heap[k]; |
465 | int j = k << 1; /* left son of k */ |
466 | while (j <= s->heap_len) { |
467 | /* Set j to the smallest of the two sons: */ |
468 | if (j < s->heap_len && |
469 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
470 | j++; |
471 | } |
472 | /* Exit if v is smaller than both sons */ |
473 | if (smaller(tree, v, s->heap[j], s->depth)) break; |
474 | |
475 | /* Exchange v with the smallest son */ |
476 | s->heap[k] = s->heap[j]; k = j; |
477 | |
478 | /* And continue down the tree, setting j to the left son of k */ |
479 | j <<= 1; |
480 | } |
481 | s->heap[k] = v; |
482 | } |
483 | |
484 | /* =========================================================================== |
485 | * Compute the optimal bit lengths for a tree and update the total bit length |
486 | * for the current block. |
487 | * IN assertion: the fields freq and dad are set, heap[heap_max] and |
488 | * above are the tree nodes sorted by increasing frequency. |
489 | * OUT assertions: the field len is set to the optimal bit length, the |
490 | * array bl_count contains the frequencies for each bit length. |
491 | * The length opt_len is updated; static_len is also updated if stree is |
492 | * not null. |
493 | */ |
494 | local void gen_bitlen(s, desc) |
495 | deflate_state *s; |
496 | tree_desc *desc; /* the tree descriptor */ |
497 | { |
498 | ct_data *tree = desc->dyn_tree; |
499 | int max_code = desc->max_code; |
500 | const ct_data *stree = desc->stat_desc->static_tree; |
501 | const intf * = desc->stat_desc->extra_bits; |
502 | int base = desc->stat_desc->extra_base; |
503 | int max_length = desc->stat_desc->max_length; |
504 | int h; /* heap index */ |
505 | int n, m; /* iterate over the tree elements */ |
506 | int bits; /* bit length */ |
507 | int xbits; /* extra bits */ |
508 | ush f; /* frequency */ |
509 | int overflow = 0; /* number of elements with bit length too large */ |
510 | |
511 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
512 | |
513 | /* In a first pass, compute the optimal bit lengths (which may |
514 | * overflow in the case of the bit length tree). |
515 | */ |
516 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
517 | |
518 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
519 | n = s->heap[h]; |
520 | bits = tree[tree[n].Dad].Len + 1; |
521 | if (bits > max_length) bits = max_length, overflow++; |
522 | tree[n].Len = (ush)bits; |
523 | /* We overwrite tree[n].Dad which is no longer needed */ |
524 | |
525 | if (n > max_code) continue; /* not a leaf node */ |
526 | |
527 | s->bl_count[bits]++; |
528 | xbits = 0; |
529 | if (n >= base) xbits = extra[n-base]; |
530 | f = tree[n].Freq; |
531 | s->opt_len += (ulg)f * (bits + xbits); |
532 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
533 | } |
534 | if (overflow == 0) return; |
535 | |
536 | Trace((stderr,"\nbit length overflow\n" )); |
537 | /* This happens for example on obj2 and pic of the Calgary corpus */ |
538 | |
539 | /* Find the first bit length which could increase: */ |
540 | do { |
541 | bits = max_length-1; |
542 | while (s->bl_count[bits] == 0) bits--; |
543 | s->bl_count[bits]--; /* move one leaf down the tree */ |
544 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
545 | s->bl_count[max_length]--; |
546 | /* The brother of the overflow item also moves one step up, |
547 | * but this does not affect bl_count[max_length] |
548 | */ |
549 | overflow -= 2; |
550 | } while (overflow > 0); |
551 | |
552 | /* Now recompute all bit lengths, scanning in increasing frequency. |
553 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
554 | * lengths instead of fixing only the wrong ones. This idea is taken |
555 | * from 'ar' written by Haruhiko Okumura.) |
556 | */ |
557 | for (bits = max_length; bits != 0; bits--) { |
558 | n = s->bl_count[bits]; |
559 | while (n != 0) { |
560 | m = s->heap[--h]; |
561 | if (m > max_code) continue; |
562 | if ((unsigned) tree[m].Len != (unsigned) bits) { |
563 | Trace((stderr,"code %d bits %d->%d\n" , m, tree[m].Len, bits)); |
564 | s->opt_len += ((long)bits - (long)tree[m].Len) |
565 | *(long)tree[m].Freq; |
566 | tree[m].Len = (ush)bits; |
567 | } |
568 | n--; |
569 | } |
570 | } |
571 | } |
572 | |
573 | /* =========================================================================== |
574 | * Generate the codes for a given tree and bit counts (which need not be |
575 | * optimal). |
576 | * IN assertion: the array bl_count contains the bit length statistics for |
577 | * the given tree and the field len is set for all tree elements. |
578 | * OUT assertion: the field code is set for all tree elements of non |
579 | * zero code length. |
580 | */ |
581 | local void gen_codes (tree, max_code, bl_count) |
582 | ct_data *tree; /* the tree to decorate */ |
583 | int max_code; /* largest code with non zero frequency */ |
584 | ushf *bl_count; /* number of codes at each bit length */ |
585 | { |
586 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
587 | ush code = 0; /* running code value */ |
588 | int bits; /* bit index */ |
589 | int n; /* code index */ |
590 | |
591 | /* The distribution counts are first used to generate the code values |
592 | * without bit reversal. |
593 | */ |
594 | for (bits = 1; bits <= MAX_BITS; bits++) { |
595 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
596 | } |
597 | /* Check that the bit counts in bl_count are consistent. The last code |
598 | * must be all ones. |
599 | */ |
600 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
601 | "inconsistent bit counts" ); |
602 | Tracev((stderr,"\ngen_codes: max_code %d " , max_code)); |
603 | |
604 | for (n = 0; n <= max_code; n++) { |
605 | int len = tree[n].Len; |
606 | if (len == 0) continue; |
607 | /* Now reverse the bits */ |
608 | tree[n].Code = bi_reverse(next_code[len]++, len); |
609 | |
610 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) " , |
611 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
612 | } |
613 | } |
614 | |
615 | /* =========================================================================== |
616 | * Construct one Huffman tree and assigns the code bit strings and lengths. |
617 | * Update the total bit length for the current block. |
618 | * IN assertion: the field freq is set for all tree elements. |
619 | * OUT assertions: the fields len and code are set to the optimal bit length |
620 | * and corresponding code. The length opt_len is updated; static_len is |
621 | * also updated if stree is not null. The field max_code is set. |
622 | */ |
623 | local void build_tree(s, desc) |
624 | deflate_state *s; |
625 | tree_desc *desc; /* the tree descriptor */ |
626 | { |
627 | ct_data *tree = desc->dyn_tree; |
628 | const ct_data *stree = desc->stat_desc->static_tree; |
629 | int elems = desc->stat_desc->elems; |
630 | int n, m; /* iterate over heap elements */ |
631 | int max_code = -1; /* largest code with non zero frequency */ |
632 | int node; /* new node being created */ |
633 | |
634 | /* Construct the initial heap, with least frequent element in |
635 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
636 | * heap[0] is not used. |
637 | */ |
638 | s->heap_len = 0, s->heap_max = HEAP_SIZE; |
639 | |
640 | for (n = 0; n < elems; n++) { |
641 | if (tree[n].Freq != 0) { |
642 | s->heap[++(s->heap_len)] = max_code = n; |
643 | s->depth[n] = 0; |
644 | } else { |
645 | tree[n].Len = 0; |
646 | } |
647 | } |
648 | |
649 | /* The pkzip format requires that at least one distance code exists, |
650 | * and that at least one bit should be sent even if there is only one |
651 | * possible code. So to avoid special checks later on we force at least |
652 | * two codes of non zero frequency. |
653 | */ |
654 | while (s->heap_len < 2) { |
655 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
656 | tree[node].Freq = 1; |
657 | s->depth[node] = 0; |
658 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
659 | /* node is 0 or 1 so it does not have extra bits */ |
660 | } |
661 | desc->max_code = max_code; |
662 | |
663 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
664 | * establish sub-heaps of increasing lengths: |
665 | */ |
666 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
667 | |
668 | /* Construct the Huffman tree by repeatedly combining the least two |
669 | * frequent nodes. |
670 | */ |
671 | node = elems; /* next internal node of the tree */ |
672 | do { |
673 | pqremove(s, tree, n); /* n = node of least frequency */ |
674 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
675 | |
676 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
677 | s->heap[--(s->heap_max)] = m; |
678 | |
679 | /* Create a new node father of n and m */ |
680 | tree[node].Freq = tree[n].Freq + tree[m].Freq; |
681 | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
682 | s->depth[n] : s->depth[m]) + 1); |
683 | tree[n].Dad = tree[m].Dad = (ush)node; |
684 | #ifdef DUMP_BL_TREE |
685 | if (tree == s->bl_tree) { |
686 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)" , |
687 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
688 | } |
689 | #endif |
690 | /* and insert the new node in the heap */ |
691 | s->heap[SMALLEST] = node++; |
692 | pqdownheap(s, tree, SMALLEST); |
693 | |
694 | } while (s->heap_len >= 2); |
695 | |
696 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
697 | |
698 | /* At this point, the fields freq and dad are set. We can now |
699 | * generate the bit lengths. |
700 | */ |
701 | gen_bitlen(s, (tree_desc *)desc); |
702 | |
703 | /* The field len is now set, we can generate the bit codes */ |
704 | gen_codes ((ct_data *)tree, max_code, s->bl_count); |
705 | } |
706 | |
707 | /* =========================================================================== |
708 | * Scan a literal or distance tree to determine the frequencies of the codes |
709 | * in the bit length tree. |
710 | */ |
711 | local void scan_tree (s, tree, max_code) |
712 | deflate_state *s; |
713 | ct_data *tree; /* the tree to be scanned */ |
714 | int max_code; /* and its largest code of non zero frequency */ |
715 | { |
716 | int n; /* iterates over all tree elements */ |
717 | int prevlen = -1; /* last emitted length */ |
718 | int curlen; /* length of current code */ |
719 | int nextlen = tree[0].Len; /* length of next code */ |
720 | int count = 0; /* repeat count of the current code */ |
721 | int max_count = 7; /* max repeat count */ |
722 | int min_count = 4; /* min repeat count */ |
723 | |
724 | if (nextlen == 0) max_count = 138, min_count = 3; |
725 | tree[max_code+1].Len = (ush)0xffff; /* guard */ |
726 | |
727 | for (n = 0; n <= max_code; n++) { |
728 | curlen = nextlen; nextlen = tree[n+1].Len; |
729 | if (++count < max_count && curlen == nextlen) { |
730 | continue; |
731 | } else if (count < min_count) { |
732 | s->bl_tree[curlen].Freq += count; |
733 | } else if (curlen != 0) { |
734 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
735 | s->bl_tree[REP_3_6].Freq++; |
736 | } else if (count <= 10) { |
737 | s->bl_tree[REPZ_3_10].Freq++; |
738 | } else { |
739 | s->bl_tree[REPZ_11_138].Freq++; |
740 | } |
741 | count = 0; prevlen = curlen; |
742 | if (nextlen == 0) { |
743 | max_count = 138, min_count = 3; |
744 | } else if (curlen == nextlen) { |
745 | max_count = 6, min_count = 3; |
746 | } else { |
747 | max_count = 7, min_count = 4; |
748 | } |
749 | } |
750 | } |
751 | |
752 | /* =========================================================================== |
753 | * Send a literal or distance tree in compressed form, using the codes in |
754 | * bl_tree. |
755 | */ |
756 | local void send_tree (s, tree, max_code) |
757 | deflate_state *s; |
758 | ct_data *tree; /* the tree to be scanned */ |
759 | int max_code; /* and its largest code of non zero frequency */ |
760 | { |
761 | int n; /* iterates over all tree elements */ |
762 | int prevlen = -1; /* last emitted length */ |
763 | int curlen; /* length of current code */ |
764 | int nextlen = tree[0].Len; /* length of next code */ |
765 | int count = 0; /* repeat count of the current code */ |
766 | int max_count = 7; /* max repeat count */ |
767 | int min_count = 4; /* min repeat count */ |
768 | |
769 | /* tree[max_code+1].Len = -1; */ /* guard already set */ |
770 | if (nextlen == 0) max_count = 138, min_count = 3; |
771 | |
772 | for (n = 0; n <= max_code; n++) { |
773 | curlen = nextlen; nextlen = tree[n+1].Len; |
774 | if (++count < max_count && curlen == nextlen) { |
775 | continue; |
776 | } else if (count < min_count) { |
777 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
778 | |
779 | } else if (curlen != 0) { |
780 | if (curlen != prevlen) { |
781 | send_code(s, curlen, s->bl_tree); count--; |
782 | } |
783 | Assert(count >= 3 && count <= 6, " 3_6?" ); |
784 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
785 | |
786 | } else if (count <= 10) { |
787 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
788 | |
789 | } else { |
790 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
791 | } |
792 | count = 0; prevlen = curlen; |
793 | if (nextlen == 0) { |
794 | max_count = 138, min_count = 3; |
795 | } else if (curlen == nextlen) { |
796 | max_count = 6, min_count = 3; |
797 | } else { |
798 | max_count = 7, min_count = 4; |
799 | } |
800 | } |
801 | } |
802 | |
803 | /* =========================================================================== |
804 | * Construct the Huffman tree for the bit lengths and return the index in |
805 | * bl_order of the last bit length code to send. |
806 | */ |
807 | local int build_bl_tree(s) |
808 | deflate_state *s; |
809 | { |
810 | int max_blindex; /* index of last bit length code of non zero freq */ |
811 | |
812 | /* Determine the bit length frequencies for literal and distance trees */ |
813 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
814 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
815 | |
816 | /* Build the bit length tree: */ |
817 | build_tree(s, (tree_desc *)(&(s->bl_desc))); |
818 | /* opt_len now includes the length of the tree representations, except |
819 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
820 | */ |
821 | |
822 | /* Determine the number of bit length codes to send. The pkzip format |
823 | * requires that at least 4 bit length codes be sent. (appnote.txt says |
824 | * 3 but the actual value used is 4.) |
825 | */ |
826 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
827 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
828 | } |
829 | /* Update opt_len to include the bit length tree and counts */ |
830 | s->opt_len += 3*(max_blindex+1) + 5+5+4; |
831 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld" , |
832 | s->opt_len, s->static_len)); |
833 | |
834 | return max_blindex; |
835 | } |
836 | |
837 | /* =========================================================================== |
838 | * Send the header for a block using dynamic Huffman trees: the counts, the |
839 | * lengths of the bit length codes, the literal tree and the distance tree. |
840 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
841 | */ |
842 | local void send_all_trees(s, lcodes, dcodes, blcodes) |
843 | deflate_state *s; |
844 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
845 | { |
846 | int rank; /* index in bl_order */ |
847 | |
848 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes" ); |
849 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
850 | "too many codes" ); |
851 | Tracev((stderr, "\nbl counts: " )); |
852 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
853 | send_bits(s, dcodes-1, 5); |
854 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
855 | for (rank = 0; rank < blcodes; rank++) { |
856 | Tracev((stderr, "\nbl code %2d " , bl_order[rank])); |
857 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
858 | } |
859 | Tracev((stderr, "\nbl tree: sent %ld" , s->bits_sent)); |
860 | |
861 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
862 | Tracev((stderr, "\nlit tree: sent %ld" , s->bits_sent)); |
863 | |
864 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
865 | Tracev((stderr, "\ndist tree: sent %ld" , s->bits_sent)); |
866 | } |
867 | |
868 | /* =========================================================================== |
869 | * Send a stored block |
870 | */ |
871 | void _tr_stored_block(s, buf, stored_len, eof) |
872 | deflate_state *s; |
873 | charf *buf; /* input block */ |
874 | ulg stored_len; /* length of input block */ |
875 | int eof; /* true if this is the last block for a file */ |
876 | { |
877 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ |
878 | #ifdef ZLIB_DEBUG |
879 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
880 | s->compressed_len += (stored_len + 4) << 3; |
881 | #endif |
882 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
883 | } |
884 | |
885 | /* =========================================================================== |
886 | * Send one empty static block to give enough lookahead for inflate. |
887 | * This takes 10 bits, of which 7 may remain in the bit buffer. |
888 | * The current inflate code requires 9 bits of lookahead. If the |
889 | * last two codes for the previous block (real code plus EOB) were coded |
890 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode |
891 | * the last real code. In this case we send two empty static blocks instead |
892 | * of one. (There are no problems if the previous block is stored or fixed.) |
893 | * To simplify the code, we assume the worst case of last real code encoded |
894 | * on one bit only. |
895 | */ |
896 | void _tr_align(s) |
897 | deflate_state *s; |
898 | { |
899 | send_bits(s, STATIC_TREES<<1, 3); |
900 | send_code(s, END_BLOCK, static_ltree); |
901 | #ifdef ZLIB_DEBUG |
902 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
903 | #endif |
904 | bi_flush(s); |
905 | /* Of the 10 bits for the empty block, we have already sent |
906 | * (10 - bi_valid) bits. The lookahead for the last real code (before |
907 | * the EOB of the previous block) was thus at least one plus the length |
908 | * of the EOB plus what we have just sent of the empty static block. |
909 | */ |
910 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { |
911 | send_bits(s, STATIC_TREES<<1, 3); |
912 | send_code(s, END_BLOCK, static_ltree); |
913 | #ifdef ZLIB_DEBUG |
914 | s->compressed_len += 10L; |
915 | #endif |
916 | bi_flush(s); |
917 | } |
918 | s->last_eob_len = 7; |
919 | } |
920 | |
921 | /* =========================================================================== |
922 | * Determine the best encoding for the current block: dynamic trees, static |
923 | * trees or store, and output the encoded block to the zip file. |
924 | */ |
925 | void _tr_flush_block(s, buf, stored_len, eof) |
926 | deflate_state *s; |
927 | charf *buf; /* input block, or NULL if too old */ |
928 | ulg stored_len; /* length of input block */ |
929 | int eof; /* true if this is the last block for a file */ |
930 | { |
931 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
932 | int max_blindex = 0; /* index of last bit length code of non zero freq */ |
933 | |
934 | /* Build the Huffman trees unless a stored block is forced */ |
935 | if (s->level > 0) { |
936 | |
937 | /* Check if the file is binary or text */ |
938 | if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN) |
939 | set_data_type(s); |
940 | |
941 | /* Construct the literal and distance trees */ |
942 | build_tree(s, (tree_desc *)(&(s->l_desc))); |
943 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld" , s->opt_len, |
944 | s->static_len)); |
945 | |
946 | build_tree(s, (tree_desc *)(&(s->d_desc))); |
947 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld" , s->opt_len, |
948 | s->static_len)); |
949 | /* At this point, opt_len and static_len are the total bit lengths of |
950 | * the compressed block data, excluding the tree representations. |
951 | */ |
952 | |
953 | /* Build the bit length tree for the above two trees, and get the index |
954 | * in bl_order of the last bit length code to send. |
955 | */ |
956 | max_blindex = build_bl_tree(s); |
957 | |
958 | /* Determine the best encoding. Compute the block lengths in bytes. */ |
959 | opt_lenb = (s->opt_len+3+7)>>3; |
960 | static_lenb = (s->static_len+3+7)>>3; |
961 | |
962 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u " , |
963 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
964 | s->last_lit)); |
965 | |
966 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
967 | |
968 | } else { |
969 | Assert(buf != (char*)0, "lost buf" ); |
970 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
971 | } |
972 | |
973 | #ifdef FORCE_STORED |
974 | if (buf != (char*)0) { /* force stored block */ |
975 | #else |
976 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
977 | /* 4: two words for the lengths */ |
978 | #endif |
979 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
980 | * Otherwise we can't have processed more than WSIZE input bytes since |
981 | * the last block flush, because compression would have been |
982 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
983 | * transform a block into a stored block. |
984 | */ |
985 | _tr_stored_block(s, buf, stored_len, eof); |
986 | |
987 | #ifdef FORCE_STATIC |
988 | } else if (static_lenb >= 0) { /* force static trees */ |
989 | #else |
990 | } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
991 | #endif |
992 | send_bits(s, (STATIC_TREES<<1)+eof, 3); |
993 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); |
994 | #ifdef ZLIB_DEBUG |
995 | s->compressed_len += 3 + s->static_len; |
996 | #endif |
997 | } else { |
998 | send_bits(s, (DYN_TREES<<1)+eof, 3); |
999 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
1000 | max_blindex+1); |
1001 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); |
1002 | #ifdef ZLIB_DEBUG |
1003 | s->compressed_len += 3 + s->opt_len; |
1004 | #endif |
1005 | } |
1006 | Assert (s->compressed_len == s->bits_sent, "bad compressed size" ); |
1007 | /* The above check is made mod 2^32, for files larger than 512 MB |
1008 | * and uLong implemented on 32 bits. |
1009 | */ |
1010 | init_block(s); |
1011 | |
1012 | if (eof) { |
1013 | bi_windup(s); |
1014 | #ifdef ZLIB_DEBUG |
1015 | s->compressed_len += 7; /* align on byte boundary */ |
1016 | #endif |
1017 | } |
1018 | Tracev((stderr,"\ncomprlen %lu(%lu) " , s->compressed_len>>3, |
1019 | s->compressed_len-7*eof)); |
1020 | } |
1021 | |
1022 | /* =========================================================================== |
1023 | * Save the match info and tally the frequency counts. Return true if |
1024 | * the current block must be flushed. |
1025 | */ |
1026 | int _tr_tally (s, dist, lc) |
1027 | deflate_state *s; |
1028 | unsigned dist; /* distance of matched string */ |
1029 | unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
1030 | { |
1031 | s->d_buf[s->last_lit] = (ush)dist; |
1032 | s->l_buf[s->last_lit++] = (uch)lc; |
1033 | if (dist == 0) { |
1034 | /* lc is the unmatched char */ |
1035 | s->dyn_ltree[lc].Freq++; |
1036 | } else { |
1037 | s->matches++; |
1038 | /* Here, lc is the match length - MIN_MATCH */ |
1039 | dist--; /* dist = match distance - 1 */ |
1040 | Assert((ush)dist < (ush)MAX_DIST(s) && |
1041 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
1042 | (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match" ); |
1043 | |
1044 | s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
1045 | s->dyn_dtree[d_code(dist)].Freq++; |
1046 | } |
1047 | |
1048 | #ifdef TRUNCATE_BLOCK |
1049 | /* Try to guess if it is profitable to stop the current block here */ |
1050 | if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { |
1051 | /* Compute an upper bound for the compressed length */ |
1052 | ulg out_length = (ulg)s->last_lit*8L; |
1053 | ulg in_length = (ulg)((long)s->strstart - s->block_start); |
1054 | int dcode; |
1055 | for (dcode = 0; dcode < D_CODES; dcode++) { |
1056 | out_length += (ulg)s->dyn_dtree[dcode].Freq * |
1057 | (5L+extra_dbits[dcode]); |
1058 | } |
1059 | out_length >>= 3; |
1060 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) " , |
1061 | s->last_lit, in_length, out_length, |
1062 | 100L - out_length*100L/in_length)); |
1063 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
1064 | } |
1065 | #endif |
1066 | return (s->last_lit == s->lit_bufsize-1); |
1067 | /* We avoid equality with lit_bufsize because of wraparound at 64K |
1068 | * on 16 bit machines and because stored blocks are restricted to |
1069 | * 64K-1 bytes. |
1070 | */ |
1071 | } |
1072 | |
1073 | /* =========================================================================== |
1074 | * Send the block data compressed using the given Huffman trees |
1075 | */ |
1076 | local void compress_block(s, ltree, dtree) |
1077 | deflate_state *s; |
1078 | ct_data *ltree; /* literal tree */ |
1079 | ct_data *dtree; /* distance tree */ |
1080 | { |
1081 | unsigned dist; /* distance of matched string */ |
1082 | int lc; /* match length or unmatched char (if dist == 0) */ |
1083 | unsigned lx = 0; /* running index in l_buf */ |
1084 | unsigned code; /* the code to send */ |
1085 | int ; /* number of extra bits to send */ |
1086 | |
1087 | if (s->last_lit != 0) do { |
1088 | dist = s->d_buf[lx]; |
1089 | lc = s->l_buf[lx++]; |
1090 | if (dist == 0) { |
1091 | send_code(s, lc, ltree); /* send a literal byte */ |
1092 | Tracecv(isgraph(lc), (stderr," '%c' " , lc)); |
1093 | } else { |
1094 | /* Here, lc is the match length - MIN_MATCH */ |
1095 | code = _length_code[lc]; |
1096 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
1097 | extra = extra_lbits[code]; |
1098 | if (extra != 0) { |
1099 | lc -= base_length[code]; |
1100 | send_bits(s, lc, extra); /* send the extra length bits */ |
1101 | } |
1102 | dist--; /* dist is now the match distance - 1 */ |
1103 | code = d_code(dist); |
1104 | Assert (code < D_CODES, "bad d_code" ); |
1105 | |
1106 | send_code(s, code, dtree); /* send the distance code */ |
1107 | extra = extra_dbits[code]; |
1108 | if (extra != 0) { |
1109 | dist -= base_dist[code]; |
1110 | send_bits(s, dist, extra); /* send the extra distance bits */ |
1111 | } |
1112 | } /* literal or match pair ? */ |
1113 | |
1114 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
1115 | Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
1116 | "pendingBuf overflow" ); |
1117 | |
1118 | } while (lx < s->last_lit); |
1119 | |
1120 | send_code(s, END_BLOCK, ltree); |
1121 | s->last_eob_len = ltree[END_BLOCK].Len; |
1122 | } |
1123 | |
1124 | /* =========================================================================== |
1125 | * Set the data type to BINARY or TEXT, using a crude approximation: |
1126 | * set it to Z_TEXT if all symbols are either printable characters (33 to 255) |
1127 | * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise. |
1128 | * IN assertion: the fields Freq of dyn_ltree are set. |
1129 | */ |
1130 | local void set_data_type(s) |
1131 | deflate_state *s; |
1132 | { |
1133 | int n; |
1134 | |
1135 | for (n = 0; n < 9; n++) |
1136 | if (s->dyn_ltree[n].Freq != 0) |
1137 | break; |
1138 | if (n == 9) |
1139 | for (n = 14; n < 32; n++) |
1140 | if (s->dyn_ltree[n].Freq != 0) |
1141 | break; |
1142 | s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY; |
1143 | } |
1144 | |
1145 | /* =========================================================================== |
1146 | * Reverse the first len bits of a code, using straightforward code (a faster |
1147 | * method would use a table) |
1148 | * IN assertion: 1 <= len <= 15 |
1149 | */ |
1150 | local unsigned bi_reverse(code, len) |
1151 | unsigned code; /* the value to invert */ |
1152 | int len; /* its bit length */ |
1153 | { |
1154 | register unsigned res = 0; |
1155 | do { |
1156 | res |= code & 1; |
1157 | code >>= 1, res <<= 1; |
1158 | } while (--len > 0); |
1159 | return res >> 1; |
1160 | } |
1161 | |
1162 | /* =========================================================================== |
1163 | * Flush the bit buffer, keeping at most 7 bits in it. |
1164 | */ |
1165 | local void bi_flush(s) |
1166 | deflate_state *s; |
1167 | { |
1168 | if (s->bi_valid == 16) { |
1169 | put_short(s, s->bi_buf); |
1170 | s->bi_buf = 0; |
1171 | s->bi_valid = 0; |
1172 | } else if (s->bi_valid >= 8) { |
1173 | put_byte(s, (Byte)s->bi_buf); |
1174 | s->bi_buf >>= 8; |
1175 | s->bi_valid -= 8; |
1176 | } |
1177 | } |
1178 | |
1179 | /* =========================================================================== |
1180 | * Flush the bit buffer and align the output on a byte boundary |
1181 | */ |
1182 | local void bi_windup(s) |
1183 | deflate_state *s; |
1184 | { |
1185 | if (s->bi_valid > 8) { |
1186 | put_short(s, s->bi_buf); |
1187 | } else if (s->bi_valid > 0) { |
1188 | put_byte(s, (Byte)s->bi_buf); |
1189 | } |
1190 | s->bi_buf = 0; |
1191 | s->bi_valid = 0; |
1192 | #ifdef ZLIB_DEBUG |
1193 | s->bits_sent = (s->bits_sent+7) & ~7; |
1194 | #endif |
1195 | } |
1196 | |
1197 | /* =========================================================================== |
1198 | * Copy a stored block, storing first the length and its |
1199 | * one's complement if requested. |
1200 | */ |
1201 | local void copy_block(s, buf, len, header) |
1202 | deflate_state *s; |
1203 | charf *buf; /* the input data */ |
1204 | unsigned len; /* its length */ |
1205 | int ; /* true if block header must be written */ |
1206 | { |
1207 | bi_windup(s); /* align on byte boundary */ |
1208 | s->last_eob_len = 8; /* enough lookahead for inflate */ |
1209 | |
1210 | if (header) { |
1211 | put_short(s, (ush)len); |
1212 | put_short(s, (ush)~len); |
1213 | #ifdef ZLIB_DEBUG |
1214 | s->bits_sent += 2*16; |
1215 | #endif |
1216 | } |
1217 | #ifdef ZLIB_DEBUG |
1218 | s->bits_sent += (ulg)len<<3; |
1219 | #endif |
1220 | while (len--) { |
1221 | put_byte(s, *buf++); |
1222 | } |
1223 | } |
1224 | |