| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * hashovfl.c |
| 4 | * Overflow page management code for the Postgres hash access method |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/hash/hashovfl.c |
| 12 | * |
| 13 | * NOTES |
| 14 | * Overflow pages look like ordinary relation pages. |
| 15 | * |
| 16 | *------------------------------------------------------------------------- |
| 17 | */ |
| 18 | #include "postgres.h" |
| 19 | |
| 20 | #include "access/hash.h" |
| 21 | #include "access/hash_xlog.h" |
| 22 | #include "miscadmin.h" |
| 23 | #include "utils/rel.h" |
| 24 | |
| 25 | |
| 26 | static uint32 _hash_firstfreebit(uint32 map); |
| 27 | |
| 28 | |
| 29 | /* |
| 30 | * Convert overflow page bit number (its index in the free-page bitmaps) |
| 31 | * to block number within the index. |
| 32 | */ |
| 33 | static BlockNumber |
| 34 | bitno_to_blkno(HashMetaPage metap, uint32 ovflbitnum) |
| 35 | { |
| 36 | uint32 splitnum = metap->hashm_ovflpoint; |
| 37 | uint32 i; |
| 38 | |
| 39 | /* Convert zero-based bitnumber to 1-based page number */ |
| 40 | ovflbitnum += 1; |
| 41 | |
| 42 | /* Determine the split number for this page (must be >= 1) */ |
| 43 | for (i = 1; |
| 44 | i < splitnum && ovflbitnum > metap->hashm_spares[i]; |
| 45 | i++) |
| 46 | /* loop */ ; |
| 47 | |
| 48 | /* |
| 49 | * Convert to absolute page number by adding the number of bucket pages |
| 50 | * that exist before this split point. |
| 51 | */ |
| 52 | return (BlockNumber) (_hash_get_totalbuckets(i) + ovflbitnum); |
| 53 | } |
| 54 | |
| 55 | /* |
| 56 | * _hash_ovflblkno_to_bitno |
| 57 | * |
| 58 | * Convert overflow page block number to bit number for free-page bitmap. |
| 59 | */ |
| 60 | uint32 |
| 61 | _hash_ovflblkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno) |
| 62 | { |
| 63 | uint32 splitnum = metap->hashm_ovflpoint; |
| 64 | uint32 i; |
| 65 | uint32 bitnum; |
| 66 | |
| 67 | /* Determine the split number containing this page */ |
| 68 | for (i = 1; i <= splitnum; i++) |
| 69 | { |
| 70 | if (ovflblkno <= (BlockNumber) _hash_get_totalbuckets(i)) |
| 71 | break; /* oops */ |
| 72 | bitnum = ovflblkno - _hash_get_totalbuckets(i); |
| 73 | |
| 74 | /* |
| 75 | * bitnum has to be greater than number of overflow page added in |
| 76 | * previous split point. The overflow page at this splitnum (i) if any |
| 77 | * should start from (_hash_get_totalbuckets(i) + |
| 78 | * metap->hashm_spares[i - 1] + 1). |
| 79 | */ |
| 80 | if (bitnum > metap->hashm_spares[i - 1] && |
| 81 | bitnum <= metap->hashm_spares[i]) |
| 82 | return bitnum - 1; /* -1 to convert 1-based to 0-based */ |
| 83 | } |
| 84 | |
| 85 | ereport(ERROR, |
| 86 | (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| 87 | errmsg("invalid overflow block number %u" , ovflblkno))); |
| 88 | return 0; /* keep compiler quiet */ |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * _hash_addovflpage |
| 93 | * |
| 94 | * Add an overflow page to the bucket whose last page is pointed to by 'buf'. |
| 95 | * |
| 96 | * On entry, the caller must hold a pin but no lock on 'buf'. The pin is |
| 97 | * dropped before exiting (we assume the caller is not interested in 'buf' |
| 98 | * anymore) if not asked to retain. The pin will be retained only for the |
| 99 | * primary bucket. The returned overflow page will be pinned and |
| 100 | * write-locked; it is guaranteed to be empty. |
| 101 | * |
| 102 | * The caller must hold a pin, but no lock, on the metapage buffer. |
| 103 | * That buffer is returned in the same state. |
| 104 | * |
| 105 | * NB: since this could be executed concurrently by multiple processes, |
| 106 | * one should not assume that the returned overflow page will be the |
| 107 | * immediate successor of the originally passed 'buf'. Additional overflow |
| 108 | * pages might have been added to the bucket chain in between. |
| 109 | */ |
| 110 | Buffer |
| 111 | _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf, bool retain_pin) |
| 112 | { |
| 113 | Buffer ovflbuf; |
| 114 | Page page; |
| 115 | Page ovflpage; |
| 116 | HashPageOpaque pageopaque; |
| 117 | HashPageOpaque ovflopaque; |
| 118 | HashMetaPage metap; |
| 119 | Buffer mapbuf = InvalidBuffer; |
| 120 | Buffer newmapbuf = InvalidBuffer; |
| 121 | BlockNumber blkno; |
| 122 | uint32 orig_firstfree; |
| 123 | uint32 splitnum; |
| 124 | uint32 *freep = NULL; |
| 125 | uint32 max_ovflpg; |
| 126 | uint32 bit; |
| 127 | uint32 bitmap_page_bit; |
| 128 | uint32 first_page; |
| 129 | uint32 last_bit; |
| 130 | uint32 last_page; |
| 131 | uint32 i, |
| 132 | j; |
| 133 | bool page_found = false; |
| 134 | |
| 135 | /* |
| 136 | * Write-lock the tail page. Here, we need to maintain locking order such |
| 137 | * that, first acquire the lock on tail page of bucket, then on meta page |
| 138 | * to find and lock the bitmap page and if it is found, then lock on meta |
| 139 | * page is released, then finally acquire the lock on new overflow buffer. |
| 140 | * We need this locking order to avoid deadlock with backends that are |
| 141 | * doing inserts. |
| 142 | * |
| 143 | * Note: We could have avoided locking many buffers here if we made two |
| 144 | * WAL records for acquiring an overflow page (one to allocate an overflow |
| 145 | * page and another to add it to overflow bucket chain). However, doing |
| 146 | * so can leak an overflow page, if the system crashes after allocation. |
| 147 | * Needless to say, it is better to have a single record from a |
| 148 | * performance point of view as well. |
| 149 | */ |
| 150 | LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE); |
| 151 | |
| 152 | /* probably redundant... */ |
| 153 | _hash_checkpage(rel, buf, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE); |
| 154 | |
| 155 | /* loop to find current tail page, in case someone else inserted too */ |
| 156 | for (;;) |
| 157 | { |
| 158 | BlockNumber nextblkno; |
| 159 | |
| 160 | page = BufferGetPage(buf); |
| 161 | pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
| 162 | nextblkno = pageopaque->hasho_nextblkno; |
| 163 | |
| 164 | if (!BlockNumberIsValid(nextblkno)) |
| 165 | break; |
| 166 | |
| 167 | /* we assume we do not need to write the unmodified page */ |
| 168 | if (retain_pin) |
| 169 | { |
| 170 | /* pin will be retained only for the primary bucket page */ |
| 171 | Assert((pageopaque->hasho_flag & LH_PAGE_TYPE) == LH_BUCKET_PAGE); |
| 172 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 173 | } |
| 174 | else |
| 175 | _hash_relbuf(rel, buf); |
| 176 | |
| 177 | retain_pin = false; |
| 178 | |
| 179 | buf = _hash_getbuf(rel, nextblkno, HASH_WRITE, LH_OVERFLOW_PAGE); |
| 180 | } |
| 181 | |
| 182 | /* Get exclusive lock on the meta page */ |
| 183 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 184 | |
| 185 | _hash_checkpage(rel, metabuf, LH_META_PAGE); |
| 186 | metap = HashPageGetMeta(BufferGetPage(metabuf)); |
| 187 | |
| 188 | /* start search at hashm_firstfree */ |
| 189 | orig_firstfree = metap->hashm_firstfree; |
| 190 | first_page = orig_firstfree >> BMPG_SHIFT(metap); |
| 191 | bit = orig_firstfree & BMPG_MASK(metap); |
| 192 | i = first_page; |
| 193 | j = bit / BITS_PER_MAP; |
| 194 | bit &= ~(BITS_PER_MAP - 1); |
| 195 | |
| 196 | /* outer loop iterates once per bitmap page */ |
| 197 | for (;;) |
| 198 | { |
| 199 | BlockNumber mapblkno; |
| 200 | Page mappage; |
| 201 | uint32 last_inpage; |
| 202 | |
| 203 | /* want to end search with the last existing overflow page */ |
| 204 | splitnum = metap->hashm_ovflpoint; |
| 205 | max_ovflpg = metap->hashm_spares[splitnum] - 1; |
| 206 | last_page = max_ovflpg >> BMPG_SHIFT(metap); |
| 207 | last_bit = max_ovflpg & BMPG_MASK(metap); |
| 208 | |
| 209 | if (i > last_page) |
| 210 | break; |
| 211 | |
| 212 | Assert(i < metap->hashm_nmaps); |
| 213 | mapblkno = metap->hashm_mapp[i]; |
| 214 | |
| 215 | if (i == last_page) |
| 216 | last_inpage = last_bit; |
| 217 | else |
| 218 | last_inpage = BMPGSZ_BIT(metap) - 1; |
| 219 | |
| 220 | /* Release exclusive lock on metapage while reading bitmap page */ |
| 221 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 222 | |
| 223 | mapbuf = _hash_getbuf(rel, mapblkno, HASH_WRITE, LH_BITMAP_PAGE); |
| 224 | mappage = BufferGetPage(mapbuf); |
| 225 | freep = HashPageGetBitmap(mappage); |
| 226 | |
| 227 | for (; bit <= last_inpage; j++, bit += BITS_PER_MAP) |
| 228 | { |
| 229 | if (freep[j] != ALL_SET) |
| 230 | { |
| 231 | page_found = true; |
| 232 | |
| 233 | /* Reacquire exclusive lock on the meta page */ |
| 234 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 235 | |
| 236 | /* convert bit to bit number within page */ |
| 237 | bit += _hash_firstfreebit(freep[j]); |
| 238 | bitmap_page_bit = bit; |
| 239 | |
| 240 | /* convert bit to absolute bit number */ |
| 241 | bit += (i << BMPG_SHIFT(metap)); |
| 242 | /* Calculate address of the recycled overflow page */ |
| 243 | blkno = bitno_to_blkno(metap, bit); |
| 244 | |
| 245 | /* Fetch and init the recycled page */ |
| 246 | ovflbuf = _hash_getinitbuf(rel, blkno); |
| 247 | |
| 248 | goto found; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /* No free space here, try to advance to next map page */ |
| 253 | _hash_relbuf(rel, mapbuf); |
| 254 | mapbuf = InvalidBuffer; |
| 255 | i++; |
| 256 | j = 0; /* scan from start of next map page */ |
| 257 | bit = 0; |
| 258 | |
| 259 | /* Reacquire exclusive lock on the meta page */ |
| 260 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * No free pages --- have to extend the relation to add an overflow page. |
| 265 | * First, check to see if we have to add a new bitmap page too. |
| 266 | */ |
| 267 | if (last_bit == (uint32) (BMPGSZ_BIT(metap) - 1)) |
| 268 | { |
| 269 | /* |
| 270 | * We create the new bitmap page with all pages marked "in use". |
| 271 | * Actually two pages in the new bitmap's range will exist |
| 272 | * immediately: the bitmap page itself, and the following page which |
| 273 | * is the one we return to the caller. Both of these are correctly |
| 274 | * marked "in use". Subsequent pages do not exist yet, but it is |
| 275 | * convenient to pre-mark them as "in use" too. |
| 276 | */ |
| 277 | bit = metap->hashm_spares[splitnum]; |
| 278 | |
| 279 | /* metapage already has a write lock */ |
| 280 | if (metap->hashm_nmaps >= HASH_MAX_BITMAPS) |
| 281 | ereport(ERROR, |
| 282 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 283 | errmsg("out of overflow pages in hash index \"%s\"" , |
| 284 | RelationGetRelationName(rel)))); |
| 285 | |
| 286 | newmapbuf = _hash_getnewbuf(rel, bitno_to_blkno(metap, bit), MAIN_FORKNUM); |
| 287 | } |
| 288 | else |
| 289 | { |
| 290 | /* |
| 291 | * Nothing to do here; since the page will be past the last used page, |
| 292 | * we know its bitmap bit was preinitialized to "in use". |
| 293 | */ |
| 294 | } |
| 295 | |
| 296 | /* Calculate address of the new overflow page */ |
| 297 | bit = BufferIsValid(newmapbuf) ? |
| 298 | metap->hashm_spares[splitnum] + 1 : metap->hashm_spares[splitnum]; |
| 299 | blkno = bitno_to_blkno(metap, bit); |
| 300 | |
| 301 | /* |
| 302 | * Fetch the page with _hash_getnewbuf to ensure smgr's idea of the |
| 303 | * relation length stays in sync with ours. XXX It's annoying to do this |
| 304 | * with metapage write lock held; would be better to use a lock that |
| 305 | * doesn't block incoming searches. |
| 306 | * |
| 307 | * It is okay to hold two buffer locks here (one on tail page of bucket |
| 308 | * and other on new overflow page) since there cannot be anyone else |
| 309 | * contending for access to ovflbuf. |
| 310 | */ |
| 311 | ovflbuf = _hash_getnewbuf(rel, blkno, MAIN_FORKNUM); |
| 312 | |
| 313 | found: |
| 314 | |
| 315 | /* |
| 316 | * Do the update. No ereport(ERROR) until changes are logged. We want to |
| 317 | * log the changes for bitmap page and overflow page together to avoid |
| 318 | * loss of pages in case the new page is added. |
| 319 | */ |
| 320 | START_CRIT_SECTION(); |
| 321 | |
| 322 | if (page_found) |
| 323 | { |
| 324 | Assert(BufferIsValid(mapbuf)); |
| 325 | |
| 326 | /* mark page "in use" in the bitmap */ |
| 327 | SETBIT(freep, bitmap_page_bit); |
| 328 | MarkBufferDirty(mapbuf); |
| 329 | } |
| 330 | else |
| 331 | { |
| 332 | /* update the count to indicate new overflow page is added */ |
| 333 | metap->hashm_spares[splitnum]++; |
| 334 | |
| 335 | if (BufferIsValid(newmapbuf)) |
| 336 | { |
| 337 | _hash_initbitmapbuffer(newmapbuf, metap->hashm_bmsize, false); |
| 338 | MarkBufferDirty(newmapbuf); |
| 339 | |
| 340 | /* add the new bitmap page to the metapage's list of bitmaps */ |
| 341 | metap->hashm_mapp[metap->hashm_nmaps] = BufferGetBlockNumber(newmapbuf); |
| 342 | metap->hashm_nmaps++; |
| 343 | metap->hashm_spares[splitnum]++; |
| 344 | } |
| 345 | |
| 346 | MarkBufferDirty(metabuf); |
| 347 | |
| 348 | /* |
| 349 | * for new overflow page, we don't need to explicitly set the bit in |
| 350 | * bitmap page, as by default that will be set to "in use". |
| 351 | */ |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * Adjust hashm_firstfree to avoid redundant searches. But don't risk |
| 356 | * changing it if someone moved it while we were searching bitmap pages. |
| 357 | */ |
| 358 | if (metap->hashm_firstfree == orig_firstfree) |
| 359 | { |
| 360 | metap->hashm_firstfree = bit + 1; |
| 361 | MarkBufferDirty(metabuf); |
| 362 | } |
| 363 | |
| 364 | /* initialize new overflow page */ |
| 365 | ovflpage = BufferGetPage(ovflbuf); |
| 366 | ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage); |
| 367 | ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf); |
| 368 | ovflopaque->hasho_nextblkno = InvalidBlockNumber; |
| 369 | ovflopaque->hasho_bucket = pageopaque->hasho_bucket; |
| 370 | ovflopaque->hasho_flag = LH_OVERFLOW_PAGE; |
| 371 | ovflopaque->hasho_page_id = HASHO_PAGE_ID; |
| 372 | |
| 373 | MarkBufferDirty(ovflbuf); |
| 374 | |
| 375 | /* logically chain overflow page to previous page */ |
| 376 | pageopaque->hasho_nextblkno = BufferGetBlockNumber(ovflbuf); |
| 377 | |
| 378 | MarkBufferDirty(buf); |
| 379 | |
| 380 | /* XLOG stuff */ |
| 381 | if (RelationNeedsWAL(rel)) |
| 382 | { |
| 383 | XLogRecPtr recptr; |
| 384 | xl_hash_add_ovfl_page xlrec; |
| 385 | |
| 386 | xlrec.bmpage_found = page_found; |
| 387 | xlrec.bmsize = metap->hashm_bmsize; |
| 388 | |
| 389 | XLogBeginInsert(); |
| 390 | XLogRegisterData((char *) &xlrec, SizeOfHashAddOvflPage); |
| 391 | |
| 392 | XLogRegisterBuffer(0, ovflbuf, REGBUF_WILL_INIT); |
| 393 | XLogRegisterBufData(0, (char *) &pageopaque->hasho_bucket, sizeof(Bucket)); |
| 394 | |
| 395 | XLogRegisterBuffer(1, buf, REGBUF_STANDARD); |
| 396 | |
| 397 | if (BufferIsValid(mapbuf)) |
| 398 | { |
| 399 | XLogRegisterBuffer(2, mapbuf, REGBUF_STANDARD); |
| 400 | XLogRegisterBufData(2, (char *) &bitmap_page_bit, sizeof(uint32)); |
| 401 | } |
| 402 | |
| 403 | if (BufferIsValid(newmapbuf)) |
| 404 | XLogRegisterBuffer(3, newmapbuf, REGBUF_WILL_INIT); |
| 405 | |
| 406 | XLogRegisterBuffer(4, metabuf, REGBUF_STANDARD); |
| 407 | XLogRegisterBufData(4, (char *) &metap->hashm_firstfree, sizeof(uint32)); |
| 408 | |
| 409 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_ADD_OVFL_PAGE); |
| 410 | |
| 411 | PageSetLSN(BufferGetPage(ovflbuf), recptr); |
| 412 | PageSetLSN(BufferGetPage(buf), recptr); |
| 413 | |
| 414 | if (BufferIsValid(mapbuf)) |
| 415 | PageSetLSN(BufferGetPage(mapbuf), recptr); |
| 416 | |
| 417 | if (BufferIsValid(newmapbuf)) |
| 418 | PageSetLSN(BufferGetPage(newmapbuf), recptr); |
| 419 | |
| 420 | PageSetLSN(BufferGetPage(metabuf), recptr); |
| 421 | } |
| 422 | |
| 423 | END_CRIT_SECTION(); |
| 424 | |
| 425 | if (retain_pin) |
| 426 | LockBuffer(buf, BUFFER_LOCK_UNLOCK); |
| 427 | else |
| 428 | _hash_relbuf(rel, buf); |
| 429 | |
| 430 | if (BufferIsValid(mapbuf)) |
| 431 | _hash_relbuf(rel, mapbuf); |
| 432 | |
| 433 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 434 | |
| 435 | if (BufferIsValid(newmapbuf)) |
| 436 | _hash_relbuf(rel, newmapbuf); |
| 437 | |
| 438 | return ovflbuf; |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * _hash_firstfreebit() |
| 443 | * |
| 444 | * Return the number of the first bit that is not set in the word 'map'. |
| 445 | */ |
| 446 | static uint32 |
| 447 | _hash_firstfreebit(uint32 map) |
| 448 | { |
| 449 | uint32 i, |
| 450 | mask; |
| 451 | |
| 452 | mask = 0x1; |
| 453 | for (i = 0; i < BITS_PER_MAP; i++) |
| 454 | { |
| 455 | if (!(mask & map)) |
| 456 | return i; |
| 457 | mask <<= 1; |
| 458 | } |
| 459 | |
| 460 | elog(ERROR, "firstfreebit found no free bit" ); |
| 461 | |
| 462 | return 0; /* keep compiler quiet */ |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * _hash_freeovflpage() - |
| 467 | * |
| 468 | * Remove this overflow page from its bucket's chain, and mark the page as |
| 469 | * free. On entry, ovflbuf is write-locked; it is released before exiting. |
| 470 | * |
| 471 | * Add the tuples (itups) to wbuf in this function. We could do that in the |
| 472 | * caller as well, but the advantage of doing it here is we can easily write |
| 473 | * the WAL for XLOG_HASH_SQUEEZE_PAGE operation. Addition of tuples and |
| 474 | * removal of overflow page has to done as an atomic operation, otherwise |
| 475 | * during replay on standby users might find duplicate records. |
| 476 | * |
| 477 | * Since this function is invoked in VACUUM, we provide an access strategy |
| 478 | * parameter that controls fetches of the bucket pages. |
| 479 | * |
| 480 | * Returns the block number of the page that followed the given page |
| 481 | * in the bucket, or InvalidBlockNumber if no following page. |
| 482 | * |
| 483 | * NB: caller must not hold lock on metapage, nor on page, that's next to |
| 484 | * ovflbuf in the bucket chain. We don't acquire the lock on page that's |
| 485 | * prior to ovflbuf in chain if it is same as wbuf because the caller already |
| 486 | * has a lock on same. |
| 487 | */ |
| 488 | BlockNumber |
| 489 | _hash_freeovflpage(Relation rel, Buffer bucketbuf, Buffer ovflbuf, |
| 490 | Buffer wbuf, IndexTuple *itups, OffsetNumber *itup_offsets, |
| 491 | Size *tups_size, uint16 nitups, |
| 492 | BufferAccessStrategy bstrategy) |
| 493 | { |
| 494 | HashMetaPage metap; |
| 495 | Buffer metabuf; |
| 496 | Buffer mapbuf; |
| 497 | BlockNumber ovflblkno; |
| 498 | BlockNumber prevblkno; |
| 499 | BlockNumber blkno; |
| 500 | BlockNumber nextblkno; |
| 501 | BlockNumber writeblkno; |
| 502 | HashPageOpaque ovflopaque; |
| 503 | Page ovflpage; |
| 504 | Page mappage; |
| 505 | uint32 *freep; |
| 506 | uint32 ovflbitno; |
| 507 | int32 bitmappage, |
| 508 | bitmapbit; |
| 509 | Bucket bucket PG_USED_FOR_ASSERTS_ONLY; |
| 510 | Buffer prevbuf = InvalidBuffer; |
| 511 | Buffer nextbuf = InvalidBuffer; |
| 512 | bool update_metap = false; |
| 513 | |
| 514 | /* Get information from the doomed page */ |
| 515 | _hash_checkpage(rel, ovflbuf, LH_OVERFLOW_PAGE); |
| 516 | ovflblkno = BufferGetBlockNumber(ovflbuf); |
| 517 | ovflpage = BufferGetPage(ovflbuf); |
| 518 | ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage); |
| 519 | nextblkno = ovflopaque->hasho_nextblkno; |
| 520 | prevblkno = ovflopaque->hasho_prevblkno; |
| 521 | writeblkno = BufferGetBlockNumber(wbuf); |
| 522 | bucket = ovflopaque->hasho_bucket; |
| 523 | |
| 524 | /* |
| 525 | * Fix up the bucket chain. this is a doubly-linked list, so we must fix |
| 526 | * up the bucket chain members behind and ahead of the overflow page being |
| 527 | * deleted. Concurrency issues are avoided by using lock chaining as |
| 528 | * described atop hashbucketcleanup. |
| 529 | */ |
| 530 | if (BlockNumberIsValid(prevblkno)) |
| 531 | { |
| 532 | if (prevblkno == writeblkno) |
| 533 | prevbuf = wbuf; |
| 534 | else |
| 535 | prevbuf = _hash_getbuf_with_strategy(rel, |
| 536 | prevblkno, |
| 537 | HASH_WRITE, |
| 538 | LH_BUCKET_PAGE | LH_OVERFLOW_PAGE, |
| 539 | bstrategy); |
| 540 | } |
| 541 | if (BlockNumberIsValid(nextblkno)) |
| 542 | nextbuf = _hash_getbuf_with_strategy(rel, |
| 543 | nextblkno, |
| 544 | HASH_WRITE, |
| 545 | LH_OVERFLOW_PAGE, |
| 546 | bstrategy); |
| 547 | |
| 548 | /* Note: bstrategy is intentionally not used for metapage and bitmap */ |
| 549 | |
| 550 | /* Read the metapage so we can determine which bitmap page to use */ |
| 551 | metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, LH_META_PAGE); |
| 552 | metap = HashPageGetMeta(BufferGetPage(metabuf)); |
| 553 | |
| 554 | /* Identify which bit to set */ |
| 555 | ovflbitno = _hash_ovflblkno_to_bitno(metap, ovflblkno); |
| 556 | |
| 557 | bitmappage = ovflbitno >> BMPG_SHIFT(metap); |
| 558 | bitmapbit = ovflbitno & BMPG_MASK(metap); |
| 559 | |
| 560 | if (bitmappage >= metap->hashm_nmaps) |
| 561 | elog(ERROR, "invalid overflow bit number %u" , ovflbitno); |
| 562 | blkno = metap->hashm_mapp[bitmappage]; |
| 563 | |
| 564 | /* Release metapage lock while we access the bitmap page */ |
| 565 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 566 | |
| 567 | /* read the bitmap page to clear the bitmap bit */ |
| 568 | mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE, LH_BITMAP_PAGE); |
| 569 | mappage = BufferGetPage(mapbuf); |
| 570 | freep = HashPageGetBitmap(mappage); |
| 571 | Assert(ISSET(freep, bitmapbit)); |
| 572 | |
| 573 | /* Get write-lock on metapage to update firstfree */ |
| 574 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 575 | |
| 576 | /* This operation needs to log multiple tuples, prepare WAL for that */ |
| 577 | if (RelationNeedsWAL(rel)) |
| 578 | XLogEnsureRecordSpace(HASH_XLOG_FREE_OVFL_BUFS, 4 + nitups); |
| 579 | |
| 580 | START_CRIT_SECTION(); |
| 581 | |
| 582 | /* |
| 583 | * we have to insert tuples on the "write" page, being careful to preserve |
| 584 | * hashkey ordering. (If we insert many tuples into the same "write" page |
| 585 | * it would be worth qsort'ing them). |
| 586 | */ |
| 587 | if (nitups > 0) |
| 588 | { |
| 589 | _hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups); |
| 590 | MarkBufferDirty(wbuf); |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * Reinitialize the freed overflow page. Just zeroing the page won't |
| 595 | * work, because WAL replay routines expect pages to be initialized. See |
| 596 | * explanation of RBM_NORMAL mode atop XLogReadBufferExtended. We are |
| 597 | * careful to make the special space valid here so that tools like |
| 598 | * pageinspect won't get confused. |
| 599 | */ |
| 600 | _hash_pageinit(ovflpage, BufferGetPageSize(ovflbuf)); |
| 601 | |
| 602 | ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage); |
| 603 | |
| 604 | ovflopaque->hasho_prevblkno = InvalidBlockNumber; |
| 605 | ovflopaque->hasho_nextblkno = InvalidBlockNumber; |
| 606 | ovflopaque->hasho_bucket = -1; |
| 607 | ovflopaque->hasho_flag = LH_UNUSED_PAGE; |
| 608 | ovflopaque->hasho_page_id = HASHO_PAGE_ID; |
| 609 | |
| 610 | MarkBufferDirty(ovflbuf); |
| 611 | |
| 612 | if (BufferIsValid(prevbuf)) |
| 613 | { |
| 614 | Page prevpage = BufferGetPage(prevbuf); |
| 615 | HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage); |
| 616 | |
| 617 | Assert(prevopaque->hasho_bucket == bucket); |
| 618 | prevopaque->hasho_nextblkno = nextblkno; |
| 619 | MarkBufferDirty(prevbuf); |
| 620 | } |
| 621 | if (BufferIsValid(nextbuf)) |
| 622 | { |
| 623 | Page nextpage = BufferGetPage(nextbuf); |
| 624 | HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage); |
| 625 | |
| 626 | Assert(nextopaque->hasho_bucket == bucket); |
| 627 | nextopaque->hasho_prevblkno = prevblkno; |
| 628 | MarkBufferDirty(nextbuf); |
| 629 | } |
| 630 | |
| 631 | /* Clear the bitmap bit to indicate that this overflow page is free */ |
| 632 | CLRBIT(freep, bitmapbit); |
| 633 | MarkBufferDirty(mapbuf); |
| 634 | |
| 635 | /* if this is now the first free page, update hashm_firstfree */ |
| 636 | if (ovflbitno < metap->hashm_firstfree) |
| 637 | { |
| 638 | metap->hashm_firstfree = ovflbitno; |
| 639 | update_metap = true; |
| 640 | MarkBufferDirty(metabuf); |
| 641 | } |
| 642 | |
| 643 | /* XLOG stuff */ |
| 644 | if (RelationNeedsWAL(rel)) |
| 645 | { |
| 646 | xl_hash_squeeze_page xlrec; |
| 647 | XLogRecPtr recptr; |
| 648 | int i; |
| 649 | |
| 650 | xlrec.prevblkno = prevblkno; |
| 651 | xlrec.nextblkno = nextblkno; |
| 652 | xlrec.ntups = nitups; |
| 653 | xlrec.is_prim_bucket_same_wrt = (wbuf == bucketbuf); |
| 654 | xlrec.is_prev_bucket_same_wrt = (wbuf == prevbuf); |
| 655 | |
| 656 | XLogBeginInsert(); |
| 657 | XLogRegisterData((char *) &xlrec, SizeOfHashSqueezePage); |
| 658 | |
| 659 | /* |
| 660 | * bucket buffer needs to be registered to ensure that we can acquire |
| 661 | * a cleanup lock on it during replay. |
| 662 | */ |
| 663 | if (!xlrec.is_prim_bucket_same_wrt) |
| 664 | XLogRegisterBuffer(0, bucketbuf, REGBUF_STANDARD | REGBUF_NO_IMAGE); |
| 665 | |
| 666 | XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD); |
| 667 | if (xlrec.ntups > 0) |
| 668 | { |
| 669 | XLogRegisterBufData(1, (char *) itup_offsets, |
| 670 | nitups * sizeof(OffsetNumber)); |
| 671 | for (i = 0; i < nitups; i++) |
| 672 | XLogRegisterBufData(1, (char *) itups[i], tups_size[i]); |
| 673 | } |
| 674 | |
| 675 | XLogRegisterBuffer(2, ovflbuf, REGBUF_STANDARD); |
| 676 | |
| 677 | /* |
| 678 | * If prevpage and the writepage (block in which we are moving tuples |
| 679 | * from overflow) are same, then no need to separately register |
| 680 | * prevpage. During replay, we can directly update the nextblock in |
| 681 | * writepage. |
| 682 | */ |
| 683 | if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt) |
| 684 | XLogRegisterBuffer(3, prevbuf, REGBUF_STANDARD); |
| 685 | |
| 686 | if (BufferIsValid(nextbuf)) |
| 687 | XLogRegisterBuffer(4, nextbuf, REGBUF_STANDARD); |
| 688 | |
| 689 | XLogRegisterBuffer(5, mapbuf, REGBUF_STANDARD); |
| 690 | XLogRegisterBufData(5, (char *) &bitmapbit, sizeof(uint32)); |
| 691 | |
| 692 | if (update_metap) |
| 693 | { |
| 694 | XLogRegisterBuffer(6, metabuf, REGBUF_STANDARD); |
| 695 | XLogRegisterBufData(6, (char *) &metap->hashm_firstfree, sizeof(uint32)); |
| 696 | } |
| 697 | |
| 698 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SQUEEZE_PAGE); |
| 699 | |
| 700 | PageSetLSN(BufferGetPage(wbuf), recptr); |
| 701 | PageSetLSN(BufferGetPage(ovflbuf), recptr); |
| 702 | |
| 703 | if (BufferIsValid(prevbuf) && !xlrec.is_prev_bucket_same_wrt) |
| 704 | PageSetLSN(BufferGetPage(prevbuf), recptr); |
| 705 | if (BufferIsValid(nextbuf)) |
| 706 | PageSetLSN(BufferGetPage(nextbuf), recptr); |
| 707 | |
| 708 | PageSetLSN(BufferGetPage(mapbuf), recptr); |
| 709 | |
| 710 | if (update_metap) |
| 711 | PageSetLSN(BufferGetPage(metabuf), recptr); |
| 712 | } |
| 713 | |
| 714 | END_CRIT_SECTION(); |
| 715 | |
| 716 | /* release previous bucket if it is not same as write bucket */ |
| 717 | if (BufferIsValid(prevbuf) && prevblkno != writeblkno) |
| 718 | _hash_relbuf(rel, prevbuf); |
| 719 | |
| 720 | if (BufferIsValid(ovflbuf)) |
| 721 | _hash_relbuf(rel, ovflbuf); |
| 722 | |
| 723 | if (BufferIsValid(nextbuf)) |
| 724 | _hash_relbuf(rel, nextbuf); |
| 725 | |
| 726 | _hash_relbuf(rel, mapbuf); |
| 727 | _hash_relbuf(rel, metabuf); |
| 728 | |
| 729 | return nextblkno; |
| 730 | } |
| 731 | |
| 732 | |
| 733 | /* |
| 734 | * _hash_initbitmapbuffer() |
| 735 | * |
| 736 | * Initialize a new bitmap page. All bits in the new bitmap page are set to |
| 737 | * "1", indicating "in use". |
| 738 | */ |
| 739 | void |
| 740 | _hash_initbitmapbuffer(Buffer buf, uint16 bmsize, bool initpage) |
| 741 | { |
| 742 | Page pg; |
| 743 | HashPageOpaque op; |
| 744 | uint32 *freep; |
| 745 | |
| 746 | pg = BufferGetPage(buf); |
| 747 | |
| 748 | /* initialize the page */ |
| 749 | if (initpage) |
| 750 | _hash_pageinit(pg, BufferGetPageSize(buf)); |
| 751 | |
| 752 | /* initialize the page's special space */ |
| 753 | op = (HashPageOpaque) PageGetSpecialPointer(pg); |
| 754 | op->hasho_prevblkno = InvalidBlockNumber; |
| 755 | op->hasho_nextblkno = InvalidBlockNumber; |
| 756 | op->hasho_bucket = -1; |
| 757 | op->hasho_flag = LH_BITMAP_PAGE; |
| 758 | op->hasho_page_id = HASHO_PAGE_ID; |
| 759 | |
| 760 | /* set all of the bits to 1 */ |
| 761 | freep = HashPageGetBitmap(pg); |
| 762 | MemSet(freep, 0xFF, bmsize); |
| 763 | |
| 764 | /* |
| 765 | * Set pd_lower just past the end of the bitmap page data. We could even |
| 766 | * set pd_lower equal to pd_upper, but this is more precise and makes the |
| 767 | * page look compressible to xlog.c. |
| 768 | */ |
| 769 | ((PageHeader) pg)->pd_lower = ((char *) freep + bmsize) - (char *) pg; |
| 770 | } |
| 771 | |
| 772 | |
| 773 | /* |
| 774 | * _hash_squeezebucket(rel, bucket) |
| 775 | * |
| 776 | * Try to squeeze the tuples onto pages occurring earlier in the |
| 777 | * bucket chain in an attempt to free overflow pages. When we start |
| 778 | * the "squeezing", the page from which we start taking tuples (the |
| 779 | * "read" page) is the last bucket in the bucket chain and the page |
| 780 | * onto which we start squeezing tuples (the "write" page) is the |
| 781 | * first page in the bucket chain. The read page works backward and |
| 782 | * the write page works forward; the procedure terminates when the |
| 783 | * read page and write page are the same page. |
| 784 | * |
| 785 | * At completion of this procedure, it is guaranteed that all pages in |
| 786 | * the bucket are nonempty, unless the bucket is totally empty (in |
| 787 | * which case all overflow pages will be freed). The original implementation |
| 788 | * required that to be true on entry as well, but it's a lot easier for |
| 789 | * callers to leave empty overflow pages and let this guy clean it up. |
| 790 | * |
| 791 | * Caller must acquire cleanup lock on the primary page of the target |
| 792 | * bucket to exclude any scans that are in progress, which could easily |
| 793 | * be confused into returning the same tuple more than once or some tuples |
| 794 | * not at all by the rearrangement we are performing here. To prevent |
| 795 | * any concurrent scan to cross the squeeze scan we use lock chaining |
| 796 | * similar to hasbucketcleanup. Refer comments atop hashbucketcleanup. |
| 797 | * |
| 798 | * We need to retain a pin on the primary bucket to ensure that no concurrent |
| 799 | * split can start. |
| 800 | * |
| 801 | * Since this function is invoked in VACUUM, we provide an access strategy |
| 802 | * parameter that controls fetches of the bucket pages. |
| 803 | */ |
| 804 | void |
| 805 | _hash_squeezebucket(Relation rel, |
| 806 | Bucket bucket, |
| 807 | BlockNumber bucket_blkno, |
| 808 | Buffer bucket_buf, |
| 809 | BufferAccessStrategy bstrategy) |
| 810 | { |
| 811 | BlockNumber wblkno; |
| 812 | BlockNumber rblkno; |
| 813 | Buffer wbuf; |
| 814 | Buffer rbuf; |
| 815 | Page wpage; |
| 816 | Page rpage; |
| 817 | HashPageOpaque wopaque; |
| 818 | HashPageOpaque ropaque; |
| 819 | |
| 820 | /* |
| 821 | * start squeezing into the primary bucket page. |
| 822 | */ |
| 823 | wblkno = bucket_blkno; |
| 824 | wbuf = bucket_buf; |
| 825 | wpage = BufferGetPage(wbuf); |
| 826 | wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage); |
| 827 | |
| 828 | /* |
| 829 | * if there aren't any overflow pages, there's nothing to squeeze. caller |
| 830 | * is responsible for releasing the pin on primary bucket page. |
| 831 | */ |
| 832 | if (!BlockNumberIsValid(wopaque->hasho_nextblkno)) |
| 833 | { |
| 834 | LockBuffer(wbuf, BUFFER_LOCK_UNLOCK); |
| 835 | return; |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * Find the last page in the bucket chain by starting at the base bucket |
| 840 | * page and working forward. Note: we assume that a hash bucket chain is |
| 841 | * usually smaller than the buffer ring being used by VACUUM, else using |
| 842 | * the access strategy here would be counterproductive. |
| 843 | */ |
| 844 | rbuf = InvalidBuffer; |
| 845 | ropaque = wopaque; |
| 846 | do |
| 847 | { |
| 848 | rblkno = ropaque->hasho_nextblkno; |
| 849 | if (rbuf != InvalidBuffer) |
| 850 | _hash_relbuf(rel, rbuf); |
| 851 | rbuf = _hash_getbuf_with_strategy(rel, |
| 852 | rblkno, |
| 853 | HASH_WRITE, |
| 854 | LH_OVERFLOW_PAGE, |
| 855 | bstrategy); |
| 856 | rpage = BufferGetPage(rbuf); |
| 857 | ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage); |
| 858 | Assert(ropaque->hasho_bucket == bucket); |
| 859 | } while (BlockNumberIsValid(ropaque->hasho_nextblkno)); |
| 860 | |
| 861 | /* |
| 862 | * squeeze the tuples. |
| 863 | */ |
| 864 | for (;;) |
| 865 | { |
| 866 | OffsetNumber roffnum; |
| 867 | OffsetNumber maxroffnum; |
| 868 | OffsetNumber deletable[MaxOffsetNumber]; |
| 869 | IndexTuple itups[MaxIndexTuplesPerPage]; |
| 870 | Size tups_size[MaxIndexTuplesPerPage]; |
| 871 | OffsetNumber itup_offsets[MaxIndexTuplesPerPage]; |
| 872 | uint16 ndeletable = 0; |
| 873 | uint16 nitups = 0; |
| 874 | Size all_tups_size = 0; |
| 875 | int i; |
| 876 | bool retain_pin = false; |
| 877 | |
| 878 | readpage: |
| 879 | /* Scan each tuple in "read" page */ |
| 880 | maxroffnum = PageGetMaxOffsetNumber(rpage); |
| 881 | for (roffnum = FirstOffsetNumber; |
| 882 | roffnum <= maxroffnum; |
| 883 | roffnum = OffsetNumberNext(roffnum)) |
| 884 | { |
| 885 | IndexTuple itup; |
| 886 | Size itemsz; |
| 887 | |
| 888 | /* skip dead tuples */ |
| 889 | if (ItemIdIsDead(PageGetItemId(rpage, roffnum))) |
| 890 | continue; |
| 891 | |
| 892 | itup = (IndexTuple) PageGetItem(rpage, |
| 893 | PageGetItemId(rpage, roffnum)); |
| 894 | itemsz = IndexTupleSize(itup); |
| 895 | itemsz = MAXALIGN(itemsz); |
| 896 | |
| 897 | /* |
| 898 | * Walk up the bucket chain, looking for a page big enough for |
| 899 | * this item and all other accumulated items. Exit if we reach |
| 900 | * the read page. |
| 901 | */ |
| 902 | while (PageGetFreeSpaceForMultipleTuples(wpage, nitups + 1) < (all_tups_size + itemsz)) |
| 903 | { |
| 904 | Buffer next_wbuf = InvalidBuffer; |
| 905 | bool tups_moved = false; |
| 906 | |
| 907 | Assert(!PageIsEmpty(wpage)); |
| 908 | |
| 909 | if (wblkno == bucket_blkno) |
| 910 | retain_pin = true; |
| 911 | |
| 912 | wblkno = wopaque->hasho_nextblkno; |
| 913 | Assert(BlockNumberIsValid(wblkno)); |
| 914 | |
| 915 | /* don't need to move to next page if we reached the read page */ |
| 916 | if (wblkno != rblkno) |
| 917 | next_wbuf = _hash_getbuf_with_strategy(rel, |
| 918 | wblkno, |
| 919 | HASH_WRITE, |
| 920 | LH_OVERFLOW_PAGE, |
| 921 | bstrategy); |
| 922 | |
| 923 | if (nitups > 0) |
| 924 | { |
| 925 | Assert(nitups == ndeletable); |
| 926 | |
| 927 | /* |
| 928 | * This operation needs to log multiple tuples, prepare |
| 929 | * WAL for that. |
| 930 | */ |
| 931 | if (RelationNeedsWAL(rel)) |
| 932 | XLogEnsureRecordSpace(0, 3 + nitups); |
| 933 | |
| 934 | START_CRIT_SECTION(); |
| 935 | |
| 936 | /* |
| 937 | * we have to insert tuples on the "write" page, being |
| 938 | * careful to preserve hashkey ordering. (If we insert |
| 939 | * many tuples into the same "write" page it would be |
| 940 | * worth qsort'ing them). |
| 941 | */ |
| 942 | _hash_pgaddmultitup(rel, wbuf, itups, itup_offsets, nitups); |
| 943 | MarkBufferDirty(wbuf); |
| 944 | |
| 945 | /* Delete tuples we already moved off read page */ |
| 946 | PageIndexMultiDelete(rpage, deletable, ndeletable); |
| 947 | MarkBufferDirty(rbuf); |
| 948 | |
| 949 | /* XLOG stuff */ |
| 950 | if (RelationNeedsWAL(rel)) |
| 951 | { |
| 952 | XLogRecPtr recptr; |
| 953 | xl_hash_move_page_contents xlrec; |
| 954 | |
| 955 | xlrec.ntups = nitups; |
| 956 | xlrec.is_prim_bucket_same_wrt = (wbuf == bucket_buf) ? true : false; |
| 957 | |
| 958 | XLogBeginInsert(); |
| 959 | XLogRegisterData((char *) &xlrec, SizeOfHashMovePageContents); |
| 960 | |
| 961 | /* |
| 962 | * bucket buffer needs to be registered to ensure that |
| 963 | * we can acquire a cleanup lock on it during replay. |
| 964 | */ |
| 965 | if (!xlrec.is_prim_bucket_same_wrt) |
| 966 | XLogRegisterBuffer(0, bucket_buf, REGBUF_STANDARD | REGBUF_NO_IMAGE); |
| 967 | |
| 968 | XLogRegisterBuffer(1, wbuf, REGBUF_STANDARD); |
| 969 | XLogRegisterBufData(1, (char *) itup_offsets, |
| 970 | nitups * sizeof(OffsetNumber)); |
| 971 | for (i = 0; i < nitups; i++) |
| 972 | XLogRegisterBufData(1, (char *) itups[i], tups_size[i]); |
| 973 | |
| 974 | XLogRegisterBuffer(2, rbuf, REGBUF_STANDARD); |
| 975 | XLogRegisterBufData(2, (char *) deletable, |
| 976 | ndeletable * sizeof(OffsetNumber)); |
| 977 | |
| 978 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_MOVE_PAGE_CONTENTS); |
| 979 | |
| 980 | PageSetLSN(BufferGetPage(wbuf), recptr); |
| 981 | PageSetLSN(BufferGetPage(rbuf), recptr); |
| 982 | } |
| 983 | |
| 984 | END_CRIT_SECTION(); |
| 985 | |
| 986 | tups_moved = true; |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * release the lock on previous page after acquiring the lock |
| 991 | * on next page |
| 992 | */ |
| 993 | if (retain_pin) |
| 994 | LockBuffer(wbuf, BUFFER_LOCK_UNLOCK); |
| 995 | else |
| 996 | _hash_relbuf(rel, wbuf); |
| 997 | |
| 998 | /* nothing more to do if we reached the read page */ |
| 999 | if (rblkno == wblkno) |
| 1000 | { |
| 1001 | _hash_relbuf(rel, rbuf); |
| 1002 | return; |
| 1003 | } |
| 1004 | |
| 1005 | wbuf = next_wbuf; |
| 1006 | wpage = BufferGetPage(wbuf); |
| 1007 | wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage); |
| 1008 | Assert(wopaque->hasho_bucket == bucket); |
| 1009 | retain_pin = false; |
| 1010 | |
| 1011 | /* be tidy */ |
| 1012 | for (i = 0; i < nitups; i++) |
| 1013 | pfree(itups[i]); |
| 1014 | nitups = 0; |
| 1015 | all_tups_size = 0; |
| 1016 | ndeletable = 0; |
| 1017 | |
| 1018 | /* |
| 1019 | * after moving the tuples, rpage would have been compacted, |
| 1020 | * so we need to rescan it. |
| 1021 | */ |
| 1022 | if (tups_moved) |
| 1023 | goto readpage; |
| 1024 | } |
| 1025 | |
| 1026 | /* remember tuple for deletion from "read" page */ |
| 1027 | deletable[ndeletable++] = roffnum; |
| 1028 | |
| 1029 | /* |
| 1030 | * we need a copy of index tuples as they can be freed as part of |
| 1031 | * overflow page, however we need them to write a WAL record in |
| 1032 | * _hash_freeovflpage. |
| 1033 | */ |
| 1034 | itups[nitups] = CopyIndexTuple(itup); |
| 1035 | tups_size[nitups++] = itemsz; |
| 1036 | all_tups_size += itemsz; |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * If we reach here, there are no live tuples on the "read" page --- |
| 1041 | * it was empty when we got to it, or we moved them all. So we can |
| 1042 | * just free the page without bothering with deleting tuples |
| 1043 | * individually. Then advance to the previous "read" page. |
| 1044 | * |
| 1045 | * Tricky point here: if our read and write pages are adjacent in the |
| 1046 | * bucket chain, our write lock on wbuf will conflict with |
| 1047 | * _hash_freeovflpage's attempt to update the sibling links of the |
| 1048 | * removed page. In that case, we don't need to lock it again. |
| 1049 | */ |
| 1050 | rblkno = ropaque->hasho_prevblkno; |
| 1051 | Assert(BlockNumberIsValid(rblkno)); |
| 1052 | |
| 1053 | /* free this overflow page (releases rbuf) */ |
| 1054 | _hash_freeovflpage(rel, bucket_buf, rbuf, wbuf, itups, itup_offsets, |
| 1055 | tups_size, nitups, bstrategy); |
| 1056 | |
| 1057 | /* be tidy */ |
| 1058 | for (i = 0; i < nitups; i++) |
| 1059 | pfree(itups[i]); |
| 1060 | |
| 1061 | /* are we freeing the page adjacent to wbuf? */ |
| 1062 | if (rblkno == wblkno) |
| 1063 | { |
| 1064 | /* retain the pin on primary bucket page till end of bucket scan */ |
| 1065 | if (wblkno == bucket_blkno) |
| 1066 | LockBuffer(wbuf, BUFFER_LOCK_UNLOCK); |
| 1067 | else |
| 1068 | _hash_relbuf(rel, wbuf); |
| 1069 | return; |
| 1070 | } |
| 1071 | |
| 1072 | rbuf = _hash_getbuf_with_strategy(rel, |
| 1073 | rblkno, |
| 1074 | HASH_WRITE, |
| 1075 | LH_OVERFLOW_PAGE, |
| 1076 | bstrategy); |
| 1077 | rpage = BufferGetPage(rbuf); |
| 1078 | ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage); |
| 1079 | Assert(ropaque->hasho_bucket == bucket); |
| 1080 | } |
| 1081 | |
| 1082 | /* NOTREACHED */ |
| 1083 | } |
| 1084 | |