| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * hashpage.c |
| 4 | * Hash table page management code for the Postgres hash access method |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/access/hash/hashpage.c |
| 12 | * |
| 13 | * NOTES |
| 14 | * Postgres hash pages look like ordinary relation pages. The opaque |
| 15 | * data at high addresses includes information about the page including |
| 16 | * whether a page is an overflow page or a true bucket, the bucket |
| 17 | * number, and the block numbers of the preceding and following pages |
| 18 | * in the same bucket. |
| 19 | * |
| 20 | * The first page in a hash relation, page zero, is special -- it stores |
| 21 | * information describing the hash table; it is referred to as the |
| 22 | * "meta page." Pages one and higher store the actual data. |
| 23 | * |
| 24 | * There are also bitmap pages, which are not manipulated here; |
| 25 | * see hashovfl.c. |
| 26 | * |
| 27 | *------------------------------------------------------------------------- |
| 28 | */ |
| 29 | #include "postgres.h" |
| 30 | |
| 31 | #include "access/hash.h" |
| 32 | #include "access/hash_xlog.h" |
| 33 | #include "miscadmin.h" |
| 34 | #include "storage/lmgr.h" |
| 35 | #include "storage/smgr.h" |
| 36 | #include "storage/predicate.h" |
| 37 | |
| 38 | |
| 39 | static bool _hash_alloc_buckets(Relation rel, BlockNumber firstblock, |
| 40 | uint32 nblocks); |
| 41 | static void _hash_splitbucket(Relation rel, Buffer metabuf, |
| 42 | Bucket obucket, Bucket nbucket, |
| 43 | Buffer obuf, |
| 44 | Buffer nbuf, |
| 45 | HTAB *htab, |
| 46 | uint32 maxbucket, |
| 47 | uint32 highmask, uint32 lowmask); |
| 48 | static void log_split_page(Relation rel, Buffer buf); |
| 49 | |
| 50 | |
| 51 | /* |
| 52 | * _hash_getbuf() -- Get a buffer by block number for read or write. |
| 53 | * |
| 54 | * 'access' must be HASH_READ, HASH_WRITE, or HASH_NOLOCK. |
| 55 | * 'flags' is a bitwise OR of the allowed page types. |
| 56 | * |
| 57 | * This must be used only to fetch pages that are expected to be valid |
| 58 | * already. _hash_checkpage() is applied using the given flags. |
| 59 | * |
| 60 | * When this routine returns, the appropriate lock is set on the |
| 61 | * requested buffer and its reference count has been incremented |
| 62 | * (ie, the buffer is "locked and pinned"). |
| 63 | * |
| 64 | * P_NEW is disallowed because this routine can only be used |
| 65 | * to access pages that are known to be before the filesystem EOF. |
| 66 | * Extending the index should be done with _hash_getnewbuf. |
| 67 | */ |
| 68 | Buffer |
| 69 | _hash_getbuf(Relation rel, BlockNumber blkno, int access, int flags) |
| 70 | { |
| 71 | Buffer buf; |
| 72 | |
| 73 | if (blkno == P_NEW) |
| 74 | elog(ERROR, "hash AM does not use P_NEW" ); |
| 75 | |
| 76 | buf = ReadBuffer(rel, blkno); |
| 77 | |
| 78 | if (access != HASH_NOLOCK) |
| 79 | LockBuffer(buf, access); |
| 80 | |
| 81 | /* ref count and lock type are correct */ |
| 82 | |
| 83 | _hash_checkpage(rel, buf, flags); |
| 84 | |
| 85 | return buf; |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * _hash_getbuf_with_condlock_cleanup() -- Try to get a buffer for cleanup. |
| 90 | * |
| 91 | * We read the page and try to acquire a cleanup lock. If we get it, |
| 92 | * we return the buffer; otherwise, we return InvalidBuffer. |
| 93 | */ |
| 94 | Buffer |
| 95 | _hash_getbuf_with_condlock_cleanup(Relation rel, BlockNumber blkno, int flags) |
| 96 | { |
| 97 | Buffer buf; |
| 98 | |
| 99 | if (blkno == P_NEW) |
| 100 | elog(ERROR, "hash AM does not use P_NEW" ); |
| 101 | |
| 102 | buf = ReadBuffer(rel, blkno); |
| 103 | |
| 104 | if (!ConditionalLockBufferForCleanup(buf)) |
| 105 | { |
| 106 | ReleaseBuffer(buf); |
| 107 | return InvalidBuffer; |
| 108 | } |
| 109 | |
| 110 | /* ref count and lock type are correct */ |
| 111 | |
| 112 | _hash_checkpage(rel, buf, flags); |
| 113 | |
| 114 | return buf; |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * _hash_getinitbuf() -- Get and initialize a buffer by block number. |
| 119 | * |
| 120 | * This must be used only to fetch pages that are known to be before |
| 121 | * the index's filesystem EOF, but are to be filled from scratch. |
| 122 | * _hash_pageinit() is applied automatically. Otherwise it has |
| 123 | * effects similar to _hash_getbuf() with access = HASH_WRITE. |
| 124 | * |
| 125 | * When this routine returns, a write lock is set on the |
| 126 | * requested buffer and its reference count has been incremented |
| 127 | * (ie, the buffer is "locked and pinned"). |
| 128 | * |
| 129 | * P_NEW is disallowed because this routine can only be used |
| 130 | * to access pages that are known to be before the filesystem EOF. |
| 131 | * Extending the index should be done with _hash_getnewbuf. |
| 132 | */ |
| 133 | Buffer |
| 134 | _hash_getinitbuf(Relation rel, BlockNumber blkno) |
| 135 | { |
| 136 | Buffer buf; |
| 137 | |
| 138 | if (blkno == P_NEW) |
| 139 | elog(ERROR, "hash AM does not use P_NEW" ); |
| 140 | |
| 141 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_ZERO_AND_LOCK, |
| 142 | NULL); |
| 143 | |
| 144 | /* ref count and lock type are correct */ |
| 145 | |
| 146 | /* initialize the page */ |
| 147 | _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); |
| 148 | |
| 149 | return buf; |
| 150 | } |
| 151 | |
| 152 | /* |
| 153 | * _hash_initbuf() -- Get and initialize a buffer by bucket number. |
| 154 | */ |
| 155 | void |
| 156 | _hash_initbuf(Buffer buf, uint32 max_bucket, uint32 num_bucket, uint32 flag, |
| 157 | bool initpage) |
| 158 | { |
| 159 | HashPageOpaque pageopaque; |
| 160 | Page page; |
| 161 | |
| 162 | page = BufferGetPage(buf); |
| 163 | |
| 164 | /* initialize the page */ |
| 165 | if (initpage) |
| 166 | _hash_pageinit(page, BufferGetPageSize(buf)); |
| 167 | |
| 168 | pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
| 169 | |
| 170 | /* |
| 171 | * Set hasho_prevblkno with current hashm_maxbucket. This value will be |
| 172 | * used to validate cached HashMetaPageData. See |
| 173 | * _hash_getbucketbuf_from_hashkey(). |
| 174 | */ |
| 175 | pageopaque->hasho_prevblkno = max_bucket; |
| 176 | pageopaque->hasho_nextblkno = InvalidBlockNumber; |
| 177 | pageopaque->hasho_bucket = num_bucket; |
| 178 | pageopaque->hasho_flag = flag; |
| 179 | pageopaque->hasho_page_id = HASHO_PAGE_ID; |
| 180 | } |
| 181 | |
| 182 | /* |
| 183 | * _hash_getnewbuf() -- Get a new page at the end of the index. |
| 184 | * |
| 185 | * This has the same API as _hash_getinitbuf, except that we are adding |
| 186 | * a page to the index, and hence expect the page to be past the |
| 187 | * logical EOF. (However, we have to support the case where it isn't, |
| 188 | * since a prior try might have crashed after extending the filesystem |
| 189 | * EOF but before updating the metapage to reflect the added page.) |
| 190 | * |
| 191 | * It is caller's responsibility to ensure that only one process can |
| 192 | * extend the index at a time. In practice, this function is called |
| 193 | * only while holding write lock on the metapage, because adding a page |
| 194 | * is always associated with an update of metapage data. |
| 195 | */ |
| 196 | Buffer |
| 197 | _hash_getnewbuf(Relation rel, BlockNumber blkno, ForkNumber forkNum) |
| 198 | { |
| 199 | BlockNumber nblocks = RelationGetNumberOfBlocksInFork(rel, forkNum); |
| 200 | Buffer buf; |
| 201 | |
| 202 | if (blkno == P_NEW) |
| 203 | elog(ERROR, "hash AM does not use P_NEW" ); |
| 204 | if (blkno > nblocks) |
| 205 | elog(ERROR, "access to noncontiguous page in hash index \"%s\"" , |
| 206 | RelationGetRelationName(rel)); |
| 207 | |
| 208 | /* smgr insists we use P_NEW to extend the relation */ |
| 209 | if (blkno == nblocks) |
| 210 | { |
| 211 | buf = ReadBufferExtended(rel, forkNum, P_NEW, RBM_NORMAL, NULL); |
| 212 | if (BufferGetBlockNumber(buf) != blkno) |
| 213 | elog(ERROR, "unexpected hash relation size: %u, should be %u" , |
| 214 | BufferGetBlockNumber(buf), blkno); |
| 215 | LockBuffer(buf, HASH_WRITE); |
| 216 | } |
| 217 | else |
| 218 | { |
| 219 | buf = ReadBufferExtended(rel, forkNum, blkno, RBM_ZERO_AND_LOCK, |
| 220 | NULL); |
| 221 | } |
| 222 | |
| 223 | /* ref count and lock type are correct */ |
| 224 | |
| 225 | /* initialize the page */ |
| 226 | _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); |
| 227 | |
| 228 | return buf; |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * _hash_getbuf_with_strategy() -- Get a buffer with nondefault strategy. |
| 233 | * |
| 234 | * This is identical to _hash_getbuf() but also allows a buffer access |
| 235 | * strategy to be specified. We use this for VACUUM operations. |
| 236 | */ |
| 237 | Buffer |
| 238 | _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno, |
| 239 | int access, int flags, |
| 240 | BufferAccessStrategy bstrategy) |
| 241 | { |
| 242 | Buffer buf; |
| 243 | |
| 244 | if (blkno == P_NEW) |
| 245 | elog(ERROR, "hash AM does not use P_NEW" ); |
| 246 | |
| 247 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, bstrategy); |
| 248 | |
| 249 | if (access != HASH_NOLOCK) |
| 250 | LockBuffer(buf, access); |
| 251 | |
| 252 | /* ref count and lock type are correct */ |
| 253 | |
| 254 | _hash_checkpage(rel, buf, flags); |
| 255 | |
| 256 | return buf; |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * _hash_relbuf() -- release a locked buffer. |
| 261 | * |
| 262 | * Lock and pin (refcount) are both dropped. |
| 263 | */ |
| 264 | void |
| 265 | _hash_relbuf(Relation rel, Buffer buf) |
| 266 | { |
| 267 | UnlockReleaseBuffer(buf); |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * _hash_dropbuf() -- release an unlocked buffer. |
| 272 | * |
| 273 | * This is used to unpin a buffer on which we hold no lock. |
| 274 | */ |
| 275 | void |
| 276 | _hash_dropbuf(Relation rel, Buffer buf) |
| 277 | { |
| 278 | ReleaseBuffer(buf); |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * _hash_dropscanbuf() -- release buffers used in scan. |
| 283 | * |
| 284 | * This routine unpins the buffers used during scan on which we |
| 285 | * hold no lock. |
| 286 | */ |
| 287 | void |
| 288 | _hash_dropscanbuf(Relation rel, HashScanOpaque so) |
| 289 | { |
| 290 | /* release pin we hold on primary bucket page */ |
| 291 | if (BufferIsValid(so->hashso_bucket_buf) && |
| 292 | so->hashso_bucket_buf != so->currPos.buf) |
| 293 | _hash_dropbuf(rel, so->hashso_bucket_buf); |
| 294 | so->hashso_bucket_buf = InvalidBuffer; |
| 295 | |
| 296 | /* release pin we hold on primary bucket page of bucket being split */ |
| 297 | if (BufferIsValid(so->hashso_split_bucket_buf) && |
| 298 | so->hashso_split_bucket_buf != so->currPos.buf) |
| 299 | _hash_dropbuf(rel, so->hashso_split_bucket_buf); |
| 300 | so->hashso_split_bucket_buf = InvalidBuffer; |
| 301 | |
| 302 | /* release any pin we still hold */ |
| 303 | if (BufferIsValid(so->currPos.buf)) |
| 304 | _hash_dropbuf(rel, so->currPos.buf); |
| 305 | so->currPos.buf = InvalidBuffer; |
| 306 | |
| 307 | /* reset split scan */ |
| 308 | so->hashso_buc_populated = false; |
| 309 | so->hashso_buc_split = false; |
| 310 | } |
| 311 | |
| 312 | |
| 313 | /* |
| 314 | * _hash_init() -- Initialize the metadata page of a hash index, |
| 315 | * the initial buckets, and the initial bitmap page. |
| 316 | * |
| 317 | * The initial number of buckets is dependent on num_tuples, an estimate |
| 318 | * of the number of tuples to be loaded into the index initially. The |
| 319 | * chosen number of buckets is returned. |
| 320 | * |
| 321 | * We are fairly cavalier about locking here, since we know that no one else |
| 322 | * could be accessing this index. In particular the rule about not holding |
| 323 | * multiple buffer locks is ignored. |
| 324 | */ |
| 325 | uint32 |
| 326 | _hash_init(Relation rel, double num_tuples, ForkNumber forkNum) |
| 327 | { |
| 328 | Buffer metabuf; |
| 329 | Buffer buf; |
| 330 | Buffer bitmapbuf; |
| 331 | Page pg; |
| 332 | HashMetaPage metap; |
| 333 | RegProcedure procid; |
| 334 | int32 data_width; |
| 335 | int32 item_width; |
| 336 | int32 ffactor; |
| 337 | uint32 num_buckets; |
| 338 | uint32 i; |
| 339 | bool use_wal; |
| 340 | |
| 341 | /* safety check */ |
| 342 | if (RelationGetNumberOfBlocksInFork(rel, forkNum) != 0) |
| 343 | elog(ERROR, "cannot initialize non-empty hash index \"%s\"" , |
| 344 | RelationGetRelationName(rel)); |
| 345 | |
| 346 | /* |
| 347 | * WAL log creation of pages if the relation is persistent, or this is the |
| 348 | * init fork. Init forks for unlogged relations always need to be WAL |
| 349 | * logged. |
| 350 | */ |
| 351 | use_wal = RelationNeedsWAL(rel) || forkNum == INIT_FORKNUM; |
| 352 | |
| 353 | /* |
| 354 | * Determine the target fill factor (in tuples per bucket) for this index. |
| 355 | * The idea is to make the fill factor correspond to pages about as full |
| 356 | * as the user-settable fillfactor parameter says. We can compute it |
| 357 | * exactly since the index datatype (i.e. uint32 hash key) is fixed-width. |
| 358 | */ |
| 359 | data_width = sizeof(uint32); |
| 360 | item_width = MAXALIGN(sizeof(IndexTupleData)) + MAXALIGN(data_width) + |
| 361 | sizeof(ItemIdData); /* include the line pointer */ |
| 362 | ffactor = RelationGetTargetPageUsage(rel, HASH_DEFAULT_FILLFACTOR) / item_width; |
| 363 | /* keep to a sane range */ |
| 364 | if (ffactor < 10) |
| 365 | ffactor = 10; |
| 366 | |
| 367 | procid = index_getprocid(rel, 1, HASHSTANDARD_PROC); |
| 368 | |
| 369 | /* |
| 370 | * We initialize the metapage, the first N bucket pages, and the first |
| 371 | * bitmap page in sequence, using _hash_getnewbuf to cause smgrextend() |
| 372 | * calls to occur. This ensures that the smgr level has the right idea of |
| 373 | * the physical index length. |
| 374 | * |
| 375 | * Critical section not required, because on error the creation of the |
| 376 | * whole relation will be rolled back. |
| 377 | */ |
| 378 | metabuf = _hash_getnewbuf(rel, HASH_METAPAGE, forkNum); |
| 379 | _hash_init_metabuffer(metabuf, num_tuples, procid, ffactor, false); |
| 380 | MarkBufferDirty(metabuf); |
| 381 | |
| 382 | pg = BufferGetPage(metabuf); |
| 383 | metap = HashPageGetMeta(pg); |
| 384 | |
| 385 | /* XLOG stuff */ |
| 386 | if (use_wal) |
| 387 | { |
| 388 | xl_hash_init_meta_page xlrec; |
| 389 | XLogRecPtr recptr; |
| 390 | |
| 391 | xlrec.num_tuples = num_tuples; |
| 392 | xlrec.procid = metap->hashm_procid; |
| 393 | xlrec.ffactor = metap->hashm_ffactor; |
| 394 | |
| 395 | XLogBeginInsert(); |
| 396 | XLogRegisterData((char *) &xlrec, SizeOfHashInitMetaPage); |
| 397 | XLogRegisterBuffer(0, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
| 398 | |
| 399 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_META_PAGE); |
| 400 | |
| 401 | PageSetLSN(BufferGetPage(metabuf), recptr); |
| 402 | } |
| 403 | |
| 404 | num_buckets = metap->hashm_maxbucket + 1; |
| 405 | |
| 406 | /* |
| 407 | * Release buffer lock on the metapage while we initialize buckets. |
| 408 | * Otherwise, we'll be in interrupt holdoff and the CHECK_FOR_INTERRUPTS |
| 409 | * won't accomplish anything. It's a bad idea to hold buffer locks for |
| 410 | * long intervals in any case, since that can block the bgwriter. |
| 411 | */ |
| 412 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 413 | |
| 414 | /* |
| 415 | * Initialize and WAL Log the first N buckets |
| 416 | */ |
| 417 | for (i = 0; i < num_buckets; i++) |
| 418 | { |
| 419 | BlockNumber blkno; |
| 420 | |
| 421 | /* Allow interrupts, in case N is huge */ |
| 422 | CHECK_FOR_INTERRUPTS(); |
| 423 | |
| 424 | blkno = BUCKET_TO_BLKNO(metap, i); |
| 425 | buf = _hash_getnewbuf(rel, blkno, forkNum); |
| 426 | _hash_initbuf(buf, metap->hashm_maxbucket, i, LH_BUCKET_PAGE, false); |
| 427 | MarkBufferDirty(buf); |
| 428 | |
| 429 | if (use_wal) |
| 430 | log_newpage(&rel->rd_node, |
| 431 | forkNum, |
| 432 | blkno, |
| 433 | BufferGetPage(buf), |
| 434 | true); |
| 435 | _hash_relbuf(rel, buf); |
| 436 | } |
| 437 | |
| 438 | /* Now reacquire buffer lock on metapage */ |
| 439 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 440 | |
| 441 | /* |
| 442 | * Initialize bitmap page |
| 443 | */ |
| 444 | bitmapbuf = _hash_getnewbuf(rel, num_buckets + 1, forkNum); |
| 445 | _hash_initbitmapbuffer(bitmapbuf, metap->hashm_bmsize, false); |
| 446 | MarkBufferDirty(bitmapbuf); |
| 447 | |
| 448 | /* add the new bitmap page to the metapage's list of bitmaps */ |
| 449 | /* metapage already has a write lock */ |
| 450 | if (metap->hashm_nmaps >= HASH_MAX_BITMAPS) |
| 451 | ereport(ERROR, |
| 452 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 453 | errmsg("out of overflow pages in hash index \"%s\"" , |
| 454 | RelationGetRelationName(rel)))); |
| 455 | |
| 456 | metap->hashm_mapp[metap->hashm_nmaps] = num_buckets + 1; |
| 457 | |
| 458 | metap->hashm_nmaps++; |
| 459 | MarkBufferDirty(metabuf); |
| 460 | |
| 461 | /* XLOG stuff */ |
| 462 | if (use_wal) |
| 463 | { |
| 464 | xl_hash_init_bitmap_page xlrec; |
| 465 | XLogRecPtr recptr; |
| 466 | |
| 467 | xlrec.bmsize = metap->hashm_bmsize; |
| 468 | |
| 469 | XLogBeginInsert(); |
| 470 | XLogRegisterData((char *) &xlrec, SizeOfHashInitBitmapPage); |
| 471 | XLogRegisterBuffer(0, bitmapbuf, REGBUF_WILL_INIT); |
| 472 | |
| 473 | /* |
| 474 | * This is safe only because nobody else can be modifying the index at |
| 475 | * this stage; it's only visible to the transaction that is creating |
| 476 | * it. |
| 477 | */ |
| 478 | XLogRegisterBuffer(1, metabuf, REGBUF_STANDARD); |
| 479 | |
| 480 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_BITMAP_PAGE); |
| 481 | |
| 482 | PageSetLSN(BufferGetPage(bitmapbuf), recptr); |
| 483 | PageSetLSN(BufferGetPage(metabuf), recptr); |
| 484 | } |
| 485 | |
| 486 | /* all done */ |
| 487 | _hash_relbuf(rel, bitmapbuf); |
| 488 | _hash_relbuf(rel, metabuf); |
| 489 | |
| 490 | return num_buckets; |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * _hash_init_metabuffer() -- Initialize the metadata page of a hash index. |
| 495 | */ |
| 496 | void |
| 497 | _hash_init_metabuffer(Buffer buf, double num_tuples, RegProcedure procid, |
| 498 | uint16 ffactor, bool initpage) |
| 499 | { |
| 500 | HashMetaPage metap; |
| 501 | HashPageOpaque pageopaque; |
| 502 | Page page; |
| 503 | double dnumbuckets; |
| 504 | uint32 num_buckets; |
| 505 | uint32 spare_index; |
| 506 | uint32 i; |
| 507 | |
| 508 | /* |
| 509 | * Choose the number of initial bucket pages to match the fill factor |
| 510 | * given the estimated number of tuples. We round up the result to the |
| 511 | * total number of buckets which has to be allocated before using its |
| 512 | * _hashm_spare element. However always force at least 2 bucket pages. The |
| 513 | * upper limit is determined by considerations explained in |
| 514 | * _hash_expandtable(). |
| 515 | */ |
| 516 | dnumbuckets = num_tuples / ffactor; |
| 517 | if (dnumbuckets <= 2.0) |
| 518 | num_buckets = 2; |
| 519 | else if (dnumbuckets >= (double) 0x40000000) |
| 520 | num_buckets = 0x40000000; |
| 521 | else |
| 522 | num_buckets = _hash_get_totalbuckets(_hash_spareindex(dnumbuckets)); |
| 523 | |
| 524 | spare_index = _hash_spareindex(num_buckets); |
| 525 | Assert(spare_index < HASH_MAX_SPLITPOINTS); |
| 526 | |
| 527 | page = BufferGetPage(buf); |
| 528 | if (initpage) |
| 529 | _hash_pageinit(page, BufferGetPageSize(buf)); |
| 530 | |
| 531 | pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
| 532 | pageopaque->hasho_prevblkno = InvalidBlockNumber; |
| 533 | pageopaque->hasho_nextblkno = InvalidBlockNumber; |
| 534 | pageopaque->hasho_bucket = -1; |
| 535 | pageopaque->hasho_flag = LH_META_PAGE; |
| 536 | pageopaque->hasho_page_id = HASHO_PAGE_ID; |
| 537 | |
| 538 | metap = HashPageGetMeta(page); |
| 539 | |
| 540 | metap->hashm_magic = HASH_MAGIC; |
| 541 | metap->hashm_version = HASH_VERSION; |
| 542 | metap->hashm_ntuples = 0; |
| 543 | metap->hashm_nmaps = 0; |
| 544 | metap->hashm_ffactor = ffactor; |
| 545 | metap->hashm_bsize = HashGetMaxBitmapSize(page); |
| 546 | /* find largest bitmap array size that will fit in page size */ |
| 547 | for (i = _hash_log2(metap->hashm_bsize); i > 0; --i) |
| 548 | { |
| 549 | if ((1 << i) <= metap->hashm_bsize) |
| 550 | break; |
| 551 | } |
| 552 | Assert(i > 0); |
| 553 | metap->hashm_bmsize = 1 << i; |
| 554 | metap->hashm_bmshift = i + BYTE_TO_BIT; |
| 555 | Assert((1 << BMPG_SHIFT(metap)) == (BMPG_MASK(metap) + 1)); |
| 556 | |
| 557 | /* |
| 558 | * Label the index with its primary hash support function's OID. This is |
| 559 | * pretty useless for normal operation (in fact, hashm_procid is not used |
| 560 | * anywhere), but it might be handy for forensic purposes so we keep it. |
| 561 | */ |
| 562 | metap->hashm_procid = procid; |
| 563 | |
| 564 | /* |
| 565 | * We initialize the index with N buckets, 0 .. N-1, occupying physical |
| 566 | * blocks 1 to N. The first freespace bitmap page is in block N+1. |
| 567 | */ |
| 568 | metap->hashm_maxbucket = num_buckets - 1; |
| 569 | |
| 570 | /* |
| 571 | * Set highmask as next immediate ((2 ^ x) - 1), which should be |
| 572 | * sufficient to cover num_buckets. |
| 573 | */ |
| 574 | metap->hashm_highmask = (1 << (_hash_log2(num_buckets + 1))) - 1; |
| 575 | metap->hashm_lowmask = (metap->hashm_highmask >> 1); |
| 576 | |
| 577 | MemSet(metap->hashm_spares, 0, sizeof(metap->hashm_spares)); |
| 578 | MemSet(metap->hashm_mapp, 0, sizeof(metap->hashm_mapp)); |
| 579 | |
| 580 | /* Set up mapping for one spare page after the initial splitpoints */ |
| 581 | metap->hashm_spares[spare_index] = 1; |
| 582 | metap->hashm_ovflpoint = spare_index; |
| 583 | metap->hashm_firstfree = 0; |
| 584 | |
| 585 | /* |
| 586 | * Set pd_lower just past the end of the metadata. This is essential, |
| 587 | * because without doing so, metadata will be lost if xlog.c compresses |
| 588 | * the page. |
| 589 | */ |
| 590 | ((PageHeader) page)->pd_lower = |
| 591 | ((char *) metap + sizeof(HashMetaPageData)) - (char *) page; |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * _hash_pageinit() -- Initialize a new hash index page. |
| 596 | */ |
| 597 | void |
| 598 | _hash_pageinit(Page page, Size size) |
| 599 | { |
| 600 | PageInit(page, size, sizeof(HashPageOpaqueData)); |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * Attempt to expand the hash table by creating one new bucket. |
| 605 | * |
| 606 | * This will silently do nothing if we don't get cleanup lock on old or |
| 607 | * new bucket. |
| 608 | * |
| 609 | * Complete the pending splits and remove the tuples from old bucket, |
| 610 | * if there are any left over from the previous split. |
| 611 | * |
| 612 | * The caller must hold a pin, but no lock, on the metapage buffer. |
| 613 | * The buffer is returned in the same state. |
| 614 | */ |
| 615 | void |
| 616 | _hash_expandtable(Relation rel, Buffer metabuf) |
| 617 | { |
| 618 | HashMetaPage metap; |
| 619 | Bucket old_bucket; |
| 620 | Bucket new_bucket; |
| 621 | uint32 spare_ndx; |
| 622 | BlockNumber start_oblkno; |
| 623 | BlockNumber start_nblkno; |
| 624 | Buffer buf_nblkno; |
| 625 | Buffer buf_oblkno; |
| 626 | Page opage; |
| 627 | Page npage; |
| 628 | HashPageOpaque oopaque; |
| 629 | HashPageOpaque nopaque; |
| 630 | uint32 maxbucket; |
| 631 | uint32 highmask; |
| 632 | uint32 lowmask; |
| 633 | bool metap_update_masks = false; |
| 634 | bool metap_update_splitpoint = false; |
| 635 | |
| 636 | restart_expand: |
| 637 | |
| 638 | /* |
| 639 | * Write-lock the meta page. It used to be necessary to acquire a |
| 640 | * heavyweight lock to begin a split, but that is no longer required. |
| 641 | */ |
| 642 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
| 643 | |
| 644 | _hash_checkpage(rel, metabuf, LH_META_PAGE); |
| 645 | metap = HashPageGetMeta(BufferGetPage(metabuf)); |
| 646 | |
| 647 | /* |
| 648 | * Check to see if split is still needed; someone else might have already |
| 649 | * done one while we waited for the lock. |
| 650 | * |
| 651 | * Make sure this stays in sync with _hash_doinsert() |
| 652 | */ |
| 653 | if (metap->hashm_ntuples <= |
| 654 | (double) metap->hashm_ffactor * (metap->hashm_maxbucket + 1)) |
| 655 | goto fail; |
| 656 | |
| 657 | /* |
| 658 | * Can't split anymore if maxbucket has reached its maximum possible |
| 659 | * value. |
| 660 | * |
| 661 | * Ideally we'd allow bucket numbers up to UINT_MAX-1 (no higher because |
| 662 | * the calculation maxbucket+1 mustn't overflow). Currently we restrict |
| 663 | * to half that because of overflow looping in _hash_log2() and |
| 664 | * insufficient space in hashm_spares[]. It's moot anyway because an |
| 665 | * index with 2^32 buckets would certainly overflow BlockNumber and hence |
| 666 | * _hash_alloc_buckets() would fail, but if we supported buckets smaller |
| 667 | * than a disk block then this would be an independent constraint. |
| 668 | * |
| 669 | * If you change this, see also the maximum initial number of buckets in |
| 670 | * _hash_init(). |
| 671 | */ |
| 672 | if (metap->hashm_maxbucket >= (uint32) 0x7FFFFFFE) |
| 673 | goto fail; |
| 674 | |
| 675 | /* |
| 676 | * Determine which bucket is to be split, and attempt to take cleanup lock |
| 677 | * on the old bucket. If we can't get the lock, give up. |
| 678 | * |
| 679 | * The cleanup lock protects us not only against other backends, but |
| 680 | * against our own backend as well. |
| 681 | * |
| 682 | * The cleanup lock is mainly to protect the split from concurrent |
| 683 | * inserts. See src/backend/access/hash/README, Lock Definitions for |
| 684 | * further details. Due to this locking restriction, if there is any |
| 685 | * pending scan, the split will give up which is not good, but harmless. |
| 686 | */ |
| 687 | new_bucket = metap->hashm_maxbucket + 1; |
| 688 | |
| 689 | old_bucket = (new_bucket & metap->hashm_lowmask); |
| 690 | |
| 691 | start_oblkno = BUCKET_TO_BLKNO(metap, old_bucket); |
| 692 | |
| 693 | buf_oblkno = _hash_getbuf_with_condlock_cleanup(rel, start_oblkno, LH_BUCKET_PAGE); |
| 694 | if (!buf_oblkno) |
| 695 | goto fail; |
| 696 | |
| 697 | opage = BufferGetPage(buf_oblkno); |
| 698 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
| 699 | |
| 700 | /* |
| 701 | * We want to finish the split from a bucket as there is no apparent |
| 702 | * benefit by not doing so and it will make the code complicated to finish |
| 703 | * the split that involves multiple buckets considering the case where new |
| 704 | * split also fails. We don't need to consider the new bucket for |
| 705 | * completing the split here as it is not possible that a re-split of new |
| 706 | * bucket starts when there is still a pending split from old bucket. |
| 707 | */ |
| 708 | if (H_BUCKET_BEING_SPLIT(oopaque)) |
| 709 | { |
| 710 | /* |
| 711 | * Copy bucket mapping info now; refer the comment in code below where |
| 712 | * we copy this information before calling _hash_splitbucket to see |
| 713 | * why this is okay. |
| 714 | */ |
| 715 | maxbucket = metap->hashm_maxbucket; |
| 716 | highmask = metap->hashm_highmask; |
| 717 | lowmask = metap->hashm_lowmask; |
| 718 | |
| 719 | /* |
| 720 | * Release the lock on metapage and old_bucket, before completing the |
| 721 | * split. |
| 722 | */ |
| 723 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 724 | LockBuffer(buf_oblkno, BUFFER_LOCK_UNLOCK); |
| 725 | |
| 726 | _hash_finish_split(rel, metabuf, buf_oblkno, old_bucket, maxbucket, |
| 727 | highmask, lowmask); |
| 728 | |
| 729 | /* release the pin on old buffer and retry for expand. */ |
| 730 | _hash_dropbuf(rel, buf_oblkno); |
| 731 | |
| 732 | goto restart_expand; |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * Clean the tuples remained from the previous split. This operation |
| 737 | * requires cleanup lock and we already have one on the old bucket, so |
| 738 | * let's do it. We also don't want to allow further splits from the bucket |
| 739 | * till the garbage of previous split is cleaned. This has two |
| 740 | * advantages; first, it helps in avoiding the bloat due to garbage and |
| 741 | * second is, during cleanup of bucket, we are always sure that the |
| 742 | * garbage tuples belong to most recently split bucket. On the contrary, |
| 743 | * if we allow cleanup of bucket after meta page is updated to indicate |
| 744 | * the new split and before the actual split, the cleanup operation won't |
| 745 | * be able to decide whether the tuple has been moved to the newly created |
| 746 | * bucket and ended up deleting such tuples. |
| 747 | */ |
| 748 | if (H_NEEDS_SPLIT_CLEANUP(oopaque)) |
| 749 | { |
| 750 | /* |
| 751 | * Copy bucket mapping info now; refer to the comment in code below |
| 752 | * where we copy this information before calling _hash_splitbucket to |
| 753 | * see why this is okay. |
| 754 | */ |
| 755 | maxbucket = metap->hashm_maxbucket; |
| 756 | highmask = metap->hashm_highmask; |
| 757 | lowmask = metap->hashm_lowmask; |
| 758 | |
| 759 | /* Release the metapage lock. */ |
| 760 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 761 | |
| 762 | hashbucketcleanup(rel, old_bucket, buf_oblkno, start_oblkno, NULL, |
| 763 | maxbucket, highmask, lowmask, NULL, NULL, true, |
| 764 | NULL, NULL); |
| 765 | |
| 766 | _hash_dropbuf(rel, buf_oblkno); |
| 767 | |
| 768 | goto restart_expand; |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * There shouldn't be any active scan on new bucket. |
| 773 | * |
| 774 | * Note: it is safe to compute the new bucket's blkno here, even though we |
| 775 | * may still need to update the BUCKET_TO_BLKNO mapping. This is because |
| 776 | * the current value of hashm_spares[hashm_ovflpoint] correctly shows |
| 777 | * where we are going to put a new splitpoint's worth of buckets. |
| 778 | */ |
| 779 | start_nblkno = BUCKET_TO_BLKNO(metap, new_bucket); |
| 780 | |
| 781 | /* |
| 782 | * If the split point is increasing we need to allocate a new batch of |
| 783 | * bucket pages. |
| 784 | */ |
| 785 | spare_ndx = _hash_spareindex(new_bucket + 1); |
| 786 | if (spare_ndx > metap->hashm_ovflpoint) |
| 787 | { |
| 788 | uint32 buckets_to_add; |
| 789 | |
| 790 | Assert(spare_ndx == metap->hashm_ovflpoint + 1); |
| 791 | |
| 792 | /* |
| 793 | * We treat allocation of buckets as a separate WAL-logged action. |
| 794 | * Even if we fail after this operation, won't leak bucket pages; |
| 795 | * rather, the next split will consume this space. In any case, even |
| 796 | * without failure we don't use all the space in one split operation. |
| 797 | */ |
| 798 | buckets_to_add = _hash_get_totalbuckets(spare_ndx) - new_bucket; |
| 799 | if (!_hash_alloc_buckets(rel, start_nblkno, buckets_to_add)) |
| 800 | { |
| 801 | /* can't split due to BlockNumber overflow */ |
| 802 | _hash_relbuf(rel, buf_oblkno); |
| 803 | goto fail; |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Physically allocate the new bucket's primary page. We want to do this |
| 809 | * before changing the metapage's mapping info, in case we can't get the |
| 810 | * disk space. Ideally, we don't need to check for cleanup lock on new |
| 811 | * bucket as no other backend could find this bucket unless meta page is |
| 812 | * updated. However, it is good to be consistent with old bucket locking. |
| 813 | */ |
| 814 | buf_nblkno = _hash_getnewbuf(rel, start_nblkno, MAIN_FORKNUM); |
| 815 | if (!IsBufferCleanupOK(buf_nblkno)) |
| 816 | { |
| 817 | _hash_relbuf(rel, buf_oblkno); |
| 818 | _hash_relbuf(rel, buf_nblkno); |
| 819 | goto fail; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * Since we are scribbling on the pages in the shared buffers, establish a |
| 824 | * critical section. Any failure in this next code leaves us with a big |
| 825 | * problem: the metapage is effectively corrupt but could get written back |
| 826 | * to disk. |
| 827 | */ |
| 828 | START_CRIT_SECTION(); |
| 829 | |
| 830 | /* |
| 831 | * Okay to proceed with split. Update the metapage bucket mapping info. |
| 832 | */ |
| 833 | metap->hashm_maxbucket = new_bucket; |
| 834 | |
| 835 | if (new_bucket > metap->hashm_highmask) |
| 836 | { |
| 837 | /* Starting a new doubling */ |
| 838 | metap->hashm_lowmask = metap->hashm_highmask; |
| 839 | metap->hashm_highmask = new_bucket | metap->hashm_lowmask; |
| 840 | metap_update_masks = true; |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * If the split point is increasing we need to adjust the hashm_spares[] |
| 845 | * array and hashm_ovflpoint so that future overflow pages will be created |
| 846 | * beyond this new batch of bucket pages. |
| 847 | */ |
| 848 | if (spare_ndx > metap->hashm_ovflpoint) |
| 849 | { |
| 850 | metap->hashm_spares[spare_ndx] = metap->hashm_spares[metap->hashm_ovflpoint]; |
| 851 | metap->hashm_ovflpoint = spare_ndx; |
| 852 | metap_update_splitpoint = true; |
| 853 | } |
| 854 | |
| 855 | MarkBufferDirty(metabuf); |
| 856 | |
| 857 | /* |
| 858 | * Copy bucket mapping info now; this saves re-accessing the meta page |
| 859 | * inside _hash_splitbucket's inner loop. Note that once we drop the |
| 860 | * split lock, other splits could begin, so these values might be out of |
| 861 | * date before _hash_splitbucket finishes. That's okay, since all it |
| 862 | * needs is to tell which of these two buckets to map hashkeys into. |
| 863 | */ |
| 864 | maxbucket = metap->hashm_maxbucket; |
| 865 | highmask = metap->hashm_highmask; |
| 866 | lowmask = metap->hashm_lowmask; |
| 867 | |
| 868 | opage = BufferGetPage(buf_oblkno); |
| 869 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
| 870 | |
| 871 | /* |
| 872 | * Mark the old bucket to indicate that split is in progress. (At |
| 873 | * operation end, we will clear the split-in-progress flag.) Also, for a |
| 874 | * primary bucket page, hasho_prevblkno stores the number of buckets that |
| 875 | * existed as of the last split, so we must update that value here. |
| 876 | */ |
| 877 | oopaque->hasho_flag |= LH_BUCKET_BEING_SPLIT; |
| 878 | oopaque->hasho_prevblkno = maxbucket; |
| 879 | |
| 880 | MarkBufferDirty(buf_oblkno); |
| 881 | |
| 882 | npage = BufferGetPage(buf_nblkno); |
| 883 | |
| 884 | /* |
| 885 | * initialize the new bucket's primary page and mark it to indicate that |
| 886 | * split is in progress. |
| 887 | */ |
| 888 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 889 | nopaque->hasho_prevblkno = maxbucket; |
| 890 | nopaque->hasho_nextblkno = InvalidBlockNumber; |
| 891 | nopaque->hasho_bucket = new_bucket; |
| 892 | nopaque->hasho_flag = LH_BUCKET_PAGE | LH_BUCKET_BEING_POPULATED; |
| 893 | nopaque->hasho_page_id = HASHO_PAGE_ID; |
| 894 | |
| 895 | MarkBufferDirty(buf_nblkno); |
| 896 | |
| 897 | /* XLOG stuff */ |
| 898 | if (RelationNeedsWAL(rel)) |
| 899 | { |
| 900 | xl_hash_split_allocate_page xlrec; |
| 901 | XLogRecPtr recptr; |
| 902 | |
| 903 | xlrec.new_bucket = maxbucket; |
| 904 | xlrec.old_bucket_flag = oopaque->hasho_flag; |
| 905 | xlrec.new_bucket_flag = nopaque->hasho_flag; |
| 906 | xlrec.flags = 0; |
| 907 | |
| 908 | XLogBeginInsert(); |
| 909 | |
| 910 | XLogRegisterBuffer(0, buf_oblkno, REGBUF_STANDARD); |
| 911 | XLogRegisterBuffer(1, buf_nblkno, REGBUF_WILL_INIT); |
| 912 | XLogRegisterBuffer(2, metabuf, REGBUF_STANDARD); |
| 913 | |
| 914 | if (metap_update_masks) |
| 915 | { |
| 916 | xlrec.flags |= XLH_SPLIT_META_UPDATE_MASKS; |
| 917 | XLogRegisterBufData(2, (char *) &metap->hashm_lowmask, sizeof(uint32)); |
| 918 | XLogRegisterBufData(2, (char *) &metap->hashm_highmask, sizeof(uint32)); |
| 919 | } |
| 920 | |
| 921 | if (metap_update_splitpoint) |
| 922 | { |
| 923 | xlrec.flags |= XLH_SPLIT_META_UPDATE_SPLITPOINT; |
| 924 | XLogRegisterBufData(2, (char *) &metap->hashm_ovflpoint, |
| 925 | sizeof(uint32)); |
| 926 | XLogRegisterBufData(2, |
| 927 | (char *) &metap->hashm_spares[metap->hashm_ovflpoint], |
| 928 | sizeof(uint32)); |
| 929 | } |
| 930 | |
| 931 | XLogRegisterData((char *) &xlrec, SizeOfHashSplitAllocPage); |
| 932 | |
| 933 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_ALLOCATE_PAGE); |
| 934 | |
| 935 | PageSetLSN(BufferGetPage(buf_oblkno), recptr); |
| 936 | PageSetLSN(BufferGetPage(buf_nblkno), recptr); |
| 937 | PageSetLSN(BufferGetPage(metabuf), recptr); |
| 938 | } |
| 939 | |
| 940 | END_CRIT_SECTION(); |
| 941 | |
| 942 | /* drop lock, but keep pin */ |
| 943 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 944 | |
| 945 | /* Relocate records to the new bucket */ |
| 946 | _hash_splitbucket(rel, metabuf, |
| 947 | old_bucket, new_bucket, |
| 948 | buf_oblkno, buf_nblkno, NULL, |
| 949 | maxbucket, highmask, lowmask); |
| 950 | |
| 951 | /* all done, now release the pins on primary buckets. */ |
| 952 | _hash_dropbuf(rel, buf_oblkno); |
| 953 | _hash_dropbuf(rel, buf_nblkno); |
| 954 | |
| 955 | return; |
| 956 | |
| 957 | /* Here if decide not to split or fail to acquire old bucket lock */ |
| 958 | fail: |
| 959 | |
| 960 | /* We didn't write the metapage, so just drop lock */ |
| 961 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
| 962 | } |
| 963 | |
| 964 | |
| 965 | /* |
| 966 | * _hash_alloc_buckets -- allocate a new splitpoint's worth of bucket pages |
| 967 | * |
| 968 | * This does not need to initialize the new bucket pages; we'll do that as |
| 969 | * each one is used by _hash_expandtable(). But we have to extend the logical |
| 970 | * EOF to the end of the splitpoint; this keeps smgr's idea of the EOF in |
| 971 | * sync with ours, so that we don't get complaints from smgr. |
| 972 | * |
| 973 | * We do this by writing a page of zeroes at the end of the splitpoint range. |
| 974 | * We expect that the filesystem will ensure that the intervening pages read |
| 975 | * as zeroes too. On many filesystems this "hole" will not be allocated |
| 976 | * immediately, which means that the index file may end up more fragmented |
| 977 | * than if we forced it all to be allocated now; but since we don't scan |
| 978 | * hash indexes sequentially anyway, that probably doesn't matter. |
| 979 | * |
| 980 | * XXX It's annoying that this code is executed with the metapage lock held. |
| 981 | * We need to interlock against _hash_addovflpage() adding a new overflow page |
| 982 | * concurrently, but it'd likely be better to use LockRelationForExtension |
| 983 | * for the purpose. OTOH, adding a splitpoint is a very infrequent operation, |
| 984 | * so it may not be worth worrying about. |
| 985 | * |
| 986 | * Returns true if successful, or false if allocation failed due to |
| 987 | * BlockNumber overflow. |
| 988 | */ |
| 989 | static bool |
| 990 | _hash_alloc_buckets(Relation rel, BlockNumber firstblock, uint32 nblocks) |
| 991 | { |
| 992 | BlockNumber lastblock; |
| 993 | PGAlignedBlock zerobuf; |
| 994 | Page page; |
| 995 | HashPageOpaque ovflopaque; |
| 996 | |
| 997 | lastblock = firstblock + nblocks - 1; |
| 998 | |
| 999 | /* |
| 1000 | * Check for overflow in block number calculation; if so, we cannot extend |
| 1001 | * the index anymore. |
| 1002 | */ |
| 1003 | if (lastblock < firstblock || lastblock == InvalidBlockNumber) |
| 1004 | return false; |
| 1005 | |
| 1006 | page = (Page) zerobuf.data; |
| 1007 | |
| 1008 | /* |
| 1009 | * Initialize the page. Just zeroing the page won't work; see |
| 1010 | * _hash_freeovflpage for similar usage. We take care to make the special |
| 1011 | * space valid for the benefit of tools such as pageinspect. |
| 1012 | */ |
| 1013 | _hash_pageinit(page, BLCKSZ); |
| 1014 | |
| 1015 | ovflopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
| 1016 | |
| 1017 | ovflopaque->hasho_prevblkno = InvalidBlockNumber; |
| 1018 | ovflopaque->hasho_nextblkno = InvalidBlockNumber; |
| 1019 | ovflopaque->hasho_bucket = -1; |
| 1020 | ovflopaque->hasho_flag = LH_UNUSED_PAGE; |
| 1021 | ovflopaque->hasho_page_id = HASHO_PAGE_ID; |
| 1022 | |
| 1023 | if (RelationNeedsWAL(rel)) |
| 1024 | log_newpage(&rel->rd_node, |
| 1025 | MAIN_FORKNUM, |
| 1026 | lastblock, |
| 1027 | zerobuf.data, |
| 1028 | true); |
| 1029 | |
| 1030 | RelationOpenSmgr(rel); |
| 1031 | PageSetChecksumInplace(page, lastblock); |
| 1032 | smgrextend(rel->rd_smgr, MAIN_FORKNUM, lastblock, zerobuf.data, false); |
| 1033 | |
| 1034 | return true; |
| 1035 | } |
| 1036 | |
| 1037 | |
| 1038 | /* |
| 1039 | * _hash_splitbucket -- split 'obucket' into 'obucket' and 'nbucket' |
| 1040 | * |
| 1041 | * This routine is used to partition the tuples between old and new bucket and |
| 1042 | * is used to finish the incomplete split operations. To finish the previously |
| 1043 | * interrupted split operation, the caller needs to fill htab. If htab is set, |
| 1044 | * then we skip the movement of tuples that exists in htab, otherwise NULL |
| 1045 | * value of htab indicates movement of all the tuples that belong to the new |
| 1046 | * bucket. |
| 1047 | * |
| 1048 | * We are splitting a bucket that consists of a base bucket page and zero |
| 1049 | * or more overflow (bucket chain) pages. We must relocate tuples that |
| 1050 | * belong in the new bucket. |
| 1051 | * |
| 1052 | * The caller must hold cleanup locks on both buckets to ensure that |
| 1053 | * no one else is trying to access them (see README). |
| 1054 | * |
| 1055 | * The caller must hold a pin, but no lock, on the metapage buffer. |
| 1056 | * The buffer is returned in the same state. (The metapage is only |
| 1057 | * touched if it becomes necessary to add or remove overflow pages.) |
| 1058 | * |
| 1059 | * Split needs to retain pin on primary bucket pages of both old and new |
| 1060 | * buckets till end of operation. This is to prevent vacuum from starting |
| 1061 | * while a split is in progress. |
| 1062 | * |
| 1063 | * In addition, the caller must have created the new bucket's base page, |
| 1064 | * which is passed in buffer nbuf, pinned and write-locked. The lock will be |
| 1065 | * released here and pin must be released by the caller. (The API is set up |
| 1066 | * this way because we must do _hash_getnewbuf() before releasing the metapage |
| 1067 | * write lock. So instead of passing the new bucket's start block number, we |
| 1068 | * pass an actual buffer.) |
| 1069 | */ |
| 1070 | static void |
| 1071 | _hash_splitbucket(Relation rel, |
| 1072 | Buffer metabuf, |
| 1073 | Bucket obucket, |
| 1074 | Bucket nbucket, |
| 1075 | Buffer obuf, |
| 1076 | Buffer nbuf, |
| 1077 | HTAB *htab, |
| 1078 | uint32 maxbucket, |
| 1079 | uint32 highmask, |
| 1080 | uint32 lowmask) |
| 1081 | { |
| 1082 | Buffer bucket_obuf; |
| 1083 | Buffer bucket_nbuf; |
| 1084 | Page opage; |
| 1085 | Page npage; |
| 1086 | HashPageOpaque oopaque; |
| 1087 | HashPageOpaque nopaque; |
| 1088 | OffsetNumber itup_offsets[MaxIndexTuplesPerPage]; |
| 1089 | IndexTuple itups[MaxIndexTuplesPerPage]; |
| 1090 | Size all_tups_size = 0; |
| 1091 | int i; |
| 1092 | uint16 nitups = 0; |
| 1093 | |
| 1094 | bucket_obuf = obuf; |
| 1095 | opage = BufferGetPage(obuf); |
| 1096 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
| 1097 | |
| 1098 | bucket_nbuf = nbuf; |
| 1099 | npage = BufferGetPage(nbuf); |
| 1100 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 1101 | |
| 1102 | /* Copy the predicate locks from old bucket to new bucket. */ |
| 1103 | PredicateLockPageSplit(rel, |
| 1104 | BufferGetBlockNumber(bucket_obuf), |
| 1105 | BufferGetBlockNumber(bucket_nbuf)); |
| 1106 | |
| 1107 | /* |
| 1108 | * Partition the tuples in the old bucket between the old bucket and the |
| 1109 | * new bucket, advancing along the old bucket's overflow bucket chain and |
| 1110 | * adding overflow pages to the new bucket as needed. Outer loop iterates |
| 1111 | * once per page in old bucket. |
| 1112 | */ |
| 1113 | for (;;) |
| 1114 | { |
| 1115 | BlockNumber oblkno; |
| 1116 | OffsetNumber ooffnum; |
| 1117 | OffsetNumber omaxoffnum; |
| 1118 | |
| 1119 | /* Scan each tuple in old page */ |
| 1120 | omaxoffnum = PageGetMaxOffsetNumber(opage); |
| 1121 | for (ooffnum = FirstOffsetNumber; |
| 1122 | ooffnum <= omaxoffnum; |
| 1123 | ooffnum = OffsetNumberNext(ooffnum)) |
| 1124 | { |
| 1125 | IndexTuple itup; |
| 1126 | Size itemsz; |
| 1127 | Bucket bucket; |
| 1128 | bool found = false; |
| 1129 | |
| 1130 | /* skip dead tuples */ |
| 1131 | if (ItemIdIsDead(PageGetItemId(opage, ooffnum))) |
| 1132 | continue; |
| 1133 | |
| 1134 | /* |
| 1135 | * Before inserting a tuple, probe the hash table containing TIDs |
| 1136 | * of tuples belonging to new bucket, if we find a match, then |
| 1137 | * skip that tuple, else fetch the item's hash key (conveniently |
| 1138 | * stored in the item) and determine which bucket it now belongs |
| 1139 | * in. |
| 1140 | */ |
| 1141 | itup = (IndexTuple) PageGetItem(opage, |
| 1142 | PageGetItemId(opage, ooffnum)); |
| 1143 | |
| 1144 | if (htab) |
| 1145 | (void) hash_search(htab, &itup->t_tid, HASH_FIND, &found); |
| 1146 | |
| 1147 | if (found) |
| 1148 | continue; |
| 1149 | |
| 1150 | bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup), |
| 1151 | maxbucket, highmask, lowmask); |
| 1152 | |
| 1153 | if (bucket == nbucket) |
| 1154 | { |
| 1155 | IndexTuple new_itup; |
| 1156 | |
| 1157 | /* |
| 1158 | * make a copy of index tuple as we have to scribble on it. |
| 1159 | */ |
| 1160 | new_itup = CopyIndexTuple(itup); |
| 1161 | |
| 1162 | /* |
| 1163 | * mark the index tuple as moved by split, such tuples are |
| 1164 | * skipped by scan if there is split in progress for a bucket. |
| 1165 | */ |
| 1166 | new_itup->t_info |= INDEX_MOVED_BY_SPLIT_MASK; |
| 1167 | |
| 1168 | /* |
| 1169 | * insert the tuple into the new bucket. if it doesn't fit on |
| 1170 | * the current page in the new bucket, we must allocate a new |
| 1171 | * overflow page and place the tuple on that page instead. |
| 1172 | */ |
| 1173 | itemsz = IndexTupleSize(new_itup); |
| 1174 | itemsz = MAXALIGN(itemsz); |
| 1175 | |
| 1176 | if (PageGetFreeSpaceForMultipleTuples(npage, nitups + 1) < (all_tups_size + itemsz)) |
| 1177 | { |
| 1178 | /* |
| 1179 | * Change the shared buffer state in critical section, |
| 1180 | * otherwise any error could make it unrecoverable. |
| 1181 | */ |
| 1182 | START_CRIT_SECTION(); |
| 1183 | |
| 1184 | _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); |
| 1185 | MarkBufferDirty(nbuf); |
| 1186 | /* log the split operation before releasing the lock */ |
| 1187 | log_split_page(rel, nbuf); |
| 1188 | |
| 1189 | END_CRIT_SECTION(); |
| 1190 | |
| 1191 | /* drop lock, but keep pin */ |
| 1192 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
| 1193 | |
| 1194 | /* be tidy */ |
| 1195 | for (i = 0; i < nitups; i++) |
| 1196 | pfree(itups[i]); |
| 1197 | nitups = 0; |
| 1198 | all_tups_size = 0; |
| 1199 | |
| 1200 | /* chain to a new overflow page */ |
| 1201 | nbuf = _hash_addovflpage(rel, metabuf, nbuf, (nbuf == bucket_nbuf) ? true : false); |
| 1202 | npage = BufferGetPage(nbuf); |
| 1203 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 1204 | } |
| 1205 | |
| 1206 | itups[nitups++] = new_itup; |
| 1207 | all_tups_size += itemsz; |
| 1208 | } |
| 1209 | else |
| 1210 | { |
| 1211 | /* |
| 1212 | * the tuple stays on this page, so nothing to do. |
| 1213 | */ |
| 1214 | Assert(bucket == obucket); |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | oblkno = oopaque->hasho_nextblkno; |
| 1219 | |
| 1220 | /* retain the pin on the old primary bucket */ |
| 1221 | if (obuf == bucket_obuf) |
| 1222 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
| 1223 | else |
| 1224 | _hash_relbuf(rel, obuf); |
| 1225 | |
| 1226 | /* Exit loop if no more overflow pages in old bucket */ |
| 1227 | if (!BlockNumberIsValid(oblkno)) |
| 1228 | { |
| 1229 | /* |
| 1230 | * Change the shared buffer state in critical section, otherwise |
| 1231 | * any error could make it unrecoverable. |
| 1232 | */ |
| 1233 | START_CRIT_SECTION(); |
| 1234 | |
| 1235 | _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); |
| 1236 | MarkBufferDirty(nbuf); |
| 1237 | /* log the split operation before releasing the lock */ |
| 1238 | log_split_page(rel, nbuf); |
| 1239 | |
| 1240 | END_CRIT_SECTION(); |
| 1241 | |
| 1242 | if (nbuf == bucket_nbuf) |
| 1243 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
| 1244 | else |
| 1245 | _hash_relbuf(rel, nbuf); |
| 1246 | |
| 1247 | /* be tidy */ |
| 1248 | for (i = 0; i < nitups; i++) |
| 1249 | pfree(itups[i]); |
| 1250 | break; |
| 1251 | } |
| 1252 | |
| 1253 | /* Else, advance to next old page */ |
| 1254 | obuf = _hash_getbuf(rel, oblkno, HASH_READ, LH_OVERFLOW_PAGE); |
| 1255 | opage = BufferGetPage(obuf); |
| 1256 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
| 1257 | } |
| 1258 | |
| 1259 | /* |
| 1260 | * We're at the end of the old bucket chain, so we're done partitioning |
| 1261 | * the tuples. Mark the old and new buckets to indicate split is |
| 1262 | * finished. |
| 1263 | * |
| 1264 | * To avoid deadlocks due to locking order of buckets, first lock the old |
| 1265 | * bucket and then the new bucket. |
| 1266 | */ |
| 1267 | LockBuffer(bucket_obuf, BUFFER_LOCK_EXCLUSIVE); |
| 1268 | opage = BufferGetPage(bucket_obuf); |
| 1269 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
| 1270 | |
| 1271 | LockBuffer(bucket_nbuf, BUFFER_LOCK_EXCLUSIVE); |
| 1272 | npage = BufferGetPage(bucket_nbuf); |
| 1273 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 1274 | |
| 1275 | START_CRIT_SECTION(); |
| 1276 | |
| 1277 | oopaque->hasho_flag &= ~LH_BUCKET_BEING_SPLIT; |
| 1278 | nopaque->hasho_flag &= ~LH_BUCKET_BEING_POPULATED; |
| 1279 | |
| 1280 | /* |
| 1281 | * After the split is finished, mark the old bucket to indicate that it |
| 1282 | * contains deletable tuples. We will clear split-cleanup flag after |
| 1283 | * deleting such tuples either at the end of split or at the next split |
| 1284 | * from old bucket or at the time of vacuum. |
| 1285 | */ |
| 1286 | oopaque->hasho_flag |= LH_BUCKET_NEEDS_SPLIT_CLEANUP; |
| 1287 | |
| 1288 | /* |
| 1289 | * now write the buffers, here we don't release the locks as caller is |
| 1290 | * responsible to release locks. |
| 1291 | */ |
| 1292 | MarkBufferDirty(bucket_obuf); |
| 1293 | MarkBufferDirty(bucket_nbuf); |
| 1294 | |
| 1295 | if (RelationNeedsWAL(rel)) |
| 1296 | { |
| 1297 | XLogRecPtr recptr; |
| 1298 | xl_hash_split_complete xlrec; |
| 1299 | |
| 1300 | xlrec.old_bucket_flag = oopaque->hasho_flag; |
| 1301 | xlrec.new_bucket_flag = nopaque->hasho_flag; |
| 1302 | |
| 1303 | XLogBeginInsert(); |
| 1304 | |
| 1305 | XLogRegisterData((char *) &xlrec, SizeOfHashSplitComplete); |
| 1306 | |
| 1307 | XLogRegisterBuffer(0, bucket_obuf, REGBUF_STANDARD); |
| 1308 | XLogRegisterBuffer(1, bucket_nbuf, REGBUF_STANDARD); |
| 1309 | |
| 1310 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_COMPLETE); |
| 1311 | |
| 1312 | PageSetLSN(BufferGetPage(bucket_obuf), recptr); |
| 1313 | PageSetLSN(BufferGetPage(bucket_nbuf), recptr); |
| 1314 | } |
| 1315 | |
| 1316 | END_CRIT_SECTION(); |
| 1317 | |
| 1318 | /* |
| 1319 | * If possible, clean up the old bucket. We might not be able to do this |
| 1320 | * if someone else has a pin on it, but if not then we can go ahead. This |
| 1321 | * isn't absolutely necessary, but it reduces bloat; if we don't do it |
| 1322 | * now, VACUUM will do it eventually, but maybe not until new overflow |
| 1323 | * pages have been allocated. Note that there's no need to clean up the |
| 1324 | * new bucket. |
| 1325 | */ |
| 1326 | if (IsBufferCleanupOK(bucket_obuf)) |
| 1327 | { |
| 1328 | LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); |
| 1329 | hashbucketcleanup(rel, obucket, bucket_obuf, |
| 1330 | BufferGetBlockNumber(bucket_obuf), NULL, |
| 1331 | maxbucket, highmask, lowmask, NULL, NULL, true, |
| 1332 | NULL, NULL); |
| 1333 | } |
| 1334 | else |
| 1335 | { |
| 1336 | LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); |
| 1337 | LockBuffer(bucket_obuf, BUFFER_LOCK_UNLOCK); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | /* |
| 1342 | * _hash_finish_split() -- Finish the previously interrupted split operation |
| 1343 | * |
| 1344 | * To complete the split operation, we form the hash table of TIDs in new |
| 1345 | * bucket which is then used by split operation to skip tuples that are |
| 1346 | * already moved before the split operation was previously interrupted. |
| 1347 | * |
| 1348 | * The caller must hold a pin, but no lock, on the metapage and old bucket's |
| 1349 | * primary page buffer. The buffers are returned in the same state. (The |
| 1350 | * metapage is only touched if it becomes necessary to add or remove overflow |
| 1351 | * pages.) |
| 1352 | */ |
| 1353 | void |
| 1354 | _hash_finish_split(Relation rel, Buffer metabuf, Buffer obuf, Bucket obucket, |
| 1355 | uint32 maxbucket, uint32 highmask, uint32 lowmask) |
| 1356 | { |
| 1357 | HASHCTL hash_ctl; |
| 1358 | HTAB *tidhtab; |
| 1359 | Buffer bucket_nbuf = InvalidBuffer; |
| 1360 | Buffer nbuf; |
| 1361 | Page npage; |
| 1362 | BlockNumber nblkno; |
| 1363 | BlockNumber bucket_nblkno; |
| 1364 | HashPageOpaque npageopaque; |
| 1365 | Bucket nbucket; |
| 1366 | bool found; |
| 1367 | |
| 1368 | /* Initialize hash tables used to track TIDs */ |
| 1369 | memset(&hash_ctl, 0, sizeof(hash_ctl)); |
| 1370 | hash_ctl.keysize = sizeof(ItemPointerData); |
| 1371 | hash_ctl.entrysize = sizeof(ItemPointerData); |
| 1372 | hash_ctl.hcxt = CurrentMemoryContext; |
| 1373 | |
| 1374 | tidhtab = |
| 1375 | hash_create("bucket ctids" , |
| 1376 | 256, /* arbitrary initial size */ |
| 1377 | &hash_ctl, |
| 1378 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
| 1379 | |
| 1380 | bucket_nblkno = nblkno = _hash_get_newblock_from_oldbucket(rel, obucket); |
| 1381 | |
| 1382 | /* |
| 1383 | * Scan the new bucket and build hash table of TIDs |
| 1384 | */ |
| 1385 | for (;;) |
| 1386 | { |
| 1387 | OffsetNumber noffnum; |
| 1388 | OffsetNumber nmaxoffnum; |
| 1389 | |
| 1390 | nbuf = _hash_getbuf(rel, nblkno, HASH_READ, |
| 1391 | LH_BUCKET_PAGE | LH_OVERFLOW_PAGE); |
| 1392 | |
| 1393 | /* remember the primary bucket buffer to acquire cleanup lock on it. */ |
| 1394 | if (nblkno == bucket_nblkno) |
| 1395 | bucket_nbuf = nbuf; |
| 1396 | |
| 1397 | npage = BufferGetPage(nbuf); |
| 1398 | npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 1399 | |
| 1400 | /* Scan each tuple in new page */ |
| 1401 | nmaxoffnum = PageGetMaxOffsetNumber(npage); |
| 1402 | for (noffnum = FirstOffsetNumber; |
| 1403 | noffnum <= nmaxoffnum; |
| 1404 | noffnum = OffsetNumberNext(noffnum)) |
| 1405 | { |
| 1406 | IndexTuple itup; |
| 1407 | |
| 1408 | /* Fetch the item's TID and insert it in hash table. */ |
| 1409 | itup = (IndexTuple) PageGetItem(npage, |
| 1410 | PageGetItemId(npage, noffnum)); |
| 1411 | |
| 1412 | (void) hash_search(tidhtab, &itup->t_tid, HASH_ENTER, &found); |
| 1413 | |
| 1414 | Assert(!found); |
| 1415 | } |
| 1416 | |
| 1417 | nblkno = npageopaque->hasho_nextblkno; |
| 1418 | |
| 1419 | /* |
| 1420 | * release our write lock without modifying buffer and ensure to |
| 1421 | * retain the pin on primary bucket. |
| 1422 | */ |
| 1423 | if (nbuf == bucket_nbuf) |
| 1424 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
| 1425 | else |
| 1426 | _hash_relbuf(rel, nbuf); |
| 1427 | |
| 1428 | /* Exit loop if no more overflow pages in new bucket */ |
| 1429 | if (!BlockNumberIsValid(nblkno)) |
| 1430 | break; |
| 1431 | } |
| 1432 | |
| 1433 | /* |
| 1434 | * Conditionally get the cleanup lock on old and new buckets to perform |
| 1435 | * the split operation. If we don't get the cleanup locks, silently give |
| 1436 | * up and next insertion on old bucket will try again to complete the |
| 1437 | * split. |
| 1438 | */ |
| 1439 | if (!ConditionalLockBufferForCleanup(obuf)) |
| 1440 | { |
| 1441 | hash_destroy(tidhtab); |
| 1442 | return; |
| 1443 | } |
| 1444 | if (!ConditionalLockBufferForCleanup(bucket_nbuf)) |
| 1445 | { |
| 1446 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
| 1447 | hash_destroy(tidhtab); |
| 1448 | return; |
| 1449 | } |
| 1450 | |
| 1451 | npage = BufferGetPage(bucket_nbuf); |
| 1452 | npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
| 1453 | nbucket = npageopaque->hasho_bucket; |
| 1454 | |
| 1455 | _hash_splitbucket(rel, metabuf, obucket, |
| 1456 | nbucket, obuf, bucket_nbuf, tidhtab, |
| 1457 | maxbucket, highmask, lowmask); |
| 1458 | |
| 1459 | _hash_dropbuf(rel, bucket_nbuf); |
| 1460 | hash_destroy(tidhtab); |
| 1461 | } |
| 1462 | |
| 1463 | /* |
| 1464 | * log_split_page() -- Log the split operation |
| 1465 | * |
| 1466 | * We log the split operation when the new page in new bucket gets full, |
| 1467 | * so we log the entire page. |
| 1468 | * |
| 1469 | * 'buf' must be locked by the caller which is also responsible for unlocking |
| 1470 | * it. |
| 1471 | */ |
| 1472 | static void |
| 1473 | log_split_page(Relation rel, Buffer buf) |
| 1474 | { |
| 1475 | if (RelationNeedsWAL(rel)) |
| 1476 | { |
| 1477 | XLogRecPtr recptr; |
| 1478 | |
| 1479 | XLogBeginInsert(); |
| 1480 | |
| 1481 | XLogRegisterBuffer(0, buf, REGBUF_FORCE_IMAGE | REGBUF_STANDARD); |
| 1482 | |
| 1483 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_PAGE); |
| 1484 | |
| 1485 | PageSetLSN(BufferGetPage(buf), recptr); |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | /* |
| 1490 | * _hash_getcachedmetap() -- Returns cached metapage data. |
| 1491 | * |
| 1492 | * If metabuf is not InvalidBuffer, caller must hold a pin, but no lock, on |
| 1493 | * the metapage. If not set, we'll set it before returning if we have to |
| 1494 | * refresh the cache, and return with a pin but no lock on it; caller is |
| 1495 | * responsible for releasing the pin. |
| 1496 | * |
| 1497 | * We refresh the cache if it's not initialized yet or force_refresh is true. |
| 1498 | */ |
| 1499 | HashMetaPage |
| 1500 | _hash_getcachedmetap(Relation rel, Buffer *metabuf, bool force_refresh) |
| 1501 | { |
| 1502 | Page page; |
| 1503 | |
| 1504 | Assert(metabuf); |
| 1505 | if (force_refresh || rel->rd_amcache == NULL) |
| 1506 | { |
| 1507 | char *cache = NULL; |
| 1508 | |
| 1509 | /* |
| 1510 | * It's important that we don't set rd_amcache to an invalid value. |
| 1511 | * Either MemoryContextAlloc or _hash_getbuf could fail, so don't |
| 1512 | * install a pointer to the newly-allocated storage in the actual |
| 1513 | * relcache entry until both have succeeeded. |
| 1514 | */ |
| 1515 | if (rel->rd_amcache == NULL) |
| 1516 | cache = MemoryContextAlloc(rel->rd_indexcxt, |
| 1517 | sizeof(HashMetaPageData)); |
| 1518 | |
| 1519 | /* Read the metapage. */ |
| 1520 | if (BufferIsValid(*metabuf)) |
| 1521 | LockBuffer(*metabuf, BUFFER_LOCK_SHARE); |
| 1522 | else |
| 1523 | *metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, |
| 1524 | LH_META_PAGE); |
| 1525 | page = BufferGetPage(*metabuf); |
| 1526 | |
| 1527 | /* Populate the cache. */ |
| 1528 | if (rel->rd_amcache == NULL) |
| 1529 | rel->rd_amcache = cache; |
| 1530 | memcpy(rel->rd_amcache, HashPageGetMeta(page), |
| 1531 | sizeof(HashMetaPageData)); |
| 1532 | |
| 1533 | /* Release metapage lock, but keep the pin. */ |
| 1534 | LockBuffer(*metabuf, BUFFER_LOCK_UNLOCK); |
| 1535 | } |
| 1536 | |
| 1537 | return (HashMetaPage) rel->rd_amcache; |
| 1538 | } |
| 1539 | |
| 1540 | /* |
| 1541 | * _hash_getbucketbuf_from_hashkey() -- Get the bucket's buffer for the given |
| 1542 | * hashkey. |
| 1543 | * |
| 1544 | * Bucket pages do not move or get removed once they are allocated. This give |
| 1545 | * us an opportunity to use the previously saved metapage contents to reach |
| 1546 | * the target bucket buffer, instead of reading from the metapage every time. |
| 1547 | * This saves one buffer access every time we want to reach the target bucket |
| 1548 | * buffer, which is very helpful savings in bufmgr traffic and contention. |
| 1549 | * |
| 1550 | * The access type parameter (HASH_READ or HASH_WRITE) indicates whether the |
| 1551 | * bucket buffer has to be locked for reading or writing. |
| 1552 | * |
| 1553 | * The out parameter cachedmetap is set with metapage contents used for |
| 1554 | * hashkey to bucket buffer mapping. Some callers need this info to reach the |
| 1555 | * old bucket in case of bucket split, see _hash_doinsert(). |
| 1556 | */ |
| 1557 | Buffer |
| 1558 | _hash_getbucketbuf_from_hashkey(Relation rel, uint32 hashkey, int access, |
| 1559 | HashMetaPage *cachedmetap) |
| 1560 | { |
| 1561 | HashMetaPage metap; |
| 1562 | Buffer buf; |
| 1563 | Buffer metabuf = InvalidBuffer; |
| 1564 | Page page; |
| 1565 | Bucket bucket; |
| 1566 | BlockNumber blkno; |
| 1567 | HashPageOpaque opaque; |
| 1568 | |
| 1569 | /* We read from target bucket buffer, hence locking is must. */ |
| 1570 | Assert(access == HASH_READ || access == HASH_WRITE); |
| 1571 | |
| 1572 | metap = _hash_getcachedmetap(rel, &metabuf, false); |
| 1573 | Assert(metap != NULL); |
| 1574 | |
| 1575 | /* |
| 1576 | * Loop until we get a lock on the correct target bucket. |
| 1577 | */ |
| 1578 | for (;;) |
| 1579 | { |
| 1580 | /* |
| 1581 | * Compute the target bucket number, and convert to block number. |
| 1582 | */ |
| 1583 | bucket = _hash_hashkey2bucket(hashkey, |
| 1584 | metap->hashm_maxbucket, |
| 1585 | metap->hashm_highmask, |
| 1586 | metap->hashm_lowmask); |
| 1587 | |
| 1588 | blkno = BUCKET_TO_BLKNO(metap, bucket); |
| 1589 | |
| 1590 | /* Fetch the primary bucket page for the bucket */ |
| 1591 | buf = _hash_getbuf(rel, blkno, access, LH_BUCKET_PAGE); |
| 1592 | page = BufferGetPage(buf); |
| 1593 | opaque = (HashPageOpaque) PageGetSpecialPointer(page); |
| 1594 | Assert(opaque->hasho_bucket == bucket); |
| 1595 | Assert(opaque->hasho_prevblkno != InvalidBlockNumber); |
| 1596 | |
| 1597 | /* |
| 1598 | * If this bucket hasn't been split, we're done. |
| 1599 | */ |
| 1600 | if (opaque->hasho_prevblkno <= metap->hashm_maxbucket) |
| 1601 | break; |
| 1602 | |
| 1603 | /* Drop lock on this buffer, update cached metapage, and retry. */ |
| 1604 | _hash_relbuf(rel, buf); |
| 1605 | metap = _hash_getcachedmetap(rel, &metabuf, true); |
| 1606 | Assert(metap != NULL); |
| 1607 | } |
| 1608 | |
| 1609 | if (BufferIsValid(metabuf)) |
| 1610 | _hash_dropbuf(rel, metabuf); |
| 1611 | |
| 1612 | if (cachedmetap) |
| 1613 | *cachedmetap = metap; |
| 1614 | |
| 1615 | return buf; |
| 1616 | } |
| 1617 | |