1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * hashpage.c |
4 | * Hash table page management code for the Postgres hash access method |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/access/hash/hashpage.c |
12 | * |
13 | * NOTES |
14 | * Postgres hash pages look like ordinary relation pages. The opaque |
15 | * data at high addresses includes information about the page including |
16 | * whether a page is an overflow page or a true bucket, the bucket |
17 | * number, and the block numbers of the preceding and following pages |
18 | * in the same bucket. |
19 | * |
20 | * The first page in a hash relation, page zero, is special -- it stores |
21 | * information describing the hash table; it is referred to as the |
22 | * "meta page." Pages one and higher store the actual data. |
23 | * |
24 | * There are also bitmap pages, which are not manipulated here; |
25 | * see hashovfl.c. |
26 | * |
27 | *------------------------------------------------------------------------- |
28 | */ |
29 | #include "postgres.h" |
30 | |
31 | #include "access/hash.h" |
32 | #include "access/hash_xlog.h" |
33 | #include "miscadmin.h" |
34 | #include "storage/lmgr.h" |
35 | #include "storage/smgr.h" |
36 | #include "storage/predicate.h" |
37 | |
38 | |
39 | static bool _hash_alloc_buckets(Relation rel, BlockNumber firstblock, |
40 | uint32 nblocks); |
41 | static void _hash_splitbucket(Relation rel, Buffer metabuf, |
42 | Bucket obucket, Bucket nbucket, |
43 | Buffer obuf, |
44 | Buffer nbuf, |
45 | HTAB *htab, |
46 | uint32 maxbucket, |
47 | uint32 highmask, uint32 lowmask); |
48 | static void log_split_page(Relation rel, Buffer buf); |
49 | |
50 | |
51 | /* |
52 | * _hash_getbuf() -- Get a buffer by block number for read or write. |
53 | * |
54 | * 'access' must be HASH_READ, HASH_WRITE, or HASH_NOLOCK. |
55 | * 'flags' is a bitwise OR of the allowed page types. |
56 | * |
57 | * This must be used only to fetch pages that are expected to be valid |
58 | * already. _hash_checkpage() is applied using the given flags. |
59 | * |
60 | * When this routine returns, the appropriate lock is set on the |
61 | * requested buffer and its reference count has been incremented |
62 | * (ie, the buffer is "locked and pinned"). |
63 | * |
64 | * P_NEW is disallowed because this routine can only be used |
65 | * to access pages that are known to be before the filesystem EOF. |
66 | * Extending the index should be done with _hash_getnewbuf. |
67 | */ |
68 | Buffer |
69 | _hash_getbuf(Relation rel, BlockNumber blkno, int access, int flags) |
70 | { |
71 | Buffer buf; |
72 | |
73 | if (blkno == P_NEW) |
74 | elog(ERROR, "hash AM does not use P_NEW" ); |
75 | |
76 | buf = ReadBuffer(rel, blkno); |
77 | |
78 | if (access != HASH_NOLOCK) |
79 | LockBuffer(buf, access); |
80 | |
81 | /* ref count and lock type are correct */ |
82 | |
83 | _hash_checkpage(rel, buf, flags); |
84 | |
85 | return buf; |
86 | } |
87 | |
88 | /* |
89 | * _hash_getbuf_with_condlock_cleanup() -- Try to get a buffer for cleanup. |
90 | * |
91 | * We read the page and try to acquire a cleanup lock. If we get it, |
92 | * we return the buffer; otherwise, we return InvalidBuffer. |
93 | */ |
94 | Buffer |
95 | _hash_getbuf_with_condlock_cleanup(Relation rel, BlockNumber blkno, int flags) |
96 | { |
97 | Buffer buf; |
98 | |
99 | if (blkno == P_NEW) |
100 | elog(ERROR, "hash AM does not use P_NEW" ); |
101 | |
102 | buf = ReadBuffer(rel, blkno); |
103 | |
104 | if (!ConditionalLockBufferForCleanup(buf)) |
105 | { |
106 | ReleaseBuffer(buf); |
107 | return InvalidBuffer; |
108 | } |
109 | |
110 | /* ref count and lock type are correct */ |
111 | |
112 | _hash_checkpage(rel, buf, flags); |
113 | |
114 | return buf; |
115 | } |
116 | |
117 | /* |
118 | * _hash_getinitbuf() -- Get and initialize a buffer by block number. |
119 | * |
120 | * This must be used only to fetch pages that are known to be before |
121 | * the index's filesystem EOF, but are to be filled from scratch. |
122 | * _hash_pageinit() is applied automatically. Otherwise it has |
123 | * effects similar to _hash_getbuf() with access = HASH_WRITE. |
124 | * |
125 | * When this routine returns, a write lock is set on the |
126 | * requested buffer and its reference count has been incremented |
127 | * (ie, the buffer is "locked and pinned"). |
128 | * |
129 | * P_NEW is disallowed because this routine can only be used |
130 | * to access pages that are known to be before the filesystem EOF. |
131 | * Extending the index should be done with _hash_getnewbuf. |
132 | */ |
133 | Buffer |
134 | _hash_getinitbuf(Relation rel, BlockNumber blkno) |
135 | { |
136 | Buffer buf; |
137 | |
138 | if (blkno == P_NEW) |
139 | elog(ERROR, "hash AM does not use P_NEW" ); |
140 | |
141 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_ZERO_AND_LOCK, |
142 | NULL); |
143 | |
144 | /* ref count and lock type are correct */ |
145 | |
146 | /* initialize the page */ |
147 | _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); |
148 | |
149 | return buf; |
150 | } |
151 | |
152 | /* |
153 | * _hash_initbuf() -- Get and initialize a buffer by bucket number. |
154 | */ |
155 | void |
156 | _hash_initbuf(Buffer buf, uint32 max_bucket, uint32 num_bucket, uint32 flag, |
157 | bool initpage) |
158 | { |
159 | HashPageOpaque pageopaque; |
160 | Page page; |
161 | |
162 | page = BufferGetPage(buf); |
163 | |
164 | /* initialize the page */ |
165 | if (initpage) |
166 | _hash_pageinit(page, BufferGetPageSize(buf)); |
167 | |
168 | pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
169 | |
170 | /* |
171 | * Set hasho_prevblkno with current hashm_maxbucket. This value will be |
172 | * used to validate cached HashMetaPageData. See |
173 | * _hash_getbucketbuf_from_hashkey(). |
174 | */ |
175 | pageopaque->hasho_prevblkno = max_bucket; |
176 | pageopaque->hasho_nextblkno = InvalidBlockNumber; |
177 | pageopaque->hasho_bucket = num_bucket; |
178 | pageopaque->hasho_flag = flag; |
179 | pageopaque->hasho_page_id = HASHO_PAGE_ID; |
180 | } |
181 | |
182 | /* |
183 | * _hash_getnewbuf() -- Get a new page at the end of the index. |
184 | * |
185 | * This has the same API as _hash_getinitbuf, except that we are adding |
186 | * a page to the index, and hence expect the page to be past the |
187 | * logical EOF. (However, we have to support the case where it isn't, |
188 | * since a prior try might have crashed after extending the filesystem |
189 | * EOF but before updating the metapage to reflect the added page.) |
190 | * |
191 | * It is caller's responsibility to ensure that only one process can |
192 | * extend the index at a time. In practice, this function is called |
193 | * only while holding write lock on the metapage, because adding a page |
194 | * is always associated with an update of metapage data. |
195 | */ |
196 | Buffer |
197 | _hash_getnewbuf(Relation rel, BlockNumber blkno, ForkNumber forkNum) |
198 | { |
199 | BlockNumber nblocks = RelationGetNumberOfBlocksInFork(rel, forkNum); |
200 | Buffer buf; |
201 | |
202 | if (blkno == P_NEW) |
203 | elog(ERROR, "hash AM does not use P_NEW" ); |
204 | if (blkno > nblocks) |
205 | elog(ERROR, "access to noncontiguous page in hash index \"%s\"" , |
206 | RelationGetRelationName(rel)); |
207 | |
208 | /* smgr insists we use P_NEW to extend the relation */ |
209 | if (blkno == nblocks) |
210 | { |
211 | buf = ReadBufferExtended(rel, forkNum, P_NEW, RBM_NORMAL, NULL); |
212 | if (BufferGetBlockNumber(buf) != blkno) |
213 | elog(ERROR, "unexpected hash relation size: %u, should be %u" , |
214 | BufferGetBlockNumber(buf), blkno); |
215 | LockBuffer(buf, HASH_WRITE); |
216 | } |
217 | else |
218 | { |
219 | buf = ReadBufferExtended(rel, forkNum, blkno, RBM_ZERO_AND_LOCK, |
220 | NULL); |
221 | } |
222 | |
223 | /* ref count and lock type are correct */ |
224 | |
225 | /* initialize the page */ |
226 | _hash_pageinit(BufferGetPage(buf), BufferGetPageSize(buf)); |
227 | |
228 | return buf; |
229 | } |
230 | |
231 | /* |
232 | * _hash_getbuf_with_strategy() -- Get a buffer with nondefault strategy. |
233 | * |
234 | * This is identical to _hash_getbuf() but also allows a buffer access |
235 | * strategy to be specified. We use this for VACUUM operations. |
236 | */ |
237 | Buffer |
238 | _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno, |
239 | int access, int flags, |
240 | BufferAccessStrategy bstrategy) |
241 | { |
242 | Buffer buf; |
243 | |
244 | if (blkno == P_NEW) |
245 | elog(ERROR, "hash AM does not use P_NEW" ); |
246 | |
247 | buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL, bstrategy); |
248 | |
249 | if (access != HASH_NOLOCK) |
250 | LockBuffer(buf, access); |
251 | |
252 | /* ref count and lock type are correct */ |
253 | |
254 | _hash_checkpage(rel, buf, flags); |
255 | |
256 | return buf; |
257 | } |
258 | |
259 | /* |
260 | * _hash_relbuf() -- release a locked buffer. |
261 | * |
262 | * Lock and pin (refcount) are both dropped. |
263 | */ |
264 | void |
265 | _hash_relbuf(Relation rel, Buffer buf) |
266 | { |
267 | UnlockReleaseBuffer(buf); |
268 | } |
269 | |
270 | /* |
271 | * _hash_dropbuf() -- release an unlocked buffer. |
272 | * |
273 | * This is used to unpin a buffer on which we hold no lock. |
274 | */ |
275 | void |
276 | _hash_dropbuf(Relation rel, Buffer buf) |
277 | { |
278 | ReleaseBuffer(buf); |
279 | } |
280 | |
281 | /* |
282 | * _hash_dropscanbuf() -- release buffers used in scan. |
283 | * |
284 | * This routine unpins the buffers used during scan on which we |
285 | * hold no lock. |
286 | */ |
287 | void |
288 | _hash_dropscanbuf(Relation rel, HashScanOpaque so) |
289 | { |
290 | /* release pin we hold on primary bucket page */ |
291 | if (BufferIsValid(so->hashso_bucket_buf) && |
292 | so->hashso_bucket_buf != so->currPos.buf) |
293 | _hash_dropbuf(rel, so->hashso_bucket_buf); |
294 | so->hashso_bucket_buf = InvalidBuffer; |
295 | |
296 | /* release pin we hold on primary bucket page of bucket being split */ |
297 | if (BufferIsValid(so->hashso_split_bucket_buf) && |
298 | so->hashso_split_bucket_buf != so->currPos.buf) |
299 | _hash_dropbuf(rel, so->hashso_split_bucket_buf); |
300 | so->hashso_split_bucket_buf = InvalidBuffer; |
301 | |
302 | /* release any pin we still hold */ |
303 | if (BufferIsValid(so->currPos.buf)) |
304 | _hash_dropbuf(rel, so->currPos.buf); |
305 | so->currPos.buf = InvalidBuffer; |
306 | |
307 | /* reset split scan */ |
308 | so->hashso_buc_populated = false; |
309 | so->hashso_buc_split = false; |
310 | } |
311 | |
312 | |
313 | /* |
314 | * _hash_init() -- Initialize the metadata page of a hash index, |
315 | * the initial buckets, and the initial bitmap page. |
316 | * |
317 | * The initial number of buckets is dependent on num_tuples, an estimate |
318 | * of the number of tuples to be loaded into the index initially. The |
319 | * chosen number of buckets is returned. |
320 | * |
321 | * We are fairly cavalier about locking here, since we know that no one else |
322 | * could be accessing this index. In particular the rule about not holding |
323 | * multiple buffer locks is ignored. |
324 | */ |
325 | uint32 |
326 | _hash_init(Relation rel, double num_tuples, ForkNumber forkNum) |
327 | { |
328 | Buffer metabuf; |
329 | Buffer buf; |
330 | Buffer bitmapbuf; |
331 | Page pg; |
332 | HashMetaPage metap; |
333 | RegProcedure procid; |
334 | int32 data_width; |
335 | int32 item_width; |
336 | int32 ffactor; |
337 | uint32 num_buckets; |
338 | uint32 i; |
339 | bool use_wal; |
340 | |
341 | /* safety check */ |
342 | if (RelationGetNumberOfBlocksInFork(rel, forkNum) != 0) |
343 | elog(ERROR, "cannot initialize non-empty hash index \"%s\"" , |
344 | RelationGetRelationName(rel)); |
345 | |
346 | /* |
347 | * WAL log creation of pages if the relation is persistent, or this is the |
348 | * init fork. Init forks for unlogged relations always need to be WAL |
349 | * logged. |
350 | */ |
351 | use_wal = RelationNeedsWAL(rel) || forkNum == INIT_FORKNUM; |
352 | |
353 | /* |
354 | * Determine the target fill factor (in tuples per bucket) for this index. |
355 | * The idea is to make the fill factor correspond to pages about as full |
356 | * as the user-settable fillfactor parameter says. We can compute it |
357 | * exactly since the index datatype (i.e. uint32 hash key) is fixed-width. |
358 | */ |
359 | data_width = sizeof(uint32); |
360 | item_width = MAXALIGN(sizeof(IndexTupleData)) + MAXALIGN(data_width) + |
361 | sizeof(ItemIdData); /* include the line pointer */ |
362 | ffactor = RelationGetTargetPageUsage(rel, HASH_DEFAULT_FILLFACTOR) / item_width; |
363 | /* keep to a sane range */ |
364 | if (ffactor < 10) |
365 | ffactor = 10; |
366 | |
367 | procid = index_getprocid(rel, 1, HASHSTANDARD_PROC); |
368 | |
369 | /* |
370 | * We initialize the metapage, the first N bucket pages, and the first |
371 | * bitmap page in sequence, using _hash_getnewbuf to cause smgrextend() |
372 | * calls to occur. This ensures that the smgr level has the right idea of |
373 | * the physical index length. |
374 | * |
375 | * Critical section not required, because on error the creation of the |
376 | * whole relation will be rolled back. |
377 | */ |
378 | metabuf = _hash_getnewbuf(rel, HASH_METAPAGE, forkNum); |
379 | _hash_init_metabuffer(metabuf, num_tuples, procid, ffactor, false); |
380 | MarkBufferDirty(metabuf); |
381 | |
382 | pg = BufferGetPage(metabuf); |
383 | metap = HashPageGetMeta(pg); |
384 | |
385 | /* XLOG stuff */ |
386 | if (use_wal) |
387 | { |
388 | xl_hash_init_meta_page xlrec; |
389 | XLogRecPtr recptr; |
390 | |
391 | xlrec.num_tuples = num_tuples; |
392 | xlrec.procid = metap->hashm_procid; |
393 | xlrec.ffactor = metap->hashm_ffactor; |
394 | |
395 | XLogBeginInsert(); |
396 | XLogRegisterData((char *) &xlrec, SizeOfHashInitMetaPage); |
397 | XLogRegisterBuffer(0, metabuf, REGBUF_WILL_INIT | REGBUF_STANDARD); |
398 | |
399 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_META_PAGE); |
400 | |
401 | PageSetLSN(BufferGetPage(metabuf), recptr); |
402 | } |
403 | |
404 | num_buckets = metap->hashm_maxbucket + 1; |
405 | |
406 | /* |
407 | * Release buffer lock on the metapage while we initialize buckets. |
408 | * Otherwise, we'll be in interrupt holdoff and the CHECK_FOR_INTERRUPTS |
409 | * won't accomplish anything. It's a bad idea to hold buffer locks for |
410 | * long intervals in any case, since that can block the bgwriter. |
411 | */ |
412 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
413 | |
414 | /* |
415 | * Initialize and WAL Log the first N buckets |
416 | */ |
417 | for (i = 0; i < num_buckets; i++) |
418 | { |
419 | BlockNumber blkno; |
420 | |
421 | /* Allow interrupts, in case N is huge */ |
422 | CHECK_FOR_INTERRUPTS(); |
423 | |
424 | blkno = BUCKET_TO_BLKNO(metap, i); |
425 | buf = _hash_getnewbuf(rel, blkno, forkNum); |
426 | _hash_initbuf(buf, metap->hashm_maxbucket, i, LH_BUCKET_PAGE, false); |
427 | MarkBufferDirty(buf); |
428 | |
429 | if (use_wal) |
430 | log_newpage(&rel->rd_node, |
431 | forkNum, |
432 | blkno, |
433 | BufferGetPage(buf), |
434 | true); |
435 | _hash_relbuf(rel, buf); |
436 | } |
437 | |
438 | /* Now reacquire buffer lock on metapage */ |
439 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
440 | |
441 | /* |
442 | * Initialize bitmap page |
443 | */ |
444 | bitmapbuf = _hash_getnewbuf(rel, num_buckets + 1, forkNum); |
445 | _hash_initbitmapbuffer(bitmapbuf, metap->hashm_bmsize, false); |
446 | MarkBufferDirty(bitmapbuf); |
447 | |
448 | /* add the new bitmap page to the metapage's list of bitmaps */ |
449 | /* metapage already has a write lock */ |
450 | if (metap->hashm_nmaps >= HASH_MAX_BITMAPS) |
451 | ereport(ERROR, |
452 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
453 | errmsg("out of overflow pages in hash index \"%s\"" , |
454 | RelationGetRelationName(rel)))); |
455 | |
456 | metap->hashm_mapp[metap->hashm_nmaps] = num_buckets + 1; |
457 | |
458 | metap->hashm_nmaps++; |
459 | MarkBufferDirty(metabuf); |
460 | |
461 | /* XLOG stuff */ |
462 | if (use_wal) |
463 | { |
464 | xl_hash_init_bitmap_page xlrec; |
465 | XLogRecPtr recptr; |
466 | |
467 | xlrec.bmsize = metap->hashm_bmsize; |
468 | |
469 | XLogBeginInsert(); |
470 | XLogRegisterData((char *) &xlrec, SizeOfHashInitBitmapPage); |
471 | XLogRegisterBuffer(0, bitmapbuf, REGBUF_WILL_INIT); |
472 | |
473 | /* |
474 | * This is safe only because nobody else can be modifying the index at |
475 | * this stage; it's only visible to the transaction that is creating |
476 | * it. |
477 | */ |
478 | XLogRegisterBuffer(1, metabuf, REGBUF_STANDARD); |
479 | |
480 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_INIT_BITMAP_PAGE); |
481 | |
482 | PageSetLSN(BufferGetPage(bitmapbuf), recptr); |
483 | PageSetLSN(BufferGetPage(metabuf), recptr); |
484 | } |
485 | |
486 | /* all done */ |
487 | _hash_relbuf(rel, bitmapbuf); |
488 | _hash_relbuf(rel, metabuf); |
489 | |
490 | return num_buckets; |
491 | } |
492 | |
493 | /* |
494 | * _hash_init_metabuffer() -- Initialize the metadata page of a hash index. |
495 | */ |
496 | void |
497 | _hash_init_metabuffer(Buffer buf, double num_tuples, RegProcedure procid, |
498 | uint16 ffactor, bool initpage) |
499 | { |
500 | HashMetaPage metap; |
501 | HashPageOpaque pageopaque; |
502 | Page page; |
503 | double dnumbuckets; |
504 | uint32 num_buckets; |
505 | uint32 spare_index; |
506 | uint32 i; |
507 | |
508 | /* |
509 | * Choose the number of initial bucket pages to match the fill factor |
510 | * given the estimated number of tuples. We round up the result to the |
511 | * total number of buckets which has to be allocated before using its |
512 | * _hashm_spare element. However always force at least 2 bucket pages. The |
513 | * upper limit is determined by considerations explained in |
514 | * _hash_expandtable(). |
515 | */ |
516 | dnumbuckets = num_tuples / ffactor; |
517 | if (dnumbuckets <= 2.0) |
518 | num_buckets = 2; |
519 | else if (dnumbuckets >= (double) 0x40000000) |
520 | num_buckets = 0x40000000; |
521 | else |
522 | num_buckets = _hash_get_totalbuckets(_hash_spareindex(dnumbuckets)); |
523 | |
524 | spare_index = _hash_spareindex(num_buckets); |
525 | Assert(spare_index < HASH_MAX_SPLITPOINTS); |
526 | |
527 | page = BufferGetPage(buf); |
528 | if (initpage) |
529 | _hash_pageinit(page, BufferGetPageSize(buf)); |
530 | |
531 | pageopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
532 | pageopaque->hasho_prevblkno = InvalidBlockNumber; |
533 | pageopaque->hasho_nextblkno = InvalidBlockNumber; |
534 | pageopaque->hasho_bucket = -1; |
535 | pageopaque->hasho_flag = LH_META_PAGE; |
536 | pageopaque->hasho_page_id = HASHO_PAGE_ID; |
537 | |
538 | metap = HashPageGetMeta(page); |
539 | |
540 | metap->hashm_magic = HASH_MAGIC; |
541 | metap->hashm_version = HASH_VERSION; |
542 | metap->hashm_ntuples = 0; |
543 | metap->hashm_nmaps = 0; |
544 | metap->hashm_ffactor = ffactor; |
545 | metap->hashm_bsize = HashGetMaxBitmapSize(page); |
546 | /* find largest bitmap array size that will fit in page size */ |
547 | for (i = _hash_log2(metap->hashm_bsize); i > 0; --i) |
548 | { |
549 | if ((1 << i) <= metap->hashm_bsize) |
550 | break; |
551 | } |
552 | Assert(i > 0); |
553 | metap->hashm_bmsize = 1 << i; |
554 | metap->hashm_bmshift = i + BYTE_TO_BIT; |
555 | Assert((1 << BMPG_SHIFT(metap)) == (BMPG_MASK(metap) + 1)); |
556 | |
557 | /* |
558 | * Label the index with its primary hash support function's OID. This is |
559 | * pretty useless for normal operation (in fact, hashm_procid is not used |
560 | * anywhere), but it might be handy for forensic purposes so we keep it. |
561 | */ |
562 | metap->hashm_procid = procid; |
563 | |
564 | /* |
565 | * We initialize the index with N buckets, 0 .. N-1, occupying physical |
566 | * blocks 1 to N. The first freespace bitmap page is in block N+1. |
567 | */ |
568 | metap->hashm_maxbucket = num_buckets - 1; |
569 | |
570 | /* |
571 | * Set highmask as next immediate ((2 ^ x) - 1), which should be |
572 | * sufficient to cover num_buckets. |
573 | */ |
574 | metap->hashm_highmask = (1 << (_hash_log2(num_buckets + 1))) - 1; |
575 | metap->hashm_lowmask = (metap->hashm_highmask >> 1); |
576 | |
577 | MemSet(metap->hashm_spares, 0, sizeof(metap->hashm_spares)); |
578 | MemSet(metap->hashm_mapp, 0, sizeof(metap->hashm_mapp)); |
579 | |
580 | /* Set up mapping for one spare page after the initial splitpoints */ |
581 | metap->hashm_spares[spare_index] = 1; |
582 | metap->hashm_ovflpoint = spare_index; |
583 | metap->hashm_firstfree = 0; |
584 | |
585 | /* |
586 | * Set pd_lower just past the end of the metadata. This is essential, |
587 | * because without doing so, metadata will be lost if xlog.c compresses |
588 | * the page. |
589 | */ |
590 | ((PageHeader) page)->pd_lower = |
591 | ((char *) metap + sizeof(HashMetaPageData)) - (char *) page; |
592 | } |
593 | |
594 | /* |
595 | * _hash_pageinit() -- Initialize a new hash index page. |
596 | */ |
597 | void |
598 | _hash_pageinit(Page page, Size size) |
599 | { |
600 | PageInit(page, size, sizeof(HashPageOpaqueData)); |
601 | } |
602 | |
603 | /* |
604 | * Attempt to expand the hash table by creating one new bucket. |
605 | * |
606 | * This will silently do nothing if we don't get cleanup lock on old or |
607 | * new bucket. |
608 | * |
609 | * Complete the pending splits and remove the tuples from old bucket, |
610 | * if there are any left over from the previous split. |
611 | * |
612 | * The caller must hold a pin, but no lock, on the metapage buffer. |
613 | * The buffer is returned in the same state. |
614 | */ |
615 | void |
616 | _hash_expandtable(Relation rel, Buffer metabuf) |
617 | { |
618 | HashMetaPage metap; |
619 | Bucket old_bucket; |
620 | Bucket new_bucket; |
621 | uint32 spare_ndx; |
622 | BlockNumber start_oblkno; |
623 | BlockNumber start_nblkno; |
624 | Buffer buf_nblkno; |
625 | Buffer buf_oblkno; |
626 | Page opage; |
627 | Page npage; |
628 | HashPageOpaque oopaque; |
629 | HashPageOpaque nopaque; |
630 | uint32 maxbucket; |
631 | uint32 highmask; |
632 | uint32 lowmask; |
633 | bool metap_update_masks = false; |
634 | bool metap_update_splitpoint = false; |
635 | |
636 | restart_expand: |
637 | |
638 | /* |
639 | * Write-lock the meta page. It used to be necessary to acquire a |
640 | * heavyweight lock to begin a split, but that is no longer required. |
641 | */ |
642 | LockBuffer(metabuf, BUFFER_LOCK_EXCLUSIVE); |
643 | |
644 | _hash_checkpage(rel, metabuf, LH_META_PAGE); |
645 | metap = HashPageGetMeta(BufferGetPage(metabuf)); |
646 | |
647 | /* |
648 | * Check to see if split is still needed; someone else might have already |
649 | * done one while we waited for the lock. |
650 | * |
651 | * Make sure this stays in sync with _hash_doinsert() |
652 | */ |
653 | if (metap->hashm_ntuples <= |
654 | (double) metap->hashm_ffactor * (metap->hashm_maxbucket + 1)) |
655 | goto fail; |
656 | |
657 | /* |
658 | * Can't split anymore if maxbucket has reached its maximum possible |
659 | * value. |
660 | * |
661 | * Ideally we'd allow bucket numbers up to UINT_MAX-1 (no higher because |
662 | * the calculation maxbucket+1 mustn't overflow). Currently we restrict |
663 | * to half that because of overflow looping in _hash_log2() and |
664 | * insufficient space in hashm_spares[]. It's moot anyway because an |
665 | * index with 2^32 buckets would certainly overflow BlockNumber and hence |
666 | * _hash_alloc_buckets() would fail, but if we supported buckets smaller |
667 | * than a disk block then this would be an independent constraint. |
668 | * |
669 | * If you change this, see also the maximum initial number of buckets in |
670 | * _hash_init(). |
671 | */ |
672 | if (metap->hashm_maxbucket >= (uint32) 0x7FFFFFFE) |
673 | goto fail; |
674 | |
675 | /* |
676 | * Determine which bucket is to be split, and attempt to take cleanup lock |
677 | * on the old bucket. If we can't get the lock, give up. |
678 | * |
679 | * The cleanup lock protects us not only against other backends, but |
680 | * against our own backend as well. |
681 | * |
682 | * The cleanup lock is mainly to protect the split from concurrent |
683 | * inserts. See src/backend/access/hash/README, Lock Definitions for |
684 | * further details. Due to this locking restriction, if there is any |
685 | * pending scan, the split will give up which is not good, but harmless. |
686 | */ |
687 | new_bucket = metap->hashm_maxbucket + 1; |
688 | |
689 | old_bucket = (new_bucket & metap->hashm_lowmask); |
690 | |
691 | start_oblkno = BUCKET_TO_BLKNO(metap, old_bucket); |
692 | |
693 | buf_oblkno = _hash_getbuf_with_condlock_cleanup(rel, start_oblkno, LH_BUCKET_PAGE); |
694 | if (!buf_oblkno) |
695 | goto fail; |
696 | |
697 | opage = BufferGetPage(buf_oblkno); |
698 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
699 | |
700 | /* |
701 | * We want to finish the split from a bucket as there is no apparent |
702 | * benefit by not doing so and it will make the code complicated to finish |
703 | * the split that involves multiple buckets considering the case where new |
704 | * split also fails. We don't need to consider the new bucket for |
705 | * completing the split here as it is not possible that a re-split of new |
706 | * bucket starts when there is still a pending split from old bucket. |
707 | */ |
708 | if (H_BUCKET_BEING_SPLIT(oopaque)) |
709 | { |
710 | /* |
711 | * Copy bucket mapping info now; refer the comment in code below where |
712 | * we copy this information before calling _hash_splitbucket to see |
713 | * why this is okay. |
714 | */ |
715 | maxbucket = metap->hashm_maxbucket; |
716 | highmask = metap->hashm_highmask; |
717 | lowmask = metap->hashm_lowmask; |
718 | |
719 | /* |
720 | * Release the lock on metapage and old_bucket, before completing the |
721 | * split. |
722 | */ |
723 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
724 | LockBuffer(buf_oblkno, BUFFER_LOCK_UNLOCK); |
725 | |
726 | _hash_finish_split(rel, metabuf, buf_oblkno, old_bucket, maxbucket, |
727 | highmask, lowmask); |
728 | |
729 | /* release the pin on old buffer and retry for expand. */ |
730 | _hash_dropbuf(rel, buf_oblkno); |
731 | |
732 | goto restart_expand; |
733 | } |
734 | |
735 | /* |
736 | * Clean the tuples remained from the previous split. This operation |
737 | * requires cleanup lock and we already have one on the old bucket, so |
738 | * let's do it. We also don't want to allow further splits from the bucket |
739 | * till the garbage of previous split is cleaned. This has two |
740 | * advantages; first, it helps in avoiding the bloat due to garbage and |
741 | * second is, during cleanup of bucket, we are always sure that the |
742 | * garbage tuples belong to most recently split bucket. On the contrary, |
743 | * if we allow cleanup of bucket after meta page is updated to indicate |
744 | * the new split and before the actual split, the cleanup operation won't |
745 | * be able to decide whether the tuple has been moved to the newly created |
746 | * bucket and ended up deleting such tuples. |
747 | */ |
748 | if (H_NEEDS_SPLIT_CLEANUP(oopaque)) |
749 | { |
750 | /* |
751 | * Copy bucket mapping info now; refer to the comment in code below |
752 | * where we copy this information before calling _hash_splitbucket to |
753 | * see why this is okay. |
754 | */ |
755 | maxbucket = metap->hashm_maxbucket; |
756 | highmask = metap->hashm_highmask; |
757 | lowmask = metap->hashm_lowmask; |
758 | |
759 | /* Release the metapage lock. */ |
760 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
761 | |
762 | hashbucketcleanup(rel, old_bucket, buf_oblkno, start_oblkno, NULL, |
763 | maxbucket, highmask, lowmask, NULL, NULL, true, |
764 | NULL, NULL); |
765 | |
766 | _hash_dropbuf(rel, buf_oblkno); |
767 | |
768 | goto restart_expand; |
769 | } |
770 | |
771 | /* |
772 | * There shouldn't be any active scan on new bucket. |
773 | * |
774 | * Note: it is safe to compute the new bucket's blkno here, even though we |
775 | * may still need to update the BUCKET_TO_BLKNO mapping. This is because |
776 | * the current value of hashm_spares[hashm_ovflpoint] correctly shows |
777 | * where we are going to put a new splitpoint's worth of buckets. |
778 | */ |
779 | start_nblkno = BUCKET_TO_BLKNO(metap, new_bucket); |
780 | |
781 | /* |
782 | * If the split point is increasing we need to allocate a new batch of |
783 | * bucket pages. |
784 | */ |
785 | spare_ndx = _hash_spareindex(new_bucket + 1); |
786 | if (spare_ndx > metap->hashm_ovflpoint) |
787 | { |
788 | uint32 buckets_to_add; |
789 | |
790 | Assert(spare_ndx == metap->hashm_ovflpoint + 1); |
791 | |
792 | /* |
793 | * We treat allocation of buckets as a separate WAL-logged action. |
794 | * Even if we fail after this operation, won't leak bucket pages; |
795 | * rather, the next split will consume this space. In any case, even |
796 | * without failure we don't use all the space in one split operation. |
797 | */ |
798 | buckets_to_add = _hash_get_totalbuckets(spare_ndx) - new_bucket; |
799 | if (!_hash_alloc_buckets(rel, start_nblkno, buckets_to_add)) |
800 | { |
801 | /* can't split due to BlockNumber overflow */ |
802 | _hash_relbuf(rel, buf_oblkno); |
803 | goto fail; |
804 | } |
805 | } |
806 | |
807 | /* |
808 | * Physically allocate the new bucket's primary page. We want to do this |
809 | * before changing the metapage's mapping info, in case we can't get the |
810 | * disk space. Ideally, we don't need to check for cleanup lock on new |
811 | * bucket as no other backend could find this bucket unless meta page is |
812 | * updated. However, it is good to be consistent with old bucket locking. |
813 | */ |
814 | buf_nblkno = _hash_getnewbuf(rel, start_nblkno, MAIN_FORKNUM); |
815 | if (!IsBufferCleanupOK(buf_nblkno)) |
816 | { |
817 | _hash_relbuf(rel, buf_oblkno); |
818 | _hash_relbuf(rel, buf_nblkno); |
819 | goto fail; |
820 | } |
821 | |
822 | /* |
823 | * Since we are scribbling on the pages in the shared buffers, establish a |
824 | * critical section. Any failure in this next code leaves us with a big |
825 | * problem: the metapage is effectively corrupt but could get written back |
826 | * to disk. |
827 | */ |
828 | START_CRIT_SECTION(); |
829 | |
830 | /* |
831 | * Okay to proceed with split. Update the metapage bucket mapping info. |
832 | */ |
833 | metap->hashm_maxbucket = new_bucket; |
834 | |
835 | if (new_bucket > metap->hashm_highmask) |
836 | { |
837 | /* Starting a new doubling */ |
838 | metap->hashm_lowmask = metap->hashm_highmask; |
839 | metap->hashm_highmask = new_bucket | metap->hashm_lowmask; |
840 | metap_update_masks = true; |
841 | } |
842 | |
843 | /* |
844 | * If the split point is increasing we need to adjust the hashm_spares[] |
845 | * array and hashm_ovflpoint so that future overflow pages will be created |
846 | * beyond this new batch of bucket pages. |
847 | */ |
848 | if (spare_ndx > metap->hashm_ovflpoint) |
849 | { |
850 | metap->hashm_spares[spare_ndx] = metap->hashm_spares[metap->hashm_ovflpoint]; |
851 | metap->hashm_ovflpoint = spare_ndx; |
852 | metap_update_splitpoint = true; |
853 | } |
854 | |
855 | MarkBufferDirty(metabuf); |
856 | |
857 | /* |
858 | * Copy bucket mapping info now; this saves re-accessing the meta page |
859 | * inside _hash_splitbucket's inner loop. Note that once we drop the |
860 | * split lock, other splits could begin, so these values might be out of |
861 | * date before _hash_splitbucket finishes. That's okay, since all it |
862 | * needs is to tell which of these two buckets to map hashkeys into. |
863 | */ |
864 | maxbucket = metap->hashm_maxbucket; |
865 | highmask = metap->hashm_highmask; |
866 | lowmask = metap->hashm_lowmask; |
867 | |
868 | opage = BufferGetPage(buf_oblkno); |
869 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
870 | |
871 | /* |
872 | * Mark the old bucket to indicate that split is in progress. (At |
873 | * operation end, we will clear the split-in-progress flag.) Also, for a |
874 | * primary bucket page, hasho_prevblkno stores the number of buckets that |
875 | * existed as of the last split, so we must update that value here. |
876 | */ |
877 | oopaque->hasho_flag |= LH_BUCKET_BEING_SPLIT; |
878 | oopaque->hasho_prevblkno = maxbucket; |
879 | |
880 | MarkBufferDirty(buf_oblkno); |
881 | |
882 | npage = BufferGetPage(buf_nblkno); |
883 | |
884 | /* |
885 | * initialize the new bucket's primary page and mark it to indicate that |
886 | * split is in progress. |
887 | */ |
888 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
889 | nopaque->hasho_prevblkno = maxbucket; |
890 | nopaque->hasho_nextblkno = InvalidBlockNumber; |
891 | nopaque->hasho_bucket = new_bucket; |
892 | nopaque->hasho_flag = LH_BUCKET_PAGE | LH_BUCKET_BEING_POPULATED; |
893 | nopaque->hasho_page_id = HASHO_PAGE_ID; |
894 | |
895 | MarkBufferDirty(buf_nblkno); |
896 | |
897 | /* XLOG stuff */ |
898 | if (RelationNeedsWAL(rel)) |
899 | { |
900 | xl_hash_split_allocate_page xlrec; |
901 | XLogRecPtr recptr; |
902 | |
903 | xlrec.new_bucket = maxbucket; |
904 | xlrec.old_bucket_flag = oopaque->hasho_flag; |
905 | xlrec.new_bucket_flag = nopaque->hasho_flag; |
906 | xlrec.flags = 0; |
907 | |
908 | XLogBeginInsert(); |
909 | |
910 | XLogRegisterBuffer(0, buf_oblkno, REGBUF_STANDARD); |
911 | XLogRegisterBuffer(1, buf_nblkno, REGBUF_WILL_INIT); |
912 | XLogRegisterBuffer(2, metabuf, REGBUF_STANDARD); |
913 | |
914 | if (metap_update_masks) |
915 | { |
916 | xlrec.flags |= XLH_SPLIT_META_UPDATE_MASKS; |
917 | XLogRegisterBufData(2, (char *) &metap->hashm_lowmask, sizeof(uint32)); |
918 | XLogRegisterBufData(2, (char *) &metap->hashm_highmask, sizeof(uint32)); |
919 | } |
920 | |
921 | if (metap_update_splitpoint) |
922 | { |
923 | xlrec.flags |= XLH_SPLIT_META_UPDATE_SPLITPOINT; |
924 | XLogRegisterBufData(2, (char *) &metap->hashm_ovflpoint, |
925 | sizeof(uint32)); |
926 | XLogRegisterBufData(2, |
927 | (char *) &metap->hashm_spares[metap->hashm_ovflpoint], |
928 | sizeof(uint32)); |
929 | } |
930 | |
931 | XLogRegisterData((char *) &xlrec, SizeOfHashSplitAllocPage); |
932 | |
933 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_ALLOCATE_PAGE); |
934 | |
935 | PageSetLSN(BufferGetPage(buf_oblkno), recptr); |
936 | PageSetLSN(BufferGetPage(buf_nblkno), recptr); |
937 | PageSetLSN(BufferGetPage(metabuf), recptr); |
938 | } |
939 | |
940 | END_CRIT_SECTION(); |
941 | |
942 | /* drop lock, but keep pin */ |
943 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
944 | |
945 | /* Relocate records to the new bucket */ |
946 | _hash_splitbucket(rel, metabuf, |
947 | old_bucket, new_bucket, |
948 | buf_oblkno, buf_nblkno, NULL, |
949 | maxbucket, highmask, lowmask); |
950 | |
951 | /* all done, now release the pins on primary buckets. */ |
952 | _hash_dropbuf(rel, buf_oblkno); |
953 | _hash_dropbuf(rel, buf_nblkno); |
954 | |
955 | return; |
956 | |
957 | /* Here if decide not to split or fail to acquire old bucket lock */ |
958 | fail: |
959 | |
960 | /* We didn't write the metapage, so just drop lock */ |
961 | LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); |
962 | } |
963 | |
964 | |
965 | /* |
966 | * _hash_alloc_buckets -- allocate a new splitpoint's worth of bucket pages |
967 | * |
968 | * This does not need to initialize the new bucket pages; we'll do that as |
969 | * each one is used by _hash_expandtable(). But we have to extend the logical |
970 | * EOF to the end of the splitpoint; this keeps smgr's idea of the EOF in |
971 | * sync with ours, so that we don't get complaints from smgr. |
972 | * |
973 | * We do this by writing a page of zeroes at the end of the splitpoint range. |
974 | * We expect that the filesystem will ensure that the intervening pages read |
975 | * as zeroes too. On many filesystems this "hole" will not be allocated |
976 | * immediately, which means that the index file may end up more fragmented |
977 | * than if we forced it all to be allocated now; but since we don't scan |
978 | * hash indexes sequentially anyway, that probably doesn't matter. |
979 | * |
980 | * XXX It's annoying that this code is executed with the metapage lock held. |
981 | * We need to interlock against _hash_addovflpage() adding a new overflow page |
982 | * concurrently, but it'd likely be better to use LockRelationForExtension |
983 | * for the purpose. OTOH, adding a splitpoint is a very infrequent operation, |
984 | * so it may not be worth worrying about. |
985 | * |
986 | * Returns true if successful, or false if allocation failed due to |
987 | * BlockNumber overflow. |
988 | */ |
989 | static bool |
990 | _hash_alloc_buckets(Relation rel, BlockNumber firstblock, uint32 nblocks) |
991 | { |
992 | BlockNumber lastblock; |
993 | PGAlignedBlock zerobuf; |
994 | Page page; |
995 | HashPageOpaque ovflopaque; |
996 | |
997 | lastblock = firstblock + nblocks - 1; |
998 | |
999 | /* |
1000 | * Check for overflow in block number calculation; if so, we cannot extend |
1001 | * the index anymore. |
1002 | */ |
1003 | if (lastblock < firstblock || lastblock == InvalidBlockNumber) |
1004 | return false; |
1005 | |
1006 | page = (Page) zerobuf.data; |
1007 | |
1008 | /* |
1009 | * Initialize the page. Just zeroing the page won't work; see |
1010 | * _hash_freeovflpage for similar usage. We take care to make the special |
1011 | * space valid for the benefit of tools such as pageinspect. |
1012 | */ |
1013 | _hash_pageinit(page, BLCKSZ); |
1014 | |
1015 | ovflopaque = (HashPageOpaque) PageGetSpecialPointer(page); |
1016 | |
1017 | ovflopaque->hasho_prevblkno = InvalidBlockNumber; |
1018 | ovflopaque->hasho_nextblkno = InvalidBlockNumber; |
1019 | ovflopaque->hasho_bucket = -1; |
1020 | ovflopaque->hasho_flag = LH_UNUSED_PAGE; |
1021 | ovflopaque->hasho_page_id = HASHO_PAGE_ID; |
1022 | |
1023 | if (RelationNeedsWAL(rel)) |
1024 | log_newpage(&rel->rd_node, |
1025 | MAIN_FORKNUM, |
1026 | lastblock, |
1027 | zerobuf.data, |
1028 | true); |
1029 | |
1030 | RelationOpenSmgr(rel); |
1031 | PageSetChecksumInplace(page, lastblock); |
1032 | smgrextend(rel->rd_smgr, MAIN_FORKNUM, lastblock, zerobuf.data, false); |
1033 | |
1034 | return true; |
1035 | } |
1036 | |
1037 | |
1038 | /* |
1039 | * _hash_splitbucket -- split 'obucket' into 'obucket' and 'nbucket' |
1040 | * |
1041 | * This routine is used to partition the tuples between old and new bucket and |
1042 | * is used to finish the incomplete split operations. To finish the previously |
1043 | * interrupted split operation, the caller needs to fill htab. If htab is set, |
1044 | * then we skip the movement of tuples that exists in htab, otherwise NULL |
1045 | * value of htab indicates movement of all the tuples that belong to the new |
1046 | * bucket. |
1047 | * |
1048 | * We are splitting a bucket that consists of a base bucket page and zero |
1049 | * or more overflow (bucket chain) pages. We must relocate tuples that |
1050 | * belong in the new bucket. |
1051 | * |
1052 | * The caller must hold cleanup locks on both buckets to ensure that |
1053 | * no one else is trying to access them (see README). |
1054 | * |
1055 | * The caller must hold a pin, but no lock, on the metapage buffer. |
1056 | * The buffer is returned in the same state. (The metapage is only |
1057 | * touched if it becomes necessary to add or remove overflow pages.) |
1058 | * |
1059 | * Split needs to retain pin on primary bucket pages of both old and new |
1060 | * buckets till end of operation. This is to prevent vacuum from starting |
1061 | * while a split is in progress. |
1062 | * |
1063 | * In addition, the caller must have created the new bucket's base page, |
1064 | * which is passed in buffer nbuf, pinned and write-locked. The lock will be |
1065 | * released here and pin must be released by the caller. (The API is set up |
1066 | * this way because we must do _hash_getnewbuf() before releasing the metapage |
1067 | * write lock. So instead of passing the new bucket's start block number, we |
1068 | * pass an actual buffer.) |
1069 | */ |
1070 | static void |
1071 | _hash_splitbucket(Relation rel, |
1072 | Buffer metabuf, |
1073 | Bucket obucket, |
1074 | Bucket nbucket, |
1075 | Buffer obuf, |
1076 | Buffer nbuf, |
1077 | HTAB *htab, |
1078 | uint32 maxbucket, |
1079 | uint32 highmask, |
1080 | uint32 lowmask) |
1081 | { |
1082 | Buffer bucket_obuf; |
1083 | Buffer bucket_nbuf; |
1084 | Page opage; |
1085 | Page npage; |
1086 | HashPageOpaque oopaque; |
1087 | HashPageOpaque nopaque; |
1088 | OffsetNumber itup_offsets[MaxIndexTuplesPerPage]; |
1089 | IndexTuple itups[MaxIndexTuplesPerPage]; |
1090 | Size all_tups_size = 0; |
1091 | int i; |
1092 | uint16 nitups = 0; |
1093 | |
1094 | bucket_obuf = obuf; |
1095 | opage = BufferGetPage(obuf); |
1096 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
1097 | |
1098 | bucket_nbuf = nbuf; |
1099 | npage = BufferGetPage(nbuf); |
1100 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
1101 | |
1102 | /* Copy the predicate locks from old bucket to new bucket. */ |
1103 | PredicateLockPageSplit(rel, |
1104 | BufferGetBlockNumber(bucket_obuf), |
1105 | BufferGetBlockNumber(bucket_nbuf)); |
1106 | |
1107 | /* |
1108 | * Partition the tuples in the old bucket between the old bucket and the |
1109 | * new bucket, advancing along the old bucket's overflow bucket chain and |
1110 | * adding overflow pages to the new bucket as needed. Outer loop iterates |
1111 | * once per page in old bucket. |
1112 | */ |
1113 | for (;;) |
1114 | { |
1115 | BlockNumber oblkno; |
1116 | OffsetNumber ooffnum; |
1117 | OffsetNumber omaxoffnum; |
1118 | |
1119 | /* Scan each tuple in old page */ |
1120 | omaxoffnum = PageGetMaxOffsetNumber(opage); |
1121 | for (ooffnum = FirstOffsetNumber; |
1122 | ooffnum <= omaxoffnum; |
1123 | ooffnum = OffsetNumberNext(ooffnum)) |
1124 | { |
1125 | IndexTuple itup; |
1126 | Size itemsz; |
1127 | Bucket bucket; |
1128 | bool found = false; |
1129 | |
1130 | /* skip dead tuples */ |
1131 | if (ItemIdIsDead(PageGetItemId(opage, ooffnum))) |
1132 | continue; |
1133 | |
1134 | /* |
1135 | * Before inserting a tuple, probe the hash table containing TIDs |
1136 | * of tuples belonging to new bucket, if we find a match, then |
1137 | * skip that tuple, else fetch the item's hash key (conveniently |
1138 | * stored in the item) and determine which bucket it now belongs |
1139 | * in. |
1140 | */ |
1141 | itup = (IndexTuple) PageGetItem(opage, |
1142 | PageGetItemId(opage, ooffnum)); |
1143 | |
1144 | if (htab) |
1145 | (void) hash_search(htab, &itup->t_tid, HASH_FIND, &found); |
1146 | |
1147 | if (found) |
1148 | continue; |
1149 | |
1150 | bucket = _hash_hashkey2bucket(_hash_get_indextuple_hashkey(itup), |
1151 | maxbucket, highmask, lowmask); |
1152 | |
1153 | if (bucket == nbucket) |
1154 | { |
1155 | IndexTuple new_itup; |
1156 | |
1157 | /* |
1158 | * make a copy of index tuple as we have to scribble on it. |
1159 | */ |
1160 | new_itup = CopyIndexTuple(itup); |
1161 | |
1162 | /* |
1163 | * mark the index tuple as moved by split, such tuples are |
1164 | * skipped by scan if there is split in progress for a bucket. |
1165 | */ |
1166 | new_itup->t_info |= INDEX_MOVED_BY_SPLIT_MASK; |
1167 | |
1168 | /* |
1169 | * insert the tuple into the new bucket. if it doesn't fit on |
1170 | * the current page in the new bucket, we must allocate a new |
1171 | * overflow page and place the tuple on that page instead. |
1172 | */ |
1173 | itemsz = IndexTupleSize(new_itup); |
1174 | itemsz = MAXALIGN(itemsz); |
1175 | |
1176 | if (PageGetFreeSpaceForMultipleTuples(npage, nitups + 1) < (all_tups_size + itemsz)) |
1177 | { |
1178 | /* |
1179 | * Change the shared buffer state in critical section, |
1180 | * otherwise any error could make it unrecoverable. |
1181 | */ |
1182 | START_CRIT_SECTION(); |
1183 | |
1184 | _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); |
1185 | MarkBufferDirty(nbuf); |
1186 | /* log the split operation before releasing the lock */ |
1187 | log_split_page(rel, nbuf); |
1188 | |
1189 | END_CRIT_SECTION(); |
1190 | |
1191 | /* drop lock, but keep pin */ |
1192 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
1193 | |
1194 | /* be tidy */ |
1195 | for (i = 0; i < nitups; i++) |
1196 | pfree(itups[i]); |
1197 | nitups = 0; |
1198 | all_tups_size = 0; |
1199 | |
1200 | /* chain to a new overflow page */ |
1201 | nbuf = _hash_addovflpage(rel, metabuf, nbuf, (nbuf == bucket_nbuf) ? true : false); |
1202 | npage = BufferGetPage(nbuf); |
1203 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
1204 | } |
1205 | |
1206 | itups[nitups++] = new_itup; |
1207 | all_tups_size += itemsz; |
1208 | } |
1209 | else |
1210 | { |
1211 | /* |
1212 | * the tuple stays on this page, so nothing to do. |
1213 | */ |
1214 | Assert(bucket == obucket); |
1215 | } |
1216 | } |
1217 | |
1218 | oblkno = oopaque->hasho_nextblkno; |
1219 | |
1220 | /* retain the pin on the old primary bucket */ |
1221 | if (obuf == bucket_obuf) |
1222 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
1223 | else |
1224 | _hash_relbuf(rel, obuf); |
1225 | |
1226 | /* Exit loop if no more overflow pages in old bucket */ |
1227 | if (!BlockNumberIsValid(oblkno)) |
1228 | { |
1229 | /* |
1230 | * Change the shared buffer state in critical section, otherwise |
1231 | * any error could make it unrecoverable. |
1232 | */ |
1233 | START_CRIT_SECTION(); |
1234 | |
1235 | _hash_pgaddmultitup(rel, nbuf, itups, itup_offsets, nitups); |
1236 | MarkBufferDirty(nbuf); |
1237 | /* log the split operation before releasing the lock */ |
1238 | log_split_page(rel, nbuf); |
1239 | |
1240 | END_CRIT_SECTION(); |
1241 | |
1242 | if (nbuf == bucket_nbuf) |
1243 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
1244 | else |
1245 | _hash_relbuf(rel, nbuf); |
1246 | |
1247 | /* be tidy */ |
1248 | for (i = 0; i < nitups; i++) |
1249 | pfree(itups[i]); |
1250 | break; |
1251 | } |
1252 | |
1253 | /* Else, advance to next old page */ |
1254 | obuf = _hash_getbuf(rel, oblkno, HASH_READ, LH_OVERFLOW_PAGE); |
1255 | opage = BufferGetPage(obuf); |
1256 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
1257 | } |
1258 | |
1259 | /* |
1260 | * We're at the end of the old bucket chain, so we're done partitioning |
1261 | * the tuples. Mark the old and new buckets to indicate split is |
1262 | * finished. |
1263 | * |
1264 | * To avoid deadlocks due to locking order of buckets, first lock the old |
1265 | * bucket and then the new bucket. |
1266 | */ |
1267 | LockBuffer(bucket_obuf, BUFFER_LOCK_EXCLUSIVE); |
1268 | opage = BufferGetPage(bucket_obuf); |
1269 | oopaque = (HashPageOpaque) PageGetSpecialPointer(opage); |
1270 | |
1271 | LockBuffer(bucket_nbuf, BUFFER_LOCK_EXCLUSIVE); |
1272 | npage = BufferGetPage(bucket_nbuf); |
1273 | nopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
1274 | |
1275 | START_CRIT_SECTION(); |
1276 | |
1277 | oopaque->hasho_flag &= ~LH_BUCKET_BEING_SPLIT; |
1278 | nopaque->hasho_flag &= ~LH_BUCKET_BEING_POPULATED; |
1279 | |
1280 | /* |
1281 | * After the split is finished, mark the old bucket to indicate that it |
1282 | * contains deletable tuples. We will clear split-cleanup flag after |
1283 | * deleting such tuples either at the end of split or at the next split |
1284 | * from old bucket or at the time of vacuum. |
1285 | */ |
1286 | oopaque->hasho_flag |= LH_BUCKET_NEEDS_SPLIT_CLEANUP; |
1287 | |
1288 | /* |
1289 | * now write the buffers, here we don't release the locks as caller is |
1290 | * responsible to release locks. |
1291 | */ |
1292 | MarkBufferDirty(bucket_obuf); |
1293 | MarkBufferDirty(bucket_nbuf); |
1294 | |
1295 | if (RelationNeedsWAL(rel)) |
1296 | { |
1297 | XLogRecPtr recptr; |
1298 | xl_hash_split_complete xlrec; |
1299 | |
1300 | xlrec.old_bucket_flag = oopaque->hasho_flag; |
1301 | xlrec.new_bucket_flag = nopaque->hasho_flag; |
1302 | |
1303 | XLogBeginInsert(); |
1304 | |
1305 | XLogRegisterData((char *) &xlrec, SizeOfHashSplitComplete); |
1306 | |
1307 | XLogRegisterBuffer(0, bucket_obuf, REGBUF_STANDARD); |
1308 | XLogRegisterBuffer(1, bucket_nbuf, REGBUF_STANDARD); |
1309 | |
1310 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_COMPLETE); |
1311 | |
1312 | PageSetLSN(BufferGetPage(bucket_obuf), recptr); |
1313 | PageSetLSN(BufferGetPage(bucket_nbuf), recptr); |
1314 | } |
1315 | |
1316 | END_CRIT_SECTION(); |
1317 | |
1318 | /* |
1319 | * If possible, clean up the old bucket. We might not be able to do this |
1320 | * if someone else has a pin on it, but if not then we can go ahead. This |
1321 | * isn't absolutely necessary, but it reduces bloat; if we don't do it |
1322 | * now, VACUUM will do it eventually, but maybe not until new overflow |
1323 | * pages have been allocated. Note that there's no need to clean up the |
1324 | * new bucket. |
1325 | */ |
1326 | if (IsBufferCleanupOK(bucket_obuf)) |
1327 | { |
1328 | LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); |
1329 | hashbucketcleanup(rel, obucket, bucket_obuf, |
1330 | BufferGetBlockNumber(bucket_obuf), NULL, |
1331 | maxbucket, highmask, lowmask, NULL, NULL, true, |
1332 | NULL, NULL); |
1333 | } |
1334 | else |
1335 | { |
1336 | LockBuffer(bucket_nbuf, BUFFER_LOCK_UNLOCK); |
1337 | LockBuffer(bucket_obuf, BUFFER_LOCK_UNLOCK); |
1338 | } |
1339 | } |
1340 | |
1341 | /* |
1342 | * _hash_finish_split() -- Finish the previously interrupted split operation |
1343 | * |
1344 | * To complete the split operation, we form the hash table of TIDs in new |
1345 | * bucket which is then used by split operation to skip tuples that are |
1346 | * already moved before the split operation was previously interrupted. |
1347 | * |
1348 | * The caller must hold a pin, but no lock, on the metapage and old bucket's |
1349 | * primary page buffer. The buffers are returned in the same state. (The |
1350 | * metapage is only touched if it becomes necessary to add or remove overflow |
1351 | * pages.) |
1352 | */ |
1353 | void |
1354 | _hash_finish_split(Relation rel, Buffer metabuf, Buffer obuf, Bucket obucket, |
1355 | uint32 maxbucket, uint32 highmask, uint32 lowmask) |
1356 | { |
1357 | HASHCTL hash_ctl; |
1358 | HTAB *tidhtab; |
1359 | Buffer bucket_nbuf = InvalidBuffer; |
1360 | Buffer nbuf; |
1361 | Page npage; |
1362 | BlockNumber nblkno; |
1363 | BlockNumber bucket_nblkno; |
1364 | HashPageOpaque npageopaque; |
1365 | Bucket nbucket; |
1366 | bool found; |
1367 | |
1368 | /* Initialize hash tables used to track TIDs */ |
1369 | memset(&hash_ctl, 0, sizeof(hash_ctl)); |
1370 | hash_ctl.keysize = sizeof(ItemPointerData); |
1371 | hash_ctl.entrysize = sizeof(ItemPointerData); |
1372 | hash_ctl.hcxt = CurrentMemoryContext; |
1373 | |
1374 | tidhtab = |
1375 | hash_create("bucket ctids" , |
1376 | 256, /* arbitrary initial size */ |
1377 | &hash_ctl, |
1378 | HASH_ELEM | HASH_BLOBS | HASH_CONTEXT); |
1379 | |
1380 | bucket_nblkno = nblkno = _hash_get_newblock_from_oldbucket(rel, obucket); |
1381 | |
1382 | /* |
1383 | * Scan the new bucket and build hash table of TIDs |
1384 | */ |
1385 | for (;;) |
1386 | { |
1387 | OffsetNumber noffnum; |
1388 | OffsetNumber nmaxoffnum; |
1389 | |
1390 | nbuf = _hash_getbuf(rel, nblkno, HASH_READ, |
1391 | LH_BUCKET_PAGE | LH_OVERFLOW_PAGE); |
1392 | |
1393 | /* remember the primary bucket buffer to acquire cleanup lock on it. */ |
1394 | if (nblkno == bucket_nblkno) |
1395 | bucket_nbuf = nbuf; |
1396 | |
1397 | npage = BufferGetPage(nbuf); |
1398 | npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
1399 | |
1400 | /* Scan each tuple in new page */ |
1401 | nmaxoffnum = PageGetMaxOffsetNumber(npage); |
1402 | for (noffnum = FirstOffsetNumber; |
1403 | noffnum <= nmaxoffnum; |
1404 | noffnum = OffsetNumberNext(noffnum)) |
1405 | { |
1406 | IndexTuple itup; |
1407 | |
1408 | /* Fetch the item's TID and insert it in hash table. */ |
1409 | itup = (IndexTuple) PageGetItem(npage, |
1410 | PageGetItemId(npage, noffnum)); |
1411 | |
1412 | (void) hash_search(tidhtab, &itup->t_tid, HASH_ENTER, &found); |
1413 | |
1414 | Assert(!found); |
1415 | } |
1416 | |
1417 | nblkno = npageopaque->hasho_nextblkno; |
1418 | |
1419 | /* |
1420 | * release our write lock without modifying buffer and ensure to |
1421 | * retain the pin on primary bucket. |
1422 | */ |
1423 | if (nbuf == bucket_nbuf) |
1424 | LockBuffer(nbuf, BUFFER_LOCK_UNLOCK); |
1425 | else |
1426 | _hash_relbuf(rel, nbuf); |
1427 | |
1428 | /* Exit loop if no more overflow pages in new bucket */ |
1429 | if (!BlockNumberIsValid(nblkno)) |
1430 | break; |
1431 | } |
1432 | |
1433 | /* |
1434 | * Conditionally get the cleanup lock on old and new buckets to perform |
1435 | * the split operation. If we don't get the cleanup locks, silently give |
1436 | * up and next insertion on old bucket will try again to complete the |
1437 | * split. |
1438 | */ |
1439 | if (!ConditionalLockBufferForCleanup(obuf)) |
1440 | { |
1441 | hash_destroy(tidhtab); |
1442 | return; |
1443 | } |
1444 | if (!ConditionalLockBufferForCleanup(bucket_nbuf)) |
1445 | { |
1446 | LockBuffer(obuf, BUFFER_LOCK_UNLOCK); |
1447 | hash_destroy(tidhtab); |
1448 | return; |
1449 | } |
1450 | |
1451 | npage = BufferGetPage(bucket_nbuf); |
1452 | npageopaque = (HashPageOpaque) PageGetSpecialPointer(npage); |
1453 | nbucket = npageopaque->hasho_bucket; |
1454 | |
1455 | _hash_splitbucket(rel, metabuf, obucket, |
1456 | nbucket, obuf, bucket_nbuf, tidhtab, |
1457 | maxbucket, highmask, lowmask); |
1458 | |
1459 | _hash_dropbuf(rel, bucket_nbuf); |
1460 | hash_destroy(tidhtab); |
1461 | } |
1462 | |
1463 | /* |
1464 | * log_split_page() -- Log the split operation |
1465 | * |
1466 | * We log the split operation when the new page in new bucket gets full, |
1467 | * so we log the entire page. |
1468 | * |
1469 | * 'buf' must be locked by the caller which is also responsible for unlocking |
1470 | * it. |
1471 | */ |
1472 | static void |
1473 | log_split_page(Relation rel, Buffer buf) |
1474 | { |
1475 | if (RelationNeedsWAL(rel)) |
1476 | { |
1477 | XLogRecPtr recptr; |
1478 | |
1479 | XLogBeginInsert(); |
1480 | |
1481 | XLogRegisterBuffer(0, buf, REGBUF_FORCE_IMAGE | REGBUF_STANDARD); |
1482 | |
1483 | recptr = XLogInsert(RM_HASH_ID, XLOG_HASH_SPLIT_PAGE); |
1484 | |
1485 | PageSetLSN(BufferGetPage(buf), recptr); |
1486 | } |
1487 | } |
1488 | |
1489 | /* |
1490 | * _hash_getcachedmetap() -- Returns cached metapage data. |
1491 | * |
1492 | * If metabuf is not InvalidBuffer, caller must hold a pin, but no lock, on |
1493 | * the metapage. If not set, we'll set it before returning if we have to |
1494 | * refresh the cache, and return with a pin but no lock on it; caller is |
1495 | * responsible for releasing the pin. |
1496 | * |
1497 | * We refresh the cache if it's not initialized yet or force_refresh is true. |
1498 | */ |
1499 | HashMetaPage |
1500 | _hash_getcachedmetap(Relation rel, Buffer *metabuf, bool force_refresh) |
1501 | { |
1502 | Page page; |
1503 | |
1504 | Assert(metabuf); |
1505 | if (force_refresh || rel->rd_amcache == NULL) |
1506 | { |
1507 | char *cache = NULL; |
1508 | |
1509 | /* |
1510 | * It's important that we don't set rd_amcache to an invalid value. |
1511 | * Either MemoryContextAlloc or _hash_getbuf could fail, so don't |
1512 | * install a pointer to the newly-allocated storage in the actual |
1513 | * relcache entry until both have succeeeded. |
1514 | */ |
1515 | if (rel->rd_amcache == NULL) |
1516 | cache = MemoryContextAlloc(rel->rd_indexcxt, |
1517 | sizeof(HashMetaPageData)); |
1518 | |
1519 | /* Read the metapage. */ |
1520 | if (BufferIsValid(*metabuf)) |
1521 | LockBuffer(*metabuf, BUFFER_LOCK_SHARE); |
1522 | else |
1523 | *metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ, |
1524 | LH_META_PAGE); |
1525 | page = BufferGetPage(*metabuf); |
1526 | |
1527 | /* Populate the cache. */ |
1528 | if (rel->rd_amcache == NULL) |
1529 | rel->rd_amcache = cache; |
1530 | memcpy(rel->rd_amcache, HashPageGetMeta(page), |
1531 | sizeof(HashMetaPageData)); |
1532 | |
1533 | /* Release metapage lock, but keep the pin. */ |
1534 | LockBuffer(*metabuf, BUFFER_LOCK_UNLOCK); |
1535 | } |
1536 | |
1537 | return (HashMetaPage) rel->rd_amcache; |
1538 | } |
1539 | |
1540 | /* |
1541 | * _hash_getbucketbuf_from_hashkey() -- Get the bucket's buffer for the given |
1542 | * hashkey. |
1543 | * |
1544 | * Bucket pages do not move or get removed once they are allocated. This give |
1545 | * us an opportunity to use the previously saved metapage contents to reach |
1546 | * the target bucket buffer, instead of reading from the metapage every time. |
1547 | * This saves one buffer access every time we want to reach the target bucket |
1548 | * buffer, which is very helpful savings in bufmgr traffic and contention. |
1549 | * |
1550 | * The access type parameter (HASH_READ or HASH_WRITE) indicates whether the |
1551 | * bucket buffer has to be locked for reading or writing. |
1552 | * |
1553 | * The out parameter cachedmetap is set with metapage contents used for |
1554 | * hashkey to bucket buffer mapping. Some callers need this info to reach the |
1555 | * old bucket in case of bucket split, see _hash_doinsert(). |
1556 | */ |
1557 | Buffer |
1558 | _hash_getbucketbuf_from_hashkey(Relation rel, uint32 hashkey, int access, |
1559 | HashMetaPage *cachedmetap) |
1560 | { |
1561 | HashMetaPage metap; |
1562 | Buffer buf; |
1563 | Buffer metabuf = InvalidBuffer; |
1564 | Page page; |
1565 | Bucket bucket; |
1566 | BlockNumber blkno; |
1567 | HashPageOpaque opaque; |
1568 | |
1569 | /* We read from target bucket buffer, hence locking is must. */ |
1570 | Assert(access == HASH_READ || access == HASH_WRITE); |
1571 | |
1572 | metap = _hash_getcachedmetap(rel, &metabuf, false); |
1573 | Assert(metap != NULL); |
1574 | |
1575 | /* |
1576 | * Loop until we get a lock on the correct target bucket. |
1577 | */ |
1578 | for (;;) |
1579 | { |
1580 | /* |
1581 | * Compute the target bucket number, and convert to block number. |
1582 | */ |
1583 | bucket = _hash_hashkey2bucket(hashkey, |
1584 | metap->hashm_maxbucket, |
1585 | metap->hashm_highmask, |
1586 | metap->hashm_lowmask); |
1587 | |
1588 | blkno = BUCKET_TO_BLKNO(metap, bucket); |
1589 | |
1590 | /* Fetch the primary bucket page for the bucket */ |
1591 | buf = _hash_getbuf(rel, blkno, access, LH_BUCKET_PAGE); |
1592 | page = BufferGetPage(buf); |
1593 | opaque = (HashPageOpaque) PageGetSpecialPointer(page); |
1594 | Assert(opaque->hasho_bucket == bucket); |
1595 | Assert(opaque->hasho_prevblkno != InvalidBlockNumber); |
1596 | |
1597 | /* |
1598 | * If this bucket hasn't been split, we're done. |
1599 | */ |
1600 | if (opaque->hasho_prevblkno <= metap->hashm_maxbucket) |
1601 | break; |
1602 | |
1603 | /* Drop lock on this buffer, update cached metapage, and retry. */ |
1604 | _hash_relbuf(rel, buf); |
1605 | metap = _hash_getcachedmetap(rel, &metabuf, true); |
1606 | Assert(metap != NULL); |
1607 | } |
1608 | |
1609 | if (BufferIsValid(metabuf)) |
1610 | _hash_dropbuf(rel, metabuf); |
1611 | |
1612 | if (cachedmetap) |
1613 | *cachedmetap = metap; |
1614 | |
1615 | return buf; |
1616 | } |
1617 | |