1/*-------------------------------------------------------------------------
2 *
3 * spgtextproc.c
4 * implementation of radix tree (compressed trie) over text
5 *
6 * In a text_ops SPGiST index, inner tuples can have a prefix which is the
7 * common prefix of all strings indexed under that tuple. The node labels
8 * represent the next byte of the string(s) after the prefix. Assuming we
9 * always use the longest possible prefix, we will get more than one node
10 * label unless the prefix length is restricted by SPGIST_MAX_PREFIX_LENGTH.
11 *
12 * To reconstruct the indexed string for any index entry, concatenate the
13 * inner-tuple prefixes and node labels starting at the root and working
14 * down to the leaf entry, then append the datum in the leaf entry.
15 * (While descending the tree, "level" is the number of bytes reconstructed
16 * so far.)
17 *
18 * However, there are two special cases for node labels: -1 indicates that
19 * there are no more bytes after the prefix-so-far, and -2 indicates that we
20 * had to split an existing allTheSame tuple (in such a case we have to create
21 * a node label that doesn't correspond to any string byte). In either case,
22 * the node label does not contribute anything to the reconstructed string.
23 *
24 * Previously, we used a node label of zero for both special cases, but
25 * this was problematic because one can't tell whether a string ending at
26 * the current level can be pushed down into such a child node. For
27 * backwards compatibility, we still support such node labels for reading;
28 * but no new entries will ever be pushed down into a zero-labeled child.
29 * No new entries ever get pushed into a -2-labeled child, either.
30 *
31 *
32 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
33 * Portions Copyright (c) 1994, Regents of the University of California
34 *
35 * IDENTIFICATION
36 * src/backend/access/spgist/spgtextproc.c
37 *
38 *-------------------------------------------------------------------------
39 */
40#include "postgres.h"
41
42#include "access/spgist.h"
43#include "catalog/pg_type.h"
44#include "mb/pg_wchar.h"
45#include "utils/builtins.h"
46#include "utils/datum.h"
47#include "utils/pg_locale.h"
48#include "utils/varlena.h"
49
50
51/*
52 * In the worst case, an inner tuple in a text radix tree could have as many
53 * as 258 nodes (one for each possible byte value, plus the two special
54 * cases). Each node can take 16 bytes on MAXALIGN=8 machines. The inner
55 * tuple must fit on an index page of size BLCKSZ. Rather than assuming we
56 * know the exact amount of overhead imposed by page headers, tuple headers,
57 * etc, we leave 100 bytes for that (the actual overhead should be no more
58 * than 56 bytes at this writing, so there is slop in this number).
59 * So we can safely create prefixes up to BLCKSZ - 258 * 16 - 100 bytes long.
60 * Unfortunately, because 258 * 16 is over 4K, there is no safe prefix length
61 * when BLCKSZ is less than 8K; it is always possible to get "SPGiST inner
62 * tuple size exceeds maximum" if there are too many distinct next-byte values
63 * at a given place in the tree. Since use of nonstandard block sizes appears
64 * to be negligible in the field, we just live with that fact for now,
65 * choosing a max prefix size of 32 bytes when BLCKSZ is configured smaller
66 * than default.
67 */
68#define SPGIST_MAX_PREFIX_LENGTH Max((int) (BLCKSZ - 258 * 16 - 100), 32)
69
70/*
71 * Strategy for collation aware operator on text is equal to btree strategy
72 * plus value of 10.
73 *
74 * Current collation aware strategies and their corresponding btree strategies:
75 * 11 BTLessStrategyNumber
76 * 12 BTLessEqualStrategyNumber
77 * 14 BTGreaterEqualStrategyNumber
78 * 15 BTGreaterStrategyNumber
79 */
80#define SPG_STRATEGY_ADDITION (10)
81#define SPG_IS_COLLATION_AWARE_STRATEGY(s) ((s) > SPG_STRATEGY_ADDITION \
82 && (s) != RTPrefixStrategyNumber)
83
84/* Struct for sorting values in picksplit */
85typedef struct spgNodePtr
86{
87 Datum d;
88 int i;
89 int16 c;
90} spgNodePtr;
91
92
93Datum
94spg_text_config(PG_FUNCTION_ARGS)
95{
96 /* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */
97 spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1);
98
99 cfg->prefixType = TEXTOID;
100 cfg->labelType = INT2OID;
101 cfg->canReturnData = true;
102 cfg->longValuesOK = true; /* suffixing will shorten long values */
103 PG_RETURN_VOID();
104}
105
106/*
107 * Form a text datum from the given not-necessarily-null-terminated string,
108 * using short varlena header format if possible
109 */
110static Datum
111formTextDatum(const char *data, int datalen)
112{
113 char *p;
114
115 p = (char *) palloc(datalen + VARHDRSZ);
116
117 if (datalen + VARHDRSZ_SHORT <= VARATT_SHORT_MAX)
118 {
119 SET_VARSIZE_SHORT(p, datalen + VARHDRSZ_SHORT);
120 if (datalen)
121 memcpy(p + VARHDRSZ_SHORT, data, datalen);
122 }
123 else
124 {
125 SET_VARSIZE(p, datalen + VARHDRSZ);
126 memcpy(p + VARHDRSZ, data, datalen);
127 }
128
129 return PointerGetDatum(p);
130}
131
132/*
133 * Find the length of the common prefix of a and b
134 */
135static int
136commonPrefix(const char *a, const char *b, int lena, int lenb)
137{
138 int i = 0;
139
140 while (i < lena && i < lenb && *a == *b)
141 {
142 a++;
143 b++;
144 i++;
145 }
146
147 return i;
148}
149
150/*
151 * Binary search an array of int16 datums for a match to c
152 *
153 * On success, *i gets the match location; on failure, it gets where to insert
154 */
155static bool
156searchChar(Datum *nodeLabels, int nNodes, int16 c, int *i)
157{
158 int StopLow = 0,
159 StopHigh = nNodes;
160
161 while (StopLow < StopHigh)
162 {
163 int StopMiddle = (StopLow + StopHigh) >> 1;
164 int16 middle = DatumGetInt16(nodeLabels[StopMiddle]);
165
166 if (c < middle)
167 StopHigh = StopMiddle;
168 else if (c > middle)
169 StopLow = StopMiddle + 1;
170 else
171 {
172 *i = StopMiddle;
173 return true;
174 }
175 }
176
177 *i = StopHigh;
178 return false;
179}
180
181Datum
182spg_text_choose(PG_FUNCTION_ARGS)
183{
184 spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0);
185 spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1);
186 text *inText = DatumGetTextPP(in->datum);
187 char *inStr = VARDATA_ANY(inText);
188 int inSize = VARSIZE_ANY_EXHDR(inText);
189 char *prefixStr = NULL;
190 int prefixSize = 0;
191 int commonLen = 0;
192 int16 nodeChar = 0;
193 int i = 0;
194
195 /* Check for prefix match, set nodeChar to first byte after prefix */
196 if (in->hasPrefix)
197 {
198 text *prefixText = DatumGetTextPP(in->prefixDatum);
199
200 prefixStr = VARDATA_ANY(prefixText);
201 prefixSize = VARSIZE_ANY_EXHDR(prefixText);
202
203 commonLen = commonPrefix(inStr + in->level,
204 prefixStr,
205 inSize - in->level,
206 prefixSize);
207
208 if (commonLen == prefixSize)
209 {
210 if (inSize - in->level > commonLen)
211 nodeChar = *(unsigned char *) (inStr + in->level + commonLen);
212 else
213 nodeChar = -1;
214 }
215 else
216 {
217 /* Must split tuple because incoming value doesn't match prefix */
218 out->resultType = spgSplitTuple;
219
220 if (commonLen == 0)
221 {
222 out->result.splitTuple.prefixHasPrefix = false;
223 }
224 else
225 {
226 out->result.splitTuple.prefixHasPrefix = true;
227 out->result.splitTuple.prefixPrefixDatum =
228 formTextDatum(prefixStr, commonLen);
229 }
230 out->result.splitTuple.prefixNNodes = 1;
231 out->result.splitTuple.prefixNodeLabels =
232 (Datum *) palloc(sizeof(Datum));
233 out->result.splitTuple.prefixNodeLabels[0] =
234 Int16GetDatum(*(unsigned char *) (prefixStr + commonLen));
235
236 out->result.splitTuple.childNodeN = 0;
237
238 if (prefixSize - commonLen == 1)
239 {
240 out->result.splitTuple.postfixHasPrefix = false;
241 }
242 else
243 {
244 out->result.splitTuple.postfixHasPrefix = true;
245 out->result.splitTuple.postfixPrefixDatum =
246 formTextDatum(prefixStr + commonLen + 1,
247 prefixSize - commonLen - 1);
248 }
249
250 PG_RETURN_VOID();
251 }
252 }
253 else if (inSize > in->level)
254 {
255 nodeChar = *(unsigned char *) (inStr + in->level);
256 }
257 else
258 {
259 nodeChar = -1;
260 }
261
262 /* Look up nodeChar in the node label array */
263 if (searchChar(in->nodeLabels, in->nNodes, nodeChar, &i))
264 {
265 /*
266 * Descend to existing node. (If in->allTheSame, the core code will
267 * ignore our nodeN specification here, but that's OK. We still have
268 * to provide the correct levelAdd and restDatum values, and those are
269 * the same regardless of which node gets chosen by core.)
270 */
271 int levelAdd;
272
273 out->resultType = spgMatchNode;
274 out->result.matchNode.nodeN = i;
275 levelAdd = commonLen;
276 if (nodeChar >= 0)
277 levelAdd++;
278 out->result.matchNode.levelAdd = levelAdd;
279 if (inSize - in->level - levelAdd > 0)
280 out->result.matchNode.restDatum =
281 formTextDatum(inStr + in->level + levelAdd,
282 inSize - in->level - levelAdd);
283 else
284 out->result.matchNode.restDatum =
285 formTextDatum(NULL, 0);
286 }
287 else if (in->allTheSame)
288 {
289 /*
290 * Can't use AddNode action, so split the tuple. The upper tuple has
291 * the same prefix as before and uses a dummy node label -2 for the
292 * lower tuple. The lower tuple has no prefix and the same node
293 * labels as the original tuple.
294 *
295 * Note: it might seem tempting to shorten the upper tuple's prefix,
296 * if it has one, then use its last byte as label for the lower tuple.
297 * But that doesn't win since we know the incoming value matches the
298 * whole prefix: we'd just end up splitting the lower tuple again.
299 */
300 out->resultType = spgSplitTuple;
301 out->result.splitTuple.prefixHasPrefix = in->hasPrefix;
302 out->result.splitTuple.prefixPrefixDatum = in->prefixDatum;
303 out->result.splitTuple.prefixNNodes = 1;
304 out->result.splitTuple.prefixNodeLabels = (Datum *) palloc(sizeof(Datum));
305 out->result.splitTuple.prefixNodeLabels[0] = Int16GetDatum(-2);
306 out->result.splitTuple.childNodeN = 0;
307 out->result.splitTuple.postfixHasPrefix = false;
308 }
309 else
310 {
311 /* Add a node for the not-previously-seen nodeChar value */
312 out->resultType = spgAddNode;
313 out->result.addNode.nodeLabel = Int16GetDatum(nodeChar);
314 out->result.addNode.nodeN = i;
315 }
316
317 PG_RETURN_VOID();
318}
319
320/* qsort comparator to sort spgNodePtr structs by "c" */
321static int
322cmpNodePtr(const void *a, const void *b)
323{
324 const spgNodePtr *aa = (const spgNodePtr *) a;
325 const spgNodePtr *bb = (const spgNodePtr *) b;
326
327 return aa->c - bb->c;
328}
329
330Datum
331spg_text_picksplit(PG_FUNCTION_ARGS)
332{
333 spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0);
334 spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1);
335 text *text0 = DatumGetTextPP(in->datums[0]);
336 int i,
337 commonLen;
338 spgNodePtr *nodes;
339
340 /* Identify longest common prefix, if any */
341 commonLen = VARSIZE_ANY_EXHDR(text0);
342 for (i = 1; i < in->nTuples && commonLen > 0; i++)
343 {
344 text *texti = DatumGetTextPP(in->datums[i]);
345 int tmp = commonPrefix(VARDATA_ANY(text0),
346 VARDATA_ANY(texti),
347 VARSIZE_ANY_EXHDR(text0),
348 VARSIZE_ANY_EXHDR(texti));
349
350 if (tmp < commonLen)
351 commonLen = tmp;
352 }
353
354 /*
355 * Limit the prefix length, if necessary, to ensure that the resulting
356 * inner tuple will fit on a page.
357 */
358 commonLen = Min(commonLen, SPGIST_MAX_PREFIX_LENGTH);
359
360 /* Set node prefix to be that string, if it's not empty */
361 if (commonLen == 0)
362 {
363 out->hasPrefix = false;
364 }
365 else
366 {
367 out->hasPrefix = true;
368 out->prefixDatum = formTextDatum(VARDATA_ANY(text0), commonLen);
369 }
370
371 /* Extract the node label (first non-common byte) from each value */
372 nodes = (spgNodePtr *) palloc(sizeof(spgNodePtr) * in->nTuples);
373
374 for (i = 0; i < in->nTuples; i++)
375 {
376 text *texti = DatumGetTextPP(in->datums[i]);
377
378 if (commonLen < VARSIZE_ANY_EXHDR(texti))
379 nodes[i].c = *(unsigned char *) (VARDATA_ANY(texti) + commonLen);
380 else
381 nodes[i].c = -1; /* use -1 if string is all common */
382 nodes[i].i = i;
383 nodes[i].d = in->datums[i];
384 }
385
386 /*
387 * Sort by label values so that we can group the values into nodes. This
388 * also ensures that the nodes are ordered by label value, allowing the
389 * use of binary search in searchChar.
390 */
391 qsort(nodes, in->nTuples, sizeof(*nodes), cmpNodePtr);
392
393 /* And emit results */
394 out->nNodes = 0;
395 out->nodeLabels = (Datum *) palloc(sizeof(Datum) * in->nTuples);
396 out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples);
397 out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples);
398
399 for (i = 0; i < in->nTuples; i++)
400 {
401 text *texti = DatumGetTextPP(nodes[i].d);
402 Datum leafD;
403
404 if (i == 0 || nodes[i].c != nodes[i - 1].c)
405 {
406 out->nodeLabels[out->nNodes] = Int16GetDatum(nodes[i].c);
407 out->nNodes++;
408 }
409
410 if (commonLen < VARSIZE_ANY_EXHDR(texti))
411 leafD = formTextDatum(VARDATA_ANY(texti) + commonLen + 1,
412 VARSIZE_ANY_EXHDR(texti) - commonLen - 1);
413 else
414 leafD = formTextDatum(NULL, 0);
415
416 out->leafTupleDatums[nodes[i].i] = leafD;
417 out->mapTuplesToNodes[nodes[i].i] = out->nNodes - 1;
418 }
419
420 PG_RETURN_VOID();
421}
422
423Datum
424spg_text_inner_consistent(PG_FUNCTION_ARGS)
425{
426 spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0);
427 spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1);
428 bool collate_is_c = lc_collate_is_c(PG_GET_COLLATION());
429 text *reconstructedValue;
430 text *reconstrText;
431 int maxReconstrLen;
432 text *prefixText = NULL;
433 int prefixSize = 0;
434 int i;
435
436 /*
437 * Reconstruct values represented at this tuple, including parent data,
438 * prefix of this tuple if any, and the node label if it's non-dummy.
439 * in->level should be the length of the previously reconstructed value,
440 * and the number of bytes added here is prefixSize or prefixSize + 1.
441 *
442 * Note: we assume that in->reconstructedValue isn't toasted and doesn't
443 * have a short varlena header. This is okay because it must have been
444 * created by a previous invocation of this routine, and we always emit
445 * long-format reconstructed values.
446 */
447 reconstructedValue = (text *) DatumGetPointer(in->reconstructedValue);
448 Assert(reconstructedValue == NULL ? in->level == 0 :
449 VARSIZE_ANY_EXHDR(reconstructedValue) == in->level);
450
451 maxReconstrLen = in->level + 1;
452 if (in->hasPrefix)
453 {
454 prefixText = DatumGetTextPP(in->prefixDatum);
455 prefixSize = VARSIZE_ANY_EXHDR(prefixText);
456 maxReconstrLen += prefixSize;
457 }
458
459 reconstrText = palloc(VARHDRSZ + maxReconstrLen);
460 SET_VARSIZE(reconstrText, VARHDRSZ + maxReconstrLen);
461
462 if (in->level)
463 memcpy(VARDATA(reconstrText),
464 VARDATA(reconstructedValue),
465 in->level);
466 if (prefixSize)
467 memcpy(((char *) VARDATA(reconstrText)) + in->level,
468 VARDATA_ANY(prefixText),
469 prefixSize);
470 /* last byte of reconstrText will be filled in below */
471
472 /*
473 * Scan the child nodes. For each one, complete the reconstructed value
474 * and see if it's consistent with the query. If so, emit an entry into
475 * the output arrays.
476 */
477 out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes);
478 out->levelAdds = (int *) palloc(sizeof(int) * in->nNodes);
479 out->reconstructedValues = (Datum *) palloc(sizeof(Datum) * in->nNodes);
480 out->nNodes = 0;
481
482 for (i = 0; i < in->nNodes; i++)
483 {
484 int16 nodeChar = DatumGetInt16(in->nodeLabels[i]);
485 int thisLen;
486 bool res = true;
487 int j;
488
489 /* If nodeChar is a dummy value, don't include it in data */
490 if (nodeChar <= 0)
491 thisLen = maxReconstrLen - 1;
492 else
493 {
494 ((unsigned char *) VARDATA(reconstrText))[maxReconstrLen - 1] = nodeChar;
495 thisLen = maxReconstrLen;
496 }
497
498 for (j = 0; j < in->nkeys; j++)
499 {
500 StrategyNumber strategy = in->scankeys[j].sk_strategy;
501 text *inText;
502 int inSize;
503 int r;
504
505 /*
506 * If it's a collation-aware operator, but the collation is C, we
507 * can treat it as non-collation-aware. With non-C collation we
508 * need to traverse whole tree :-( so there's no point in making
509 * any check here. (Note also that our reconstructed value may
510 * well end with a partial multibyte character, so that applying
511 * any encoding-sensitive test to it would be risky anyhow.)
512 */
513 if (SPG_IS_COLLATION_AWARE_STRATEGY(strategy))
514 {
515 if (collate_is_c)
516 strategy -= SPG_STRATEGY_ADDITION;
517 else
518 continue;
519 }
520
521 inText = DatumGetTextPP(in->scankeys[j].sk_argument);
522 inSize = VARSIZE_ANY_EXHDR(inText);
523
524 r = memcmp(VARDATA(reconstrText), VARDATA_ANY(inText),
525 Min(inSize, thisLen));
526
527 switch (strategy)
528 {
529 case BTLessStrategyNumber:
530 case BTLessEqualStrategyNumber:
531 if (r > 0)
532 res = false;
533 break;
534 case BTEqualStrategyNumber:
535 if (r != 0 || inSize < thisLen)
536 res = false;
537 break;
538 case BTGreaterEqualStrategyNumber:
539 case BTGreaterStrategyNumber:
540 if (r < 0)
541 res = false;
542 break;
543 case RTPrefixStrategyNumber:
544 if (r != 0)
545 res = false;
546 break;
547 default:
548 elog(ERROR, "unrecognized strategy number: %d",
549 in->scankeys[j].sk_strategy);
550 break;
551 }
552
553 if (!res)
554 break; /* no need to consider remaining conditions */
555 }
556
557 if (res)
558 {
559 out->nodeNumbers[out->nNodes] = i;
560 out->levelAdds[out->nNodes] = thisLen - in->level;
561 SET_VARSIZE(reconstrText, VARHDRSZ + thisLen);
562 out->reconstructedValues[out->nNodes] =
563 datumCopy(PointerGetDatum(reconstrText), false, -1);
564 out->nNodes++;
565 }
566 }
567
568 PG_RETURN_VOID();
569}
570
571Datum
572spg_text_leaf_consistent(PG_FUNCTION_ARGS)
573{
574 spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0);
575 spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1);
576 int level = in->level;
577 text *leafValue,
578 *reconstrValue = NULL;
579 char *fullValue;
580 int fullLen;
581 bool res;
582 int j;
583
584 /* all tests are exact */
585 out->recheck = false;
586
587 leafValue = DatumGetTextPP(in->leafDatum);
588
589 /* As above, in->reconstructedValue isn't toasted or short. */
590 if (DatumGetPointer(in->reconstructedValue))
591 reconstrValue = (text *) DatumGetPointer(in->reconstructedValue);
592
593 Assert(reconstrValue == NULL ? level == 0 :
594 VARSIZE_ANY_EXHDR(reconstrValue) == level);
595
596 /* Reconstruct the full string represented by this leaf tuple */
597 fullLen = level + VARSIZE_ANY_EXHDR(leafValue);
598 if (VARSIZE_ANY_EXHDR(leafValue) == 0 && level > 0)
599 {
600 fullValue = VARDATA(reconstrValue);
601 out->leafValue = PointerGetDatum(reconstrValue);
602 }
603 else
604 {
605 text *fullText = palloc(VARHDRSZ + fullLen);
606
607 SET_VARSIZE(fullText, VARHDRSZ + fullLen);
608 fullValue = VARDATA(fullText);
609 if (level)
610 memcpy(fullValue, VARDATA(reconstrValue), level);
611 if (VARSIZE_ANY_EXHDR(leafValue) > 0)
612 memcpy(fullValue + level, VARDATA_ANY(leafValue),
613 VARSIZE_ANY_EXHDR(leafValue));
614 out->leafValue = PointerGetDatum(fullText);
615 }
616
617 /* Perform the required comparison(s) */
618 res = true;
619 for (j = 0; j < in->nkeys; j++)
620 {
621 StrategyNumber strategy = in->scankeys[j].sk_strategy;
622 text *query = DatumGetTextPP(in->scankeys[j].sk_argument);
623 int queryLen = VARSIZE_ANY_EXHDR(query);
624 int r;
625
626 if (strategy == RTPrefixStrategyNumber)
627 {
628 /*
629 * if level >= length of query then reconstrValue must begin with
630 * query (prefix) string, so we don't need to check it again.
631 */
632 res = (level >= queryLen) ||
633 DatumGetBool(DirectFunctionCall2Coll(text_starts_with,
634 PG_GET_COLLATION(),
635 out->leafValue,
636 PointerGetDatum(query)));
637
638 if (!res) /* no need to consider remaining conditions */
639 break;
640
641 continue;
642 }
643
644 if (SPG_IS_COLLATION_AWARE_STRATEGY(strategy))
645 {
646 /* Collation-aware comparison */
647 strategy -= SPG_STRATEGY_ADDITION;
648
649 /* If asserts enabled, verify encoding of reconstructed string */
650 Assert(pg_verifymbstr(fullValue, fullLen, false));
651
652 r = varstr_cmp(fullValue, fullLen,
653 VARDATA_ANY(query), queryLen,
654 PG_GET_COLLATION());
655 }
656 else
657 {
658 /* Non-collation-aware comparison */
659 r = memcmp(fullValue, VARDATA_ANY(query), Min(queryLen, fullLen));
660
661 if (r == 0)
662 {
663 if (queryLen > fullLen)
664 r = -1;
665 else if (queryLen < fullLen)
666 r = 1;
667 }
668 }
669
670 switch (strategy)
671 {
672 case BTLessStrategyNumber:
673 res = (r < 0);
674 break;
675 case BTLessEqualStrategyNumber:
676 res = (r <= 0);
677 break;
678 case BTEqualStrategyNumber:
679 res = (r == 0);
680 break;
681 case BTGreaterEqualStrategyNumber:
682 res = (r >= 0);
683 break;
684 case BTGreaterStrategyNumber:
685 res = (r > 0);
686 break;
687 default:
688 elog(ERROR, "unrecognized strategy number: %d",
689 in->scankeys[j].sk_strategy);
690 res = false;
691 break;
692 }
693
694 if (!res)
695 break; /* no need to consider remaining conditions */
696 }
697
698 PG_RETURN_BOOL(res);
699}
700