| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * bernoulli.c |
| 4 | * support routines for BERNOULLI tablesample method |
| 5 | * |
| 6 | * To ensure repeatability of samples, it is necessary that selection of a |
| 7 | * given tuple be history-independent; otherwise syncscanning would break |
| 8 | * repeatability, to say nothing of logically-irrelevant maintenance such |
| 9 | * as physical extension or shortening of the relation. |
| 10 | * |
| 11 | * To achieve that, we proceed by hashing each candidate TID together with |
| 12 | * the active seed, and then selecting it if the hash is less than the |
| 13 | * cutoff value computed from the selection probability by BeginSampleScan. |
| 14 | * |
| 15 | * |
| 16 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 17 | * Portions Copyright (c) 1994, Regents of the University of California |
| 18 | * |
| 19 | * IDENTIFICATION |
| 20 | * src/backend/access/tablesample/bernoulli.c |
| 21 | * |
| 22 | *------------------------------------------------------------------------- |
| 23 | */ |
| 24 | |
| 25 | #include "postgres.h" |
| 26 | |
| 27 | #include <math.h> |
| 28 | |
| 29 | #include "access/tsmapi.h" |
| 30 | #include "catalog/pg_type.h" |
| 31 | #include "optimizer/optimizer.h" |
| 32 | #include "utils/builtins.h" |
| 33 | #include "utils/hashutils.h" |
| 34 | |
| 35 | |
| 36 | /* Private state */ |
| 37 | typedef struct |
| 38 | { |
| 39 | uint64 cutoff; /* select tuples with hash less than this */ |
| 40 | uint32 seed; /* random seed */ |
| 41 | OffsetNumber lt; /* last tuple returned from current block */ |
| 42 | } BernoulliSamplerData; |
| 43 | |
| 44 | |
| 45 | static void bernoulli_samplescangetsamplesize(PlannerInfo *root, |
| 46 | RelOptInfo *baserel, |
| 47 | List *paramexprs, |
| 48 | BlockNumber *pages, |
| 49 | double *tuples); |
| 50 | static void bernoulli_initsamplescan(SampleScanState *node, |
| 51 | int eflags); |
| 52 | static void bernoulli_beginsamplescan(SampleScanState *node, |
| 53 | Datum *params, |
| 54 | int nparams, |
| 55 | uint32 seed); |
| 56 | static OffsetNumber bernoulli_nextsampletuple(SampleScanState *node, |
| 57 | BlockNumber blockno, |
| 58 | OffsetNumber maxoffset); |
| 59 | |
| 60 | |
| 61 | /* |
| 62 | * Create a TsmRoutine descriptor for the BERNOULLI method. |
| 63 | */ |
| 64 | Datum |
| 65 | tsm_bernoulli_handler(PG_FUNCTION_ARGS) |
| 66 | { |
| 67 | TsmRoutine *tsm = makeNode(TsmRoutine); |
| 68 | |
| 69 | tsm->parameterTypes = list_make1_oid(FLOAT4OID); |
| 70 | tsm->repeatable_across_queries = true; |
| 71 | tsm->repeatable_across_scans = true; |
| 72 | tsm->SampleScanGetSampleSize = bernoulli_samplescangetsamplesize; |
| 73 | tsm->InitSampleScan = bernoulli_initsamplescan; |
| 74 | tsm->BeginSampleScan = bernoulli_beginsamplescan; |
| 75 | tsm->NextSampleBlock = NULL; |
| 76 | tsm->NextSampleTuple = bernoulli_nextsampletuple; |
| 77 | tsm->EndSampleScan = NULL; |
| 78 | |
| 79 | PG_RETURN_POINTER(tsm); |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * Sample size estimation. |
| 84 | */ |
| 85 | static void |
| 86 | bernoulli_samplescangetsamplesize(PlannerInfo *root, |
| 87 | RelOptInfo *baserel, |
| 88 | List *paramexprs, |
| 89 | BlockNumber *pages, |
| 90 | double *tuples) |
| 91 | { |
| 92 | Node *pctnode; |
| 93 | float4 samplefract; |
| 94 | |
| 95 | /* Try to extract an estimate for the sample percentage */ |
| 96 | pctnode = (Node *) linitial(paramexprs); |
| 97 | pctnode = estimate_expression_value(root, pctnode); |
| 98 | |
| 99 | if (IsA(pctnode, Const) && |
| 100 | !((Const *) pctnode)->constisnull) |
| 101 | { |
| 102 | samplefract = DatumGetFloat4(((Const *) pctnode)->constvalue); |
| 103 | if (samplefract >= 0 && samplefract <= 100 && !isnan(samplefract)) |
| 104 | samplefract /= 100.0f; |
| 105 | else |
| 106 | { |
| 107 | /* Default samplefract if the value is bogus */ |
| 108 | samplefract = 0.1f; |
| 109 | } |
| 110 | } |
| 111 | else |
| 112 | { |
| 113 | /* Default samplefract if we didn't obtain a non-null Const */ |
| 114 | samplefract = 0.1f; |
| 115 | } |
| 116 | |
| 117 | /* We'll visit all pages of the baserel */ |
| 118 | *pages = baserel->pages; |
| 119 | |
| 120 | *tuples = clamp_row_est(baserel->tuples * samplefract); |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * Initialize during executor setup. |
| 125 | */ |
| 126 | static void |
| 127 | bernoulli_initsamplescan(SampleScanState *node, int eflags) |
| 128 | { |
| 129 | node->tsm_state = palloc0(sizeof(BernoulliSamplerData)); |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Examine parameters and prepare for a sample scan. |
| 134 | */ |
| 135 | static void |
| 136 | bernoulli_beginsamplescan(SampleScanState *node, |
| 137 | Datum *params, |
| 138 | int nparams, |
| 139 | uint32 seed) |
| 140 | { |
| 141 | BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; |
| 142 | double percent = DatumGetFloat4(params[0]); |
| 143 | double dcutoff; |
| 144 | |
| 145 | if (percent < 0 || percent > 100 || isnan(percent)) |
| 146 | ereport(ERROR, |
| 147 | (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), |
| 148 | errmsg("sample percentage must be between 0 and 100" ))); |
| 149 | |
| 150 | /* |
| 151 | * The cutoff is sample probability times (PG_UINT32_MAX + 1); we have to |
| 152 | * store that as a uint64, of course. Note that this gives strictly |
| 153 | * correct behavior at the limits of zero or one probability. |
| 154 | */ |
| 155 | dcutoff = rint(((double) PG_UINT32_MAX + 1) * percent / 100); |
| 156 | sampler->cutoff = (uint64) dcutoff; |
| 157 | sampler->seed = seed; |
| 158 | sampler->lt = InvalidOffsetNumber; |
| 159 | |
| 160 | /* |
| 161 | * Use bulkread, since we're scanning all pages. But pagemode visibility |
| 162 | * checking is a win only at larger sampling fractions. The 25% cutoff |
| 163 | * here is based on very limited experimentation. |
| 164 | */ |
| 165 | node->use_bulkread = true; |
| 166 | node->use_pagemode = (percent >= 25); |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | * Select next sampled tuple in current block. |
| 171 | * |
| 172 | * It is OK here to return an offset without knowing if the tuple is visible |
| 173 | * (or even exists). The reason is that we do the coinflip for every tuple |
| 174 | * offset in the table. Since all tuples have the same probability of being |
| 175 | * returned, it doesn't matter if we do extra coinflips for invisible tuples. |
| 176 | * |
| 177 | * When we reach end of the block, return InvalidOffsetNumber which tells |
| 178 | * SampleScan to go to next block. |
| 179 | */ |
| 180 | static OffsetNumber |
| 181 | bernoulli_nextsampletuple(SampleScanState *node, |
| 182 | BlockNumber blockno, |
| 183 | OffsetNumber maxoffset) |
| 184 | { |
| 185 | BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; |
| 186 | OffsetNumber tupoffset = sampler->lt; |
| 187 | uint32 hashinput[3]; |
| 188 | |
| 189 | /* Advance to first/next tuple in block */ |
| 190 | if (tupoffset == InvalidOffsetNumber) |
| 191 | tupoffset = FirstOffsetNumber; |
| 192 | else |
| 193 | tupoffset++; |
| 194 | |
| 195 | /* |
| 196 | * We compute the hash by applying hash_any to an array of 3 uint32's |
| 197 | * containing the block, offset, and seed. This is efficient to set up, |
| 198 | * and with the current implementation of hash_any, it gives |
| 199 | * machine-independent results, which is a nice property for regression |
| 200 | * testing. |
| 201 | * |
| 202 | * These words in the hash input are the same throughout the block: |
| 203 | */ |
| 204 | hashinput[0] = blockno; |
| 205 | hashinput[2] = sampler->seed; |
| 206 | |
| 207 | /* |
| 208 | * Loop over tuple offsets until finding suitable TID or reaching end of |
| 209 | * block. |
| 210 | */ |
| 211 | for (; tupoffset <= maxoffset; tupoffset++) |
| 212 | { |
| 213 | uint32 hash; |
| 214 | |
| 215 | hashinput[1] = tupoffset; |
| 216 | |
| 217 | hash = DatumGetUInt32(hash_any((const unsigned char *) hashinput, |
| 218 | (int) sizeof(hashinput))); |
| 219 | if (hash < sampler->cutoff) |
| 220 | break; |
| 221 | } |
| 222 | |
| 223 | if (tupoffset > maxoffset) |
| 224 | tupoffset = InvalidOffsetNumber; |
| 225 | |
| 226 | sampler->lt = tupoffset; |
| 227 | |
| 228 | return tupoffset; |
| 229 | } |
| 230 | |