1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * bernoulli.c |
4 | * support routines for BERNOULLI tablesample method |
5 | * |
6 | * To ensure repeatability of samples, it is necessary that selection of a |
7 | * given tuple be history-independent; otherwise syncscanning would break |
8 | * repeatability, to say nothing of logically-irrelevant maintenance such |
9 | * as physical extension or shortening of the relation. |
10 | * |
11 | * To achieve that, we proceed by hashing each candidate TID together with |
12 | * the active seed, and then selecting it if the hash is less than the |
13 | * cutoff value computed from the selection probability by BeginSampleScan. |
14 | * |
15 | * |
16 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
17 | * Portions Copyright (c) 1994, Regents of the University of California |
18 | * |
19 | * IDENTIFICATION |
20 | * src/backend/access/tablesample/bernoulli.c |
21 | * |
22 | *------------------------------------------------------------------------- |
23 | */ |
24 | |
25 | #include "postgres.h" |
26 | |
27 | #include <math.h> |
28 | |
29 | #include "access/tsmapi.h" |
30 | #include "catalog/pg_type.h" |
31 | #include "optimizer/optimizer.h" |
32 | #include "utils/builtins.h" |
33 | #include "utils/hashutils.h" |
34 | |
35 | |
36 | /* Private state */ |
37 | typedef struct |
38 | { |
39 | uint64 cutoff; /* select tuples with hash less than this */ |
40 | uint32 seed; /* random seed */ |
41 | OffsetNumber lt; /* last tuple returned from current block */ |
42 | } BernoulliSamplerData; |
43 | |
44 | |
45 | static void bernoulli_samplescangetsamplesize(PlannerInfo *root, |
46 | RelOptInfo *baserel, |
47 | List *paramexprs, |
48 | BlockNumber *pages, |
49 | double *tuples); |
50 | static void bernoulli_initsamplescan(SampleScanState *node, |
51 | int eflags); |
52 | static void bernoulli_beginsamplescan(SampleScanState *node, |
53 | Datum *params, |
54 | int nparams, |
55 | uint32 seed); |
56 | static OffsetNumber bernoulli_nextsampletuple(SampleScanState *node, |
57 | BlockNumber blockno, |
58 | OffsetNumber maxoffset); |
59 | |
60 | |
61 | /* |
62 | * Create a TsmRoutine descriptor for the BERNOULLI method. |
63 | */ |
64 | Datum |
65 | tsm_bernoulli_handler(PG_FUNCTION_ARGS) |
66 | { |
67 | TsmRoutine *tsm = makeNode(TsmRoutine); |
68 | |
69 | tsm->parameterTypes = list_make1_oid(FLOAT4OID); |
70 | tsm->repeatable_across_queries = true; |
71 | tsm->repeatable_across_scans = true; |
72 | tsm->SampleScanGetSampleSize = bernoulli_samplescangetsamplesize; |
73 | tsm->InitSampleScan = bernoulli_initsamplescan; |
74 | tsm->BeginSampleScan = bernoulli_beginsamplescan; |
75 | tsm->NextSampleBlock = NULL; |
76 | tsm->NextSampleTuple = bernoulli_nextsampletuple; |
77 | tsm->EndSampleScan = NULL; |
78 | |
79 | PG_RETURN_POINTER(tsm); |
80 | } |
81 | |
82 | /* |
83 | * Sample size estimation. |
84 | */ |
85 | static void |
86 | bernoulli_samplescangetsamplesize(PlannerInfo *root, |
87 | RelOptInfo *baserel, |
88 | List *paramexprs, |
89 | BlockNumber *pages, |
90 | double *tuples) |
91 | { |
92 | Node *pctnode; |
93 | float4 samplefract; |
94 | |
95 | /* Try to extract an estimate for the sample percentage */ |
96 | pctnode = (Node *) linitial(paramexprs); |
97 | pctnode = estimate_expression_value(root, pctnode); |
98 | |
99 | if (IsA(pctnode, Const) && |
100 | !((Const *) pctnode)->constisnull) |
101 | { |
102 | samplefract = DatumGetFloat4(((Const *) pctnode)->constvalue); |
103 | if (samplefract >= 0 && samplefract <= 100 && !isnan(samplefract)) |
104 | samplefract /= 100.0f; |
105 | else |
106 | { |
107 | /* Default samplefract if the value is bogus */ |
108 | samplefract = 0.1f; |
109 | } |
110 | } |
111 | else |
112 | { |
113 | /* Default samplefract if we didn't obtain a non-null Const */ |
114 | samplefract = 0.1f; |
115 | } |
116 | |
117 | /* We'll visit all pages of the baserel */ |
118 | *pages = baserel->pages; |
119 | |
120 | *tuples = clamp_row_est(baserel->tuples * samplefract); |
121 | } |
122 | |
123 | /* |
124 | * Initialize during executor setup. |
125 | */ |
126 | static void |
127 | bernoulli_initsamplescan(SampleScanState *node, int eflags) |
128 | { |
129 | node->tsm_state = palloc0(sizeof(BernoulliSamplerData)); |
130 | } |
131 | |
132 | /* |
133 | * Examine parameters and prepare for a sample scan. |
134 | */ |
135 | static void |
136 | bernoulli_beginsamplescan(SampleScanState *node, |
137 | Datum *params, |
138 | int nparams, |
139 | uint32 seed) |
140 | { |
141 | BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; |
142 | double percent = DatumGetFloat4(params[0]); |
143 | double dcutoff; |
144 | |
145 | if (percent < 0 || percent > 100 || isnan(percent)) |
146 | ereport(ERROR, |
147 | (errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT), |
148 | errmsg("sample percentage must be between 0 and 100" ))); |
149 | |
150 | /* |
151 | * The cutoff is sample probability times (PG_UINT32_MAX + 1); we have to |
152 | * store that as a uint64, of course. Note that this gives strictly |
153 | * correct behavior at the limits of zero or one probability. |
154 | */ |
155 | dcutoff = rint(((double) PG_UINT32_MAX + 1) * percent / 100); |
156 | sampler->cutoff = (uint64) dcutoff; |
157 | sampler->seed = seed; |
158 | sampler->lt = InvalidOffsetNumber; |
159 | |
160 | /* |
161 | * Use bulkread, since we're scanning all pages. But pagemode visibility |
162 | * checking is a win only at larger sampling fractions. The 25% cutoff |
163 | * here is based on very limited experimentation. |
164 | */ |
165 | node->use_bulkread = true; |
166 | node->use_pagemode = (percent >= 25); |
167 | } |
168 | |
169 | /* |
170 | * Select next sampled tuple in current block. |
171 | * |
172 | * It is OK here to return an offset without knowing if the tuple is visible |
173 | * (or even exists). The reason is that we do the coinflip for every tuple |
174 | * offset in the table. Since all tuples have the same probability of being |
175 | * returned, it doesn't matter if we do extra coinflips for invisible tuples. |
176 | * |
177 | * When we reach end of the block, return InvalidOffsetNumber which tells |
178 | * SampleScan to go to next block. |
179 | */ |
180 | static OffsetNumber |
181 | bernoulli_nextsampletuple(SampleScanState *node, |
182 | BlockNumber blockno, |
183 | OffsetNumber maxoffset) |
184 | { |
185 | BernoulliSamplerData *sampler = (BernoulliSamplerData *) node->tsm_state; |
186 | OffsetNumber tupoffset = sampler->lt; |
187 | uint32 hashinput[3]; |
188 | |
189 | /* Advance to first/next tuple in block */ |
190 | if (tupoffset == InvalidOffsetNumber) |
191 | tupoffset = FirstOffsetNumber; |
192 | else |
193 | tupoffset++; |
194 | |
195 | /* |
196 | * We compute the hash by applying hash_any to an array of 3 uint32's |
197 | * containing the block, offset, and seed. This is efficient to set up, |
198 | * and with the current implementation of hash_any, it gives |
199 | * machine-independent results, which is a nice property for regression |
200 | * testing. |
201 | * |
202 | * These words in the hash input are the same throughout the block: |
203 | */ |
204 | hashinput[0] = blockno; |
205 | hashinput[2] = sampler->seed; |
206 | |
207 | /* |
208 | * Loop over tuple offsets until finding suitable TID or reaching end of |
209 | * block. |
210 | */ |
211 | for (; tupoffset <= maxoffset; tupoffset++) |
212 | { |
213 | uint32 hash; |
214 | |
215 | hashinput[1] = tupoffset; |
216 | |
217 | hash = DatumGetUInt32(hash_any((const unsigned char *) hashinput, |
218 | (int) sizeof(hashinput))); |
219 | if (hash < sampler->cutoff) |
220 | break; |
221 | } |
222 | |
223 | if (tupoffset > maxoffset) |
224 | tupoffset = InvalidOffsetNumber; |
225 | |
226 | sampler->lt = tupoffset; |
227 | |
228 | return tupoffset; |
229 | } |
230 | |