| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execParallel.c |
| 4 | * Support routines for parallel execution. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * This file contains routines that are intended to support setting up, |
| 10 | * using, and tearing down a ParallelContext from within the PostgreSQL |
| 11 | * executor. The ParallelContext machinery will handle starting the |
| 12 | * workers and ensuring that their state generally matches that of the |
| 13 | * leader; see src/backend/access/transam/README.parallel for details. |
| 14 | * However, we must save and restore relevant executor state, such as |
| 15 | * any ParamListInfo associated with the query, buffer usage info, and |
| 16 | * the actual plan to be passed down to the worker. |
| 17 | * |
| 18 | * IDENTIFICATION |
| 19 | * src/backend/executor/execParallel.c |
| 20 | * |
| 21 | *------------------------------------------------------------------------- |
| 22 | */ |
| 23 | |
| 24 | #include "postgres.h" |
| 25 | |
| 26 | #include "executor/execParallel.h" |
| 27 | #include "executor/executor.h" |
| 28 | #include "executor/nodeAppend.h" |
| 29 | #include "executor/nodeBitmapHeapscan.h" |
| 30 | #include "executor/nodeCustom.h" |
| 31 | #include "executor/nodeForeignscan.h" |
| 32 | #include "executor/nodeHash.h" |
| 33 | #include "executor/nodeHashjoin.h" |
| 34 | #include "executor/nodeIndexscan.h" |
| 35 | #include "executor/nodeIndexonlyscan.h" |
| 36 | #include "executor/nodeSeqscan.h" |
| 37 | #include "executor/nodeSort.h" |
| 38 | #include "executor/nodeSubplan.h" |
| 39 | #include "executor/tqueue.h" |
| 40 | #include "jit/jit.h" |
| 41 | #include "nodes/nodeFuncs.h" |
| 42 | #include "storage/spin.h" |
| 43 | #include "tcop/tcopprot.h" |
| 44 | #include "utils/datum.h" |
| 45 | #include "utils/dsa.h" |
| 46 | #include "utils/lsyscache.h" |
| 47 | #include "utils/memutils.h" |
| 48 | #include "utils/snapmgr.h" |
| 49 | #include "pgstat.h" |
| 50 | |
| 51 | /* |
| 52 | * Magic numbers for parallel executor communication. We use constants |
| 53 | * greater than any 32-bit integer here so that values < 2^32 can be used |
| 54 | * by individual parallel nodes to store their own state. |
| 55 | */ |
| 56 | #define PARALLEL_KEY_EXECUTOR_FIXED UINT64CONST(0xE000000000000001) |
| 57 | #define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000002) |
| 58 | #define PARALLEL_KEY_PARAMLISTINFO UINT64CONST(0xE000000000000003) |
| 59 | #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000004) |
| 60 | #define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000005) |
| 61 | #define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000006) |
| 62 | #define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000007) |
| 63 | #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000008) |
| 64 | #define PARALLEL_KEY_JIT_INSTRUMENTATION UINT64CONST(0xE000000000000009) |
| 65 | |
| 66 | #define PARALLEL_TUPLE_QUEUE_SIZE 65536 |
| 67 | |
| 68 | /* |
| 69 | * Fixed-size random stuff that we need to pass to parallel workers. |
| 70 | */ |
| 71 | typedef struct FixedParallelExecutorState |
| 72 | { |
| 73 | int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */ |
| 74 | dsa_pointer param_exec; |
| 75 | int eflags; |
| 76 | int jit_flags; |
| 77 | } FixedParallelExecutorState; |
| 78 | |
| 79 | /* |
| 80 | * DSM structure for accumulating per-PlanState instrumentation. |
| 81 | * |
| 82 | * instrument_options: Same meaning here as in instrument.c. |
| 83 | * |
| 84 | * instrument_offset: Offset, relative to the start of this structure, |
| 85 | * of the first Instrumentation object. This will depend on the length of |
| 86 | * the plan_node_id array. |
| 87 | * |
| 88 | * num_workers: Number of workers. |
| 89 | * |
| 90 | * num_plan_nodes: Number of plan nodes. |
| 91 | * |
| 92 | * plan_node_id: Array of plan nodes for which we are gathering instrumentation |
| 93 | * from parallel workers. The length of this array is given by num_plan_nodes. |
| 94 | */ |
| 95 | struct SharedExecutorInstrumentation |
| 96 | { |
| 97 | int instrument_options; |
| 98 | int instrument_offset; |
| 99 | int num_workers; |
| 100 | int num_plan_nodes; |
| 101 | int plan_node_id[FLEXIBLE_ARRAY_MEMBER]; |
| 102 | /* array of num_plan_nodes * num_workers Instrumentation objects follows */ |
| 103 | }; |
| 104 | #define GetInstrumentationArray(sei) \ |
| 105 | (AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \ |
| 106 | (Instrumentation *) (((char *) sei) + sei->instrument_offset)) |
| 107 | |
| 108 | /* Context object for ExecParallelEstimate. */ |
| 109 | typedef struct ExecParallelEstimateContext |
| 110 | { |
| 111 | ParallelContext *pcxt; |
| 112 | int nnodes; |
| 113 | } ExecParallelEstimateContext; |
| 114 | |
| 115 | /* Context object for ExecParallelInitializeDSM. */ |
| 116 | typedef struct ExecParallelInitializeDSMContext |
| 117 | { |
| 118 | ParallelContext *pcxt; |
| 119 | SharedExecutorInstrumentation *instrumentation; |
| 120 | int nnodes; |
| 121 | } ExecParallelInitializeDSMContext; |
| 122 | |
| 123 | /* Helper functions that run in the parallel leader. */ |
| 124 | static char *ExecSerializePlan(Plan *plan, EState *estate); |
| 125 | static bool ExecParallelEstimate(PlanState *node, |
| 126 | ExecParallelEstimateContext *e); |
| 127 | static bool ExecParallelInitializeDSM(PlanState *node, |
| 128 | ExecParallelInitializeDSMContext *d); |
| 129 | static shm_mq_handle **ExecParallelSetupTupleQueues(ParallelContext *pcxt, |
| 130 | bool reinitialize); |
| 131 | static bool ExecParallelReInitializeDSM(PlanState *planstate, |
| 132 | ParallelContext *pcxt); |
| 133 | static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, |
| 134 | SharedExecutorInstrumentation *instrumentation); |
| 135 | |
| 136 | /* Helper function that runs in the parallel worker. */ |
| 137 | static DestReceiver *ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc); |
| 138 | |
| 139 | /* |
| 140 | * Create a serialized representation of the plan to be sent to each worker. |
| 141 | */ |
| 142 | static char * |
| 143 | ExecSerializePlan(Plan *plan, EState *estate) |
| 144 | { |
| 145 | PlannedStmt *pstmt; |
| 146 | ListCell *lc; |
| 147 | |
| 148 | /* We can't scribble on the original plan, so make a copy. */ |
| 149 | plan = copyObject(plan); |
| 150 | |
| 151 | /* |
| 152 | * The worker will start its own copy of the executor, and that copy will |
| 153 | * insert a junk filter if the toplevel node has any resjunk entries. We |
| 154 | * don't want that to happen, because while resjunk columns shouldn't be |
| 155 | * sent back to the user, here the tuples are coming back to another |
| 156 | * backend which may very well need them. So mutate the target list |
| 157 | * accordingly. This is sort of a hack; there might be better ways to do |
| 158 | * this... |
| 159 | */ |
| 160 | foreach(lc, plan->targetlist) |
| 161 | { |
| 162 | TargetEntry *tle = lfirst_node(TargetEntry, lc); |
| 163 | |
| 164 | tle->resjunk = false; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Create a dummy PlannedStmt. Most of the fields don't need to be valid |
| 169 | * for our purposes, but the worker will need at least a minimal |
| 170 | * PlannedStmt to start the executor. |
| 171 | */ |
| 172 | pstmt = makeNode(PlannedStmt); |
| 173 | pstmt->commandType = CMD_SELECT; |
| 174 | pstmt->queryId = UINT64CONST(0); |
| 175 | pstmt->hasReturning = false; |
| 176 | pstmt->hasModifyingCTE = false; |
| 177 | pstmt->canSetTag = true; |
| 178 | pstmt->transientPlan = false; |
| 179 | pstmt->dependsOnRole = false; |
| 180 | pstmt->parallelModeNeeded = false; |
| 181 | pstmt->planTree = plan; |
| 182 | pstmt->rtable = estate->es_range_table; |
| 183 | pstmt->resultRelations = NIL; |
| 184 | |
| 185 | /* |
| 186 | * Transfer only parallel-safe subplans, leaving a NULL "hole" in the list |
| 187 | * for unsafe ones (so that the list indexes of the safe ones are |
| 188 | * preserved). This positively ensures that the worker won't try to run, |
| 189 | * or even do ExecInitNode on, an unsafe subplan. That's important to |
| 190 | * protect, eg, non-parallel-aware FDWs from getting into trouble. |
| 191 | */ |
| 192 | pstmt->subplans = NIL; |
| 193 | foreach(lc, estate->es_plannedstmt->subplans) |
| 194 | { |
| 195 | Plan *subplan = (Plan *) lfirst(lc); |
| 196 | |
| 197 | if (subplan && !subplan->parallel_safe) |
| 198 | subplan = NULL; |
| 199 | pstmt->subplans = lappend(pstmt->subplans, subplan); |
| 200 | } |
| 201 | |
| 202 | pstmt->rewindPlanIDs = NULL; |
| 203 | pstmt->rowMarks = NIL; |
| 204 | pstmt->relationOids = NIL; |
| 205 | pstmt->invalItems = NIL; /* workers can't replan anyway... */ |
| 206 | pstmt->paramExecTypes = estate->es_plannedstmt->paramExecTypes; |
| 207 | pstmt->utilityStmt = NULL; |
| 208 | pstmt->stmt_location = -1; |
| 209 | pstmt->stmt_len = -1; |
| 210 | |
| 211 | /* Return serialized copy of our dummy PlannedStmt. */ |
| 212 | return nodeToString(pstmt); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Parallel-aware plan nodes (and occasionally others) may need some state |
| 217 | * which is shared across all parallel workers. Before we size the DSM, give |
| 218 | * them a chance to call shm_toc_estimate_chunk or shm_toc_estimate_keys on |
| 219 | * &pcxt->estimator. |
| 220 | * |
| 221 | * While we're at it, count the number of PlanState nodes in the tree, so |
| 222 | * we know how many Instrumentation structures we need. |
| 223 | */ |
| 224 | static bool |
| 225 | ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e) |
| 226 | { |
| 227 | if (planstate == NULL) |
| 228 | return false; |
| 229 | |
| 230 | /* Count this node. */ |
| 231 | e->nnodes++; |
| 232 | |
| 233 | switch (nodeTag(planstate)) |
| 234 | { |
| 235 | case T_SeqScanState: |
| 236 | if (planstate->plan->parallel_aware) |
| 237 | ExecSeqScanEstimate((SeqScanState *) planstate, |
| 238 | e->pcxt); |
| 239 | break; |
| 240 | case T_IndexScanState: |
| 241 | if (planstate->plan->parallel_aware) |
| 242 | ExecIndexScanEstimate((IndexScanState *) planstate, |
| 243 | e->pcxt); |
| 244 | break; |
| 245 | case T_IndexOnlyScanState: |
| 246 | if (planstate->plan->parallel_aware) |
| 247 | ExecIndexOnlyScanEstimate((IndexOnlyScanState *) planstate, |
| 248 | e->pcxt); |
| 249 | break; |
| 250 | case T_ForeignScanState: |
| 251 | if (planstate->plan->parallel_aware) |
| 252 | ExecForeignScanEstimate((ForeignScanState *) planstate, |
| 253 | e->pcxt); |
| 254 | break; |
| 255 | case T_AppendState: |
| 256 | if (planstate->plan->parallel_aware) |
| 257 | ExecAppendEstimate((AppendState *) planstate, |
| 258 | e->pcxt); |
| 259 | break; |
| 260 | case T_CustomScanState: |
| 261 | if (planstate->plan->parallel_aware) |
| 262 | ExecCustomScanEstimate((CustomScanState *) planstate, |
| 263 | e->pcxt); |
| 264 | break; |
| 265 | case T_BitmapHeapScanState: |
| 266 | if (planstate->plan->parallel_aware) |
| 267 | ExecBitmapHeapEstimate((BitmapHeapScanState *) planstate, |
| 268 | e->pcxt); |
| 269 | break; |
| 270 | case T_HashJoinState: |
| 271 | if (planstate->plan->parallel_aware) |
| 272 | ExecHashJoinEstimate((HashJoinState *) planstate, |
| 273 | e->pcxt); |
| 274 | break; |
| 275 | case T_HashState: |
| 276 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 277 | ExecHashEstimate((HashState *) planstate, e->pcxt); |
| 278 | break; |
| 279 | case T_SortState: |
| 280 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 281 | ExecSortEstimate((SortState *) planstate, e->pcxt); |
| 282 | break; |
| 283 | |
| 284 | default: |
| 285 | break; |
| 286 | } |
| 287 | |
| 288 | return planstate_tree_walker(planstate, ExecParallelEstimate, e); |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Estimate the amount of space required to serialize the indicated parameters. |
| 293 | */ |
| 294 | static Size |
| 295 | EstimateParamExecSpace(EState *estate, Bitmapset *params) |
| 296 | { |
| 297 | int paramid; |
| 298 | Size sz = sizeof(int); |
| 299 | |
| 300 | paramid = -1; |
| 301 | while ((paramid = bms_next_member(params, paramid)) >= 0) |
| 302 | { |
| 303 | Oid typeOid; |
| 304 | int16 typLen; |
| 305 | bool typByVal; |
| 306 | ParamExecData *prm; |
| 307 | |
| 308 | prm = &(estate->es_param_exec_vals[paramid]); |
| 309 | typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, |
| 310 | paramid); |
| 311 | |
| 312 | sz = add_size(sz, sizeof(int)); /* space for paramid */ |
| 313 | |
| 314 | /* space for datum/isnull */ |
| 315 | if (OidIsValid(typeOid)) |
| 316 | get_typlenbyval(typeOid, &typLen, &typByVal); |
| 317 | else |
| 318 | { |
| 319 | /* If no type OID, assume by-value, like copyParamList does. */ |
| 320 | typLen = sizeof(Datum); |
| 321 | typByVal = true; |
| 322 | } |
| 323 | sz = add_size(sz, |
| 324 | datumEstimateSpace(prm->value, prm->isnull, |
| 325 | typByVal, typLen)); |
| 326 | } |
| 327 | return sz; |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * Serialize specified PARAM_EXEC parameters. |
| 332 | * |
| 333 | * We write the number of parameters first, as a 4-byte integer, and then |
| 334 | * write details for each parameter in turn. The details for each parameter |
| 335 | * consist of a 4-byte paramid (location of param in execution time internal |
| 336 | * parameter array) and then the datum as serialized by datumSerialize(). |
| 337 | */ |
| 338 | static dsa_pointer |
| 339 | SerializeParamExecParams(EState *estate, Bitmapset *params, dsa_area *area) |
| 340 | { |
| 341 | Size size; |
| 342 | int nparams; |
| 343 | int paramid; |
| 344 | ParamExecData *prm; |
| 345 | dsa_pointer handle; |
| 346 | char *start_address; |
| 347 | |
| 348 | /* Allocate enough space for the current parameter values. */ |
| 349 | size = EstimateParamExecSpace(estate, params); |
| 350 | handle = dsa_allocate(area, size); |
| 351 | start_address = dsa_get_address(area, handle); |
| 352 | |
| 353 | /* First write the number of parameters as a 4-byte integer. */ |
| 354 | nparams = bms_num_members(params); |
| 355 | memcpy(start_address, &nparams, sizeof(int)); |
| 356 | start_address += sizeof(int); |
| 357 | |
| 358 | /* Write details for each parameter in turn. */ |
| 359 | paramid = -1; |
| 360 | while ((paramid = bms_next_member(params, paramid)) >= 0) |
| 361 | { |
| 362 | Oid typeOid; |
| 363 | int16 typLen; |
| 364 | bool typByVal; |
| 365 | |
| 366 | prm = &(estate->es_param_exec_vals[paramid]); |
| 367 | typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, |
| 368 | paramid); |
| 369 | |
| 370 | /* Write paramid. */ |
| 371 | memcpy(start_address, ¶mid, sizeof(int)); |
| 372 | start_address += sizeof(int); |
| 373 | |
| 374 | /* Write datum/isnull */ |
| 375 | if (OidIsValid(typeOid)) |
| 376 | get_typlenbyval(typeOid, &typLen, &typByVal); |
| 377 | else |
| 378 | { |
| 379 | /* If no type OID, assume by-value, like copyParamList does. */ |
| 380 | typLen = sizeof(Datum); |
| 381 | typByVal = true; |
| 382 | } |
| 383 | datumSerialize(prm->value, prm->isnull, typByVal, typLen, |
| 384 | &start_address); |
| 385 | } |
| 386 | |
| 387 | return handle; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * Restore specified PARAM_EXEC parameters. |
| 392 | */ |
| 393 | static void |
| 394 | RestoreParamExecParams(char *start_address, EState *estate) |
| 395 | { |
| 396 | int nparams; |
| 397 | int i; |
| 398 | int paramid; |
| 399 | |
| 400 | memcpy(&nparams, start_address, sizeof(int)); |
| 401 | start_address += sizeof(int); |
| 402 | |
| 403 | for (i = 0; i < nparams; i++) |
| 404 | { |
| 405 | ParamExecData *prm; |
| 406 | |
| 407 | /* Read paramid */ |
| 408 | memcpy(¶mid, start_address, sizeof(int)); |
| 409 | start_address += sizeof(int); |
| 410 | prm = &(estate->es_param_exec_vals[paramid]); |
| 411 | |
| 412 | /* Read datum/isnull. */ |
| 413 | prm->value = datumRestore(&start_address, &prm->isnull); |
| 414 | prm->execPlan = NULL; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Initialize the dynamic shared memory segment that will be used to control |
| 420 | * parallel execution. |
| 421 | */ |
| 422 | static bool |
| 423 | ExecParallelInitializeDSM(PlanState *planstate, |
| 424 | ExecParallelInitializeDSMContext *d) |
| 425 | { |
| 426 | if (planstate == NULL) |
| 427 | return false; |
| 428 | |
| 429 | /* If instrumentation is enabled, initialize slot for this node. */ |
| 430 | if (d->instrumentation != NULL) |
| 431 | d->instrumentation->plan_node_id[d->nnodes] = |
| 432 | planstate->plan->plan_node_id; |
| 433 | |
| 434 | /* Count this node. */ |
| 435 | d->nnodes++; |
| 436 | |
| 437 | /* |
| 438 | * Call initializers for DSM-using plan nodes. |
| 439 | * |
| 440 | * Most plan nodes won't do anything here, but plan nodes that allocated |
| 441 | * DSM may need to initialize shared state in the DSM before parallel |
| 442 | * workers are launched. They can allocate the space they previously |
| 443 | * estimated using shm_toc_allocate, and add the keys they previously |
| 444 | * estimated using shm_toc_insert, in each case targeting pcxt->toc. |
| 445 | */ |
| 446 | switch (nodeTag(planstate)) |
| 447 | { |
| 448 | case T_SeqScanState: |
| 449 | if (planstate->plan->parallel_aware) |
| 450 | ExecSeqScanInitializeDSM((SeqScanState *) planstate, |
| 451 | d->pcxt); |
| 452 | break; |
| 453 | case T_IndexScanState: |
| 454 | if (planstate->plan->parallel_aware) |
| 455 | ExecIndexScanInitializeDSM((IndexScanState *) planstate, |
| 456 | d->pcxt); |
| 457 | break; |
| 458 | case T_IndexOnlyScanState: |
| 459 | if (planstate->plan->parallel_aware) |
| 460 | ExecIndexOnlyScanInitializeDSM((IndexOnlyScanState *) planstate, |
| 461 | d->pcxt); |
| 462 | break; |
| 463 | case T_ForeignScanState: |
| 464 | if (planstate->plan->parallel_aware) |
| 465 | ExecForeignScanInitializeDSM((ForeignScanState *) planstate, |
| 466 | d->pcxt); |
| 467 | break; |
| 468 | case T_AppendState: |
| 469 | if (planstate->plan->parallel_aware) |
| 470 | ExecAppendInitializeDSM((AppendState *) planstate, |
| 471 | d->pcxt); |
| 472 | break; |
| 473 | case T_CustomScanState: |
| 474 | if (planstate->plan->parallel_aware) |
| 475 | ExecCustomScanInitializeDSM((CustomScanState *) planstate, |
| 476 | d->pcxt); |
| 477 | break; |
| 478 | case T_BitmapHeapScanState: |
| 479 | if (planstate->plan->parallel_aware) |
| 480 | ExecBitmapHeapInitializeDSM((BitmapHeapScanState *) planstate, |
| 481 | d->pcxt); |
| 482 | break; |
| 483 | case T_HashJoinState: |
| 484 | if (planstate->plan->parallel_aware) |
| 485 | ExecHashJoinInitializeDSM((HashJoinState *) planstate, |
| 486 | d->pcxt); |
| 487 | break; |
| 488 | case T_HashState: |
| 489 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 490 | ExecHashInitializeDSM((HashState *) planstate, d->pcxt); |
| 491 | break; |
| 492 | case T_SortState: |
| 493 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 494 | ExecSortInitializeDSM((SortState *) planstate, d->pcxt); |
| 495 | break; |
| 496 | |
| 497 | default: |
| 498 | break; |
| 499 | } |
| 500 | |
| 501 | return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d); |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * It sets up the response queues for backend workers to return tuples |
| 506 | * to the main backend and start the workers. |
| 507 | */ |
| 508 | static shm_mq_handle ** |
| 509 | ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize) |
| 510 | { |
| 511 | shm_mq_handle **responseq; |
| 512 | char *tqueuespace; |
| 513 | int i; |
| 514 | |
| 515 | /* Skip this if no workers. */ |
| 516 | if (pcxt->nworkers == 0) |
| 517 | return NULL; |
| 518 | |
| 519 | /* Allocate memory for shared memory queue handles. */ |
| 520 | responseq = (shm_mq_handle **) |
| 521 | palloc(pcxt->nworkers * sizeof(shm_mq_handle *)); |
| 522 | |
| 523 | /* |
| 524 | * If not reinitializing, allocate space from the DSM for the queues; |
| 525 | * otherwise, find the already allocated space. |
| 526 | */ |
| 527 | if (!reinitialize) |
| 528 | tqueuespace = |
| 529 | shm_toc_allocate(pcxt->toc, |
| 530 | mul_size(PARALLEL_TUPLE_QUEUE_SIZE, |
| 531 | pcxt->nworkers)); |
| 532 | else |
| 533 | tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, false); |
| 534 | |
| 535 | /* Create the queues, and become the receiver for each. */ |
| 536 | for (i = 0; i < pcxt->nworkers; ++i) |
| 537 | { |
| 538 | shm_mq *mq; |
| 539 | |
| 540 | mq = shm_mq_create(tqueuespace + |
| 541 | ((Size) i) * PARALLEL_TUPLE_QUEUE_SIZE, |
| 542 | (Size) PARALLEL_TUPLE_QUEUE_SIZE); |
| 543 | |
| 544 | shm_mq_set_receiver(mq, MyProc); |
| 545 | responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL); |
| 546 | } |
| 547 | |
| 548 | /* Add array of queues to shm_toc, so others can find it. */ |
| 549 | if (!reinitialize) |
| 550 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace); |
| 551 | |
| 552 | /* Return array of handles. */ |
| 553 | return responseq; |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Sets up the required infrastructure for backend workers to perform |
| 558 | * execution and return results to the main backend. |
| 559 | */ |
| 560 | ParallelExecutorInfo * |
| 561 | ExecInitParallelPlan(PlanState *planstate, EState *estate, |
| 562 | Bitmapset *sendParams, int nworkers, |
| 563 | int64 tuples_needed) |
| 564 | { |
| 565 | ParallelExecutorInfo *pei; |
| 566 | ParallelContext *pcxt; |
| 567 | ExecParallelEstimateContext e; |
| 568 | ExecParallelInitializeDSMContext d; |
| 569 | FixedParallelExecutorState *fpes; |
| 570 | char *pstmt_data; |
| 571 | char *pstmt_space; |
| 572 | char *paramlistinfo_space; |
| 573 | BufferUsage *bufusage_space; |
| 574 | SharedExecutorInstrumentation *instrumentation = NULL; |
| 575 | SharedJitInstrumentation *jit_instrumentation = NULL; |
| 576 | int pstmt_len; |
| 577 | int paramlistinfo_len; |
| 578 | int instrumentation_len = 0; |
| 579 | int jit_instrumentation_len = 0; |
| 580 | int instrument_offset = 0; |
| 581 | Size dsa_minsize = dsa_minimum_size(); |
| 582 | char *query_string; |
| 583 | int query_len; |
| 584 | |
| 585 | /* |
| 586 | * Force any initplan outputs that we're going to pass to workers to be |
| 587 | * evaluated, if they weren't already. |
| 588 | * |
| 589 | * For simplicity, we use the EState's per-output-tuple ExprContext here. |
| 590 | * That risks intra-query memory leakage, since we might pass through here |
| 591 | * many times before that ExprContext gets reset; but ExecSetParamPlan |
| 592 | * doesn't normally leak any memory in the context (see its comments), so |
| 593 | * it doesn't seem worth complicating this function's API to pass it a |
| 594 | * shorter-lived ExprContext. This might need to change someday. |
| 595 | */ |
| 596 | ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); |
| 597 | |
| 598 | /* Allocate object for return value. */ |
| 599 | pei = palloc0(sizeof(ParallelExecutorInfo)); |
| 600 | pei->finished = false; |
| 601 | pei->planstate = planstate; |
| 602 | |
| 603 | /* Fix up and serialize plan to be sent to workers. */ |
| 604 | pstmt_data = ExecSerializePlan(planstate->plan, estate); |
| 605 | |
| 606 | /* Create a parallel context. */ |
| 607 | pcxt = CreateParallelContext("postgres" , "ParallelQueryMain" , nworkers); |
| 608 | pei->pcxt = pcxt; |
| 609 | |
| 610 | /* |
| 611 | * Before telling the parallel context to create a dynamic shared memory |
| 612 | * segment, we need to figure out how big it should be. Estimate space |
| 613 | * for the various things we need to store. |
| 614 | */ |
| 615 | |
| 616 | /* Estimate space for fixed-size state. */ |
| 617 | shm_toc_estimate_chunk(&pcxt->estimator, |
| 618 | sizeof(FixedParallelExecutorState)); |
| 619 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 620 | |
| 621 | /* Estimate space for query text. */ |
| 622 | query_len = strlen(estate->es_sourceText); |
| 623 | shm_toc_estimate_chunk(&pcxt->estimator, query_len + 1); |
| 624 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 625 | |
| 626 | /* Estimate space for serialized PlannedStmt. */ |
| 627 | pstmt_len = strlen(pstmt_data) + 1; |
| 628 | shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len); |
| 629 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 630 | |
| 631 | /* Estimate space for serialized ParamListInfo. */ |
| 632 | paramlistinfo_len = EstimateParamListSpace(estate->es_param_list_info); |
| 633 | shm_toc_estimate_chunk(&pcxt->estimator, paramlistinfo_len); |
| 634 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 635 | |
| 636 | /* |
| 637 | * Estimate space for BufferUsage. |
| 638 | * |
| 639 | * If EXPLAIN is not in use and there are no extensions loaded that care, |
| 640 | * we could skip this. But we have no way of knowing whether anyone's |
| 641 | * looking at pgBufferUsage, so do it unconditionally. |
| 642 | */ |
| 643 | shm_toc_estimate_chunk(&pcxt->estimator, |
| 644 | mul_size(sizeof(BufferUsage), pcxt->nworkers)); |
| 645 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 646 | |
| 647 | /* Estimate space for tuple queues. */ |
| 648 | shm_toc_estimate_chunk(&pcxt->estimator, |
| 649 | mul_size(PARALLEL_TUPLE_QUEUE_SIZE, pcxt->nworkers)); |
| 650 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 651 | |
| 652 | /* |
| 653 | * Give parallel-aware nodes a chance to add to the estimates, and get a |
| 654 | * count of how many PlanState nodes there are. |
| 655 | */ |
| 656 | e.pcxt = pcxt; |
| 657 | e.nnodes = 0; |
| 658 | ExecParallelEstimate(planstate, &e); |
| 659 | |
| 660 | /* Estimate space for instrumentation, if required. */ |
| 661 | if (estate->es_instrument) |
| 662 | { |
| 663 | instrumentation_len = |
| 664 | offsetof(SharedExecutorInstrumentation, plan_node_id) + |
| 665 | sizeof(int) * e.nnodes; |
| 666 | instrumentation_len = MAXALIGN(instrumentation_len); |
| 667 | instrument_offset = instrumentation_len; |
| 668 | instrumentation_len += |
| 669 | mul_size(sizeof(Instrumentation), |
| 670 | mul_size(e.nnodes, nworkers)); |
| 671 | shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len); |
| 672 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 673 | |
| 674 | /* Estimate space for JIT instrumentation, if required. */ |
| 675 | if (estate->es_jit_flags != PGJIT_NONE) |
| 676 | { |
| 677 | jit_instrumentation_len = |
| 678 | offsetof(SharedJitInstrumentation, jit_instr) + |
| 679 | sizeof(JitInstrumentation) * nworkers; |
| 680 | shm_toc_estimate_chunk(&pcxt->estimator, jit_instrumentation_len); |
| 681 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | /* Estimate space for DSA area. */ |
| 686 | shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize); |
| 687 | shm_toc_estimate_keys(&pcxt->estimator, 1); |
| 688 | |
| 689 | /* Everyone's had a chance to ask for space, so now create the DSM. */ |
| 690 | InitializeParallelDSM(pcxt); |
| 691 | |
| 692 | /* |
| 693 | * OK, now we have a dynamic shared memory segment, and it should be big |
| 694 | * enough to store all of the data we estimated we would want to put into |
| 695 | * it, plus whatever general stuff (not specifically executor-related) the |
| 696 | * ParallelContext itself needs to store there. None of the space we |
| 697 | * asked for has been allocated or initialized yet, though, so do that. |
| 698 | */ |
| 699 | |
| 700 | /* Store fixed-size state. */ |
| 701 | fpes = shm_toc_allocate(pcxt->toc, sizeof(FixedParallelExecutorState)); |
| 702 | fpes->tuples_needed = tuples_needed; |
| 703 | fpes->param_exec = InvalidDsaPointer; |
| 704 | fpes->eflags = estate->es_top_eflags; |
| 705 | fpes->jit_flags = estate->es_jit_flags; |
| 706 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, fpes); |
| 707 | |
| 708 | /* Store query string */ |
| 709 | query_string = shm_toc_allocate(pcxt->toc, query_len + 1); |
| 710 | memcpy(query_string, estate->es_sourceText, query_len + 1); |
| 711 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string); |
| 712 | |
| 713 | /* Store serialized PlannedStmt. */ |
| 714 | pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len); |
| 715 | memcpy(pstmt_space, pstmt_data, pstmt_len); |
| 716 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space); |
| 717 | |
| 718 | /* Store serialized ParamListInfo. */ |
| 719 | paramlistinfo_space = shm_toc_allocate(pcxt->toc, paramlistinfo_len); |
| 720 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMLISTINFO, paramlistinfo_space); |
| 721 | SerializeParamList(estate->es_param_list_info, ¶mlistinfo_space); |
| 722 | |
| 723 | /* Allocate space for each worker's BufferUsage; no need to initialize. */ |
| 724 | bufusage_space = shm_toc_allocate(pcxt->toc, |
| 725 | mul_size(sizeof(BufferUsage), pcxt->nworkers)); |
| 726 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space); |
| 727 | pei->buffer_usage = bufusage_space; |
| 728 | |
| 729 | /* Set up the tuple queues that the workers will write into. */ |
| 730 | pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false); |
| 731 | |
| 732 | /* We don't need the TupleQueueReaders yet, though. */ |
| 733 | pei->reader = NULL; |
| 734 | |
| 735 | /* |
| 736 | * If instrumentation options were supplied, allocate space for the data. |
| 737 | * It only gets partially initialized here; the rest happens during |
| 738 | * ExecParallelInitializeDSM. |
| 739 | */ |
| 740 | if (estate->es_instrument) |
| 741 | { |
| 742 | Instrumentation *instrument; |
| 743 | int i; |
| 744 | |
| 745 | instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len); |
| 746 | instrumentation->instrument_options = estate->es_instrument; |
| 747 | instrumentation->instrument_offset = instrument_offset; |
| 748 | instrumentation->num_workers = nworkers; |
| 749 | instrumentation->num_plan_nodes = e.nnodes; |
| 750 | instrument = GetInstrumentationArray(instrumentation); |
| 751 | for (i = 0; i < nworkers * e.nnodes; ++i) |
| 752 | InstrInit(&instrument[i], estate->es_instrument); |
| 753 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_INSTRUMENTATION, |
| 754 | instrumentation); |
| 755 | pei->instrumentation = instrumentation; |
| 756 | |
| 757 | if (estate->es_jit_flags != PGJIT_NONE) |
| 758 | { |
| 759 | jit_instrumentation = shm_toc_allocate(pcxt->toc, |
| 760 | jit_instrumentation_len); |
| 761 | jit_instrumentation->num_workers = nworkers; |
| 762 | memset(jit_instrumentation->jit_instr, 0, |
| 763 | sizeof(JitInstrumentation) * nworkers); |
| 764 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_JIT_INSTRUMENTATION, |
| 765 | jit_instrumentation); |
| 766 | pei->jit_instrumentation = jit_instrumentation; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | * Create a DSA area that can be used by the leader and all workers. |
| 772 | * (However, if we failed to create a DSM and are using private memory |
| 773 | * instead, then skip this.) |
| 774 | */ |
| 775 | if (pcxt->seg != NULL) |
| 776 | { |
| 777 | char *area_space; |
| 778 | |
| 779 | area_space = shm_toc_allocate(pcxt->toc, dsa_minsize); |
| 780 | shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space); |
| 781 | pei->area = dsa_create_in_place(area_space, dsa_minsize, |
| 782 | LWTRANCHE_PARALLEL_QUERY_DSA, |
| 783 | pcxt->seg); |
| 784 | |
| 785 | /* |
| 786 | * Serialize parameters, if any, using DSA storage. We don't dare use |
| 787 | * the main parallel query DSM for this because we might relaunch |
| 788 | * workers after the values have changed (and thus the amount of |
| 789 | * storage required has changed). |
| 790 | */ |
| 791 | if (!bms_is_empty(sendParams)) |
| 792 | { |
| 793 | pei->param_exec = SerializeParamExecParams(estate, sendParams, |
| 794 | pei->area); |
| 795 | fpes->param_exec = pei->param_exec; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * Give parallel-aware nodes a chance to initialize their shared data. |
| 801 | * This also initializes the elements of instrumentation->ps_instrument, |
| 802 | * if it exists. |
| 803 | */ |
| 804 | d.pcxt = pcxt; |
| 805 | d.instrumentation = instrumentation; |
| 806 | d.nnodes = 0; |
| 807 | |
| 808 | /* Install our DSA area while initializing the plan. */ |
| 809 | estate->es_query_dsa = pei->area; |
| 810 | ExecParallelInitializeDSM(planstate, &d); |
| 811 | estate->es_query_dsa = NULL; |
| 812 | |
| 813 | /* |
| 814 | * Make sure that the world hasn't shifted under our feet. This could |
| 815 | * probably just be an Assert(), but let's be conservative for now. |
| 816 | */ |
| 817 | if (e.nnodes != d.nnodes) |
| 818 | elog(ERROR, "inconsistent count of PlanState nodes" ); |
| 819 | |
| 820 | /* OK, we're ready to rock and roll. */ |
| 821 | return pei; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * Set up tuple queue readers to read the results of a parallel subplan. |
| 826 | * |
| 827 | * This is separate from ExecInitParallelPlan() because we can launch the |
| 828 | * worker processes and let them start doing something before we do this. |
| 829 | */ |
| 830 | void |
| 831 | ExecParallelCreateReaders(ParallelExecutorInfo *pei) |
| 832 | { |
| 833 | int nworkers = pei->pcxt->nworkers_launched; |
| 834 | int i; |
| 835 | |
| 836 | Assert(pei->reader == NULL); |
| 837 | |
| 838 | if (nworkers > 0) |
| 839 | { |
| 840 | pei->reader = (TupleQueueReader **) |
| 841 | palloc(nworkers * sizeof(TupleQueueReader *)); |
| 842 | |
| 843 | for (i = 0; i < nworkers; i++) |
| 844 | { |
| 845 | shm_mq_set_handle(pei->tqueue[i], |
| 846 | pei->pcxt->worker[i].bgwhandle); |
| 847 | pei->reader[i] = CreateTupleQueueReader(pei->tqueue[i]); |
| 848 | } |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Re-initialize the parallel executor shared memory state before launching |
| 854 | * a fresh batch of workers. |
| 855 | */ |
| 856 | void |
| 857 | ExecParallelReinitialize(PlanState *planstate, |
| 858 | ParallelExecutorInfo *pei, |
| 859 | Bitmapset *sendParams) |
| 860 | { |
| 861 | EState *estate = planstate->state; |
| 862 | FixedParallelExecutorState *fpes; |
| 863 | |
| 864 | /* Old workers must already be shut down */ |
| 865 | Assert(pei->finished); |
| 866 | |
| 867 | /* |
| 868 | * Force any initplan outputs that we're going to pass to workers to be |
| 869 | * evaluated, if they weren't already (see comments in |
| 870 | * ExecInitParallelPlan). |
| 871 | */ |
| 872 | ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); |
| 873 | |
| 874 | ReinitializeParallelDSM(pei->pcxt); |
| 875 | pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true); |
| 876 | pei->reader = NULL; |
| 877 | pei->finished = false; |
| 878 | |
| 879 | fpes = shm_toc_lookup(pei->pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, false); |
| 880 | |
| 881 | /* Free any serialized parameters from the last round. */ |
| 882 | if (DsaPointerIsValid(fpes->param_exec)) |
| 883 | { |
| 884 | dsa_free(pei->area, fpes->param_exec); |
| 885 | fpes->param_exec = InvalidDsaPointer; |
| 886 | } |
| 887 | |
| 888 | /* Serialize current parameter values if required. */ |
| 889 | if (!bms_is_empty(sendParams)) |
| 890 | { |
| 891 | pei->param_exec = SerializeParamExecParams(estate, sendParams, |
| 892 | pei->area); |
| 893 | fpes->param_exec = pei->param_exec; |
| 894 | } |
| 895 | |
| 896 | /* Traverse plan tree and let each child node reset associated state. */ |
| 897 | estate->es_query_dsa = pei->area; |
| 898 | ExecParallelReInitializeDSM(planstate, pei->pcxt); |
| 899 | estate->es_query_dsa = NULL; |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * Traverse plan tree to reinitialize per-node dynamic shared memory state |
| 904 | */ |
| 905 | static bool |
| 906 | ExecParallelReInitializeDSM(PlanState *planstate, |
| 907 | ParallelContext *pcxt) |
| 908 | { |
| 909 | if (planstate == NULL) |
| 910 | return false; |
| 911 | |
| 912 | /* |
| 913 | * Call reinitializers for DSM-using plan nodes. |
| 914 | */ |
| 915 | switch (nodeTag(planstate)) |
| 916 | { |
| 917 | case T_SeqScanState: |
| 918 | if (planstate->plan->parallel_aware) |
| 919 | ExecSeqScanReInitializeDSM((SeqScanState *) planstate, |
| 920 | pcxt); |
| 921 | break; |
| 922 | case T_IndexScanState: |
| 923 | if (planstate->plan->parallel_aware) |
| 924 | ExecIndexScanReInitializeDSM((IndexScanState *) planstate, |
| 925 | pcxt); |
| 926 | break; |
| 927 | case T_IndexOnlyScanState: |
| 928 | if (planstate->plan->parallel_aware) |
| 929 | ExecIndexOnlyScanReInitializeDSM((IndexOnlyScanState *) planstate, |
| 930 | pcxt); |
| 931 | break; |
| 932 | case T_ForeignScanState: |
| 933 | if (planstate->plan->parallel_aware) |
| 934 | ExecForeignScanReInitializeDSM((ForeignScanState *) planstate, |
| 935 | pcxt); |
| 936 | break; |
| 937 | case T_AppendState: |
| 938 | if (planstate->plan->parallel_aware) |
| 939 | ExecAppendReInitializeDSM((AppendState *) planstate, pcxt); |
| 940 | break; |
| 941 | case T_CustomScanState: |
| 942 | if (planstate->plan->parallel_aware) |
| 943 | ExecCustomScanReInitializeDSM((CustomScanState *) planstate, |
| 944 | pcxt); |
| 945 | break; |
| 946 | case T_BitmapHeapScanState: |
| 947 | if (planstate->plan->parallel_aware) |
| 948 | ExecBitmapHeapReInitializeDSM((BitmapHeapScanState *) planstate, |
| 949 | pcxt); |
| 950 | break; |
| 951 | case T_HashJoinState: |
| 952 | if (planstate->plan->parallel_aware) |
| 953 | ExecHashJoinReInitializeDSM((HashJoinState *) planstate, |
| 954 | pcxt); |
| 955 | break; |
| 956 | case T_HashState: |
| 957 | case T_SortState: |
| 958 | /* these nodes have DSM state, but no reinitialization is required */ |
| 959 | break; |
| 960 | |
| 961 | default: |
| 962 | break; |
| 963 | } |
| 964 | |
| 965 | return planstate_tree_walker(planstate, ExecParallelReInitializeDSM, pcxt); |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * Copy instrumentation information about this node and its descendants from |
| 970 | * dynamic shared memory. |
| 971 | */ |
| 972 | static bool |
| 973 | ExecParallelRetrieveInstrumentation(PlanState *planstate, |
| 974 | SharedExecutorInstrumentation *instrumentation) |
| 975 | { |
| 976 | Instrumentation *instrument; |
| 977 | int i; |
| 978 | int n; |
| 979 | int ibytes; |
| 980 | int plan_node_id = planstate->plan->plan_node_id; |
| 981 | MemoryContext oldcontext; |
| 982 | |
| 983 | /* Find the instrumentation for this node. */ |
| 984 | for (i = 0; i < instrumentation->num_plan_nodes; ++i) |
| 985 | if (instrumentation->plan_node_id[i] == plan_node_id) |
| 986 | break; |
| 987 | if (i >= instrumentation->num_plan_nodes) |
| 988 | elog(ERROR, "plan node %d not found" , plan_node_id); |
| 989 | |
| 990 | /* Accumulate the statistics from all workers. */ |
| 991 | instrument = GetInstrumentationArray(instrumentation); |
| 992 | instrument += i * instrumentation->num_workers; |
| 993 | for (n = 0; n < instrumentation->num_workers; ++n) |
| 994 | InstrAggNode(planstate->instrument, &instrument[n]); |
| 995 | |
| 996 | /* |
| 997 | * Also store the per-worker detail. |
| 998 | * |
| 999 | * Worker instrumentation should be allocated in the same context as the |
| 1000 | * regular instrumentation information, which is the per-query context. |
| 1001 | * Switch into per-query memory context. |
| 1002 | */ |
| 1003 | oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt); |
| 1004 | ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation)); |
| 1005 | planstate->worker_instrument = |
| 1006 | palloc(ibytes + offsetof(WorkerInstrumentation, instrument)); |
| 1007 | MemoryContextSwitchTo(oldcontext); |
| 1008 | |
| 1009 | planstate->worker_instrument->num_workers = instrumentation->num_workers; |
| 1010 | memcpy(&planstate->worker_instrument->instrument, instrument, ibytes); |
| 1011 | |
| 1012 | /* Perform any node-type-specific work that needs to be done. */ |
| 1013 | switch (nodeTag(planstate)) |
| 1014 | { |
| 1015 | case T_SortState: |
| 1016 | ExecSortRetrieveInstrumentation((SortState *) planstate); |
| 1017 | break; |
| 1018 | case T_HashState: |
| 1019 | ExecHashRetrieveInstrumentation((HashState *) planstate); |
| 1020 | break; |
| 1021 | default: |
| 1022 | break; |
| 1023 | } |
| 1024 | |
| 1025 | return planstate_tree_walker(planstate, ExecParallelRetrieveInstrumentation, |
| 1026 | instrumentation); |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * Add up the workers' JIT instrumentation from dynamic shared memory. |
| 1031 | */ |
| 1032 | static void |
| 1033 | ExecParallelRetrieveJitInstrumentation(PlanState *planstate, |
| 1034 | SharedJitInstrumentation *shared_jit) |
| 1035 | { |
| 1036 | JitInstrumentation *combined; |
| 1037 | int ibytes; |
| 1038 | |
| 1039 | int n; |
| 1040 | |
| 1041 | /* |
| 1042 | * Accumulate worker JIT instrumentation into the combined JIT |
| 1043 | * instrumentation, allocating it if required. |
| 1044 | */ |
| 1045 | if (!planstate->state->es_jit_worker_instr) |
| 1046 | planstate->state->es_jit_worker_instr = |
| 1047 | MemoryContextAllocZero(planstate->state->es_query_cxt, sizeof(JitInstrumentation)); |
| 1048 | combined = planstate->state->es_jit_worker_instr; |
| 1049 | |
| 1050 | /* Accumulate all the workers' instrumentations. */ |
| 1051 | for (n = 0; n < shared_jit->num_workers; ++n) |
| 1052 | InstrJitAgg(combined, &shared_jit->jit_instr[n]); |
| 1053 | |
| 1054 | /* |
| 1055 | * Store the per-worker detail. |
| 1056 | * |
| 1057 | * Similar to ExecParallelRetrieveInstrumentation(), allocate the |
| 1058 | * instrumentation in per-query context. |
| 1059 | */ |
| 1060 | ibytes = offsetof(SharedJitInstrumentation, jit_instr) |
| 1061 | + mul_size(shared_jit->num_workers, sizeof(JitInstrumentation)); |
| 1062 | planstate->worker_jit_instrument = |
| 1063 | MemoryContextAlloc(planstate->state->es_query_cxt, ibytes); |
| 1064 | |
| 1065 | memcpy(planstate->worker_jit_instrument, shared_jit, ibytes); |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * Finish parallel execution. We wait for parallel workers to finish, and |
| 1070 | * accumulate their buffer usage. |
| 1071 | */ |
| 1072 | void |
| 1073 | ExecParallelFinish(ParallelExecutorInfo *pei) |
| 1074 | { |
| 1075 | int nworkers = pei->pcxt->nworkers_launched; |
| 1076 | int i; |
| 1077 | |
| 1078 | /* Make this be a no-op if called twice in a row. */ |
| 1079 | if (pei->finished) |
| 1080 | return; |
| 1081 | |
| 1082 | /* |
| 1083 | * Detach from tuple queues ASAP, so that any still-active workers will |
| 1084 | * notice that no further results are wanted. |
| 1085 | */ |
| 1086 | if (pei->tqueue != NULL) |
| 1087 | { |
| 1088 | for (i = 0; i < nworkers; i++) |
| 1089 | shm_mq_detach(pei->tqueue[i]); |
| 1090 | pfree(pei->tqueue); |
| 1091 | pei->tqueue = NULL; |
| 1092 | } |
| 1093 | |
| 1094 | /* |
| 1095 | * While we're waiting for the workers to finish, let's get rid of the |
| 1096 | * tuple queue readers. (Any other local cleanup could be done here too.) |
| 1097 | */ |
| 1098 | if (pei->reader != NULL) |
| 1099 | { |
| 1100 | for (i = 0; i < nworkers; i++) |
| 1101 | DestroyTupleQueueReader(pei->reader[i]); |
| 1102 | pfree(pei->reader); |
| 1103 | pei->reader = NULL; |
| 1104 | } |
| 1105 | |
| 1106 | /* Now wait for the workers to finish. */ |
| 1107 | WaitForParallelWorkersToFinish(pei->pcxt); |
| 1108 | |
| 1109 | /* |
| 1110 | * Next, accumulate buffer usage. (This must wait for the workers to |
| 1111 | * finish, or we might get incomplete data.) |
| 1112 | */ |
| 1113 | for (i = 0; i < nworkers; i++) |
| 1114 | InstrAccumParallelQuery(&pei->buffer_usage[i]); |
| 1115 | |
| 1116 | pei->finished = true; |
| 1117 | } |
| 1118 | |
| 1119 | /* |
| 1120 | * Accumulate instrumentation, and then clean up whatever ParallelExecutorInfo |
| 1121 | * resources still exist after ExecParallelFinish. We separate these |
| 1122 | * routines because someone might want to examine the contents of the DSM |
| 1123 | * after ExecParallelFinish and before calling this routine. |
| 1124 | */ |
| 1125 | void |
| 1126 | ExecParallelCleanup(ParallelExecutorInfo *pei) |
| 1127 | { |
| 1128 | /* Accumulate instrumentation, if any. */ |
| 1129 | if (pei->instrumentation) |
| 1130 | ExecParallelRetrieveInstrumentation(pei->planstate, |
| 1131 | pei->instrumentation); |
| 1132 | |
| 1133 | /* Accumulate JIT instrumentation, if any. */ |
| 1134 | if (pei->jit_instrumentation) |
| 1135 | ExecParallelRetrieveJitInstrumentation(pei->planstate, |
| 1136 | pei->jit_instrumentation); |
| 1137 | |
| 1138 | /* Free any serialized parameters. */ |
| 1139 | if (DsaPointerIsValid(pei->param_exec)) |
| 1140 | { |
| 1141 | dsa_free(pei->area, pei->param_exec); |
| 1142 | pei->param_exec = InvalidDsaPointer; |
| 1143 | } |
| 1144 | if (pei->area != NULL) |
| 1145 | { |
| 1146 | dsa_detach(pei->area); |
| 1147 | pei->area = NULL; |
| 1148 | } |
| 1149 | if (pei->pcxt != NULL) |
| 1150 | { |
| 1151 | DestroyParallelContext(pei->pcxt); |
| 1152 | pei->pcxt = NULL; |
| 1153 | } |
| 1154 | pfree(pei); |
| 1155 | } |
| 1156 | |
| 1157 | /* |
| 1158 | * Create a DestReceiver to write tuples we produce to the shm_mq designated |
| 1159 | * for that purpose. |
| 1160 | */ |
| 1161 | static DestReceiver * |
| 1162 | ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc) |
| 1163 | { |
| 1164 | char *mqspace; |
| 1165 | shm_mq *mq; |
| 1166 | |
| 1167 | mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE, false); |
| 1168 | mqspace += ParallelWorkerNumber * PARALLEL_TUPLE_QUEUE_SIZE; |
| 1169 | mq = (shm_mq *) mqspace; |
| 1170 | shm_mq_set_sender(mq, MyProc); |
| 1171 | return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL)); |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * Create a QueryDesc for the PlannedStmt we are to execute, and return it. |
| 1176 | */ |
| 1177 | static QueryDesc * |
| 1178 | ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver, |
| 1179 | int instrument_options) |
| 1180 | { |
| 1181 | char *pstmtspace; |
| 1182 | char *paramspace; |
| 1183 | PlannedStmt *pstmt; |
| 1184 | ParamListInfo paramLI; |
| 1185 | char *queryString; |
| 1186 | |
| 1187 | /* Get the query string from shared memory */ |
| 1188 | queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, false); |
| 1189 | |
| 1190 | /* Reconstruct leader-supplied PlannedStmt. */ |
| 1191 | pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT, false); |
| 1192 | pstmt = (PlannedStmt *) stringToNode(pstmtspace); |
| 1193 | |
| 1194 | /* Reconstruct ParamListInfo. */ |
| 1195 | paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMLISTINFO, false); |
| 1196 | paramLI = RestoreParamList(¶mspace); |
| 1197 | |
| 1198 | /* Create a QueryDesc for the query. */ |
| 1199 | return CreateQueryDesc(pstmt, |
| 1200 | queryString, |
| 1201 | GetActiveSnapshot(), InvalidSnapshot, |
| 1202 | receiver, paramLI, NULL, instrument_options); |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Copy instrumentation information from this node and its descendants into |
| 1207 | * dynamic shared memory, so that the parallel leader can retrieve it. |
| 1208 | */ |
| 1209 | static bool |
| 1210 | ExecParallelReportInstrumentation(PlanState *planstate, |
| 1211 | SharedExecutorInstrumentation *instrumentation) |
| 1212 | { |
| 1213 | int i; |
| 1214 | int plan_node_id = planstate->plan->plan_node_id; |
| 1215 | Instrumentation *instrument; |
| 1216 | |
| 1217 | InstrEndLoop(planstate->instrument); |
| 1218 | |
| 1219 | /* |
| 1220 | * If we shuffled the plan_node_id values in ps_instrument into sorted |
| 1221 | * order, we could use binary search here. This might matter someday if |
| 1222 | * we're pushing down sufficiently large plan trees. For now, do it the |
| 1223 | * slow, dumb way. |
| 1224 | */ |
| 1225 | for (i = 0; i < instrumentation->num_plan_nodes; ++i) |
| 1226 | if (instrumentation->plan_node_id[i] == plan_node_id) |
| 1227 | break; |
| 1228 | if (i >= instrumentation->num_plan_nodes) |
| 1229 | elog(ERROR, "plan node %d not found" , plan_node_id); |
| 1230 | |
| 1231 | /* |
| 1232 | * Add our statistics to the per-node, per-worker totals. It's possible |
| 1233 | * that this could happen more than once if we relaunched workers. |
| 1234 | */ |
| 1235 | instrument = GetInstrumentationArray(instrumentation); |
| 1236 | instrument += i * instrumentation->num_workers; |
| 1237 | Assert(IsParallelWorker()); |
| 1238 | Assert(ParallelWorkerNumber < instrumentation->num_workers); |
| 1239 | InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument); |
| 1240 | |
| 1241 | return planstate_tree_walker(planstate, ExecParallelReportInstrumentation, |
| 1242 | instrumentation); |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Initialize the PlanState and its descendants with the information |
| 1247 | * retrieved from shared memory. This has to be done once the PlanState |
| 1248 | * is allocated and initialized by executor; that is, after ExecutorStart(). |
| 1249 | */ |
| 1250 | static bool |
| 1251 | ExecParallelInitializeWorker(PlanState *planstate, ParallelWorkerContext *pwcxt) |
| 1252 | { |
| 1253 | if (planstate == NULL) |
| 1254 | return false; |
| 1255 | |
| 1256 | switch (nodeTag(planstate)) |
| 1257 | { |
| 1258 | case T_SeqScanState: |
| 1259 | if (planstate->plan->parallel_aware) |
| 1260 | ExecSeqScanInitializeWorker((SeqScanState *) planstate, pwcxt); |
| 1261 | break; |
| 1262 | case T_IndexScanState: |
| 1263 | if (planstate->plan->parallel_aware) |
| 1264 | ExecIndexScanInitializeWorker((IndexScanState *) planstate, |
| 1265 | pwcxt); |
| 1266 | break; |
| 1267 | case T_IndexOnlyScanState: |
| 1268 | if (planstate->plan->parallel_aware) |
| 1269 | ExecIndexOnlyScanInitializeWorker((IndexOnlyScanState *) planstate, |
| 1270 | pwcxt); |
| 1271 | break; |
| 1272 | case T_ForeignScanState: |
| 1273 | if (planstate->plan->parallel_aware) |
| 1274 | ExecForeignScanInitializeWorker((ForeignScanState *) planstate, |
| 1275 | pwcxt); |
| 1276 | break; |
| 1277 | case T_AppendState: |
| 1278 | if (planstate->plan->parallel_aware) |
| 1279 | ExecAppendInitializeWorker((AppendState *) planstate, pwcxt); |
| 1280 | break; |
| 1281 | case T_CustomScanState: |
| 1282 | if (planstate->plan->parallel_aware) |
| 1283 | ExecCustomScanInitializeWorker((CustomScanState *) planstate, |
| 1284 | pwcxt); |
| 1285 | break; |
| 1286 | case T_BitmapHeapScanState: |
| 1287 | if (planstate->plan->parallel_aware) |
| 1288 | ExecBitmapHeapInitializeWorker((BitmapHeapScanState *) planstate, |
| 1289 | pwcxt); |
| 1290 | break; |
| 1291 | case T_HashJoinState: |
| 1292 | if (planstate->plan->parallel_aware) |
| 1293 | ExecHashJoinInitializeWorker((HashJoinState *) planstate, |
| 1294 | pwcxt); |
| 1295 | break; |
| 1296 | case T_HashState: |
| 1297 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 1298 | ExecHashInitializeWorker((HashState *) planstate, pwcxt); |
| 1299 | break; |
| 1300 | case T_SortState: |
| 1301 | /* even when not parallel-aware, for EXPLAIN ANALYZE */ |
| 1302 | ExecSortInitializeWorker((SortState *) planstate, pwcxt); |
| 1303 | break; |
| 1304 | |
| 1305 | default: |
| 1306 | break; |
| 1307 | } |
| 1308 | |
| 1309 | return planstate_tree_walker(planstate, ExecParallelInitializeWorker, |
| 1310 | pwcxt); |
| 1311 | } |
| 1312 | |
| 1313 | /* |
| 1314 | * Main entrypoint for parallel query worker processes. |
| 1315 | * |
| 1316 | * We reach this function from ParallelWorkerMain, so the setup necessary to |
| 1317 | * create a sensible parallel environment has already been done; |
| 1318 | * ParallelWorkerMain worries about stuff like the transaction state, combo |
| 1319 | * CID mappings, and GUC values, so we don't need to deal with any of that |
| 1320 | * here. |
| 1321 | * |
| 1322 | * Our job is to deal with concerns specific to the executor. The parallel |
| 1323 | * group leader will have stored a serialized PlannedStmt, and it's our job |
| 1324 | * to execute that plan and write the resulting tuples to the appropriate |
| 1325 | * tuple queue. Various bits of supporting information that we need in order |
| 1326 | * to do this are also stored in the dsm_segment and can be accessed through |
| 1327 | * the shm_toc. |
| 1328 | */ |
| 1329 | void |
| 1330 | ParallelQueryMain(dsm_segment *seg, shm_toc *toc) |
| 1331 | { |
| 1332 | FixedParallelExecutorState *fpes; |
| 1333 | BufferUsage *buffer_usage; |
| 1334 | DestReceiver *receiver; |
| 1335 | QueryDesc *queryDesc; |
| 1336 | SharedExecutorInstrumentation *instrumentation; |
| 1337 | SharedJitInstrumentation *jit_instrumentation; |
| 1338 | int instrument_options = 0; |
| 1339 | void *area_space; |
| 1340 | dsa_area *area; |
| 1341 | ParallelWorkerContext pwcxt; |
| 1342 | |
| 1343 | /* Get fixed-size state. */ |
| 1344 | fpes = shm_toc_lookup(toc, PARALLEL_KEY_EXECUTOR_FIXED, false); |
| 1345 | |
| 1346 | /* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */ |
| 1347 | receiver = ExecParallelGetReceiver(seg, toc); |
| 1348 | instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION, true); |
| 1349 | if (instrumentation != NULL) |
| 1350 | instrument_options = instrumentation->instrument_options; |
| 1351 | jit_instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_JIT_INSTRUMENTATION, |
| 1352 | true); |
| 1353 | queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options); |
| 1354 | |
| 1355 | /* Setting debug_query_string for individual workers */ |
| 1356 | debug_query_string = queryDesc->sourceText; |
| 1357 | |
| 1358 | /* Report workers' query for monitoring purposes */ |
| 1359 | pgstat_report_activity(STATE_RUNNING, debug_query_string); |
| 1360 | |
| 1361 | /* Attach to the dynamic shared memory area. */ |
| 1362 | area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA, false); |
| 1363 | area = dsa_attach_in_place(area_space, seg); |
| 1364 | |
| 1365 | /* Start up the executor */ |
| 1366 | queryDesc->plannedstmt->jitFlags = fpes->jit_flags; |
| 1367 | ExecutorStart(queryDesc, fpes->eflags); |
| 1368 | |
| 1369 | /* Special executor initialization steps for parallel workers */ |
| 1370 | queryDesc->planstate->state->es_query_dsa = area; |
| 1371 | if (DsaPointerIsValid(fpes->param_exec)) |
| 1372 | { |
| 1373 | char *paramexec_space; |
| 1374 | |
| 1375 | paramexec_space = dsa_get_address(area, fpes->param_exec); |
| 1376 | RestoreParamExecParams(paramexec_space, queryDesc->estate); |
| 1377 | |
| 1378 | } |
| 1379 | pwcxt.toc = toc; |
| 1380 | pwcxt.seg = seg; |
| 1381 | ExecParallelInitializeWorker(queryDesc->planstate, &pwcxt); |
| 1382 | |
| 1383 | /* Pass down any tuple bound */ |
| 1384 | ExecSetTupleBound(fpes->tuples_needed, queryDesc->planstate); |
| 1385 | |
| 1386 | /* |
| 1387 | * Prepare to track buffer usage during query execution. |
| 1388 | * |
| 1389 | * We do this after starting up the executor to match what happens in the |
| 1390 | * leader, which also doesn't count buffer accesses that occur during |
| 1391 | * executor startup. |
| 1392 | */ |
| 1393 | InstrStartParallelQuery(); |
| 1394 | |
| 1395 | /* |
| 1396 | * Run the plan. If we specified a tuple bound, be careful not to demand |
| 1397 | * more tuples than that. |
| 1398 | */ |
| 1399 | ExecutorRun(queryDesc, |
| 1400 | ForwardScanDirection, |
| 1401 | fpes->tuples_needed < 0 ? (int64) 0 : fpes->tuples_needed, |
| 1402 | true); |
| 1403 | |
| 1404 | /* Shut down the executor */ |
| 1405 | ExecutorFinish(queryDesc); |
| 1406 | |
| 1407 | /* Report buffer usage during parallel execution. */ |
| 1408 | buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false); |
| 1409 | InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber]); |
| 1410 | |
| 1411 | /* Report instrumentation data if any instrumentation options are set. */ |
| 1412 | if (instrumentation != NULL) |
| 1413 | ExecParallelReportInstrumentation(queryDesc->planstate, |
| 1414 | instrumentation); |
| 1415 | |
| 1416 | /* Report JIT instrumentation data if any */ |
| 1417 | if (queryDesc->estate->es_jit && jit_instrumentation != NULL) |
| 1418 | { |
| 1419 | Assert(ParallelWorkerNumber < jit_instrumentation->num_workers); |
| 1420 | jit_instrumentation->jit_instr[ParallelWorkerNumber] = |
| 1421 | queryDesc->estate->es_jit->instr; |
| 1422 | } |
| 1423 | |
| 1424 | /* Must do this after capturing instrumentation. */ |
| 1425 | ExecutorEnd(queryDesc); |
| 1426 | |
| 1427 | /* Cleanup. */ |
| 1428 | dsa_detach(area); |
| 1429 | FreeQueryDesc(queryDesc); |
| 1430 | receiver->rDestroy(receiver); |
| 1431 | } |
| 1432 | |