| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * execProcnode.c |
| 4 | * contains dispatch functions which call the appropriate "initialize", |
| 5 | * "get a tuple", and "cleanup" routines for the given node type. |
| 6 | * If the node has children, then it will presumably call ExecInitNode, |
| 7 | * ExecProcNode, or ExecEndNode on its subnodes and do the appropriate |
| 8 | * processing. |
| 9 | * |
| 10 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 11 | * Portions Copyright (c) 1994, Regents of the University of California |
| 12 | * |
| 13 | * |
| 14 | * IDENTIFICATION |
| 15 | * src/backend/executor/execProcnode.c |
| 16 | * |
| 17 | *------------------------------------------------------------------------- |
| 18 | */ |
| 19 | /* |
| 20 | * NOTES |
| 21 | * This used to be three files. It is now all combined into |
| 22 | * one file so that it is easier to keep the dispatch routines |
| 23 | * in sync when new nodes are added. |
| 24 | * |
| 25 | * EXAMPLE |
| 26 | * Suppose we want the age of the manager of the shoe department and |
| 27 | * the number of employees in that department. So we have the query: |
| 28 | * |
| 29 | * select DEPT.no_emps, EMP.age |
| 30 | * from DEPT, EMP |
| 31 | * where EMP.name = DEPT.mgr and |
| 32 | * DEPT.name = "shoe" |
| 33 | * |
| 34 | * Suppose the planner gives us the following plan: |
| 35 | * |
| 36 | * Nest Loop (DEPT.mgr = EMP.name) |
| 37 | * / \ |
| 38 | * / \ |
| 39 | * Seq Scan Seq Scan |
| 40 | * DEPT EMP |
| 41 | * (name = "shoe") |
| 42 | * |
| 43 | * ExecutorStart() is called first. |
| 44 | * It calls InitPlan() which calls ExecInitNode() on |
| 45 | * the root of the plan -- the nest loop node. |
| 46 | * |
| 47 | * * ExecInitNode() notices that it is looking at a nest loop and |
| 48 | * as the code below demonstrates, it calls ExecInitNestLoop(). |
| 49 | * Eventually this calls ExecInitNode() on the right and left subplans |
| 50 | * and so forth until the entire plan is initialized. The result |
| 51 | * of ExecInitNode() is a plan state tree built with the same structure |
| 52 | * as the underlying plan tree. |
| 53 | * |
| 54 | * * Then when ExecutorRun() is called, it calls ExecutePlan() which calls |
| 55 | * ExecProcNode() repeatedly on the top node of the plan state tree. |
| 56 | * Each time this happens, ExecProcNode() will end up calling |
| 57 | * ExecNestLoop(), which calls ExecProcNode() on its subplans. |
| 58 | * Each of these subplans is a sequential scan so ExecSeqScan() is |
| 59 | * called. The slots returned by ExecSeqScan() may contain |
| 60 | * tuples which contain the attributes ExecNestLoop() uses to |
| 61 | * form the tuples it returns. |
| 62 | * |
| 63 | * * Eventually ExecSeqScan() stops returning tuples and the nest |
| 64 | * loop join ends. Lastly, ExecutorEnd() calls ExecEndNode() which |
| 65 | * calls ExecEndNestLoop() which in turn calls ExecEndNode() on |
| 66 | * its subplans which result in ExecEndSeqScan(). |
| 67 | * |
| 68 | * This should show how the executor works by having |
| 69 | * ExecInitNode(), ExecProcNode() and ExecEndNode() dispatch |
| 70 | * their work to the appropriate node support routines which may |
| 71 | * in turn call these routines themselves on their subplans. |
| 72 | */ |
| 73 | #include "postgres.h" |
| 74 | |
| 75 | #include "executor/executor.h" |
| 76 | #include "executor/nodeAgg.h" |
| 77 | #include "executor/nodeAppend.h" |
| 78 | #include "executor/nodeBitmapAnd.h" |
| 79 | #include "executor/nodeBitmapHeapscan.h" |
| 80 | #include "executor/nodeBitmapIndexscan.h" |
| 81 | #include "executor/nodeBitmapOr.h" |
| 82 | #include "executor/nodeCtescan.h" |
| 83 | #include "executor/nodeCustom.h" |
| 84 | #include "executor/nodeForeignscan.h" |
| 85 | #include "executor/nodeFunctionscan.h" |
| 86 | #include "executor/nodeGather.h" |
| 87 | #include "executor/nodeGatherMerge.h" |
| 88 | #include "executor/nodeGroup.h" |
| 89 | #include "executor/nodeHash.h" |
| 90 | #include "executor/nodeHashjoin.h" |
| 91 | #include "executor/nodeIndexonlyscan.h" |
| 92 | #include "executor/nodeIndexscan.h" |
| 93 | #include "executor/nodeLimit.h" |
| 94 | #include "executor/nodeLockRows.h" |
| 95 | #include "executor/nodeMaterial.h" |
| 96 | #include "executor/nodeMergeAppend.h" |
| 97 | #include "executor/nodeMergejoin.h" |
| 98 | #include "executor/nodeModifyTable.h" |
| 99 | #include "executor/nodeNamedtuplestorescan.h" |
| 100 | #include "executor/nodeNestloop.h" |
| 101 | #include "executor/nodeProjectSet.h" |
| 102 | #include "executor/nodeRecursiveunion.h" |
| 103 | #include "executor/nodeResult.h" |
| 104 | #include "executor/nodeSamplescan.h" |
| 105 | #include "executor/nodeSeqscan.h" |
| 106 | #include "executor/nodeSetOp.h" |
| 107 | #include "executor/nodeSort.h" |
| 108 | #include "executor/nodeSubplan.h" |
| 109 | #include "executor/nodeSubqueryscan.h" |
| 110 | #include "executor/nodeTableFuncscan.h" |
| 111 | #include "executor/nodeTidscan.h" |
| 112 | #include "executor/nodeUnique.h" |
| 113 | #include "executor/nodeValuesscan.h" |
| 114 | #include "executor/nodeWindowAgg.h" |
| 115 | #include "executor/nodeWorktablescan.h" |
| 116 | #include "nodes/nodeFuncs.h" |
| 117 | #include "miscadmin.h" |
| 118 | |
| 119 | |
| 120 | static TupleTableSlot *ExecProcNodeFirst(PlanState *node); |
| 121 | static TupleTableSlot *ExecProcNodeInstr(PlanState *node); |
| 122 | |
| 123 | |
| 124 | /* ------------------------------------------------------------------------ |
| 125 | * ExecInitNode |
| 126 | * |
| 127 | * Recursively initializes all the nodes in the plan tree rooted |
| 128 | * at 'node'. |
| 129 | * |
| 130 | * Inputs: |
| 131 | * 'node' is the current node of the plan produced by the query planner |
| 132 | * 'estate' is the shared execution state for the plan tree |
| 133 | * 'eflags' is a bitwise OR of flag bits described in executor.h |
| 134 | * |
| 135 | * Returns a PlanState node corresponding to the given Plan node. |
| 136 | * ------------------------------------------------------------------------ |
| 137 | */ |
| 138 | PlanState * |
| 139 | ExecInitNode(Plan *node, EState *estate, int eflags) |
| 140 | { |
| 141 | PlanState *result; |
| 142 | List *subps; |
| 143 | ListCell *l; |
| 144 | |
| 145 | /* |
| 146 | * do nothing when we get to the end of a leaf on tree. |
| 147 | */ |
| 148 | if (node == NULL) |
| 149 | return NULL; |
| 150 | |
| 151 | /* |
| 152 | * Make sure there's enough stack available. Need to check here, in |
| 153 | * addition to ExecProcNode() (via ExecProcNodeFirst()), to ensure the |
| 154 | * stack isn't overrun while initializing the node tree. |
| 155 | */ |
| 156 | check_stack_depth(); |
| 157 | |
| 158 | switch (nodeTag(node)) |
| 159 | { |
| 160 | /* |
| 161 | * control nodes |
| 162 | */ |
| 163 | case T_Result: |
| 164 | result = (PlanState *) ExecInitResult((Result *) node, |
| 165 | estate, eflags); |
| 166 | break; |
| 167 | |
| 168 | case T_ProjectSet: |
| 169 | result = (PlanState *) ExecInitProjectSet((ProjectSet *) node, |
| 170 | estate, eflags); |
| 171 | break; |
| 172 | |
| 173 | case T_ModifyTable: |
| 174 | result = (PlanState *) ExecInitModifyTable((ModifyTable *) node, |
| 175 | estate, eflags); |
| 176 | break; |
| 177 | |
| 178 | case T_Append: |
| 179 | result = (PlanState *) ExecInitAppend((Append *) node, |
| 180 | estate, eflags); |
| 181 | break; |
| 182 | |
| 183 | case T_MergeAppend: |
| 184 | result = (PlanState *) ExecInitMergeAppend((MergeAppend *) node, |
| 185 | estate, eflags); |
| 186 | break; |
| 187 | |
| 188 | case T_RecursiveUnion: |
| 189 | result = (PlanState *) ExecInitRecursiveUnion((RecursiveUnion *) node, |
| 190 | estate, eflags); |
| 191 | break; |
| 192 | |
| 193 | case T_BitmapAnd: |
| 194 | result = (PlanState *) ExecInitBitmapAnd((BitmapAnd *) node, |
| 195 | estate, eflags); |
| 196 | break; |
| 197 | |
| 198 | case T_BitmapOr: |
| 199 | result = (PlanState *) ExecInitBitmapOr((BitmapOr *) node, |
| 200 | estate, eflags); |
| 201 | break; |
| 202 | |
| 203 | /* |
| 204 | * scan nodes |
| 205 | */ |
| 206 | case T_SeqScan: |
| 207 | result = (PlanState *) ExecInitSeqScan((SeqScan *) node, |
| 208 | estate, eflags); |
| 209 | break; |
| 210 | |
| 211 | case T_SampleScan: |
| 212 | result = (PlanState *) ExecInitSampleScan((SampleScan *) node, |
| 213 | estate, eflags); |
| 214 | break; |
| 215 | |
| 216 | case T_IndexScan: |
| 217 | result = (PlanState *) ExecInitIndexScan((IndexScan *) node, |
| 218 | estate, eflags); |
| 219 | break; |
| 220 | |
| 221 | case T_IndexOnlyScan: |
| 222 | result = (PlanState *) ExecInitIndexOnlyScan((IndexOnlyScan *) node, |
| 223 | estate, eflags); |
| 224 | break; |
| 225 | |
| 226 | case T_BitmapIndexScan: |
| 227 | result = (PlanState *) ExecInitBitmapIndexScan((BitmapIndexScan *) node, |
| 228 | estate, eflags); |
| 229 | break; |
| 230 | |
| 231 | case T_BitmapHeapScan: |
| 232 | result = (PlanState *) ExecInitBitmapHeapScan((BitmapHeapScan *) node, |
| 233 | estate, eflags); |
| 234 | break; |
| 235 | |
| 236 | case T_TidScan: |
| 237 | result = (PlanState *) ExecInitTidScan((TidScan *) node, |
| 238 | estate, eflags); |
| 239 | break; |
| 240 | |
| 241 | case T_SubqueryScan: |
| 242 | result = (PlanState *) ExecInitSubqueryScan((SubqueryScan *) node, |
| 243 | estate, eflags); |
| 244 | break; |
| 245 | |
| 246 | case T_FunctionScan: |
| 247 | result = (PlanState *) ExecInitFunctionScan((FunctionScan *) node, |
| 248 | estate, eflags); |
| 249 | break; |
| 250 | |
| 251 | case T_TableFuncScan: |
| 252 | result = (PlanState *) ExecInitTableFuncScan((TableFuncScan *) node, |
| 253 | estate, eflags); |
| 254 | break; |
| 255 | |
| 256 | case T_ValuesScan: |
| 257 | result = (PlanState *) ExecInitValuesScan((ValuesScan *) node, |
| 258 | estate, eflags); |
| 259 | break; |
| 260 | |
| 261 | case T_CteScan: |
| 262 | result = (PlanState *) ExecInitCteScan((CteScan *) node, |
| 263 | estate, eflags); |
| 264 | break; |
| 265 | |
| 266 | case T_NamedTuplestoreScan: |
| 267 | result = (PlanState *) ExecInitNamedTuplestoreScan((NamedTuplestoreScan *) node, |
| 268 | estate, eflags); |
| 269 | break; |
| 270 | |
| 271 | case T_WorkTableScan: |
| 272 | result = (PlanState *) ExecInitWorkTableScan((WorkTableScan *) node, |
| 273 | estate, eflags); |
| 274 | break; |
| 275 | |
| 276 | case T_ForeignScan: |
| 277 | result = (PlanState *) ExecInitForeignScan((ForeignScan *) node, |
| 278 | estate, eflags); |
| 279 | break; |
| 280 | |
| 281 | case T_CustomScan: |
| 282 | result = (PlanState *) ExecInitCustomScan((CustomScan *) node, |
| 283 | estate, eflags); |
| 284 | break; |
| 285 | |
| 286 | /* |
| 287 | * join nodes |
| 288 | */ |
| 289 | case T_NestLoop: |
| 290 | result = (PlanState *) ExecInitNestLoop((NestLoop *) node, |
| 291 | estate, eflags); |
| 292 | break; |
| 293 | |
| 294 | case T_MergeJoin: |
| 295 | result = (PlanState *) ExecInitMergeJoin((MergeJoin *) node, |
| 296 | estate, eflags); |
| 297 | break; |
| 298 | |
| 299 | case T_HashJoin: |
| 300 | result = (PlanState *) ExecInitHashJoin((HashJoin *) node, |
| 301 | estate, eflags); |
| 302 | break; |
| 303 | |
| 304 | /* |
| 305 | * materialization nodes |
| 306 | */ |
| 307 | case T_Material: |
| 308 | result = (PlanState *) ExecInitMaterial((Material *) node, |
| 309 | estate, eflags); |
| 310 | break; |
| 311 | |
| 312 | case T_Sort: |
| 313 | result = (PlanState *) ExecInitSort((Sort *) node, |
| 314 | estate, eflags); |
| 315 | break; |
| 316 | |
| 317 | case T_Group: |
| 318 | result = (PlanState *) ExecInitGroup((Group *) node, |
| 319 | estate, eflags); |
| 320 | break; |
| 321 | |
| 322 | case T_Agg: |
| 323 | result = (PlanState *) ExecInitAgg((Agg *) node, |
| 324 | estate, eflags); |
| 325 | break; |
| 326 | |
| 327 | case T_WindowAgg: |
| 328 | result = (PlanState *) ExecInitWindowAgg((WindowAgg *) node, |
| 329 | estate, eflags); |
| 330 | break; |
| 331 | |
| 332 | case T_Unique: |
| 333 | result = (PlanState *) ExecInitUnique((Unique *) node, |
| 334 | estate, eflags); |
| 335 | break; |
| 336 | |
| 337 | case T_Gather: |
| 338 | result = (PlanState *) ExecInitGather((Gather *) node, |
| 339 | estate, eflags); |
| 340 | break; |
| 341 | |
| 342 | case T_GatherMerge: |
| 343 | result = (PlanState *) ExecInitGatherMerge((GatherMerge *) node, |
| 344 | estate, eflags); |
| 345 | break; |
| 346 | |
| 347 | case T_Hash: |
| 348 | result = (PlanState *) ExecInitHash((Hash *) node, |
| 349 | estate, eflags); |
| 350 | break; |
| 351 | |
| 352 | case T_SetOp: |
| 353 | result = (PlanState *) ExecInitSetOp((SetOp *) node, |
| 354 | estate, eflags); |
| 355 | break; |
| 356 | |
| 357 | case T_LockRows: |
| 358 | result = (PlanState *) ExecInitLockRows((LockRows *) node, |
| 359 | estate, eflags); |
| 360 | break; |
| 361 | |
| 362 | case T_Limit: |
| 363 | result = (PlanState *) ExecInitLimit((Limit *) node, |
| 364 | estate, eflags); |
| 365 | break; |
| 366 | |
| 367 | default: |
| 368 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(node)); |
| 369 | result = NULL; /* keep compiler quiet */ |
| 370 | break; |
| 371 | } |
| 372 | |
| 373 | ExecSetExecProcNode(result, result->ExecProcNode); |
| 374 | |
| 375 | /* |
| 376 | * Initialize any initPlans present in this node. The planner put them in |
| 377 | * a separate list for us. |
| 378 | */ |
| 379 | subps = NIL; |
| 380 | foreach(l, node->initPlan) |
| 381 | { |
| 382 | SubPlan *subplan = (SubPlan *) lfirst(l); |
| 383 | SubPlanState *sstate; |
| 384 | |
| 385 | Assert(IsA(subplan, SubPlan)); |
| 386 | sstate = ExecInitSubPlan(subplan, result); |
| 387 | subps = lappend(subps, sstate); |
| 388 | } |
| 389 | result->initPlan = subps; |
| 390 | |
| 391 | /* Set up instrumentation for this node if requested */ |
| 392 | if (estate->es_instrument) |
| 393 | result->instrument = InstrAlloc(1, estate->es_instrument); |
| 394 | |
| 395 | return result; |
| 396 | } |
| 397 | |
| 398 | |
| 399 | /* |
| 400 | * If a node wants to change its ExecProcNode function after ExecInitNode() |
| 401 | * has finished, it should do so with this function. That way any wrapper |
| 402 | * functions can be reinstalled, without the node having to know how that |
| 403 | * works. |
| 404 | */ |
| 405 | void |
| 406 | ExecSetExecProcNode(PlanState *node, ExecProcNodeMtd function) |
| 407 | { |
| 408 | /* |
| 409 | * Add a wrapper around the ExecProcNode callback that checks stack depth |
| 410 | * during the first execution and maybe adds an instrumentation wrapper. |
| 411 | * When the callback is changed after execution has already begun that |
| 412 | * means we'll superfluously execute ExecProcNodeFirst, but that seems ok. |
| 413 | */ |
| 414 | node->ExecProcNodeReal = function; |
| 415 | node->ExecProcNode = ExecProcNodeFirst; |
| 416 | } |
| 417 | |
| 418 | |
| 419 | /* |
| 420 | * ExecProcNode wrapper that performs some one-time checks, before calling |
| 421 | * the relevant node method (possibly via an instrumentation wrapper). |
| 422 | */ |
| 423 | static TupleTableSlot * |
| 424 | ExecProcNodeFirst(PlanState *node) |
| 425 | { |
| 426 | /* |
| 427 | * Perform stack depth check during the first execution of the node. We |
| 428 | * only do so the first time round because it turns out to not be cheap on |
| 429 | * some common architectures (eg. x86). This relies on the assumption |
| 430 | * that ExecProcNode calls for a given plan node will always be made at |
| 431 | * roughly the same stack depth. |
| 432 | */ |
| 433 | check_stack_depth(); |
| 434 | |
| 435 | /* |
| 436 | * If instrumentation is required, change the wrapper to one that just |
| 437 | * does instrumentation. Otherwise we can dispense with all wrappers and |
| 438 | * have ExecProcNode() directly call the relevant function from now on. |
| 439 | */ |
| 440 | if (node->instrument) |
| 441 | node->ExecProcNode = ExecProcNodeInstr; |
| 442 | else |
| 443 | node->ExecProcNode = node->ExecProcNodeReal; |
| 444 | |
| 445 | return node->ExecProcNode(node); |
| 446 | } |
| 447 | |
| 448 | |
| 449 | /* |
| 450 | * ExecProcNode wrapper that performs instrumentation calls. By keeping |
| 451 | * this a separate function, we avoid overhead in the normal case where |
| 452 | * no instrumentation is wanted. |
| 453 | */ |
| 454 | static TupleTableSlot * |
| 455 | ExecProcNodeInstr(PlanState *node) |
| 456 | { |
| 457 | TupleTableSlot *result; |
| 458 | |
| 459 | InstrStartNode(node->instrument); |
| 460 | |
| 461 | result = node->ExecProcNodeReal(node); |
| 462 | |
| 463 | InstrStopNode(node->instrument, TupIsNull(result) ? 0.0 : 1.0); |
| 464 | |
| 465 | return result; |
| 466 | } |
| 467 | |
| 468 | |
| 469 | /* ---------------------------------------------------------------- |
| 470 | * MultiExecProcNode |
| 471 | * |
| 472 | * Execute a node that doesn't return individual tuples |
| 473 | * (it might return a hashtable, bitmap, etc). Caller should |
| 474 | * check it got back the expected kind of Node. |
| 475 | * |
| 476 | * This has essentially the same responsibilities as ExecProcNode, |
| 477 | * but it does not do InstrStartNode/InstrStopNode (mainly because |
| 478 | * it can't tell how many returned tuples to count). Each per-node |
| 479 | * function must provide its own instrumentation support. |
| 480 | * ---------------------------------------------------------------- |
| 481 | */ |
| 482 | Node * |
| 483 | MultiExecProcNode(PlanState *node) |
| 484 | { |
| 485 | Node *result; |
| 486 | |
| 487 | check_stack_depth(); |
| 488 | |
| 489 | CHECK_FOR_INTERRUPTS(); |
| 490 | |
| 491 | if (node->chgParam != NULL) /* something changed */ |
| 492 | ExecReScan(node); /* let ReScan handle this */ |
| 493 | |
| 494 | switch (nodeTag(node)) |
| 495 | { |
| 496 | /* |
| 497 | * Only node types that actually support multiexec will be listed |
| 498 | */ |
| 499 | |
| 500 | case T_HashState: |
| 501 | result = MultiExecHash((HashState *) node); |
| 502 | break; |
| 503 | |
| 504 | case T_BitmapIndexScanState: |
| 505 | result = MultiExecBitmapIndexScan((BitmapIndexScanState *) node); |
| 506 | break; |
| 507 | |
| 508 | case T_BitmapAndState: |
| 509 | result = MultiExecBitmapAnd((BitmapAndState *) node); |
| 510 | break; |
| 511 | |
| 512 | case T_BitmapOrState: |
| 513 | result = MultiExecBitmapOr((BitmapOrState *) node); |
| 514 | break; |
| 515 | |
| 516 | default: |
| 517 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(node)); |
| 518 | result = NULL; |
| 519 | break; |
| 520 | } |
| 521 | |
| 522 | return result; |
| 523 | } |
| 524 | |
| 525 | |
| 526 | /* ---------------------------------------------------------------- |
| 527 | * ExecEndNode |
| 528 | * |
| 529 | * Recursively cleans up all the nodes in the plan rooted |
| 530 | * at 'node'. |
| 531 | * |
| 532 | * After this operation, the query plan will not be able to be |
| 533 | * processed any further. This should be called only after |
| 534 | * the query plan has been fully executed. |
| 535 | * ---------------------------------------------------------------- |
| 536 | */ |
| 537 | void |
| 538 | ExecEndNode(PlanState *node) |
| 539 | { |
| 540 | /* |
| 541 | * do nothing when we get to the end of a leaf on tree. |
| 542 | */ |
| 543 | if (node == NULL) |
| 544 | return; |
| 545 | |
| 546 | /* |
| 547 | * Make sure there's enough stack available. Need to check here, in |
| 548 | * addition to ExecProcNode() (via ExecProcNodeFirst()), because it's not |
| 549 | * guaranteed that ExecProcNode() is reached for all nodes. |
| 550 | */ |
| 551 | check_stack_depth(); |
| 552 | |
| 553 | if (node->chgParam != NULL) |
| 554 | { |
| 555 | bms_free(node->chgParam); |
| 556 | node->chgParam = NULL; |
| 557 | } |
| 558 | |
| 559 | switch (nodeTag(node)) |
| 560 | { |
| 561 | /* |
| 562 | * control nodes |
| 563 | */ |
| 564 | case T_ResultState: |
| 565 | ExecEndResult((ResultState *) node); |
| 566 | break; |
| 567 | |
| 568 | case T_ProjectSetState: |
| 569 | ExecEndProjectSet((ProjectSetState *) node); |
| 570 | break; |
| 571 | |
| 572 | case T_ModifyTableState: |
| 573 | ExecEndModifyTable((ModifyTableState *) node); |
| 574 | break; |
| 575 | |
| 576 | case T_AppendState: |
| 577 | ExecEndAppend((AppendState *) node); |
| 578 | break; |
| 579 | |
| 580 | case T_MergeAppendState: |
| 581 | ExecEndMergeAppend((MergeAppendState *) node); |
| 582 | break; |
| 583 | |
| 584 | case T_RecursiveUnionState: |
| 585 | ExecEndRecursiveUnion((RecursiveUnionState *) node); |
| 586 | break; |
| 587 | |
| 588 | case T_BitmapAndState: |
| 589 | ExecEndBitmapAnd((BitmapAndState *) node); |
| 590 | break; |
| 591 | |
| 592 | case T_BitmapOrState: |
| 593 | ExecEndBitmapOr((BitmapOrState *) node); |
| 594 | break; |
| 595 | |
| 596 | /* |
| 597 | * scan nodes |
| 598 | */ |
| 599 | case T_SeqScanState: |
| 600 | ExecEndSeqScan((SeqScanState *) node); |
| 601 | break; |
| 602 | |
| 603 | case T_SampleScanState: |
| 604 | ExecEndSampleScan((SampleScanState *) node); |
| 605 | break; |
| 606 | |
| 607 | case T_GatherState: |
| 608 | ExecEndGather((GatherState *) node); |
| 609 | break; |
| 610 | |
| 611 | case T_GatherMergeState: |
| 612 | ExecEndGatherMerge((GatherMergeState *) node); |
| 613 | break; |
| 614 | |
| 615 | case T_IndexScanState: |
| 616 | ExecEndIndexScan((IndexScanState *) node); |
| 617 | break; |
| 618 | |
| 619 | case T_IndexOnlyScanState: |
| 620 | ExecEndIndexOnlyScan((IndexOnlyScanState *) node); |
| 621 | break; |
| 622 | |
| 623 | case T_BitmapIndexScanState: |
| 624 | ExecEndBitmapIndexScan((BitmapIndexScanState *) node); |
| 625 | break; |
| 626 | |
| 627 | case T_BitmapHeapScanState: |
| 628 | ExecEndBitmapHeapScan((BitmapHeapScanState *) node); |
| 629 | break; |
| 630 | |
| 631 | case T_TidScanState: |
| 632 | ExecEndTidScan((TidScanState *) node); |
| 633 | break; |
| 634 | |
| 635 | case T_SubqueryScanState: |
| 636 | ExecEndSubqueryScan((SubqueryScanState *) node); |
| 637 | break; |
| 638 | |
| 639 | case T_FunctionScanState: |
| 640 | ExecEndFunctionScan((FunctionScanState *) node); |
| 641 | break; |
| 642 | |
| 643 | case T_TableFuncScanState: |
| 644 | ExecEndTableFuncScan((TableFuncScanState *) node); |
| 645 | break; |
| 646 | |
| 647 | case T_ValuesScanState: |
| 648 | ExecEndValuesScan((ValuesScanState *) node); |
| 649 | break; |
| 650 | |
| 651 | case T_CteScanState: |
| 652 | ExecEndCteScan((CteScanState *) node); |
| 653 | break; |
| 654 | |
| 655 | case T_NamedTuplestoreScanState: |
| 656 | ExecEndNamedTuplestoreScan((NamedTuplestoreScanState *) node); |
| 657 | break; |
| 658 | |
| 659 | case T_WorkTableScanState: |
| 660 | ExecEndWorkTableScan((WorkTableScanState *) node); |
| 661 | break; |
| 662 | |
| 663 | case T_ForeignScanState: |
| 664 | ExecEndForeignScan((ForeignScanState *) node); |
| 665 | break; |
| 666 | |
| 667 | case T_CustomScanState: |
| 668 | ExecEndCustomScan((CustomScanState *) node); |
| 669 | break; |
| 670 | |
| 671 | /* |
| 672 | * join nodes |
| 673 | */ |
| 674 | case T_NestLoopState: |
| 675 | ExecEndNestLoop((NestLoopState *) node); |
| 676 | break; |
| 677 | |
| 678 | case T_MergeJoinState: |
| 679 | ExecEndMergeJoin((MergeJoinState *) node); |
| 680 | break; |
| 681 | |
| 682 | case T_HashJoinState: |
| 683 | ExecEndHashJoin((HashJoinState *) node); |
| 684 | break; |
| 685 | |
| 686 | /* |
| 687 | * materialization nodes |
| 688 | */ |
| 689 | case T_MaterialState: |
| 690 | ExecEndMaterial((MaterialState *) node); |
| 691 | break; |
| 692 | |
| 693 | case T_SortState: |
| 694 | ExecEndSort((SortState *) node); |
| 695 | break; |
| 696 | |
| 697 | case T_GroupState: |
| 698 | ExecEndGroup((GroupState *) node); |
| 699 | break; |
| 700 | |
| 701 | case T_AggState: |
| 702 | ExecEndAgg((AggState *) node); |
| 703 | break; |
| 704 | |
| 705 | case T_WindowAggState: |
| 706 | ExecEndWindowAgg((WindowAggState *) node); |
| 707 | break; |
| 708 | |
| 709 | case T_UniqueState: |
| 710 | ExecEndUnique((UniqueState *) node); |
| 711 | break; |
| 712 | |
| 713 | case T_HashState: |
| 714 | ExecEndHash((HashState *) node); |
| 715 | break; |
| 716 | |
| 717 | case T_SetOpState: |
| 718 | ExecEndSetOp((SetOpState *) node); |
| 719 | break; |
| 720 | |
| 721 | case T_LockRowsState: |
| 722 | ExecEndLockRows((LockRowsState *) node); |
| 723 | break; |
| 724 | |
| 725 | case T_LimitState: |
| 726 | ExecEndLimit((LimitState *) node); |
| 727 | break; |
| 728 | |
| 729 | default: |
| 730 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(node)); |
| 731 | break; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * ExecShutdownNode |
| 737 | * |
| 738 | * Give execution nodes a chance to stop asynchronous resource consumption |
| 739 | * and release any resources still held. |
| 740 | */ |
| 741 | bool |
| 742 | ExecShutdownNode(PlanState *node) |
| 743 | { |
| 744 | if (node == NULL) |
| 745 | return false; |
| 746 | |
| 747 | check_stack_depth(); |
| 748 | |
| 749 | planstate_tree_walker(node, ExecShutdownNode, NULL); |
| 750 | |
| 751 | /* |
| 752 | * Treat the node as running while we shut it down, but only if it's run |
| 753 | * at least once already. We don't expect much CPU consumption during |
| 754 | * node shutdown, but in the case of Gather or Gather Merge, we may shut |
| 755 | * down workers at this stage. If so, their buffer usage will get |
| 756 | * propagated into pgBufferUsage at this point, and we want to make sure |
| 757 | * that it gets associated with the Gather node. We skip this if the node |
| 758 | * has never been executed, so as to avoid incorrectly making it appear |
| 759 | * that it has. |
| 760 | */ |
| 761 | if (node->instrument && node->instrument->running) |
| 762 | InstrStartNode(node->instrument); |
| 763 | |
| 764 | switch (nodeTag(node)) |
| 765 | { |
| 766 | case T_GatherState: |
| 767 | ExecShutdownGather((GatherState *) node); |
| 768 | break; |
| 769 | case T_ForeignScanState: |
| 770 | ExecShutdownForeignScan((ForeignScanState *) node); |
| 771 | break; |
| 772 | case T_CustomScanState: |
| 773 | ExecShutdownCustomScan((CustomScanState *) node); |
| 774 | break; |
| 775 | case T_GatherMergeState: |
| 776 | ExecShutdownGatherMerge((GatherMergeState *) node); |
| 777 | break; |
| 778 | case T_HashState: |
| 779 | ExecShutdownHash((HashState *) node); |
| 780 | break; |
| 781 | case T_HashJoinState: |
| 782 | ExecShutdownHashJoin((HashJoinState *) node); |
| 783 | break; |
| 784 | default: |
| 785 | break; |
| 786 | } |
| 787 | |
| 788 | /* Stop the node if we started it above, reporting 0 tuples. */ |
| 789 | if (node->instrument && node->instrument->running) |
| 790 | InstrStopNode(node->instrument, 0); |
| 791 | |
| 792 | return false; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * ExecSetTupleBound |
| 797 | * |
| 798 | * Set a tuple bound for a planstate node. This lets child plan nodes |
| 799 | * optimize based on the knowledge that the maximum number of tuples that |
| 800 | * their parent will demand is limited. The tuple bound for a node may |
| 801 | * only be changed between scans (i.e., after node initialization or just |
| 802 | * before an ExecReScan call). |
| 803 | * |
| 804 | * Any negative tuples_needed value means "no limit", which should be the |
| 805 | * default assumption when this is not called at all for a particular node. |
| 806 | * |
| 807 | * Note: if this is called repeatedly on a plan tree, the exact same set |
| 808 | * of nodes must be updated with the new limit each time; be careful that |
| 809 | * only unchanging conditions are tested here. |
| 810 | */ |
| 811 | void |
| 812 | ExecSetTupleBound(int64 tuples_needed, PlanState *child_node) |
| 813 | { |
| 814 | /* |
| 815 | * Since this function recurses, in principle we should check stack depth |
| 816 | * here. In practice, it's probably pointless since the earlier node |
| 817 | * initialization tree traversal would surely have consumed more stack. |
| 818 | */ |
| 819 | |
| 820 | if (IsA(child_node, SortState)) |
| 821 | { |
| 822 | /* |
| 823 | * If it is a Sort node, notify it that it can use bounded sort. |
| 824 | * |
| 825 | * Note: it is the responsibility of nodeSort.c to react properly to |
| 826 | * changes of these parameters. If we ever redesign this, it'd be a |
| 827 | * good idea to integrate this signaling with the parameter-change |
| 828 | * mechanism. |
| 829 | */ |
| 830 | SortState *sortState = (SortState *) child_node; |
| 831 | |
| 832 | if (tuples_needed < 0) |
| 833 | { |
| 834 | /* make sure flag gets reset if needed upon rescan */ |
| 835 | sortState->bounded = false; |
| 836 | } |
| 837 | else |
| 838 | { |
| 839 | sortState->bounded = true; |
| 840 | sortState->bound = tuples_needed; |
| 841 | } |
| 842 | } |
| 843 | else if (IsA(child_node, AppendState)) |
| 844 | { |
| 845 | /* |
| 846 | * If it is an Append, we can apply the bound to any nodes that are |
| 847 | * children of the Append, since the Append surely need read no more |
| 848 | * than that many tuples from any one input. |
| 849 | */ |
| 850 | AppendState *aState = (AppendState *) child_node; |
| 851 | int i; |
| 852 | |
| 853 | for (i = 0; i < aState->as_nplans; i++) |
| 854 | ExecSetTupleBound(tuples_needed, aState->appendplans[i]); |
| 855 | } |
| 856 | else if (IsA(child_node, MergeAppendState)) |
| 857 | { |
| 858 | /* |
| 859 | * If it is a MergeAppend, we can apply the bound to any nodes that |
| 860 | * are children of the MergeAppend, since the MergeAppend surely need |
| 861 | * read no more than that many tuples from any one input. |
| 862 | */ |
| 863 | MergeAppendState *maState = (MergeAppendState *) child_node; |
| 864 | int i; |
| 865 | |
| 866 | for (i = 0; i < maState->ms_nplans; i++) |
| 867 | ExecSetTupleBound(tuples_needed, maState->mergeplans[i]); |
| 868 | } |
| 869 | else if (IsA(child_node, ResultState)) |
| 870 | { |
| 871 | /* |
| 872 | * Similarly, for a projecting Result, we can apply the bound to its |
| 873 | * child node. |
| 874 | * |
| 875 | * If Result supported qual checking, we'd have to punt on seeing a |
| 876 | * qual. Note that having a resconstantqual is not a showstopper: if |
| 877 | * that condition succeeds it affects nothing, while if it fails, no |
| 878 | * rows will be demanded from the Result child anyway. |
| 879 | */ |
| 880 | if (outerPlanState(child_node)) |
| 881 | ExecSetTupleBound(tuples_needed, outerPlanState(child_node)); |
| 882 | } |
| 883 | else if (IsA(child_node, SubqueryScanState)) |
| 884 | { |
| 885 | /* |
| 886 | * We can also descend through SubqueryScan, but only if it has no |
| 887 | * qual (otherwise it might discard rows). |
| 888 | */ |
| 889 | SubqueryScanState *subqueryState = (SubqueryScanState *) child_node; |
| 890 | |
| 891 | if (subqueryState->ss.ps.qual == NULL) |
| 892 | ExecSetTupleBound(tuples_needed, subqueryState->subplan); |
| 893 | } |
| 894 | else if (IsA(child_node, GatherState)) |
| 895 | { |
| 896 | /* |
| 897 | * A Gather node can propagate the bound to its workers. As with |
| 898 | * MergeAppend, no one worker could possibly need to return more |
| 899 | * tuples than the Gather itself needs to. |
| 900 | * |
| 901 | * Note: As with Sort, the Gather node is responsible for reacting |
| 902 | * properly to changes to this parameter. |
| 903 | */ |
| 904 | GatherState *gstate = (GatherState *) child_node; |
| 905 | |
| 906 | gstate->tuples_needed = tuples_needed; |
| 907 | |
| 908 | /* Also pass down the bound to our own copy of the child plan */ |
| 909 | ExecSetTupleBound(tuples_needed, outerPlanState(child_node)); |
| 910 | } |
| 911 | else if (IsA(child_node, GatherMergeState)) |
| 912 | { |
| 913 | /* Same comments as for Gather */ |
| 914 | GatherMergeState *gstate = (GatherMergeState *) child_node; |
| 915 | |
| 916 | gstate->tuples_needed = tuples_needed; |
| 917 | |
| 918 | ExecSetTupleBound(tuples_needed, outerPlanState(child_node)); |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * In principle we could descend through any plan node type that is |
| 923 | * certain not to discard or combine input rows; but on seeing a node that |
| 924 | * can do that, we can't propagate the bound any further. For the moment |
| 925 | * it's unclear that any other cases are worth checking here. |
| 926 | */ |
| 927 | } |
| 928 | |