| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeFunctionscan.c |
| 4 | * Support routines for scanning RangeFunctions (functions in rangetable). |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/executor/nodeFunctionscan.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * ExecFunctionScan scans a function. |
| 18 | * ExecFunctionNext retrieve next tuple in sequential order. |
| 19 | * ExecInitFunctionScan creates and initializes a functionscan node. |
| 20 | * ExecEndFunctionScan releases any storage allocated. |
| 21 | * ExecReScanFunctionScan rescans the function |
| 22 | */ |
| 23 | #include "postgres.h" |
| 24 | |
| 25 | #include "catalog/pg_type.h" |
| 26 | #include "executor/nodeFunctionscan.h" |
| 27 | #include "funcapi.h" |
| 28 | #include "nodes/nodeFuncs.h" |
| 29 | #include "utils/builtins.h" |
| 30 | #include "utils/memutils.h" |
| 31 | |
| 32 | |
| 33 | /* |
| 34 | * Runtime data for each function being scanned. |
| 35 | */ |
| 36 | typedef struct FunctionScanPerFuncState |
| 37 | { |
| 38 | SetExprState *setexpr; /* state of the expression being evaluated */ |
| 39 | TupleDesc tupdesc; /* desc of the function result type */ |
| 40 | int colcount; /* expected number of result columns */ |
| 41 | Tuplestorestate *tstore; /* holds the function result set */ |
| 42 | int64 rowcount; /* # of rows in result set, -1 if not known */ |
| 43 | TupleTableSlot *func_slot; /* function result slot (or NULL) */ |
| 44 | } FunctionScanPerFuncState; |
| 45 | |
| 46 | static TupleTableSlot *FunctionNext(FunctionScanState *node); |
| 47 | |
| 48 | |
| 49 | /* ---------------------------------------------------------------- |
| 50 | * Scan Support |
| 51 | * ---------------------------------------------------------------- |
| 52 | */ |
| 53 | /* ---------------------------------------------------------------- |
| 54 | * FunctionNext |
| 55 | * |
| 56 | * This is a workhorse for ExecFunctionScan |
| 57 | * ---------------------------------------------------------------- |
| 58 | */ |
| 59 | static TupleTableSlot * |
| 60 | FunctionNext(FunctionScanState *node) |
| 61 | { |
| 62 | EState *estate; |
| 63 | ScanDirection direction; |
| 64 | TupleTableSlot *scanslot; |
| 65 | bool alldone; |
| 66 | int64 oldpos; |
| 67 | int funcno; |
| 68 | int att; |
| 69 | |
| 70 | /* |
| 71 | * get information from the estate and scan state |
| 72 | */ |
| 73 | estate = node->ss.ps.state; |
| 74 | direction = estate->es_direction; |
| 75 | scanslot = node->ss.ss_ScanTupleSlot; |
| 76 | |
| 77 | if (node->simple) |
| 78 | { |
| 79 | /* |
| 80 | * Fast path for the trivial case: the function return type and scan |
| 81 | * result type are the same, so we fetch the function result straight |
| 82 | * into the scan result slot. No need to update ordinality or |
| 83 | * rowcounts either. |
| 84 | */ |
| 85 | Tuplestorestate *tstore = node->funcstates[0].tstore; |
| 86 | |
| 87 | /* |
| 88 | * If first time through, read all tuples from function and put them |
| 89 | * in a tuplestore. Subsequent calls just fetch tuples from |
| 90 | * tuplestore. |
| 91 | */ |
| 92 | if (tstore == NULL) |
| 93 | { |
| 94 | node->funcstates[0].tstore = tstore = |
| 95 | ExecMakeTableFunctionResult(node->funcstates[0].setexpr, |
| 96 | node->ss.ps.ps_ExprContext, |
| 97 | node->argcontext, |
| 98 | node->funcstates[0].tupdesc, |
| 99 | node->eflags & EXEC_FLAG_BACKWARD); |
| 100 | |
| 101 | /* |
| 102 | * paranoia - cope if the function, which may have constructed the |
| 103 | * tuplestore itself, didn't leave it pointing at the start. This |
| 104 | * call is fast, so the overhead shouldn't be an issue. |
| 105 | */ |
| 106 | tuplestore_rescan(tstore); |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * Get the next tuple from tuplestore. |
| 111 | */ |
| 112 | (void) tuplestore_gettupleslot(tstore, |
| 113 | ScanDirectionIsForward(direction), |
| 114 | false, |
| 115 | scanslot); |
| 116 | return scanslot; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Increment or decrement ordinal counter before checking for end-of-data, |
| 121 | * so that we can move off either end of the result by 1 (and no more than |
| 122 | * 1) without losing correct count. See PortalRunSelect for why we can |
| 123 | * assume that we won't be called repeatedly in the end-of-data state. |
| 124 | */ |
| 125 | oldpos = node->ordinal; |
| 126 | if (ScanDirectionIsForward(direction)) |
| 127 | node->ordinal++; |
| 128 | else |
| 129 | node->ordinal--; |
| 130 | |
| 131 | /* |
| 132 | * Main loop over functions. |
| 133 | * |
| 134 | * We fetch the function results into func_slots (which match the function |
| 135 | * return types), and then copy the values to scanslot (which matches the |
| 136 | * scan result type), setting the ordinal column (if any) as well. |
| 137 | */ |
| 138 | ExecClearTuple(scanslot); |
| 139 | att = 0; |
| 140 | alldone = true; |
| 141 | for (funcno = 0; funcno < node->nfuncs; funcno++) |
| 142 | { |
| 143 | FunctionScanPerFuncState *fs = &node->funcstates[funcno]; |
| 144 | int i; |
| 145 | |
| 146 | /* |
| 147 | * If first time through, read all tuples from function and put them |
| 148 | * in a tuplestore. Subsequent calls just fetch tuples from |
| 149 | * tuplestore. |
| 150 | */ |
| 151 | if (fs->tstore == NULL) |
| 152 | { |
| 153 | fs->tstore = |
| 154 | ExecMakeTableFunctionResult(fs->setexpr, |
| 155 | node->ss.ps.ps_ExprContext, |
| 156 | node->argcontext, |
| 157 | fs->tupdesc, |
| 158 | node->eflags & EXEC_FLAG_BACKWARD); |
| 159 | |
| 160 | /* |
| 161 | * paranoia - cope if the function, which may have constructed the |
| 162 | * tuplestore itself, didn't leave it pointing at the start. This |
| 163 | * call is fast, so the overhead shouldn't be an issue. |
| 164 | */ |
| 165 | tuplestore_rescan(fs->tstore); |
| 166 | } |
| 167 | |
| 168 | /* |
| 169 | * Get the next tuple from tuplestore. |
| 170 | * |
| 171 | * If we have a rowcount for the function, and we know the previous |
| 172 | * read position was out of bounds, don't try the read. This allows |
| 173 | * backward scan to work when there are mixed row counts present. |
| 174 | */ |
| 175 | if (fs->rowcount != -1 && fs->rowcount < oldpos) |
| 176 | ExecClearTuple(fs->func_slot); |
| 177 | else |
| 178 | (void) tuplestore_gettupleslot(fs->tstore, |
| 179 | ScanDirectionIsForward(direction), |
| 180 | false, |
| 181 | fs->func_slot); |
| 182 | |
| 183 | if (TupIsNull(fs->func_slot)) |
| 184 | { |
| 185 | /* |
| 186 | * If we ran out of data for this function in the forward |
| 187 | * direction then we now know how many rows it returned. We need |
| 188 | * to know this in order to handle backwards scans. The row count |
| 189 | * we store is actually 1+ the actual number, because we have to |
| 190 | * position the tuplestore 1 off its end sometimes. |
| 191 | */ |
| 192 | if (ScanDirectionIsForward(direction) && fs->rowcount == -1) |
| 193 | fs->rowcount = node->ordinal; |
| 194 | |
| 195 | /* |
| 196 | * populate the result cols with nulls |
| 197 | */ |
| 198 | for (i = 0; i < fs->colcount; i++) |
| 199 | { |
| 200 | scanslot->tts_values[att] = (Datum) 0; |
| 201 | scanslot->tts_isnull[att] = true; |
| 202 | att++; |
| 203 | } |
| 204 | } |
| 205 | else |
| 206 | { |
| 207 | /* |
| 208 | * we have a result, so just copy it to the result cols. |
| 209 | */ |
| 210 | slot_getallattrs(fs->func_slot); |
| 211 | |
| 212 | for (i = 0; i < fs->colcount; i++) |
| 213 | { |
| 214 | scanslot->tts_values[att] = fs->func_slot->tts_values[i]; |
| 215 | scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i]; |
| 216 | att++; |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * We're not done until every function result is exhausted; we pad |
| 221 | * the shorter results with nulls until then. |
| 222 | */ |
| 223 | alldone = false; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * ordinal col is always last, per spec. |
| 229 | */ |
| 230 | if (node->ordinality) |
| 231 | { |
| 232 | scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal); |
| 233 | scanslot->tts_isnull[att] = false; |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * If alldone, we just return the previously-cleared scanslot. Otherwise, |
| 238 | * finish creating the virtual tuple. |
| 239 | */ |
| 240 | if (!alldone) |
| 241 | ExecStoreVirtualTuple(scanslot); |
| 242 | |
| 243 | return scanslot; |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual |
| 248 | */ |
| 249 | static bool |
| 250 | FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot) |
| 251 | { |
| 252 | /* nothing to check */ |
| 253 | return true; |
| 254 | } |
| 255 | |
| 256 | /* ---------------------------------------------------------------- |
| 257 | * ExecFunctionScan(node) |
| 258 | * |
| 259 | * Scans the function sequentially and returns the next qualifying |
| 260 | * tuple. |
| 261 | * We call the ExecScan() routine and pass it the appropriate |
| 262 | * access method functions. |
| 263 | * ---------------------------------------------------------------- |
| 264 | */ |
| 265 | static TupleTableSlot * |
| 266 | ExecFunctionScan(PlanState *pstate) |
| 267 | { |
| 268 | FunctionScanState *node = castNode(FunctionScanState, pstate); |
| 269 | |
| 270 | return ExecScan(&node->ss, |
| 271 | (ExecScanAccessMtd) FunctionNext, |
| 272 | (ExecScanRecheckMtd) FunctionRecheck); |
| 273 | } |
| 274 | |
| 275 | /* ---------------------------------------------------------------- |
| 276 | * ExecInitFunctionScan |
| 277 | * ---------------------------------------------------------------- |
| 278 | */ |
| 279 | FunctionScanState * |
| 280 | ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags) |
| 281 | { |
| 282 | FunctionScanState *scanstate; |
| 283 | int nfuncs = list_length(node->functions); |
| 284 | TupleDesc scan_tupdesc; |
| 285 | int i, |
| 286 | natts; |
| 287 | ListCell *lc; |
| 288 | |
| 289 | /* check for unsupported flags */ |
| 290 | Assert(!(eflags & EXEC_FLAG_MARK)); |
| 291 | |
| 292 | /* |
| 293 | * FunctionScan should not have any children. |
| 294 | */ |
| 295 | Assert(outerPlan(node) == NULL); |
| 296 | Assert(innerPlan(node) == NULL); |
| 297 | |
| 298 | /* |
| 299 | * create new ScanState for node |
| 300 | */ |
| 301 | scanstate = makeNode(FunctionScanState); |
| 302 | scanstate->ss.ps.plan = (Plan *) node; |
| 303 | scanstate->ss.ps.state = estate; |
| 304 | scanstate->ss.ps.ExecProcNode = ExecFunctionScan; |
| 305 | scanstate->eflags = eflags; |
| 306 | |
| 307 | /* |
| 308 | * are we adding an ordinality column? |
| 309 | */ |
| 310 | scanstate->ordinality = node->funcordinality; |
| 311 | |
| 312 | scanstate->nfuncs = nfuncs; |
| 313 | if (nfuncs == 1 && !node->funcordinality) |
| 314 | scanstate->simple = true; |
| 315 | else |
| 316 | scanstate->simple = false; |
| 317 | |
| 318 | /* |
| 319 | * Ordinal 0 represents the "before the first row" position. |
| 320 | * |
| 321 | * We need to track ordinal position even when not adding an ordinality |
| 322 | * column to the result, in order to handle backwards scanning properly |
| 323 | * with multiple functions with different result sizes. (We can't position |
| 324 | * any individual function's tuplestore any more than 1 place beyond its |
| 325 | * end, so when scanning backwards, we need to know when to start |
| 326 | * including the function in the scan again.) |
| 327 | */ |
| 328 | scanstate->ordinal = 0; |
| 329 | |
| 330 | /* |
| 331 | * Miscellaneous initialization |
| 332 | * |
| 333 | * create expression context for node |
| 334 | */ |
| 335 | ExecAssignExprContext(estate, &scanstate->ss.ps); |
| 336 | |
| 337 | scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState)); |
| 338 | |
| 339 | natts = 0; |
| 340 | i = 0; |
| 341 | foreach(lc, node->functions) |
| 342 | { |
| 343 | RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
| 344 | Node *funcexpr = rtfunc->funcexpr; |
| 345 | int colcount = rtfunc->funccolcount; |
| 346 | FunctionScanPerFuncState *fs = &scanstate->funcstates[i]; |
| 347 | TypeFuncClass functypclass; |
| 348 | Oid funcrettype; |
| 349 | TupleDesc tupdesc; |
| 350 | |
| 351 | fs->setexpr = |
| 352 | ExecInitTableFunctionResult((Expr *) funcexpr, |
| 353 | scanstate->ss.ps.ps_ExprContext, |
| 354 | &scanstate->ss.ps); |
| 355 | |
| 356 | /* |
| 357 | * Don't allocate the tuplestores; the actual calls to the functions |
| 358 | * do that. NULL means that we have not called the function yet (or |
| 359 | * need to call it again after a rescan). |
| 360 | */ |
| 361 | fs->tstore = NULL; |
| 362 | fs->rowcount = -1; |
| 363 | |
| 364 | /* |
| 365 | * Now determine if the function returns a simple or composite type, |
| 366 | * and build an appropriate tupdesc. Note that in the composite case, |
| 367 | * the function may now return more columns than it did when the plan |
| 368 | * was made; we have to ignore any columns beyond "colcount". |
| 369 | */ |
| 370 | functypclass = get_expr_result_type(funcexpr, |
| 371 | &funcrettype, |
| 372 | &tupdesc); |
| 373 | |
| 374 | if (functypclass == TYPEFUNC_COMPOSITE || |
| 375 | functypclass == TYPEFUNC_COMPOSITE_DOMAIN) |
| 376 | { |
| 377 | /* Composite data type, e.g. a table's row type */ |
| 378 | Assert(tupdesc); |
| 379 | Assert(tupdesc->natts >= colcount); |
| 380 | /* Must copy it out of typcache for safety */ |
| 381 | tupdesc = CreateTupleDescCopy(tupdesc); |
| 382 | } |
| 383 | else if (functypclass == TYPEFUNC_SCALAR) |
| 384 | { |
| 385 | /* Base data type, i.e. scalar */ |
| 386 | tupdesc = CreateTemplateTupleDesc(1); |
| 387 | TupleDescInitEntry(tupdesc, |
| 388 | (AttrNumber) 1, |
| 389 | NULL, /* don't care about the name here */ |
| 390 | funcrettype, |
| 391 | -1, |
| 392 | 0); |
| 393 | TupleDescInitEntryCollation(tupdesc, |
| 394 | (AttrNumber) 1, |
| 395 | exprCollation(funcexpr)); |
| 396 | } |
| 397 | else if (functypclass == TYPEFUNC_RECORD) |
| 398 | { |
| 399 | tupdesc = BuildDescFromLists(rtfunc->funccolnames, |
| 400 | rtfunc->funccoltypes, |
| 401 | rtfunc->funccoltypmods, |
| 402 | rtfunc->funccolcollations); |
| 403 | |
| 404 | /* |
| 405 | * For RECORD results, make sure a typmod has been assigned. (The |
| 406 | * function should do this for itself, but let's cover things in |
| 407 | * case it doesn't.) |
| 408 | */ |
| 409 | BlessTupleDesc(tupdesc); |
| 410 | } |
| 411 | else |
| 412 | { |
| 413 | /* crummy error message, but parser should have caught this */ |
| 414 | elog(ERROR, "function in FROM has unsupported return type" ); |
| 415 | } |
| 416 | |
| 417 | fs->tupdesc = tupdesc; |
| 418 | fs->colcount = colcount; |
| 419 | |
| 420 | /* |
| 421 | * We only need separate slots for the function results if we are |
| 422 | * doing ordinality or multiple functions; otherwise, we'll fetch |
| 423 | * function results directly into the scan slot. |
| 424 | */ |
| 425 | if (!scanstate->simple) |
| 426 | { |
| 427 | fs->func_slot = ExecInitExtraTupleSlot(estate, fs->tupdesc, |
| 428 | &TTSOpsMinimalTuple); |
| 429 | } |
| 430 | else |
| 431 | fs->func_slot = NULL; |
| 432 | |
| 433 | natts += colcount; |
| 434 | i++; |
| 435 | } |
| 436 | |
| 437 | /* |
| 438 | * Create the combined TupleDesc |
| 439 | * |
| 440 | * If there is just one function without ordinality, the scan result |
| 441 | * tupdesc is the same as the function result tupdesc --- except that we |
| 442 | * may stuff new names into it below, so drop any rowtype label. |
| 443 | */ |
| 444 | if (scanstate->simple) |
| 445 | { |
| 446 | scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc); |
| 447 | scan_tupdesc->tdtypeid = RECORDOID; |
| 448 | scan_tupdesc->tdtypmod = -1; |
| 449 | } |
| 450 | else |
| 451 | { |
| 452 | AttrNumber attno = 0; |
| 453 | |
| 454 | if (node->funcordinality) |
| 455 | natts++; |
| 456 | |
| 457 | scan_tupdesc = CreateTemplateTupleDesc(natts); |
| 458 | |
| 459 | for (i = 0; i < nfuncs; i++) |
| 460 | { |
| 461 | TupleDesc tupdesc = scanstate->funcstates[i].tupdesc; |
| 462 | int colcount = scanstate->funcstates[i].colcount; |
| 463 | int j; |
| 464 | |
| 465 | for (j = 1; j <= colcount; j++) |
| 466 | TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j); |
| 467 | } |
| 468 | |
| 469 | /* If doing ordinality, add a column of type "bigint" at the end */ |
| 470 | if (node->funcordinality) |
| 471 | { |
| 472 | TupleDescInitEntry(scan_tupdesc, |
| 473 | ++attno, |
| 474 | NULL, /* don't care about the name here */ |
| 475 | INT8OID, |
| 476 | -1, |
| 477 | 0); |
| 478 | } |
| 479 | |
| 480 | Assert(attno == natts); |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Initialize scan slot and type. |
| 485 | */ |
| 486 | ExecInitScanTupleSlot(estate, &scanstate->ss, scan_tupdesc, |
| 487 | &TTSOpsMinimalTuple); |
| 488 | |
| 489 | /* |
| 490 | * Initialize result slot, type and projection. |
| 491 | */ |
| 492 | ExecInitResultTypeTL(&scanstate->ss.ps); |
| 493 | ExecAssignScanProjectionInfo(&scanstate->ss); |
| 494 | |
| 495 | /* |
| 496 | * initialize child expressions |
| 497 | */ |
| 498 | scanstate->ss.ps.qual = |
| 499 | ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate); |
| 500 | |
| 501 | /* |
| 502 | * Create a memory context that ExecMakeTableFunctionResult can use to |
| 503 | * evaluate function arguments in. We can't use the per-tuple context for |
| 504 | * this because it gets reset too often; but we don't want to leak |
| 505 | * evaluation results into the query-lifespan context either. We just |
| 506 | * need one context, because we evaluate each function separately. |
| 507 | */ |
| 508 | scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext, |
| 509 | "Table function arguments" , |
| 510 | ALLOCSET_DEFAULT_SIZES); |
| 511 | |
| 512 | return scanstate; |
| 513 | } |
| 514 | |
| 515 | /* ---------------------------------------------------------------- |
| 516 | * ExecEndFunctionScan |
| 517 | * |
| 518 | * frees any storage allocated through C routines. |
| 519 | * ---------------------------------------------------------------- |
| 520 | */ |
| 521 | void |
| 522 | ExecEndFunctionScan(FunctionScanState *node) |
| 523 | { |
| 524 | int i; |
| 525 | |
| 526 | /* |
| 527 | * Free the exprcontext |
| 528 | */ |
| 529 | ExecFreeExprContext(&node->ss.ps); |
| 530 | |
| 531 | /* |
| 532 | * clean out the tuple table |
| 533 | */ |
| 534 | if (node->ss.ps.ps_ResultTupleSlot) |
| 535 | ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| 536 | ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| 537 | |
| 538 | /* |
| 539 | * Release slots and tuplestore resources |
| 540 | */ |
| 541 | for (i = 0; i < node->nfuncs; i++) |
| 542 | { |
| 543 | FunctionScanPerFuncState *fs = &node->funcstates[i]; |
| 544 | |
| 545 | if (fs->func_slot) |
| 546 | ExecClearTuple(fs->func_slot); |
| 547 | |
| 548 | if (fs->tstore != NULL) |
| 549 | { |
| 550 | tuplestore_end(node->funcstates[i].tstore); |
| 551 | fs->tstore = NULL; |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | /* ---------------------------------------------------------------- |
| 557 | * ExecReScanFunctionScan |
| 558 | * |
| 559 | * Rescans the relation. |
| 560 | * ---------------------------------------------------------------- |
| 561 | */ |
| 562 | void |
| 563 | ExecReScanFunctionScan(FunctionScanState *node) |
| 564 | { |
| 565 | FunctionScan *scan = (FunctionScan *) node->ss.ps.plan; |
| 566 | int i; |
| 567 | Bitmapset *chgparam = node->ss.ps.chgParam; |
| 568 | |
| 569 | if (node->ss.ps.ps_ResultTupleSlot) |
| 570 | ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| 571 | for (i = 0; i < node->nfuncs; i++) |
| 572 | { |
| 573 | FunctionScanPerFuncState *fs = &node->funcstates[i]; |
| 574 | |
| 575 | if (fs->func_slot) |
| 576 | ExecClearTuple(fs->func_slot); |
| 577 | } |
| 578 | |
| 579 | ExecScanReScan(&node->ss); |
| 580 | |
| 581 | /* |
| 582 | * Here we have a choice whether to drop the tuplestores (and recompute |
| 583 | * the function outputs) or just rescan them. We must recompute if an |
| 584 | * expression contains changed parameters, else we rescan. |
| 585 | * |
| 586 | * XXX maybe we should recompute if the function is volatile? But in |
| 587 | * general the executor doesn't conditionalize its actions on that. |
| 588 | */ |
| 589 | if (chgparam) |
| 590 | { |
| 591 | ListCell *lc; |
| 592 | |
| 593 | i = 0; |
| 594 | foreach(lc, scan->functions) |
| 595 | { |
| 596 | RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
| 597 | |
| 598 | if (bms_overlap(chgparam, rtfunc->funcparams)) |
| 599 | { |
| 600 | if (node->funcstates[i].tstore != NULL) |
| 601 | { |
| 602 | tuplestore_end(node->funcstates[i].tstore); |
| 603 | node->funcstates[i].tstore = NULL; |
| 604 | } |
| 605 | node->funcstates[i].rowcount = -1; |
| 606 | } |
| 607 | i++; |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | /* Reset ordinality counter */ |
| 612 | node->ordinal = 0; |
| 613 | |
| 614 | /* Make sure we rewind any remaining tuplestores */ |
| 615 | for (i = 0; i < node->nfuncs; i++) |
| 616 | { |
| 617 | if (node->funcstates[i].tstore != NULL) |
| 618 | tuplestore_rescan(node->funcstates[i].tstore); |
| 619 | } |
| 620 | } |
| 621 | |