| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeNestloop.c |
| 4 | * routines to support nest-loop joins |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/executor/nodeNestloop.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | /* |
| 16 | * INTERFACE ROUTINES |
| 17 | * ExecNestLoop - process a nestloop join of two plans |
| 18 | * ExecInitNestLoop - initialize the join |
| 19 | * ExecEndNestLoop - shut down the join |
| 20 | */ |
| 21 | |
| 22 | #include "postgres.h" |
| 23 | |
| 24 | #include "executor/execdebug.h" |
| 25 | #include "executor/nodeNestloop.h" |
| 26 | #include "miscadmin.h" |
| 27 | #include "utils/memutils.h" |
| 28 | |
| 29 | |
| 30 | /* ---------------------------------------------------------------- |
| 31 | * ExecNestLoop(node) |
| 32 | * |
| 33 | * old comments |
| 34 | * Returns the tuple joined from inner and outer tuples which |
| 35 | * satisfies the qualification clause. |
| 36 | * |
| 37 | * It scans the inner relation to join with current outer tuple. |
| 38 | * |
| 39 | * If none is found, next tuple from the outer relation is retrieved |
| 40 | * and the inner relation is scanned from the beginning again to join |
| 41 | * with the outer tuple. |
| 42 | * |
| 43 | * NULL is returned if all the remaining outer tuples are tried and |
| 44 | * all fail to join with the inner tuples. |
| 45 | * |
| 46 | * NULL is also returned if there is no tuple from inner relation. |
| 47 | * |
| 48 | * Conditions: |
| 49 | * -- outerTuple contains current tuple from outer relation and |
| 50 | * the right son(inner relation) maintains "cursor" at the tuple |
| 51 | * returned previously. |
| 52 | * This is achieved by maintaining a scan position on the outer |
| 53 | * relation. |
| 54 | * |
| 55 | * Initial States: |
| 56 | * -- the outer child and the inner child |
| 57 | * are prepared to return the first tuple. |
| 58 | * ---------------------------------------------------------------- |
| 59 | */ |
| 60 | static TupleTableSlot * |
| 61 | ExecNestLoop(PlanState *pstate) |
| 62 | { |
| 63 | NestLoopState *node = castNode(NestLoopState, pstate); |
| 64 | NestLoop *nl; |
| 65 | PlanState *innerPlan; |
| 66 | PlanState *outerPlan; |
| 67 | TupleTableSlot *outerTupleSlot; |
| 68 | TupleTableSlot *innerTupleSlot; |
| 69 | ExprState *joinqual; |
| 70 | ExprState *otherqual; |
| 71 | ExprContext *econtext; |
| 72 | ListCell *lc; |
| 73 | |
| 74 | CHECK_FOR_INTERRUPTS(); |
| 75 | |
| 76 | /* |
| 77 | * get information from the node |
| 78 | */ |
| 79 | ENL1_printf("getting info from node" ); |
| 80 | |
| 81 | nl = (NestLoop *) node->js.ps.plan; |
| 82 | joinqual = node->js.joinqual; |
| 83 | otherqual = node->js.ps.qual; |
| 84 | outerPlan = outerPlanState(node); |
| 85 | innerPlan = innerPlanState(node); |
| 86 | econtext = node->js.ps.ps_ExprContext; |
| 87 | |
| 88 | /* |
| 89 | * Reset per-tuple memory context to free any expression evaluation |
| 90 | * storage allocated in the previous tuple cycle. |
| 91 | */ |
| 92 | ResetExprContext(econtext); |
| 93 | |
| 94 | /* |
| 95 | * Ok, everything is setup for the join so now loop until we return a |
| 96 | * qualifying join tuple. |
| 97 | */ |
| 98 | ENL1_printf("entering main loop" ); |
| 99 | |
| 100 | for (;;) |
| 101 | { |
| 102 | /* |
| 103 | * If we don't have an outer tuple, get the next one and reset the |
| 104 | * inner scan. |
| 105 | */ |
| 106 | if (node->nl_NeedNewOuter) |
| 107 | { |
| 108 | ENL1_printf("getting new outer tuple" ); |
| 109 | outerTupleSlot = ExecProcNode(outerPlan); |
| 110 | |
| 111 | /* |
| 112 | * if there are no more outer tuples, then the join is complete.. |
| 113 | */ |
| 114 | if (TupIsNull(outerTupleSlot)) |
| 115 | { |
| 116 | ENL1_printf("no outer tuple, ending join" ); |
| 117 | return NULL; |
| 118 | } |
| 119 | |
| 120 | ENL1_printf("saving new outer tuple information" ); |
| 121 | econtext->ecxt_outertuple = outerTupleSlot; |
| 122 | node->nl_NeedNewOuter = false; |
| 123 | node->nl_MatchedOuter = false; |
| 124 | |
| 125 | /* |
| 126 | * fetch the values of any outer Vars that must be passed to the |
| 127 | * inner scan, and store them in the appropriate PARAM_EXEC slots. |
| 128 | */ |
| 129 | foreach(lc, nl->nestParams) |
| 130 | { |
| 131 | NestLoopParam *nlp = (NestLoopParam *) lfirst(lc); |
| 132 | int paramno = nlp->paramno; |
| 133 | ParamExecData *prm; |
| 134 | |
| 135 | prm = &(econtext->ecxt_param_exec_vals[paramno]); |
| 136 | /* Param value should be an OUTER_VAR var */ |
| 137 | Assert(IsA(nlp->paramval, Var)); |
| 138 | Assert(nlp->paramval->varno == OUTER_VAR); |
| 139 | Assert(nlp->paramval->varattno > 0); |
| 140 | prm->value = slot_getattr(outerTupleSlot, |
| 141 | nlp->paramval->varattno, |
| 142 | &(prm->isnull)); |
| 143 | /* Flag parameter value as changed */ |
| 144 | innerPlan->chgParam = bms_add_member(innerPlan->chgParam, |
| 145 | paramno); |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * now rescan the inner plan |
| 150 | */ |
| 151 | ENL1_printf("rescanning inner plan" ); |
| 152 | ExecReScan(innerPlan); |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * we have an outerTuple, try to get the next inner tuple. |
| 157 | */ |
| 158 | ENL1_printf("getting new inner tuple" ); |
| 159 | |
| 160 | innerTupleSlot = ExecProcNode(innerPlan); |
| 161 | econtext->ecxt_innertuple = innerTupleSlot; |
| 162 | |
| 163 | if (TupIsNull(innerTupleSlot)) |
| 164 | { |
| 165 | ENL1_printf("no inner tuple, need new outer tuple" ); |
| 166 | |
| 167 | node->nl_NeedNewOuter = true; |
| 168 | |
| 169 | if (!node->nl_MatchedOuter && |
| 170 | (node->js.jointype == JOIN_LEFT || |
| 171 | node->js.jointype == JOIN_ANTI)) |
| 172 | { |
| 173 | /* |
| 174 | * We are doing an outer join and there were no join matches |
| 175 | * for this outer tuple. Generate a fake join tuple with |
| 176 | * nulls for the inner tuple, and return it if it passes the |
| 177 | * non-join quals. |
| 178 | */ |
| 179 | econtext->ecxt_innertuple = node->nl_NullInnerTupleSlot; |
| 180 | |
| 181 | ENL1_printf("testing qualification for outer-join tuple" ); |
| 182 | |
| 183 | if (otherqual == NULL || ExecQual(otherqual, econtext)) |
| 184 | { |
| 185 | /* |
| 186 | * qualification was satisfied so we project and return |
| 187 | * the slot containing the result tuple using |
| 188 | * ExecProject(). |
| 189 | */ |
| 190 | ENL1_printf("qualification succeeded, projecting tuple" ); |
| 191 | |
| 192 | return ExecProject(node->js.ps.ps_ProjInfo); |
| 193 | } |
| 194 | else |
| 195 | InstrCountFiltered2(node, 1); |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Otherwise just return to top of loop for a new outer tuple. |
| 200 | */ |
| 201 | continue; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * at this point we have a new pair of inner and outer tuples so we |
| 206 | * test the inner and outer tuples to see if they satisfy the node's |
| 207 | * qualification. |
| 208 | * |
| 209 | * Only the joinquals determine MatchedOuter status, but all quals |
| 210 | * must pass to actually return the tuple. |
| 211 | */ |
| 212 | ENL1_printf("testing qualification" ); |
| 213 | |
| 214 | if (ExecQual(joinqual, econtext)) |
| 215 | { |
| 216 | node->nl_MatchedOuter = true; |
| 217 | |
| 218 | /* In an antijoin, we never return a matched tuple */ |
| 219 | if (node->js.jointype == JOIN_ANTI) |
| 220 | { |
| 221 | node->nl_NeedNewOuter = true; |
| 222 | continue; /* return to top of loop */ |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * If we only need to join to the first matching inner tuple, then |
| 227 | * consider returning this one, but after that continue with next |
| 228 | * outer tuple. |
| 229 | */ |
| 230 | if (node->js.single_match) |
| 231 | node->nl_NeedNewOuter = true; |
| 232 | |
| 233 | if (otherqual == NULL || ExecQual(otherqual, econtext)) |
| 234 | { |
| 235 | /* |
| 236 | * qualification was satisfied so we project and return the |
| 237 | * slot containing the result tuple using ExecProject(). |
| 238 | */ |
| 239 | ENL1_printf("qualification succeeded, projecting tuple" ); |
| 240 | |
| 241 | return ExecProject(node->js.ps.ps_ProjInfo); |
| 242 | } |
| 243 | else |
| 244 | InstrCountFiltered2(node, 1); |
| 245 | } |
| 246 | else |
| 247 | InstrCountFiltered1(node, 1); |
| 248 | |
| 249 | /* |
| 250 | * Tuple fails qual, so free per-tuple memory and try again. |
| 251 | */ |
| 252 | ResetExprContext(econtext); |
| 253 | |
| 254 | ENL1_printf("qualification failed, looping" ); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /* ---------------------------------------------------------------- |
| 259 | * ExecInitNestLoop |
| 260 | * ---------------------------------------------------------------- |
| 261 | */ |
| 262 | NestLoopState * |
| 263 | ExecInitNestLoop(NestLoop *node, EState *estate, int eflags) |
| 264 | { |
| 265 | NestLoopState *nlstate; |
| 266 | |
| 267 | /* check for unsupported flags */ |
| 268 | Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK))); |
| 269 | |
| 270 | NL1_printf("ExecInitNestLoop: %s\n" , |
| 271 | "initializing node" ); |
| 272 | |
| 273 | /* |
| 274 | * create state structure |
| 275 | */ |
| 276 | nlstate = makeNode(NestLoopState); |
| 277 | nlstate->js.ps.plan = (Plan *) node; |
| 278 | nlstate->js.ps.state = estate; |
| 279 | nlstate->js.ps.ExecProcNode = ExecNestLoop; |
| 280 | |
| 281 | /* |
| 282 | * Miscellaneous initialization |
| 283 | * |
| 284 | * create expression context for node |
| 285 | */ |
| 286 | ExecAssignExprContext(estate, &nlstate->js.ps); |
| 287 | |
| 288 | /* |
| 289 | * initialize child nodes |
| 290 | * |
| 291 | * If we have no parameters to pass into the inner rel from the outer, |
| 292 | * tell the inner child that cheap rescans would be good. If we do have |
| 293 | * such parameters, then there is no point in REWIND support at all in the |
| 294 | * inner child, because it will always be rescanned with fresh parameter |
| 295 | * values. |
| 296 | */ |
| 297 | outerPlanState(nlstate) = ExecInitNode(outerPlan(node), estate, eflags); |
| 298 | if (node->nestParams == NIL) |
| 299 | eflags |= EXEC_FLAG_REWIND; |
| 300 | else |
| 301 | eflags &= ~EXEC_FLAG_REWIND; |
| 302 | innerPlanState(nlstate) = ExecInitNode(innerPlan(node), estate, eflags); |
| 303 | |
| 304 | /* |
| 305 | * Initialize result slot, type and projection. |
| 306 | */ |
| 307 | ExecInitResultTupleSlotTL(&nlstate->js.ps, &TTSOpsVirtual); |
| 308 | ExecAssignProjectionInfo(&nlstate->js.ps, NULL); |
| 309 | |
| 310 | /* |
| 311 | * initialize child expressions |
| 312 | */ |
| 313 | nlstate->js.ps.qual = |
| 314 | ExecInitQual(node->join.plan.qual, (PlanState *) nlstate); |
| 315 | nlstate->js.jointype = node->join.jointype; |
| 316 | nlstate->js.joinqual = |
| 317 | ExecInitQual(node->join.joinqual, (PlanState *) nlstate); |
| 318 | |
| 319 | /* |
| 320 | * detect whether we need only consider the first matching inner tuple |
| 321 | */ |
| 322 | nlstate->js.single_match = (node->join.inner_unique || |
| 323 | node->join.jointype == JOIN_SEMI); |
| 324 | |
| 325 | /* set up null tuples for outer joins, if needed */ |
| 326 | switch (node->join.jointype) |
| 327 | { |
| 328 | case JOIN_INNER: |
| 329 | case JOIN_SEMI: |
| 330 | break; |
| 331 | case JOIN_LEFT: |
| 332 | case JOIN_ANTI: |
| 333 | nlstate->nl_NullInnerTupleSlot = |
| 334 | ExecInitNullTupleSlot(estate, |
| 335 | ExecGetResultType(innerPlanState(nlstate)), |
| 336 | &TTSOpsVirtual); |
| 337 | break; |
| 338 | default: |
| 339 | elog(ERROR, "unrecognized join type: %d" , |
| 340 | (int) node->join.jointype); |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * finally, wipe the current outer tuple clean. |
| 345 | */ |
| 346 | nlstate->nl_NeedNewOuter = true; |
| 347 | nlstate->nl_MatchedOuter = false; |
| 348 | |
| 349 | NL1_printf("ExecInitNestLoop: %s\n" , |
| 350 | "node initialized" ); |
| 351 | |
| 352 | return nlstate; |
| 353 | } |
| 354 | |
| 355 | /* ---------------------------------------------------------------- |
| 356 | * ExecEndNestLoop |
| 357 | * |
| 358 | * closes down scans and frees allocated storage |
| 359 | * ---------------------------------------------------------------- |
| 360 | */ |
| 361 | void |
| 362 | ExecEndNestLoop(NestLoopState *node) |
| 363 | { |
| 364 | NL1_printf("ExecEndNestLoop: %s\n" , |
| 365 | "ending node processing" ); |
| 366 | |
| 367 | /* |
| 368 | * Free the exprcontext |
| 369 | */ |
| 370 | ExecFreeExprContext(&node->js.ps); |
| 371 | |
| 372 | /* |
| 373 | * clean out the tuple table |
| 374 | */ |
| 375 | ExecClearTuple(node->js.ps.ps_ResultTupleSlot); |
| 376 | |
| 377 | /* |
| 378 | * close down subplans |
| 379 | */ |
| 380 | ExecEndNode(outerPlanState(node)); |
| 381 | ExecEndNode(innerPlanState(node)); |
| 382 | |
| 383 | NL1_printf("ExecEndNestLoop: %s\n" , |
| 384 | "node processing ended" ); |
| 385 | } |
| 386 | |
| 387 | /* ---------------------------------------------------------------- |
| 388 | * ExecReScanNestLoop |
| 389 | * ---------------------------------------------------------------- |
| 390 | */ |
| 391 | void |
| 392 | ExecReScanNestLoop(NestLoopState *node) |
| 393 | { |
| 394 | PlanState *outerPlan = outerPlanState(node); |
| 395 | |
| 396 | /* |
| 397 | * If outerPlan->chgParam is not null then plan will be automatically |
| 398 | * re-scanned by first ExecProcNode. |
| 399 | */ |
| 400 | if (outerPlan->chgParam == NULL) |
| 401 | ExecReScan(outerPlan); |
| 402 | |
| 403 | /* |
| 404 | * innerPlan is re-scanned for each new outer tuple and MUST NOT be |
| 405 | * re-scanned from here or you'll get troubles from inner index scans when |
| 406 | * outer Vars are used as run-time keys... |
| 407 | */ |
| 408 | |
| 409 | node->nl_NeedNewOuter = true; |
| 410 | node->nl_MatchedOuter = false; |
| 411 | } |
| 412 | |