| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * binaryheap.c |
| 4 | * A simple binary heap implementation |
| 5 | * |
| 6 | * Portions Copyright (c) 2012-2019, PostgreSQL Global Development Group |
| 7 | * |
| 8 | * IDENTIFICATION |
| 9 | * src/backend/lib/binaryheap.c |
| 10 | * |
| 11 | *------------------------------------------------------------------------- |
| 12 | */ |
| 13 | |
| 14 | #include "postgres.h" |
| 15 | |
| 16 | #include <math.h> |
| 17 | |
| 18 | #include "lib/binaryheap.h" |
| 19 | |
| 20 | static void sift_down(binaryheap *heap, int node_off); |
| 21 | static void sift_up(binaryheap *heap, int node_off); |
| 22 | static inline void swap_nodes(binaryheap *heap, int a, int b); |
| 23 | |
| 24 | /* |
| 25 | * binaryheap_allocate |
| 26 | * |
| 27 | * Returns a pointer to a newly-allocated heap that has the capacity to |
| 28 | * store the given number of nodes, with the heap property defined by |
| 29 | * the given comparator function, which will be invoked with the additional |
| 30 | * argument specified by 'arg'. |
| 31 | */ |
| 32 | binaryheap * |
| 33 | binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg) |
| 34 | { |
| 35 | int sz; |
| 36 | binaryheap *heap; |
| 37 | |
| 38 | sz = offsetof(binaryheap, bh_nodes) + sizeof(Datum) * capacity; |
| 39 | heap = (binaryheap *) palloc(sz); |
| 40 | heap->bh_space = capacity; |
| 41 | heap->bh_compare = compare; |
| 42 | heap->bh_arg = arg; |
| 43 | |
| 44 | heap->bh_size = 0; |
| 45 | heap->bh_has_heap_property = true; |
| 46 | |
| 47 | return heap; |
| 48 | } |
| 49 | |
| 50 | /* |
| 51 | * binaryheap_reset |
| 52 | * |
| 53 | * Resets the heap to an empty state, losing its data content but not the |
| 54 | * parameters passed at allocation. |
| 55 | */ |
| 56 | void |
| 57 | binaryheap_reset(binaryheap *heap) |
| 58 | { |
| 59 | heap->bh_size = 0; |
| 60 | heap->bh_has_heap_property = true; |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * binaryheap_free |
| 65 | * |
| 66 | * Releases memory used by the given binaryheap. |
| 67 | */ |
| 68 | void |
| 69 | binaryheap_free(binaryheap *heap) |
| 70 | { |
| 71 | pfree(heap); |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * These utility functions return the offset of the left child, right |
| 76 | * child, and parent of the node at the given index, respectively. |
| 77 | * |
| 78 | * The heap is represented as an array of nodes, with the root node |
| 79 | * stored at index 0. The left child of node i is at index 2*i+1, and |
| 80 | * the right child at 2*i+2. The parent of node i is at index (i-1)/2. |
| 81 | */ |
| 82 | |
| 83 | static inline int |
| 84 | left_offset(int i) |
| 85 | { |
| 86 | return 2 * i + 1; |
| 87 | } |
| 88 | |
| 89 | static inline int |
| 90 | right_offset(int i) |
| 91 | { |
| 92 | return 2 * i + 2; |
| 93 | } |
| 94 | |
| 95 | static inline int |
| 96 | parent_offset(int i) |
| 97 | { |
| 98 | return (i - 1) / 2; |
| 99 | } |
| 100 | |
| 101 | /* |
| 102 | * binaryheap_add_unordered |
| 103 | * |
| 104 | * Adds the given datum to the end of the heap's list of nodes in O(1) without |
| 105 | * preserving the heap property. This is a convenience to add elements quickly |
| 106 | * to a new heap. To obtain a valid heap, one must call binaryheap_build() |
| 107 | * afterwards. |
| 108 | */ |
| 109 | void |
| 110 | binaryheap_add_unordered(binaryheap *heap, Datum d) |
| 111 | { |
| 112 | if (heap->bh_size >= heap->bh_space) |
| 113 | elog(ERROR, "out of binary heap slots" ); |
| 114 | heap->bh_has_heap_property = false; |
| 115 | heap->bh_nodes[heap->bh_size] = d; |
| 116 | heap->bh_size++; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * binaryheap_build |
| 121 | * |
| 122 | * Assembles a valid heap in O(n) from the nodes added by |
| 123 | * binaryheap_add_unordered(). Not needed otherwise. |
| 124 | */ |
| 125 | void |
| 126 | binaryheap_build(binaryheap *heap) |
| 127 | { |
| 128 | int i; |
| 129 | |
| 130 | for (i = parent_offset(heap->bh_size - 1); i >= 0; i--) |
| 131 | sift_down(heap, i); |
| 132 | heap->bh_has_heap_property = true; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * binaryheap_add |
| 137 | * |
| 138 | * Adds the given datum to the heap in O(log n) time, while preserving |
| 139 | * the heap property. |
| 140 | */ |
| 141 | void |
| 142 | binaryheap_add(binaryheap *heap, Datum d) |
| 143 | { |
| 144 | if (heap->bh_size >= heap->bh_space) |
| 145 | elog(ERROR, "out of binary heap slots" ); |
| 146 | heap->bh_nodes[heap->bh_size] = d; |
| 147 | heap->bh_size++; |
| 148 | sift_up(heap, heap->bh_size - 1); |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * binaryheap_first |
| 153 | * |
| 154 | * Returns a pointer to the first (root, topmost) node in the heap |
| 155 | * without modifying the heap. The caller must ensure that this |
| 156 | * routine is not used on an empty heap. Always O(1). |
| 157 | */ |
| 158 | Datum |
| 159 | binaryheap_first(binaryheap *heap) |
| 160 | { |
| 161 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
| 162 | return heap->bh_nodes[0]; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * binaryheap_remove_first |
| 167 | * |
| 168 | * Removes the first (root, topmost) node in the heap and returns a |
| 169 | * pointer to it after rebalancing the heap. The caller must ensure |
| 170 | * that this routine is not used on an empty heap. O(log n) worst |
| 171 | * case. |
| 172 | */ |
| 173 | Datum |
| 174 | binaryheap_remove_first(binaryheap *heap) |
| 175 | { |
| 176 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
| 177 | |
| 178 | if (heap->bh_size == 1) |
| 179 | { |
| 180 | heap->bh_size--; |
| 181 | return heap->bh_nodes[0]; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * Swap the root and last nodes, decrease the size of the heap (i.e. |
| 186 | * remove the former root node) and sift the new root node down to its |
| 187 | * correct position. |
| 188 | */ |
| 189 | swap_nodes(heap, 0, heap->bh_size - 1); |
| 190 | heap->bh_size--; |
| 191 | sift_down(heap, 0); |
| 192 | |
| 193 | return heap->bh_nodes[heap->bh_size]; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * binaryheap_replace_first |
| 198 | * |
| 199 | * Replace the topmost element of a non-empty heap, preserving the heap |
| 200 | * property. O(1) in the best case, or O(log n) if it must fall back to |
| 201 | * sifting the new node down. |
| 202 | */ |
| 203 | void |
| 204 | binaryheap_replace_first(binaryheap *heap, Datum d) |
| 205 | { |
| 206 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
| 207 | |
| 208 | heap->bh_nodes[0] = d; |
| 209 | |
| 210 | if (heap->bh_size > 1) |
| 211 | sift_down(heap, 0); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | * Swap the contents of two nodes. |
| 216 | */ |
| 217 | static inline void |
| 218 | swap_nodes(binaryheap *heap, int a, int b) |
| 219 | { |
| 220 | Datum swap; |
| 221 | |
| 222 | swap = heap->bh_nodes[a]; |
| 223 | heap->bh_nodes[a] = heap->bh_nodes[b]; |
| 224 | heap->bh_nodes[b] = swap; |
| 225 | } |
| 226 | |
| 227 | /* |
| 228 | * Sift a node up to the highest position it can hold according to the |
| 229 | * comparator. |
| 230 | */ |
| 231 | static void |
| 232 | sift_up(binaryheap *heap, int node_off) |
| 233 | { |
| 234 | while (node_off != 0) |
| 235 | { |
| 236 | int cmp; |
| 237 | int parent_off; |
| 238 | |
| 239 | /* |
| 240 | * If this node is smaller than its parent, the heap condition is |
| 241 | * satisfied, and we're done. |
| 242 | */ |
| 243 | parent_off = parent_offset(node_off); |
| 244 | cmp = heap->bh_compare(heap->bh_nodes[node_off], |
| 245 | heap->bh_nodes[parent_off], |
| 246 | heap->bh_arg); |
| 247 | if (cmp <= 0) |
| 248 | break; |
| 249 | |
| 250 | /* |
| 251 | * Otherwise, swap the node and its parent and go on to check the |
| 252 | * node's new parent. |
| 253 | */ |
| 254 | swap_nodes(heap, node_off, parent_off); |
| 255 | node_off = parent_off; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Sift a node down from its current position to satisfy the heap |
| 261 | * property. |
| 262 | */ |
| 263 | static void |
| 264 | sift_down(binaryheap *heap, int node_off) |
| 265 | { |
| 266 | while (true) |
| 267 | { |
| 268 | int left_off = left_offset(node_off); |
| 269 | int right_off = right_offset(node_off); |
| 270 | int swap_off = 0; |
| 271 | |
| 272 | /* Is the left child larger than the parent? */ |
| 273 | if (left_off < heap->bh_size && |
| 274 | heap->bh_compare(heap->bh_nodes[node_off], |
| 275 | heap->bh_nodes[left_off], |
| 276 | heap->bh_arg) < 0) |
| 277 | swap_off = left_off; |
| 278 | |
| 279 | /* Is the right child larger than the parent? */ |
| 280 | if (right_off < heap->bh_size && |
| 281 | heap->bh_compare(heap->bh_nodes[node_off], |
| 282 | heap->bh_nodes[right_off], |
| 283 | heap->bh_arg) < 0) |
| 284 | { |
| 285 | /* swap with the larger child */ |
| 286 | if (!swap_off || |
| 287 | heap->bh_compare(heap->bh_nodes[left_off], |
| 288 | heap->bh_nodes[right_off], |
| 289 | heap->bh_arg) < 0) |
| 290 | swap_off = right_off; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * If we didn't find anything to swap, the heap condition is |
| 295 | * satisfied, and we're done. |
| 296 | */ |
| 297 | if (!swap_off) |
| 298 | break; |
| 299 | |
| 300 | /* |
| 301 | * Otherwise, swap the node with the child that violates the heap |
| 302 | * property; then go on to check its children. |
| 303 | */ |
| 304 | swap_nodes(heap, swap_off, node_off); |
| 305 | node_off = swap_off; |
| 306 | } |
| 307 | } |
| 308 | |