1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * binaryheap.c |
4 | * A simple binary heap implementation |
5 | * |
6 | * Portions Copyright (c) 2012-2019, PostgreSQL Global Development Group |
7 | * |
8 | * IDENTIFICATION |
9 | * src/backend/lib/binaryheap.c |
10 | * |
11 | *------------------------------------------------------------------------- |
12 | */ |
13 | |
14 | #include "postgres.h" |
15 | |
16 | #include <math.h> |
17 | |
18 | #include "lib/binaryheap.h" |
19 | |
20 | static void sift_down(binaryheap *heap, int node_off); |
21 | static void sift_up(binaryheap *heap, int node_off); |
22 | static inline void swap_nodes(binaryheap *heap, int a, int b); |
23 | |
24 | /* |
25 | * binaryheap_allocate |
26 | * |
27 | * Returns a pointer to a newly-allocated heap that has the capacity to |
28 | * store the given number of nodes, with the heap property defined by |
29 | * the given comparator function, which will be invoked with the additional |
30 | * argument specified by 'arg'. |
31 | */ |
32 | binaryheap * |
33 | binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg) |
34 | { |
35 | int sz; |
36 | binaryheap *heap; |
37 | |
38 | sz = offsetof(binaryheap, bh_nodes) + sizeof(Datum) * capacity; |
39 | heap = (binaryheap *) palloc(sz); |
40 | heap->bh_space = capacity; |
41 | heap->bh_compare = compare; |
42 | heap->bh_arg = arg; |
43 | |
44 | heap->bh_size = 0; |
45 | heap->bh_has_heap_property = true; |
46 | |
47 | return heap; |
48 | } |
49 | |
50 | /* |
51 | * binaryheap_reset |
52 | * |
53 | * Resets the heap to an empty state, losing its data content but not the |
54 | * parameters passed at allocation. |
55 | */ |
56 | void |
57 | binaryheap_reset(binaryheap *heap) |
58 | { |
59 | heap->bh_size = 0; |
60 | heap->bh_has_heap_property = true; |
61 | } |
62 | |
63 | /* |
64 | * binaryheap_free |
65 | * |
66 | * Releases memory used by the given binaryheap. |
67 | */ |
68 | void |
69 | binaryheap_free(binaryheap *heap) |
70 | { |
71 | pfree(heap); |
72 | } |
73 | |
74 | /* |
75 | * These utility functions return the offset of the left child, right |
76 | * child, and parent of the node at the given index, respectively. |
77 | * |
78 | * The heap is represented as an array of nodes, with the root node |
79 | * stored at index 0. The left child of node i is at index 2*i+1, and |
80 | * the right child at 2*i+2. The parent of node i is at index (i-1)/2. |
81 | */ |
82 | |
83 | static inline int |
84 | left_offset(int i) |
85 | { |
86 | return 2 * i + 1; |
87 | } |
88 | |
89 | static inline int |
90 | right_offset(int i) |
91 | { |
92 | return 2 * i + 2; |
93 | } |
94 | |
95 | static inline int |
96 | parent_offset(int i) |
97 | { |
98 | return (i - 1) / 2; |
99 | } |
100 | |
101 | /* |
102 | * binaryheap_add_unordered |
103 | * |
104 | * Adds the given datum to the end of the heap's list of nodes in O(1) without |
105 | * preserving the heap property. This is a convenience to add elements quickly |
106 | * to a new heap. To obtain a valid heap, one must call binaryheap_build() |
107 | * afterwards. |
108 | */ |
109 | void |
110 | binaryheap_add_unordered(binaryheap *heap, Datum d) |
111 | { |
112 | if (heap->bh_size >= heap->bh_space) |
113 | elog(ERROR, "out of binary heap slots" ); |
114 | heap->bh_has_heap_property = false; |
115 | heap->bh_nodes[heap->bh_size] = d; |
116 | heap->bh_size++; |
117 | } |
118 | |
119 | /* |
120 | * binaryheap_build |
121 | * |
122 | * Assembles a valid heap in O(n) from the nodes added by |
123 | * binaryheap_add_unordered(). Not needed otherwise. |
124 | */ |
125 | void |
126 | binaryheap_build(binaryheap *heap) |
127 | { |
128 | int i; |
129 | |
130 | for (i = parent_offset(heap->bh_size - 1); i >= 0; i--) |
131 | sift_down(heap, i); |
132 | heap->bh_has_heap_property = true; |
133 | } |
134 | |
135 | /* |
136 | * binaryheap_add |
137 | * |
138 | * Adds the given datum to the heap in O(log n) time, while preserving |
139 | * the heap property. |
140 | */ |
141 | void |
142 | binaryheap_add(binaryheap *heap, Datum d) |
143 | { |
144 | if (heap->bh_size >= heap->bh_space) |
145 | elog(ERROR, "out of binary heap slots" ); |
146 | heap->bh_nodes[heap->bh_size] = d; |
147 | heap->bh_size++; |
148 | sift_up(heap, heap->bh_size - 1); |
149 | } |
150 | |
151 | /* |
152 | * binaryheap_first |
153 | * |
154 | * Returns a pointer to the first (root, topmost) node in the heap |
155 | * without modifying the heap. The caller must ensure that this |
156 | * routine is not used on an empty heap. Always O(1). |
157 | */ |
158 | Datum |
159 | binaryheap_first(binaryheap *heap) |
160 | { |
161 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
162 | return heap->bh_nodes[0]; |
163 | } |
164 | |
165 | /* |
166 | * binaryheap_remove_first |
167 | * |
168 | * Removes the first (root, topmost) node in the heap and returns a |
169 | * pointer to it after rebalancing the heap. The caller must ensure |
170 | * that this routine is not used on an empty heap. O(log n) worst |
171 | * case. |
172 | */ |
173 | Datum |
174 | binaryheap_remove_first(binaryheap *heap) |
175 | { |
176 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
177 | |
178 | if (heap->bh_size == 1) |
179 | { |
180 | heap->bh_size--; |
181 | return heap->bh_nodes[0]; |
182 | } |
183 | |
184 | /* |
185 | * Swap the root and last nodes, decrease the size of the heap (i.e. |
186 | * remove the former root node) and sift the new root node down to its |
187 | * correct position. |
188 | */ |
189 | swap_nodes(heap, 0, heap->bh_size - 1); |
190 | heap->bh_size--; |
191 | sift_down(heap, 0); |
192 | |
193 | return heap->bh_nodes[heap->bh_size]; |
194 | } |
195 | |
196 | /* |
197 | * binaryheap_replace_first |
198 | * |
199 | * Replace the topmost element of a non-empty heap, preserving the heap |
200 | * property. O(1) in the best case, or O(log n) if it must fall back to |
201 | * sifting the new node down. |
202 | */ |
203 | void |
204 | binaryheap_replace_first(binaryheap *heap, Datum d) |
205 | { |
206 | Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property); |
207 | |
208 | heap->bh_nodes[0] = d; |
209 | |
210 | if (heap->bh_size > 1) |
211 | sift_down(heap, 0); |
212 | } |
213 | |
214 | /* |
215 | * Swap the contents of two nodes. |
216 | */ |
217 | static inline void |
218 | swap_nodes(binaryheap *heap, int a, int b) |
219 | { |
220 | Datum swap; |
221 | |
222 | swap = heap->bh_nodes[a]; |
223 | heap->bh_nodes[a] = heap->bh_nodes[b]; |
224 | heap->bh_nodes[b] = swap; |
225 | } |
226 | |
227 | /* |
228 | * Sift a node up to the highest position it can hold according to the |
229 | * comparator. |
230 | */ |
231 | static void |
232 | sift_up(binaryheap *heap, int node_off) |
233 | { |
234 | while (node_off != 0) |
235 | { |
236 | int cmp; |
237 | int parent_off; |
238 | |
239 | /* |
240 | * If this node is smaller than its parent, the heap condition is |
241 | * satisfied, and we're done. |
242 | */ |
243 | parent_off = parent_offset(node_off); |
244 | cmp = heap->bh_compare(heap->bh_nodes[node_off], |
245 | heap->bh_nodes[parent_off], |
246 | heap->bh_arg); |
247 | if (cmp <= 0) |
248 | break; |
249 | |
250 | /* |
251 | * Otherwise, swap the node and its parent and go on to check the |
252 | * node's new parent. |
253 | */ |
254 | swap_nodes(heap, node_off, parent_off); |
255 | node_off = parent_off; |
256 | } |
257 | } |
258 | |
259 | /* |
260 | * Sift a node down from its current position to satisfy the heap |
261 | * property. |
262 | */ |
263 | static void |
264 | sift_down(binaryheap *heap, int node_off) |
265 | { |
266 | while (true) |
267 | { |
268 | int left_off = left_offset(node_off); |
269 | int right_off = right_offset(node_off); |
270 | int swap_off = 0; |
271 | |
272 | /* Is the left child larger than the parent? */ |
273 | if (left_off < heap->bh_size && |
274 | heap->bh_compare(heap->bh_nodes[node_off], |
275 | heap->bh_nodes[left_off], |
276 | heap->bh_arg) < 0) |
277 | swap_off = left_off; |
278 | |
279 | /* Is the right child larger than the parent? */ |
280 | if (right_off < heap->bh_size && |
281 | heap->bh_compare(heap->bh_nodes[node_off], |
282 | heap->bh_nodes[right_off], |
283 | heap->bh_arg) < 0) |
284 | { |
285 | /* swap with the larger child */ |
286 | if (!swap_off || |
287 | heap->bh_compare(heap->bh_nodes[left_off], |
288 | heap->bh_nodes[right_off], |
289 | heap->bh_arg) < 0) |
290 | swap_off = right_off; |
291 | } |
292 | |
293 | /* |
294 | * If we didn't find anything to swap, the heap condition is |
295 | * satisfied, and we're done. |
296 | */ |
297 | if (!swap_off) |
298 | break; |
299 | |
300 | /* |
301 | * Otherwise, swap the node with the child that violates the heap |
302 | * property; then go on to check its children. |
303 | */ |
304 | swap_nodes(heap, swap_off, node_off); |
305 | node_off = swap_off; |
306 | } |
307 | } |
308 | |