1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * bipartite_match.c |
4 | * Hopcroft-Karp maximum cardinality algorithm for bipartite graphs |
5 | * |
6 | * This implementation is based on pseudocode found at: |
7 | * |
8 | * https://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016 |
9 | * |
10 | * Copyright (c) 2015-2019, PostgreSQL Global Development Group |
11 | * |
12 | * IDENTIFICATION |
13 | * src/backend/lib/bipartite_match.c |
14 | * |
15 | *------------------------------------------------------------------------- |
16 | */ |
17 | #include "postgres.h" |
18 | |
19 | #include <limits.h> |
20 | |
21 | #include "lib/bipartite_match.h" |
22 | #include "miscadmin.h" |
23 | |
24 | /* |
25 | * The distances computed in hk_breadth_search can easily be seen to never |
26 | * exceed u_size. Since we restrict u_size to be less than SHRT_MAX, we |
27 | * can therefore use SHRT_MAX as the "infinity" distance needed as a marker. |
28 | */ |
29 | #define HK_INFINITY SHRT_MAX |
30 | |
31 | static bool hk_breadth_search(BipartiteMatchState *state); |
32 | static bool hk_depth_search(BipartiteMatchState *state, int u); |
33 | |
34 | /* |
35 | * Given the size of U and V, where each is indexed 1..size, and an adjacency |
36 | * list, perform the matching and return the resulting state. |
37 | */ |
38 | BipartiteMatchState * |
39 | BipartiteMatch(int u_size, int v_size, short **adjacency) |
40 | { |
41 | BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState)); |
42 | |
43 | if (u_size < 0 || u_size >= SHRT_MAX || |
44 | v_size < 0 || v_size >= SHRT_MAX) |
45 | elog(ERROR, "invalid set size for BipartiteMatch" ); |
46 | |
47 | state->u_size = u_size; |
48 | state->v_size = v_size; |
49 | state->adjacency = adjacency; |
50 | state->matching = 0; |
51 | state->pair_uv = (short *) palloc0((u_size + 1) * sizeof(short)); |
52 | state->pair_vu = (short *) palloc0((v_size + 1) * sizeof(short)); |
53 | state->distance = (short *) palloc((u_size + 1) * sizeof(short)); |
54 | state->queue = (short *) palloc((u_size + 2) * sizeof(short)); |
55 | |
56 | while (hk_breadth_search(state)) |
57 | { |
58 | int u; |
59 | |
60 | for (u = 1; u <= u_size; u++) |
61 | { |
62 | if (state->pair_uv[u] == 0) |
63 | if (hk_depth_search(state, u)) |
64 | state->matching++; |
65 | } |
66 | |
67 | CHECK_FOR_INTERRUPTS(); /* just in case */ |
68 | } |
69 | |
70 | return state; |
71 | } |
72 | |
73 | /* |
74 | * Free a state returned by BipartiteMatch, except for the original adjacency |
75 | * list, which is owned by the caller. This only frees memory, so it's optional. |
76 | */ |
77 | void |
78 | BipartiteMatchFree(BipartiteMatchState *state) |
79 | { |
80 | /* adjacency matrix is treated as owned by the caller */ |
81 | pfree(state->pair_uv); |
82 | pfree(state->pair_vu); |
83 | pfree(state->distance); |
84 | pfree(state->queue); |
85 | pfree(state); |
86 | } |
87 | |
88 | /* |
89 | * Perform the breadth-first search step of H-K matching. |
90 | * Returns true if successful. |
91 | */ |
92 | static bool |
93 | hk_breadth_search(BipartiteMatchState *state) |
94 | { |
95 | int usize = state->u_size; |
96 | short *queue = state->queue; |
97 | short *distance = state->distance; |
98 | int qhead = 0; /* we never enqueue any node more than once */ |
99 | int qtail = 0; /* so don't have to worry about wrapping */ |
100 | int u; |
101 | |
102 | distance[0] = HK_INFINITY; |
103 | |
104 | for (u = 1; u <= usize; u++) |
105 | { |
106 | if (state->pair_uv[u] == 0) |
107 | { |
108 | distance[u] = 0; |
109 | queue[qhead++] = u; |
110 | } |
111 | else |
112 | distance[u] = HK_INFINITY; |
113 | } |
114 | |
115 | while (qtail < qhead) |
116 | { |
117 | u = queue[qtail++]; |
118 | |
119 | if (distance[u] < distance[0]) |
120 | { |
121 | short *u_adj = state->adjacency[u]; |
122 | int i = u_adj ? u_adj[0] : 0; |
123 | |
124 | for (; i > 0; i--) |
125 | { |
126 | int u_next = state->pair_vu[u_adj[i]]; |
127 | |
128 | if (distance[u_next] == HK_INFINITY) |
129 | { |
130 | distance[u_next] = 1 + distance[u]; |
131 | Assert(qhead < usize + 2); |
132 | queue[qhead++] = u_next; |
133 | } |
134 | } |
135 | } |
136 | } |
137 | |
138 | return (distance[0] != HK_INFINITY); |
139 | } |
140 | |
141 | /* |
142 | * Perform the depth-first search step of H-K matching. |
143 | * Returns true if successful. |
144 | */ |
145 | static bool |
146 | hk_depth_search(BipartiteMatchState *state, int u) |
147 | { |
148 | short *distance = state->distance; |
149 | short *pair_uv = state->pair_uv; |
150 | short *pair_vu = state->pair_vu; |
151 | short *u_adj = state->adjacency[u]; |
152 | int i = u_adj ? u_adj[0] : 0; |
153 | short nextdist; |
154 | |
155 | if (u == 0) |
156 | return true; |
157 | if (distance[u] == HK_INFINITY) |
158 | return false; |
159 | nextdist = distance[u] + 1; |
160 | |
161 | check_stack_depth(); |
162 | |
163 | for (; i > 0; i--) |
164 | { |
165 | int v = u_adj[i]; |
166 | |
167 | if (distance[pair_vu[v]] == nextdist) |
168 | { |
169 | if (hk_depth_search(state, pair_vu[v])) |
170 | { |
171 | pair_vu[v] = u; |
172 | pair_uv[u] = v; |
173 | return true; |
174 | } |
175 | } |
176 | } |
177 | |
178 | distance[u] = HK_INFINITY; |
179 | return false; |
180 | } |
181 | |