| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * bipartite_match.c |
| 4 | * Hopcroft-Karp maximum cardinality algorithm for bipartite graphs |
| 5 | * |
| 6 | * This implementation is based on pseudocode found at: |
| 7 | * |
| 8 | * https://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016 |
| 9 | * |
| 10 | * Copyright (c) 2015-2019, PostgreSQL Global Development Group |
| 11 | * |
| 12 | * IDENTIFICATION |
| 13 | * src/backend/lib/bipartite_match.c |
| 14 | * |
| 15 | *------------------------------------------------------------------------- |
| 16 | */ |
| 17 | #include "postgres.h" |
| 18 | |
| 19 | #include <limits.h> |
| 20 | |
| 21 | #include "lib/bipartite_match.h" |
| 22 | #include "miscadmin.h" |
| 23 | |
| 24 | /* |
| 25 | * The distances computed in hk_breadth_search can easily be seen to never |
| 26 | * exceed u_size. Since we restrict u_size to be less than SHRT_MAX, we |
| 27 | * can therefore use SHRT_MAX as the "infinity" distance needed as a marker. |
| 28 | */ |
| 29 | #define HK_INFINITY SHRT_MAX |
| 30 | |
| 31 | static bool hk_breadth_search(BipartiteMatchState *state); |
| 32 | static bool hk_depth_search(BipartiteMatchState *state, int u); |
| 33 | |
| 34 | /* |
| 35 | * Given the size of U and V, where each is indexed 1..size, and an adjacency |
| 36 | * list, perform the matching and return the resulting state. |
| 37 | */ |
| 38 | BipartiteMatchState * |
| 39 | BipartiteMatch(int u_size, int v_size, short **adjacency) |
| 40 | { |
| 41 | BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState)); |
| 42 | |
| 43 | if (u_size < 0 || u_size >= SHRT_MAX || |
| 44 | v_size < 0 || v_size >= SHRT_MAX) |
| 45 | elog(ERROR, "invalid set size for BipartiteMatch" ); |
| 46 | |
| 47 | state->u_size = u_size; |
| 48 | state->v_size = v_size; |
| 49 | state->adjacency = adjacency; |
| 50 | state->matching = 0; |
| 51 | state->pair_uv = (short *) palloc0((u_size + 1) * sizeof(short)); |
| 52 | state->pair_vu = (short *) palloc0((v_size + 1) * sizeof(short)); |
| 53 | state->distance = (short *) palloc((u_size + 1) * sizeof(short)); |
| 54 | state->queue = (short *) palloc((u_size + 2) * sizeof(short)); |
| 55 | |
| 56 | while (hk_breadth_search(state)) |
| 57 | { |
| 58 | int u; |
| 59 | |
| 60 | for (u = 1; u <= u_size; u++) |
| 61 | { |
| 62 | if (state->pair_uv[u] == 0) |
| 63 | if (hk_depth_search(state, u)) |
| 64 | state->matching++; |
| 65 | } |
| 66 | |
| 67 | CHECK_FOR_INTERRUPTS(); /* just in case */ |
| 68 | } |
| 69 | |
| 70 | return state; |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * Free a state returned by BipartiteMatch, except for the original adjacency |
| 75 | * list, which is owned by the caller. This only frees memory, so it's optional. |
| 76 | */ |
| 77 | void |
| 78 | BipartiteMatchFree(BipartiteMatchState *state) |
| 79 | { |
| 80 | /* adjacency matrix is treated as owned by the caller */ |
| 81 | pfree(state->pair_uv); |
| 82 | pfree(state->pair_vu); |
| 83 | pfree(state->distance); |
| 84 | pfree(state->queue); |
| 85 | pfree(state); |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * Perform the breadth-first search step of H-K matching. |
| 90 | * Returns true if successful. |
| 91 | */ |
| 92 | static bool |
| 93 | hk_breadth_search(BipartiteMatchState *state) |
| 94 | { |
| 95 | int usize = state->u_size; |
| 96 | short *queue = state->queue; |
| 97 | short *distance = state->distance; |
| 98 | int qhead = 0; /* we never enqueue any node more than once */ |
| 99 | int qtail = 0; /* so don't have to worry about wrapping */ |
| 100 | int u; |
| 101 | |
| 102 | distance[0] = HK_INFINITY; |
| 103 | |
| 104 | for (u = 1; u <= usize; u++) |
| 105 | { |
| 106 | if (state->pair_uv[u] == 0) |
| 107 | { |
| 108 | distance[u] = 0; |
| 109 | queue[qhead++] = u; |
| 110 | } |
| 111 | else |
| 112 | distance[u] = HK_INFINITY; |
| 113 | } |
| 114 | |
| 115 | while (qtail < qhead) |
| 116 | { |
| 117 | u = queue[qtail++]; |
| 118 | |
| 119 | if (distance[u] < distance[0]) |
| 120 | { |
| 121 | short *u_adj = state->adjacency[u]; |
| 122 | int i = u_adj ? u_adj[0] : 0; |
| 123 | |
| 124 | for (; i > 0; i--) |
| 125 | { |
| 126 | int u_next = state->pair_vu[u_adj[i]]; |
| 127 | |
| 128 | if (distance[u_next] == HK_INFINITY) |
| 129 | { |
| 130 | distance[u_next] = 1 + distance[u]; |
| 131 | Assert(qhead < usize + 2); |
| 132 | queue[qhead++] = u_next; |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | return (distance[0] != HK_INFINITY); |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * Perform the depth-first search step of H-K matching. |
| 143 | * Returns true if successful. |
| 144 | */ |
| 145 | static bool |
| 146 | hk_depth_search(BipartiteMatchState *state, int u) |
| 147 | { |
| 148 | short *distance = state->distance; |
| 149 | short *pair_uv = state->pair_uv; |
| 150 | short *pair_vu = state->pair_vu; |
| 151 | short *u_adj = state->adjacency[u]; |
| 152 | int i = u_adj ? u_adj[0] : 0; |
| 153 | short nextdist; |
| 154 | |
| 155 | if (u == 0) |
| 156 | return true; |
| 157 | if (distance[u] == HK_INFINITY) |
| 158 | return false; |
| 159 | nextdist = distance[u] + 1; |
| 160 | |
| 161 | check_stack_depth(); |
| 162 | |
| 163 | for (; i > 0; i--) |
| 164 | { |
| 165 | int v = u_adj[i]; |
| 166 | |
| 167 | if (distance[pair_vu[v]] == nextdist) |
| 168 | { |
| 169 | if (hk_depth_search(state, pair_vu[v])) |
| 170 | { |
| 171 | pair_vu[v] = u; |
| 172 | pair_uv[u] = v; |
| 173 | return true; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | distance[u] = HK_INFINITY; |
| 179 | return false; |
| 180 | } |
| 181 | |