1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * pairingheap.c |
4 | * A Pairing Heap implementation |
5 | * |
6 | * A pairing heap is a data structure that's useful for implementing |
7 | * priority queues. It is simple to implement, and provides amortized O(1) |
8 | * insert and find-min operations, and amortized O(log n) delete-min. |
9 | * |
10 | * The pairing heap was first described in this paper: |
11 | * |
12 | * Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. |
13 | * Tarjan. 1986. |
14 | * The pairing heap: a new form of self-adjusting heap. |
15 | * Algorithmica 1, 1 (January 1986), pages 111-129. DOI: 10.1007/BF01840439 |
16 | * |
17 | * Portions Copyright (c) 2012-2019, PostgreSQL Global Development Group |
18 | * |
19 | * IDENTIFICATION |
20 | * src/backend/lib/pairingheap.c |
21 | * |
22 | *------------------------------------------------------------------------- |
23 | */ |
24 | |
25 | #include "postgres.h" |
26 | |
27 | #include "lib/pairingheap.h" |
28 | |
29 | static pairingheap_node *merge(pairingheap *heap, pairingheap_node *a, |
30 | pairingheap_node *b); |
31 | static pairingheap_node *merge_children(pairingheap *heap, |
32 | pairingheap_node *children); |
33 | |
34 | /* |
35 | * pairingheap_allocate |
36 | * |
37 | * Returns a pointer to a newly-allocated heap, with the heap property defined |
38 | * by the given comparator function, which will be invoked with the additional |
39 | * argument specified by 'arg'. |
40 | */ |
41 | pairingheap * |
42 | pairingheap_allocate(pairingheap_comparator compare, void *arg) |
43 | { |
44 | pairingheap *heap; |
45 | |
46 | heap = (pairingheap *) palloc(sizeof(pairingheap)); |
47 | heap->ph_compare = compare; |
48 | heap->ph_arg = arg; |
49 | |
50 | heap->ph_root = NULL; |
51 | |
52 | return heap; |
53 | } |
54 | |
55 | /* |
56 | * pairingheap_free |
57 | * |
58 | * Releases memory used by the given pairingheap. |
59 | * |
60 | * Note: The nodes in the heap are not freed! |
61 | */ |
62 | void |
63 | pairingheap_free(pairingheap *heap) |
64 | { |
65 | pfree(heap); |
66 | } |
67 | |
68 | /* |
69 | * A helper function to merge two subheaps into one. |
70 | * |
71 | * The subheap with smaller value is put as a child of the other one (assuming |
72 | * a max-heap). |
73 | * |
74 | * The next_sibling and prev_or_parent pointers of the input nodes are |
75 | * ignored. On return, the returned node's next_sibling and prev_or_parent |
76 | * pointers are garbage. |
77 | */ |
78 | static pairingheap_node * |
79 | merge(pairingheap *heap, pairingheap_node *a, pairingheap_node *b) |
80 | { |
81 | if (a == NULL) |
82 | return b; |
83 | if (b == NULL) |
84 | return a; |
85 | |
86 | /* swap 'a' and 'b' so that 'a' is the one with larger value */ |
87 | if (heap->ph_compare(a, b, heap->ph_arg) < 0) |
88 | { |
89 | pairingheap_node *tmp; |
90 | |
91 | tmp = a; |
92 | a = b; |
93 | b = tmp; |
94 | } |
95 | |
96 | /* and put 'b' as a child of 'a' */ |
97 | if (a->first_child) |
98 | a->first_child->prev_or_parent = b; |
99 | b->prev_or_parent = a; |
100 | b->next_sibling = a->first_child; |
101 | a->first_child = b; |
102 | |
103 | return a; |
104 | } |
105 | |
106 | /* |
107 | * pairingheap_add |
108 | * |
109 | * Adds the given node to the heap in O(1) time. |
110 | */ |
111 | void |
112 | pairingheap_add(pairingheap *heap, pairingheap_node *node) |
113 | { |
114 | node->first_child = NULL; |
115 | |
116 | /* Link the new node as a new tree */ |
117 | heap->ph_root = merge(heap, heap->ph_root, node); |
118 | heap->ph_root->prev_or_parent = NULL; |
119 | heap->ph_root->next_sibling = NULL; |
120 | } |
121 | |
122 | /* |
123 | * pairingheap_first |
124 | * |
125 | * Returns a pointer to the first (root, topmost) node in the heap without |
126 | * modifying the heap. The caller must ensure that this routine is not used on |
127 | * an empty heap. Always O(1). |
128 | */ |
129 | pairingheap_node * |
130 | pairingheap_first(pairingheap *heap) |
131 | { |
132 | Assert(!pairingheap_is_empty(heap)); |
133 | |
134 | return heap->ph_root; |
135 | } |
136 | |
137 | /* |
138 | * pairingheap_remove_first |
139 | * |
140 | * Removes the first (root, topmost) node in the heap and returns a pointer to |
141 | * it after rebalancing the heap. The caller must ensure that this routine is |
142 | * not used on an empty heap. O(log n) amortized. |
143 | */ |
144 | pairingheap_node * |
145 | pairingheap_remove_first(pairingheap *heap) |
146 | { |
147 | pairingheap_node *result; |
148 | pairingheap_node *children; |
149 | |
150 | Assert(!pairingheap_is_empty(heap)); |
151 | |
152 | /* Remove the root, and form a new heap of its children. */ |
153 | result = heap->ph_root; |
154 | children = result->first_child; |
155 | |
156 | heap->ph_root = merge_children(heap, children); |
157 | if (heap->ph_root) |
158 | { |
159 | heap->ph_root->prev_or_parent = NULL; |
160 | heap->ph_root->next_sibling = NULL; |
161 | } |
162 | |
163 | return result; |
164 | } |
165 | |
166 | /* |
167 | * Remove 'node' from the heap. O(log n) amortized. |
168 | */ |
169 | void |
170 | pairingheap_remove(pairingheap *heap, pairingheap_node *node) |
171 | { |
172 | pairingheap_node *children; |
173 | pairingheap_node *replacement; |
174 | pairingheap_node *next_sibling; |
175 | pairingheap_node **prev_ptr; |
176 | |
177 | /* |
178 | * If the removed node happens to be the root node, do it with |
179 | * pairingheap_remove_first(). |
180 | */ |
181 | if (node == heap->ph_root) |
182 | { |
183 | (void) pairingheap_remove_first(heap); |
184 | return; |
185 | } |
186 | |
187 | /* |
188 | * Before we modify anything, remember the removed node's first_child and |
189 | * next_sibling pointers. |
190 | */ |
191 | children = node->first_child; |
192 | next_sibling = node->next_sibling; |
193 | |
194 | /* |
195 | * Also find the pointer to the removed node in its previous sibling, or |
196 | * if this is the first child of its parent, in its parent. |
197 | */ |
198 | if (node->prev_or_parent->first_child == node) |
199 | prev_ptr = &node->prev_or_parent->first_child; |
200 | else |
201 | prev_ptr = &node->prev_or_parent->next_sibling; |
202 | Assert(*prev_ptr == node); |
203 | |
204 | /* |
205 | * If this node has children, make a new subheap of the children and link |
206 | * the subheap in place of the removed node. Otherwise just unlink this |
207 | * node. |
208 | */ |
209 | if (children) |
210 | { |
211 | replacement = merge_children(heap, children); |
212 | |
213 | replacement->prev_or_parent = node->prev_or_parent; |
214 | replacement->next_sibling = node->next_sibling; |
215 | *prev_ptr = replacement; |
216 | if (next_sibling) |
217 | next_sibling->prev_or_parent = replacement; |
218 | } |
219 | else |
220 | { |
221 | *prev_ptr = next_sibling; |
222 | if (next_sibling) |
223 | next_sibling->prev_or_parent = node->prev_or_parent; |
224 | } |
225 | } |
226 | |
227 | /* |
228 | * Merge a list of subheaps into a single heap. |
229 | * |
230 | * This implements the basic two-pass merging strategy, first forming pairs |
231 | * from left to right, and then merging the pairs. |
232 | */ |
233 | static pairingheap_node * |
234 | merge_children(pairingheap *heap, pairingheap_node *children) |
235 | { |
236 | pairingheap_node *curr, |
237 | *next; |
238 | pairingheap_node *pairs; |
239 | pairingheap_node *newroot; |
240 | |
241 | if (children == NULL || children->next_sibling == NULL) |
242 | return children; |
243 | |
244 | /* Walk the subheaps from left to right, merging in pairs */ |
245 | next = children; |
246 | pairs = NULL; |
247 | for (;;) |
248 | { |
249 | curr = next; |
250 | |
251 | if (curr == NULL) |
252 | break; |
253 | |
254 | if (curr->next_sibling == NULL) |
255 | { |
256 | /* last odd node at the end of list */ |
257 | curr->next_sibling = pairs; |
258 | pairs = curr; |
259 | break; |
260 | } |
261 | |
262 | next = curr->next_sibling->next_sibling; |
263 | |
264 | /* merge this and the next subheap, and add to 'pairs' list. */ |
265 | |
266 | curr = merge(heap, curr, curr->next_sibling); |
267 | curr->next_sibling = pairs; |
268 | pairs = curr; |
269 | } |
270 | |
271 | /* |
272 | * Merge all the pairs together to form a single heap. |
273 | */ |
274 | newroot = pairs; |
275 | next = pairs->next_sibling; |
276 | while (next) |
277 | { |
278 | curr = next; |
279 | next = curr->next_sibling; |
280 | |
281 | newroot = merge(heap, newroot, curr); |
282 | } |
283 | |
284 | return newroot; |
285 | } |
286 | |
287 | /* |
288 | * A debug function to dump the contents of the heap as a string. |
289 | * |
290 | * The 'dumpfunc' callback appends a string representation of a single node |
291 | * to the StringInfo. 'opaque' can be used to pass more information to the |
292 | * callback. |
293 | */ |
294 | #ifdef PAIRINGHEAP_DEBUG |
295 | static void |
296 | pairingheap_dump_recurse(StringInfo buf, |
297 | pairingheap_node *node, |
298 | void (*dumpfunc) (pairingheap_node *node, StringInfo buf, void *opaque), |
299 | void *opaque, |
300 | int depth, |
301 | pairingheap_node *prev_or_parent) |
302 | { |
303 | while (node) |
304 | { |
305 | Assert(node->prev_or_parent == prev_or_parent); |
306 | |
307 | appendStringInfoSpaces(buf, depth * 4); |
308 | dumpfunc(node, buf, opaque); |
309 | appendStringInfoChar(buf, '\n'); |
310 | if (node->first_child) |
311 | pairingheap_dump_recurse(buf, node->first_child, dumpfunc, opaque, depth + 1, node); |
312 | prev_or_parent = node; |
313 | node = node->next_sibling; |
314 | } |
315 | } |
316 | |
317 | char * |
318 | pairingheap_dump(pairingheap *heap, |
319 | void (*dumpfunc) (pairingheap_node *node, StringInfo buf, void *opaque), |
320 | void *opaque) |
321 | { |
322 | StringInfoData buf; |
323 | |
324 | if (!heap->ph_root) |
325 | return pstrdup("(empty)" ); |
326 | |
327 | initStringInfo(&buf); |
328 | |
329 | pairingheap_dump_recurse(&buf, heap->ph_root, dumpfunc, opaque, 0, NULL); |
330 | |
331 | return buf.data; |
332 | } |
333 | #endif |
334 | |