| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * auth-scram.c |
| 4 | * Server-side implementation of the SASL SCRAM-SHA-256 mechanism. |
| 5 | * |
| 6 | * See the following RFCs for more details: |
| 7 | * - RFC 5802: https://tools.ietf.org/html/rfc5802 |
| 8 | * - RFC 5803: https://tools.ietf.org/html/rfc5803 |
| 9 | * - RFC 7677: https://tools.ietf.org/html/rfc7677 |
| 10 | * |
| 11 | * Here are some differences: |
| 12 | * |
| 13 | * - Username from the authentication exchange is not used. The client |
| 14 | * should send an empty string as the username. |
| 15 | * |
| 16 | * - If the password isn't valid UTF-8, or contains characters prohibited |
| 17 | * by the SASLprep profile, we skip the SASLprep pre-processing and use |
| 18 | * the raw bytes in calculating the hash. |
| 19 | * |
| 20 | * - If channel binding is used, the channel binding type is always |
| 21 | * "tls-server-end-point". The spec says the default is "tls-unique" |
| 22 | * (RFC 5802, section 6.1. Default Channel Binding), but there are some |
| 23 | * problems with that. Firstly, not all SSL libraries provide an API to |
| 24 | * get the TLS Finished message, required to use "tls-unique". Secondly, |
| 25 | * "tls-unique" is not specified for TLS v1.3, and as of this writing, |
| 26 | * it's not clear if there will be a replacement. We could support both |
| 27 | * "tls-server-end-point" and "tls-unique", but for our use case, |
| 28 | * "tls-unique" doesn't really have any advantages. The main advantage |
| 29 | * of "tls-unique" would be that it works even if the server doesn't |
| 30 | * have a certificate, but PostgreSQL requires a server certificate |
| 31 | * whenever SSL is used, anyway. |
| 32 | * |
| 33 | * |
| 34 | * The password stored in pg_authid consists of the iteration count, salt, |
| 35 | * StoredKey and ServerKey. |
| 36 | * |
| 37 | * SASLprep usage |
| 38 | * -------------- |
| 39 | * |
| 40 | * One notable difference to the SCRAM specification is that while the |
| 41 | * specification dictates that the password is in UTF-8, and prohibits |
| 42 | * certain characters, we are more lenient. If the password isn't a valid |
| 43 | * UTF-8 string, or contains prohibited characters, the raw bytes are used |
| 44 | * to calculate the hash instead, without SASLprep processing. This is |
| 45 | * because PostgreSQL supports other encodings too, and the encoding being |
| 46 | * used during authentication is undefined (client_encoding isn't set until |
| 47 | * after authentication). In effect, we try to interpret the password as |
| 48 | * UTF-8 and apply SASLprep processing, but if it looks invalid, we assume |
| 49 | * that it's in some other encoding. |
| 50 | * |
| 51 | * In the worst case, we misinterpret a password that's in a different |
| 52 | * encoding as being Unicode, because it happens to consists entirely of |
| 53 | * valid UTF-8 bytes, and we apply Unicode normalization to it. As long |
| 54 | * as we do that consistently, that will not lead to failed logins. |
| 55 | * Fortunately, the UTF-8 byte sequences that are ignored by SASLprep |
| 56 | * don't correspond to any commonly used characters in any of the other |
| 57 | * supported encodings, so it should not lead to any significant loss in |
| 58 | * entropy, even if the normalization is incorrectly applied to a |
| 59 | * non-UTF-8 password. |
| 60 | * |
| 61 | * Error handling |
| 62 | * -------------- |
| 63 | * |
| 64 | * Don't reveal user information to an unauthenticated client. We don't |
| 65 | * want an attacker to be able to probe whether a particular username is |
| 66 | * valid. In SCRAM, the server has to read the salt and iteration count |
| 67 | * from the user's password verifier, and send it to the client. To avoid |
| 68 | * revealing whether a user exists, when the client tries to authenticate |
| 69 | * with a username that doesn't exist, or doesn't have a valid SCRAM |
| 70 | * verifier in pg_authid, we create a fake salt and iteration count |
| 71 | * on-the-fly, and proceed with the authentication with that. In the end, |
| 72 | * we'll reject the attempt, as if an incorrect password was given. When |
| 73 | * we are performing a "mock" authentication, the 'doomed' flag in |
| 74 | * scram_state is set. |
| 75 | * |
| 76 | * In the error messages, avoid printing strings from the client, unless |
| 77 | * you check that they are pure ASCII. We don't want an unauthenticated |
| 78 | * attacker to be able to spam the logs with characters that are not valid |
| 79 | * to the encoding being used, whatever that is. We cannot avoid that in |
| 80 | * general, after logging in, but let's do what we can here. |
| 81 | * |
| 82 | * |
| 83 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 84 | * Portions Copyright (c) 1994, Regents of the University of California |
| 85 | * |
| 86 | * src/backend/libpq/auth-scram.c |
| 87 | * |
| 88 | *------------------------------------------------------------------------- |
| 89 | */ |
| 90 | #include "postgres.h" |
| 91 | |
| 92 | #include <unistd.h> |
| 93 | |
| 94 | #include "access/xlog.h" |
| 95 | #include "catalog/pg_authid.h" |
| 96 | #include "catalog/pg_control.h" |
| 97 | #include "common/base64.h" |
| 98 | #include "common/saslprep.h" |
| 99 | #include "common/scram-common.h" |
| 100 | #include "common/sha2.h" |
| 101 | #include "libpq/auth.h" |
| 102 | #include "libpq/crypt.h" |
| 103 | #include "libpq/scram.h" |
| 104 | #include "miscadmin.h" |
| 105 | #include "utils/builtins.h" |
| 106 | #include "utils/timestamp.h" |
| 107 | |
| 108 | /* |
| 109 | * Status data for a SCRAM authentication exchange. This should be kept |
| 110 | * internal to this file. |
| 111 | */ |
| 112 | typedef enum |
| 113 | { |
| 114 | SCRAM_AUTH_INIT, |
| 115 | SCRAM_AUTH_SALT_SENT, |
| 116 | SCRAM_AUTH_FINISHED |
| 117 | } scram_state_enum; |
| 118 | |
| 119 | typedef struct |
| 120 | { |
| 121 | scram_state_enum state; |
| 122 | |
| 123 | const char *username; /* username from startup packet */ |
| 124 | |
| 125 | Port *port; |
| 126 | bool channel_binding_in_use; |
| 127 | |
| 128 | int iterations; |
| 129 | char *salt; /* base64-encoded */ |
| 130 | uint8 StoredKey[SCRAM_KEY_LEN]; |
| 131 | uint8 ServerKey[SCRAM_KEY_LEN]; |
| 132 | |
| 133 | /* Fields of the first message from client */ |
| 134 | char cbind_flag; |
| 135 | char *client_first_message_bare; |
| 136 | char *client_username; |
| 137 | char *client_nonce; |
| 138 | |
| 139 | /* Fields from the last message from client */ |
| 140 | char *client_final_message_without_proof; |
| 141 | char *client_final_nonce; |
| 142 | char ClientProof[SCRAM_KEY_LEN]; |
| 143 | |
| 144 | /* Fields generated in the server */ |
| 145 | char *server_first_message; |
| 146 | char *server_nonce; |
| 147 | |
| 148 | /* |
| 149 | * If something goes wrong during the authentication, or we are performing |
| 150 | * a "mock" authentication (see comments at top of file), the 'doomed' |
| 151 | * flag is set. A reason for the failure, for the server log, is put in |
| 152 | * 'logdetail'. |
| 153 | */ |
| 154 | bool doomed; |
| 155 | char *logdetail; |
| 156 | } scram_state; |
| 157 | |
| 158 | static void read_client_first_message(scram_state *state, const char *input); |
| 159 | static void read_client_final_message(scram_state *state, const char *input); |
| 160 | static char *build_server_first_message(scram_state *state); |
| 161 | static char *build_server_final_message(scram_state *state); |
| 162 | static bool verify_client_proof(scram_state *state); |
| 163 | static bool verify_final_nonce(scram_state *state); |
| 164 | static void mock_scram_verifier(const char *username, int *iterations, |
| 165 | char **salt, uint8 *stored_key, uint8 *server_key); |
| 166 | static bool is_scram_printable(char *p); |
| 167 | static char *sanitize_char(char c); |
| 168 | static char *sanitize_str(const char *s); |
| 169 | static char *scram_mock_salt(const char *username); |
| 170 | |
| 171 | /* |
| 172 | * pg_be_scram_get_mechanisms |
| 173 | * |
| 174 | * Get a list of SASL mechanisms that this module supports. |
| 175 | * |
| 176 | * For the convenience of building the FE/BE packet that lists the |
| 177 | * mechanisms, the names are appended to the given StringInfo buffer, |
| 178 | * separated by '\0' bytes. |
| 179 | */ |
| 180 | void |
| 181 | pg_be_scram_get_mechanisms(Port *port, StringInfo buf) |
| 182 | { |
| 183 | /* |
| 184 | * Advertise the mechanisms in decreasing order of importance. So the |
| 185 | * channel-binding variants go first, if they are supported. Channel |
| 186 | * binding is only supported with SSL, and only if the SSL implementation |
| 187 | * has a function to get the certificate's hash. |
| 188 | */ |
| 189 | #ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH |
| 190 | if (port->ssl_in_use) |
| 191 | { |
| 192 | appendStringInfoString(buf, SCRAM_SHA_256_PLUS_NAME); |
| 193 | appendStringInfoChar(buf, '\0'); |
| 194 | } |
| 195 | #endif |
| 196 | appendStringInfoString(buf, SCRAM_SHA_256_NAME); |
| 197 | appendStringInfoChar(buf, '\0'); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * pg_be_scram_init |
| 202 | * |
| 203 | * Initialize a new SCRAM authentication exchange status tracker. This |
| 204 | * needs to be called before doing any exchange. It will be filled later |
| 205 | * after the beginning of the exchange with verifier data. |
| 206 | * |
| 207 | * 'selected_mech' identifies the SASL mechanism that the client selected. |
| 208 | * It should be one of the mechanisms that we support, as returned by |
| 209 | * pg_be_scram_get_mechanisms(). |
| 210 | * |
| 211 | * 'shadow_pass' is the role's password verifier, from pg_authid.rolpassword. |
| 212 | * The username was provided by the client in the startup message, and is |
| 213 | * available in port->user_name. If 'shadow_pass' is NULL, we still perform |
| 214 | * an authentication exchange, but it will fail, as if an incorrect password |
| 215 | * was given. |
| 216 | */ |
| 217 | void * |
| 218 | pg_be_scram_init(Port *port, |
| 219 | const char *selected_mech, |
| 220 | const char *shadow_pass) |
| 221 | { |
| 222 | scram_state *state; |
| 223 | bool got_verifier; |
| 224 | |
| 225 | state = (scram_state *) palloc0(sizeof(scram_state)); |
| 226 | state->port = port; |
| 227 | state->state = SCRAM_AUTH_INIT; |
| 228 | |
| 229 | /* |
| 230 | * Parse the selected mechanism. |
| 231 | * |
| 232 | * Note that if we don't support channel binding, either because the SSL |
| 233 | * implementation doesn't support it or we're not using SSL at all, we |
| 234 | * would not have advertised the PLUS variant in the first place. If the |
| 235 | * client nevertheless tries to select it, it's a protocol violation like |
| 236 | * selecting any other SASL mechanism we don't support. |
| 237 | */ |
| 238 | #ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH |
| 239 | if (strcmp(selected_mech, SCRAM_SHA_256_PLUS_NAME) == 0 && port->ssl_in_use) |
| 240 | state->channel_binding_in_use = true; |
| 241 | else |
| 242 | #endif |
| 243 | if (strcmp(selected_mech, SCRAM_SHA_256_NAME) == 0) |
| 244 | state->channel_binding_in_use = false; |
| 245 | else |
| 246 | ereport(ERROR, |
| 247 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 248 | errmsg("client selected an invalid SASL authentication mechanism" ))); |
| 249 | |
| 250 | /* |
| 251 | * Parse the stored password verifier. |
| 252 | */ |
| 253 | if (shadow_pass) |
| 254 | { |
| 255 | int password_type = get_password_type(shadow_pass); |
| 256 | |
| 257 | if (password_type == PASSWORD_TYPE_SCRAM_SHA_256) |
| 258 | { |
| 259 | if (parse_scram_verifier(shadow_pass, &state->iterations, &state->salt, |
| 260 | state->StoredKey, state->ServerKey)) |
| 261 | got_verifier = true; |
| 262 | else |
| 263 | { |
| 264 | /* |
| 265 | * The password looked like a SCRAM verifier, but could not be |
| 266 | * parsed. |
| 267 | */ |
| 268 | ereport(LOG, |
| 269 | (errmsg("invalid SCRAM verifier for user \"%s\"" , |
| 270 | state->port->user_name))); |
| 271 | got_verifier = false; |
| 272 | } |
| 273 | } |
| 274 | else |
| 275 | { |
| 276 | /* |
| 277 | * The user doesn't have SCRAM verifier. (You cannot do SCRAM |
| 278 | * authentication with an MD5 hash.) |
| 279 | */ |
| 280 | state->logdetail = psprintf(_("User \"%s\" does not have a valid SCRAM verifier." ), |
| 281 | state->port->user_name); |
| 282 | got_verifier = false; |
| 283 | } |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | /* |
| 288 | * The caller requested us to perform a dummy authentication. This is |
| 289 | * considered normal, since the caller requested it, so don't set log |
| 290 | * detail. |
| 291 | */ |
| 292 | got_verifier = false; |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * If the user did not have a valid SCRAM verifier, we still go through |
| 297 | * the motions with a mock one, and fail as if the client supplied an |
| 298 | * incorrect password. This is to avoid revealing information to an |
| 299 | * attacker. |
| 300 | */ |
| 301 | if (!got_verifier) |
| 302 | { |
| 303 | mock_scram_verifier(state->port->user_name, &state->iterations, |
| 304 | &state->salt, state->StoredKey, state->ServerKey); |
| 305 | state->doomed = true; |
| 306 | } |
| 307 | |
| 308 | return state; |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * Continue a SCRAM authentication exchange. |
| 313 | * |
| 314 | * 'input' is the SCRAM payload sent by the client. On the first call, |
| 315 | * 'input' contains the "Initial Client Response" that the client sent as |
| 316 | * part of the SASLInitialResponse message, or NULL if no Initial Client |
| 317 | * Response was given. (The SASL specification distinguishes between an |
| 318 | * empty response and non-existing one.) On subsequent calls, 'input' |
| 319 | * cannot be NULL. For convenience in this function, the caller must |
| 320 | * ensure that there is a null terminator at input[inputlen]. |
| 321 | * |
| 322 | * The next message to send to client is saved in 'output', for a length |
| 323 | * of 'outputlen'. In the case of an error, optionally store a palloc'd |
| 324 | * string at *logdetail that will be sent to the postmaster log (but not |
| 325 | * the client). |
| 326 | */ |
| 327 | int |
| 328 | pg_be_scram_exchange(void *opaq, const char *input, int inputlen, |
| 329 | char **output, int *outputlen, char **logdetail) |
| 330 | { |
| 331 | scram_state *state = (scram_state *) opaq; |
| 332 | int result; |
| 333 | |
| 334 | *output = NULL; |
| 335 | |
| 336 | /* |
| 337 | * If the client didn't include an "Initial Client Response" in the |
| 338 | * SASLInitialResponse message, send an empty challenge, to which the |
| 339 | * client will respond with the same data that usually comes in the |
| 340 | * Initial Client Response. |
| 341 | */ |
| 342 | if (input == NULL) |
| 343 | { |
| 344 | Assert(state->state == SCRAM_AUTH_INIT); |
| 345 | |
| 346 | *output = pstrdup("" ); |
| 347 | *outputlen = 0; |
| 348 | return SASL_EXCHANGE_CONTINUE; |
| 349 | } |
| 350 | |
| 351 | /* |
| 352 | * Check that the input length agrees with the string length of the input. |
| 353 | * We can ignore inputlen after this. |
| 354 | */ |
| 355 | if (inputlen == 0) |
| 356 | ereport(ERROR, |
| 357 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 358 | errmsg("malformed SCRAM message" ), |
| 359 | errdetail("The message is empty." ))); |
| 360 | if (inputlen != strlen(input)) |
| 361 | ereport(ERROR, |
| 362 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 363 | errmsg("malformed SCRAM message" ), |
| 364 | errdetail("Message length does not match input length." ))); |
| 365 | |
| 366 | switch (state->state) |
| 367 | { |
| 368 | case SCRAM_AUTH_INIT: |
| 369 | |
| 370 | /* |
| 371 | * Initialization phase. Receive the first message from client |
| 372 | * and be sure that it parsed correctly. Then send the challenge |
| 373 | * to the client. |
| 374 | */ |
| 375 | read_client_first_message(state, input); |
| 376 | |
| 377 | /* prepare message to send challenge */ |
| 378 | *output = build_server_first_message(state); |
| 379 | |
| 380 | state->state = SCRAM_AUTH_SALT_SENT; |
| 381 | result = SASL_EXCHANGE_CONTINUE; |
| 382 | break; |
| 383 | |
| 384 | case SCRAM_AUTH_SALT_SENT: |
| 385 | |
| 386 | /* |
| 387 | * Final phase for the server. Receive the response to the |
| 388 | * challenge previously sent, verify, and let the client know that |
| 389 | * everything went well (or not). |
| 390 | */ |
| 391 | read_client_final_message(state, input); |
| 392 | |
| 393 | if (!verify_final_nonce(state)) |
| 394 | ereport(ERROR, |
| 395 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 396 | errmsg("invalid SCRAM response" ), |
| 397 | errdetail("Nonce does not match." ))); |
| 398 | |
| 399 | /* |
| 400 | * Now check the final nonce and the client proof. |
| 401 | * |
| 402 | * If we performed a "mock" authentication that we knew would fail |
| 403 | * from the get go, this is where we fail. |
| 404 | * |
| 405 | * The SCRAM specification includes an error code, |
| 406 | * "invalid-proof", for authentication failure, but it also allows |
| 407 | * erroring out in an application-specific way. We choose to do |
| 408 | * the latter, so that the error message for invalid password is |
| 409 | * the same for all authentication methods. The caller will call |
| 410 | * ereport(), when we return SASL_EXCHANGE_FAILURE with no output. |
| 411 | * |
| 412 | * NB: the order of these checks is intentional. We calculate the |
| 413 | * client proof even in a mock authentication, even though it's |
| 414 | * bound to fail, to thwart timing attacks to determine if a role |
| 415 | * with the given name exists or not. |
| 416 | */ |
| 417 | if (!verify_client_proof(state) || state->doomed) |
| 418 | { |
| 419 | result = SASL_EXCHANGE_FAILURE; |
| 420 | break; |
| 421 | } |
| 422 | |
| 423 | /* Build final message for client */ |
| 424 | *output = build_server_final_message(state); |
| 425 | |
| 426 | /* Success! */ |
| 427 | result = SASL_EXCHANGE_SUCCESS; |
| 428 | state->state = SCRAM_AUTH_FINISHED; |
| 429 | break; |
| 430 | |
| 431 | default: |
| 432 | elog(ERROR, "invalid SCRAM exchange state" ); |
| 433 | result = SASL_EXCHANGE_FAILURE; |
| 434 | } |
| 435 | |
| 436 | if (result == SASL_EXCHANGE_FAILURE && state->logdetail && logdetail) |
| 437 | *logdetail = state->logdetail; |
| 438 | |
| 439 | if (*output) |
| 440 | *outputlen = strlen(*output); |
| 441 | |
| 442 | return result; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Construct a verifier string for SCRAM, stored in pg_authid.rolpassword. |
| 447 | * |
| 448 | * The result is palloc'd, so caller is responsible for freeing it. |
| 449 | */ |
| 450 | char * |
| 451 | pg_be_scram_build_verifier(const char *password) |
| 452 | { |
| 453 | char *prep_password; |
| 454 | pg_saslprep_rc rc; |
| 455 | char saltbuf[SCRAM_DEFAULT_SALT_LEN]; |
| 456 | char *result; |
| 457 | |
| 458 | /* |
| 459 | * Normalize the password with SASLprep. If that doesn't work, because |
| 460 | * the password isn't valid UTF-8 or contains prohibited characters, just |
| 461 | * proceed with the original password. (See comments at top of file.) |
| 462 | */ |
| 463 | rc = pg_saslprep(password, &prep_password); |
| 464 | if (rc == SASLPREP_SUCCESS) |
| 465 | password = (const char *) prep_password; |
| 466 | |
| 467 | /* Generate random salt */ |
| 468 | if (!pg_strong_random(saltbuf, SCRAM_DEFAULT_SALT_LEN)) |
| 469 | ereport(ERROR, |
| 470 | (errcode(ERRCODE_INTERNAL_ERROR), |
| 471 | errmsg("could not generate random salt" ))); |
| 472 | |
| 473 | result = scram_build_verifier(saltbuf, SCRAM_DEFAULT_SALT_LEN, |
| 474 | SCRAM_DEFAULT_ITERATIONS, password); |
| 475 | |
| 476 | if (prep_password) |
| 477 | pfree(prep_password); |
| 478 | |
| 479 | return result; |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * Verify a plaintext password against a SCRAM verifier. This is used when |
| 484 | * performing plaintext password authentication for a user that has a SCRAM |
| 485 | * verifier stored in pg_authid. |
| 486 | */ |
| 487 | bool |
| 488 | scram_verify_plain_password(const char *username, const char *password, |
| 489 | const char *verifier) |
| 490 | { |
| 491 | char *encoded_salt; |
| 492 | char *salt; |
| 493 | int saltlen; |
| 494 | int iterations; |
| 495 | uint8 salted_password[SCRAM_KEY_LEN]; |
| 496 | uint8 stored_key[SCRAM_KEY_LEN]; |
| 497 | uint8 server_key[SCRAM_KEY_LEN]; |
| 498 | uint8 computed_key[SCRAM_KEY_LEN]; |
| 499 | char *prep_password; |
| 500 | pg_saslprep_rc rc; |
| 501 | |
| 502 | if (!parse_scram_verifier(verifier, &iterations, &encoded_salt, |
| 503 | stored_key, server_key)) |
| 504 | { |
| 505 | /* |
| 506 | * The password looked like a SCRAM verifier, but could not be parsed. |
| 507 | */ |
| 508 | ereport(LOG, |
| 509 | (errmsg("invalid SCRAM verifier for user \"%s\"" , username))); |
| 510 | return false; |
| 511 | } |
| 512 | |
| 513 | salt = palloc(pg_b64_dec_len(strlen(encoded_salt))); |
| 514 | saltlen = pg_b64_decode(encoded_salt, strlen(encoded_salt), salt); |
| 515 | if (saltlen == -1) |
| 516 | { |
| 517 | ereport(LOG, |
| 518 | (errmsg("invalid SCRAM verifier for user \"%s\"" , username))); |
| 519 | return false; |
| 520 | } |
| 521 | |
| 522 | /* Normalize the password */ |
| 523 | rc = pg_saslprep(password, &prep_password); |
| 524 | if (rc == SASLPREP_SUCCESS) |
| 525 | password = prep_password; |
| 526 | |
| 527 | /* Compute Server Key based on the user-supplied plaintext password */ |
| 528 | scram_SaltedPassword(password, salt, saltlen, iterations, salted_password); |
| 529 | scram_ServerKey(salted_password, computed_key); |
| 530 | |
| 531 | if (prep_password) |
| 532 | pfree(prep_password); |
| 533 | |
| 534 | /* |
| 535 | * Compare the verifier's Server Key with the one computed from the |
| 536 | * user-supplied password. |
| 537 | */ |
| 538 | return memcmp(computed_key, server_key, SCRAM_KEY_LEN) == 0; |
| 539 | } |
| 540 | |
| 541 | |
| 542 | /* |
| 543 | * Parse and validate format of given SCRAM verifier. |
| 544 | * |
| 545 | * On success, the iteration count, salt, stored key, and server key are |
| 546 | * extracted from the verifier, and returned to the caller. For 'stored_key' |
| 547 | * and 'server_key', the caller must pass pre-allocated buffers of size |
| 548 | * SCRAM_KEY_LEN. Salt is returned as a base64-encoded, null-terminated |
| 549 | * string. The buffer for the salt is palloc'd by this function. |
| 550 | * |
| 551 | * Returns true if the SCRAM verifier has been parsed, and false otherwise. |
| 552 | */ |
| 553 | bool |
| 554 | parse_scram_verifier(const char *verifier, int *iterations, char **salt, |
| 555 | uint8 *stored_key, uint8 *server_key) |
| 556 | { |
| 557 | char *v; |
| 558 | char *p; |
| 559 | char *scheme_str; |
| 560 | char *salt_str; |
| 561 | char *iterations_str; |
| 562 | char *storedkey_str; |
| 563 | char *serverkey_str; |
| 564 | int decoded_len; |
| 565 | char *decoded_salt_buf; |
| 566 | char *decoded_stored_buf; |
| 567 | char *decoded_server_buf; |
| 568 | |
| 569 | /* |
| 570 | * The verifier is of form: |
| 571 | * |
| 572 | * SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey> |
| 573 | */ |
| 574 | v = pstrdup(verifier); |
| 575 | if ((scheme_str = strtok(v, "$" )) == NULL) |
| 576 | goto invalid_verifier; |
| 577 | if ((iterations_str = strtok(NULL, ":" )) == NULL) |
| 578 | goto invalid_verifier; |
| 579 | if ((salt_str = strtok(NULL, "$" )) == NULL) |
| 580 | goto invalid_verifier; |
| 581 | if ((storedkey_str = strtok(NULL, ":" )) == NULL) |
| 582 | goto invalid_verifier; |
| 583 | if ((serverkey_str = strtok(NULL, "" )) == NULL) |
| 584 | goto invalid_verifier; |
| 585 | |
| 586 | /* Parse the fields */ |
| 587 | if (strcmp(scheme_str, "SCRAM-SHA-256" ) != 0) |
| 588 | goto invalid_verifier; |
| 589 | |
| 590 | errno = 0; |
| 591 | *iterations = strtol(iterations_str, &p, 10); |
| 592 | if (*p || errno != 0) |
| 593 | goto invalid_verifier; |
| 594 | |
| 595 | /* |
| 596 | * Verify that the salt is in Base64-encoded format, by decoding it, |
| 597 | * although we return the encoded version to the caller. |
| 598 | */ |
| 599 | decoded_salt_buf = palloc(pg_b64_dec_len(strlen(salt_str))); |
| 600 | decoded_len = pg_b64_decode(salt_str, strlen(salt_str), |
| 601 | decoded_salt_buf); |
| 602 | if (decoded_len < 0) |
| 603 | goto invalid_verifier; |
| 604 | *salt = pstrdup(salt_str); |
| 605 | |
| 606 | /* |
| 607 | * Decode StoredKey and ServerKey. |
| 608 | */ |
| 609 | decoded_stored_buf = palloc(pg_b64_dec_len(strlen(storedkey_str))); |
| 610 | decoded_len = pg_b64_decode(storedkey_str, strlen(storedkey_str), |
| 611 | decoded_stored_buf); |
| 612 | if (decoded_len != SCRAM_KEY_LEN) |
| 613 | goto invalid_verifier; |
| 614 | memcpy(stored_key, decoded_stored_buf, SCRAM_KEY_LEN); |
| 615 | |
| 616 | decoded_server_buf = palloc(pg_b64_dec_len(strlen(serverkey_str))); |
| 617 | decoded_len = pg_b64_decode(serverkey_str, strlen(serverkey_str), |
| 618 | decoded_server_buf); |
| 619 | if (decoded_len != SCRAM_KEY_LEN) |
| 620 | goto invalid_verifier; |
| 621 | memcpy(server_key, decoded_server_buf, SCRAM_KEY_LEN); |
| 622 | |
| 623 | return true; |
| 624 | |
| 625 | invalid_verifier: |
| 626 | *salt = NULL; |
| 627 | return false; |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Generate plausible SCRAM verifier parameters for mock authentication. |
| 632 | * |
| 633 | * In a normal authentication, these are extracted from the verifier |
| 634 | * stored in the server. This function generates values that look |
| 635 | * realistic, for when there is no stored verifier. |
| 636 | * |
| 637 | * Like in parse_scram_verifier(), for 'stored_key' and 'server_key', the |
| 638 | * caller must pass pre-allocated buffers of size SCRAM_KEY_LEN, and |
| 639 | * the buffer for the salt is palloc'd by this function. |
| 640 | */ |
| 641 | static void |
| 642 | mock_scram_verifier(const char *username, int *iterations, char **salt, |
| 643 | uint8 *stored_key, uint8 *server_key) |
| 644 | { |
| 645 | char *raw_salt; |
| 646 | char *encoded_salt; |
| 647 | int encoded_len; |
| 648 | |
| 649 | /* Generate deterministic salt */ |
| 650 | raw_salt = scram_mock_salt(username); |
| 651 | |
| 652 | encoded_salt = (char *) palloc(pg_b64_enc_len(SCRAM_DEFAULT_SALT_LEN) + 1); |
| 653 | encoded_len = pg_b64_encode(raw_salt, SCRAM_DEFAULT_SALT_LEN, encoded_salt); |
| 654 | encoded_salt[encoded_len] = '\0'; |
| 655 | |
| 656 | *salt = encoded_salt; |
| 657 | *iterations = SCRAM_DEFAULT_ITERATIONS; |
| 658 | |
| 659 | /* StoredKey and ServerKey are not used in a doomed authentication */ |
| 660 | memset(stored_key, 0, SCRAM_KEY_LEN); |
| 661 | memset(server_key, 0, SCRAM_KEY_LEN); |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * Read the value in a given SCRAM exchange message for given attribute. |
| 666 | */ |
| 667 | static char * |
| 668 | read_attr_value(char **input, char attr) |
| 669 | { |
| 670 | char *begin = *input; |
| 671 | char *end; |
| 672 | |
| 673 | if (*begin != attr) |
| 674 | ereport(ERROR, |
| 675 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 676 | errmsg("malformed SCRAM message" ), |
| 677 | errdetail("Expected attribute \"%c\" but found \"%s\"." , |
| 678 | attr, sanitize_char(*begin)))); |
| 679 | begin++; |
| 680 | |
| 681 | if (*begin != '=') |
| 682 | ereport(ERROR, |
| 683 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 684 | errmsg("malformed SCRAM message" ), |
| 685 | errdetail("Expected character \"=\" for attribute \"%c\"." , attr))); |
| 686 | begin++; |
| 687 | |
| 688 | end = begin; |
| 689 | while (*end && *end != ',') |
| 690 | end++; |
| 691 | |
| 692 | if (*end) |
| 693 | { |
| 694 | *end = '\0'; |
| 695 | *input = end + 1; |
| 696 | } |
| 697 | else |
| 698 | *input = end; |
| 699 | |
| 700 | return begin; |
| 701 | } |
| 702 | |
| 703 | static bool |
| 704 | is_scram_printable(char *p) |
| 705 | { |
| 706 | /*------ |
| 707 | * Printable characters, as defined by SCRAM spec: (RFC 5802) |
| 708 | * |
| 709 | * printable = %x21-2B / %x2D-7E |
| 710 | * ;; Printable ASCII except ",". |
| 711 | * ;; Note that any "printable" is also |
| 712 | * ;; a valid "value". |
| 713 | *------ |
| 714 | */ |
| 715 | for (; *p; p++) |
| 716 | { |
| 717 | if (*p < 0x21 || *p > 0x7E || *p == 0x2C /* comma */ ) |
| 718 | return false; |
| 719 | } |
| 720 | return true; |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * Convert an arbitrary byte to printable form. For error messages. |
| 725 | * |
| 726 | * If it's a printable ASCII character, print it as a single character. |
| 727 | * otherwise, print it in hex. |
| 728 | * |
| 729 | * The returned pointer points to a static buffer. |
| 730 | */ |
| 731 | static char * |
| 732 | sanitize_char(char c) |
| 733 | { |
| 734 | static char buf[5]; |
| 735 | |
| 736 | if (c >= 0x21 && c <= 0x7E) |
| 737 | snprintf(buf, sizeof(buf), "'%c'" , c); |
| 738 | else |
| 739 | snprintf(buf, sizeof(buf), "0x%02x" , (unsigned char) c); |
| 740 | return buf; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * Convert an arbitrary string to printable form, for error messages. |
| 745 | * |
| 746 | * Anything that's not a printable ASCII character is replaced with |
| 747 | * '?', and the string is truncated at 30 characters. |
| 748 | * |
| 749 | * The returned pointer points to a static buffer. |
| 750 | */ |
| 751 | static char * |
| 752 | sanitize_str(const char *s) |
| 753 | { |
| 754 | static char buf[30 + 1]; |
| 755 | int i; |
| 756 | |
| 757 | for (i = 0; i < sizeof(buf) - 1; i++) |
| 758 | { |
| 759 | char c = s[i]; |
| 760 | |
| 761 | if (c == '\0') |
| 762 | break; |
| 763 | |
| 764 | if (c >= 0x21 && c <= 0x7E) |
| 765 | buf[i] = c; |
| 766 | else |
| 767 | buf[i] = '?'; |
| 768 | } |
| 769 | buf[i] = '\0'; |
| 770 | return buf; |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Read the next attribute and value in a SCRAM exchange message. |
| 775 | * |
| 776 | * Returns NULL if there is attribute. |
| 777 | */ |
| 778 | static char * |
| 779 | read_any_attr(char **input, char *attr_p) |
| 780 | { |
| 781 | char *begin = *input; |
| 782 | char *end; |
| 783 | char attr = *begin; |
| 784 | |
| 785 | /*------ |
| 786 | * attr-val = ALPHA "=" value |
| 787 | * ;; Generic syntax of any attribute sent |
| 788 | * ;; by server or client |
| 789 | *------ |
| 790 | */ |
| 791 | if (!((attr >= 'A' && attr <= 'Z') || |
| 792 | (attr >= 'a' && attr <= 'z'))) |
| 793 | ereport(ERROR, |
| 794 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 795 | errmsg("malformed SCRAM message" ), |
| 796 | errdetail("Attribute expected, but found invalid character \"%s\"." , |
| 797 | sanitize_char(attr)))); |
| 798 | if (attr_p) |
| 799 | *attr_p = attr; |
| 800 | begin++; |
| 801 | |
| 802 | if (*begin != '=') |
| 803 | ereport(ERROR, |
| 804 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 805 | errmsg("malformed SCRAM message" ), |
| 806 | errdetail("Expected character \"=\" for attribute \"%c\"." , attr))); |
| 807 | begin++; |
| 808 | |
| 809 | end = begin; |
| 810 | while (*end && *end != ',') |
| 811 | end++; |
| 812 | |
| 813 | if (*end) |
| 814 | { |
| 815 | *end = '\0'; |
| 816 | *input = end + 1; |
| 817 | } |
| 818 | else |
| 819 | *input = end; |
| 820 | |
| 821 | return begin; |
| 822 | } |
| 823 | |
| 824 | /* |
| 825 | * Read and parse the first message from client in the context of a SCRAM |
| 826 | * authentication exchange message. |
| 827 | * |
| 828 | * At this stage, any errors will be reported directly with ereport(ERROR). |
| 829 | */ |
| 830 | static void |
| 831 | read_client_first_message(scram_state *state, const char *input) |
| 832 | { |
| 833 | char *p = pstrdup(input); |
| 834 | char *channel_binding_type; |
| 835 | |
| 836 | |
| 837 | /*------ |
| 838 | * The syntax for the client-first-message is: (RFC 5802) |
| 839 | * |
| 840 | * saslname = 1*(value-safe-char / "=2C" / "=3D") |
| 841 | * ;; Conforms to <value>. |
| 842 | * |
| 843 | * authzid = "a=" saslname |
| 844 | * ;; Protocol specific. |
| 845 | * |
| 846 | * cb-name = 1*(ALPHA / DIGIT / "." / "-") |
| 847 | * ;; See RFC 5056, Section 7. |
| 848 | * ;; E.g., "tls-server-end-point" or |
| 849 | * ;; "tls-unique". |
| 850 | * |
| 851 | * gs2-cbind-flag = ("p=" cb-name) / "n" / "y" |
| 852 | * ;; "n" -> client doesn't support channel binding. |
| 853 | * ;; "y" -> client does support channel binding |
| 854 | * ;; but thinks the server does not. |
| 855 | * ;; "p" -> client requires channel binding. |
| 856 | * ;; The selected channel binding follows "p=". |
| 857 | * |
| 858 | * gs2-header = gs2-cbind-flag "," [ authzid ] "," |
| 859 | * ;; GS2 header for SCRAM |
| 860 | * ;; (the actual GS2 header includes an optional |
| 861 | * ;; flag to indicate that the GSS mechanism is not |
| 862 | * ;; "standard", but since SCRAM is "standard", we |
| 863 | * ;; don't include that flag). |
| 864 | * |
| 865 | * username = "n=" saslname |
| 866 | * ;; Usernames are prepared using SASLprep. |
| 867 | * |
| 868 | * reserved-mext = "m=" 1*(value-char) |
| 869 | * ;; Reserved for signaling mandatory extensions. |
| 870 | * ;; The exact syntax will be defined in |
| 871 | * ;; the future. |
| 872 | * |
| 873 | * nonce = "r=" c-nonce [s-nonce] |
| 874 | * ;; Second part provided by server. |
| 875 | * |
| 876 | * c-nonce = printable |
| 877 | * |
| 878 | * client-first-message-bare = |
| 879 | * [reserved-mext ","] |
| 880 | * username "," nonce ["," extensions] |
| 881 | * |
| 882 | * client-first-message = |
| 883 | * gs2-header client-first-message-bare |
| 884 | * |
| 885 | * For example: |
| 886 | * n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL |
| 887 | * |
| 888 | * The "n,," in the beginning means that the client doesn't support |
| 889 | * channel binding, and no authzid is given. "n=user" is the username. |
| 890 | * However, in PostgreSQL the username is sent in the startup packet, and |
| 891 | * the username in the SCRAM exchange is ignored. libpq always sends it |
| 892 | * as an empty string. The last part, "r=fyko+d2lbbFgONRv9qkxdawL" is |
| 893 | * the client nonce. |
| 894 | *------ |
| 895 | */ |
| 896 | |
| 897 | /* |
| 898 | * Read gs2-cbind-flag. (For details see also RFC 5802 Section 6 "Channel |
| 899 | * Binding".) |
| 900 | */ |
| 901 | state->cbind_flag = *p; |
| 902 | switch (*p) |
| 903 | { |
| 904 | case 'n': |
| 905 | |
| 906 | /* |
| 907 | * The client does not support channel binding or has simply |
| 908 | * decided to not use it. In that case just let it go. |
| 909 | */ |
| 910 | if (state->channel_binding_in_use) |
| 911 | ereport(ERROR, |
| 912 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 913 | errmsg("malformed SCRAM message" ), |
| 914 | errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data." ))); |
| 915 | |
| 916 | p++; |
| 917 | if (*p != ',') |
| 918 | ereport(ERROR, |
| 919 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 920 | errmsg("malformed SCRAM message" ), |
| 921 | errdetail("Comma expected, but found character \"%s\"." , |
| 922 | sanitize_char(*p)))); |
| 923 | p++; |
| 924 | break; |
| 925 | case 'y': |
| 926 | |
| 927 | /* |
| 928 | * The client supports channel binding and thinks that the server |
| 929 | * does not. In this case, the server must fail authentication if |
| 930 | * it supports channel binding. |
| 931 | */ |
| 932 | if (state->channel_binding_in_use) |
| 933 | ereport(ERROR, |
| 934 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 935 | errmsg("malformed SCRAM message" ), |
| 936 | errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data." ))); |
| 937 | |
| 938 | #ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH |
| 939 | if (state->port->ssl_in_use) |
| 940 | ereport(ERROR, |
| 941 | (errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION), |
| 942 | errmsg("SCRAM channel binding negotiation error" ), |
| 943 | errdetail("The client supports SCRAM channel binding but thinks the server does not. " |
| 944 | "However, this server does support channel binding." ))); |
| 945 | #endif |
| 946 | p++; |
| 947 | if (*p != ',') |
| 948 | ereport(ERROR, |
| 949 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 950 | errmsg("malformed SCRAM message" ), |
| 951 | errdetail("Comma expected, but found character \"%s\"." , |
| 952 | sanitize_char(*p)))); |
| 953 | p++; |
| 954 | break; |
| 955 | case 'p': |
| 956 | |
| 957 | /* |
| 958 | * The client requires channel binding. Channel binding type |
| 959 | * follows, e.g., "p=tls-server-end-point". |
| 960 | */ |
| 961 | if (!state->channel_binding_in_use) |
| 962 | ereport(ERROR, |
| 963 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 964 | errmsg("malformed SCRAM message" ), |
| 965 | errdetail("The client selected SCRAM-SHA-256 without channel binding, but the SCRAM message includes channel binding data." ))); |
| 966 | |
| 967 | channel_binding_type = read_attr_value(&p, 'p'); |
| 968 | |
| 969 | /* |
| 970 | * The only channel binding type we support is |
| 971 | * tls-server-end-point. |
| 972 | */ |
| 973 | if (strcmp(channel_binding_type, "tls-server-end-point" ) != 0) |
| 974 | ereport(ERROR, |
| 975 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 976 | (errmsg("unsupported SCRAM channel-binding type \"%s\"" , |
| 977 | sanitize_str(channel_binding_type))))); |
| 978 | break; |
| 979 | default: |
| 980 | ereport(ERROR, |
| 981 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 982 | errmsg("malformed SCRAM message" ), |
| 983 | errdetail("Unexpected channel-binding flag \"%s\"." , |
| 984 | sanitize_char(*p)))); |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * Forbid optional authzid (authorization identity). We don't support it. |
| 989 | */ |
| 990 | if (*p == 'a') |
| 991 | ereport(ERROR, |
| 992 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 993 | errmsg("client uses authorization identity, but it is not supported" ))); |
| 994 | if (*p != ',') |
| 995 | ereport(ERROR, |
| 996 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 997 | errmsg("malformed SCRAM message" ), |
| 998 | errdetail("Unexpected attribute \"%s\" in client-first-message." , |
| 999 | sanitize_char(*p)))); |
| 1000 | p++; |
| 1001 | |
| 1002 | state->client_first_message_bare = pstrdup(p); |
| 1003 | |
| 1004 | /* |
| 1005 | * Any mandatory extensions would go here. We don't support any. |
| 1006 | * |
| 1007 | * RFC 5802 specifies error code "e=extensions-not-supported" for this, |
| 1008 | * but it can only be sent in the server-final message. We prefer to fail |
| 1009 | * immediately (which the RFC also allows). |
| 1010 | */ |
| 1011 | if (*p == 'm') |
| 1012 | ereport(ERROR, |
| 1013 | (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| 1014 | errmsg("client requires an unsupported SCRAM extension" ))); |
| 1015 | |
| 1016 | /* |
| 1017 | * Read username. Note: this is ignored. We use the username from the |
| 1018 | * startup message instead, still it is kept around if provided as it |
| 1019 | * proves to be useful for debugging purposes. |
| 1020 | */ |
| 1021 | state->client_username = read_attr_value(&p, 'n'); |
| 1022 | |
| 1023 | /* read nonce and check that it is made of only printable characters */ |
| 1024 | state->client_nonce = read_attr_value(&p, 'r'); |
| 1025 | if (!is_scram_printable(state->client_nonce)) |
| 1026 | ereport(ERROR, |
| 1027 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1028 | errmsg("non-printable characters in SCRAM nonce" ))); |
| 1029 | |
| 1030 | /* |
| 1031 | * There can be any number of optional extensions after this. We don't |
| 1032 | * support any extensions, so ignore them. |
| 1033 | */ |
| 1034 | while (*p != '\0') |
| 1035 | read_any_attr(&p, NULL); |
| 1036 | |
| 1037 | /* success! */ |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Verify the final nonce contained in the last message received from |
| 1042 | * client in an exchange. |
| 1043 | */ |
| 1044 | static bool |
| 1045 | verify_final_nonce(scram_state *state) |
| 1046 | { |
| 1047 | int client_nonce_len = strlen(state->client_nonce); |
| 1048 | int server_nonce_len = strlen(state->server_nonce); |
| 1049 | int final_nonce_len = strlen(state->client_final_nonce); |
| 1050 | |
| 1051 | if (final_nonce_len != client_nonce_len + server_nonce_len) |
| 1052 | return false; |
| 1053 | if (memcmp(state->client_final_nonce, state->client_nonce, client_nonce_len) != 0) |
| 1054 | return false; |
| 1055 | if (memcmp(state->client_final_nonce + client_nonce_len, state->server_nonce, server_nonce_len) != 0) |
| 1056 | return false; |
| 1057 | |
| 1058 | return true; |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * Verify the client proof contained in the last message received from |
| 1063 | * client in an exchange. |
| 1064 | */ |
| 1065 | static bool |
| 1066 | verify_client_proof(scram_state *state) |
| 1067 | { |
| 1068 | uint8 ClientSignature[SCRAM_KEY_LEN]; |
| 1069 | uint8 ClientKey[SCRAM_KEY_LEN]; |
| 1070 | uint8 client_StoredKey[SCRAM_KEY_LEN]; |
| 1071 | scram_HMAC_ctx ctx; |
| 1072 | int i; |
| 1073 | |
| 1074 | /* calculate ClientSignature */ |
| 1075 | scram_HMAC_init(&ctx, state->StoredKey, SCRAM_KEY_LEN); |
| 1076 | scram_HMAC_update(&ctx, |
| 1077 | state->client_first_message_bare, |
| 1078 | strlen(state->client_first_message_bare)); |
| 1079 | scram_HMAC_update(&ctx, "," , 1); |
| 1080 | scram_HMAC_update(&ctx, |
| 1081 | state->server_first_message, |
| 1082 | strlen(state->server_first_message)); |
| 1083 | scram_HMAC_update(&ctx, "," , 1); |
| 1084 | scram_HMAC_update(&ctx, |
| 1085 | state->client_final_message_without_proof, |
| 1086 | strlen(state->client_final_message_without_proof)); |
| 1087 | scram_HMAC_final(ClientSignature, &ctx); |
| 1088 | |
| 1089 | /* Extract the ClientKey that the client calculated from the proof */ |
| 1090 | for (i = 0; i < SCRAM_KEY_LEN; i++) |
| 1091 | ClientKey[i] = state->ClientProof[i] ^ ClientSignature[i]; |
| 1092 | |
| 1093 | /* Hash it one more time, and compare with StoredKey */ |
| 1094 | scram_H(ClientKey, SCRAM_KEY_LEN, client_StoredKey); |
| 1095 | |
| 1096 | if (memcmp(client_StoredKey, state->StoredKey, SCRAM_KEY_LEN) != 0) |
| 1097 | return false; |
| 1098 | |
| 1099 | return true; |
| 1100 | } |
| 1101 | |
| 1102 | /* |
| 1103 | * Build the first server-side message sent to the client in a SCRAM |
| 1104 | * communication exchange. |
| 1105 | */ |
| 1106 | static char * |
| 1107 | build_server_first_message(scram_state *state) |
| 1108 | { |
| 1109 | /*------ |
| 1110 | * The syntax for the server-first-message is: (RFC 5802) |
| 1111 | * |
| 1112 | * server-first-message = |
| 1113 | * [reserved-mext ","] nonce "," salt "," |
| 1114 | * iteration-count ["," extensions] |
| 1115 | * |
| 1116 | * nonce = "r=" c-nonce [s-nonce] |
| 1117 | * ;; Second part provided by server. |
| 1118 | * |
| 1119 | * c-nonce = printable |
| 1120 | * |
| 1121 | * s-nonce = printable |
| 1122 | * |
| 1123 | * salt = "s=" base64 |
| 1124 | * |
| 1125 | * iteration-count = "i=" posit-number |
| 1126 | * ;; A positive number. |
| 1127 | * |
| 1128 | * Example: |
| 1129 | * |
| 1130 | * r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096 |
| 1131 | *------ |
| 1132 | */ |
| 1133 | |
| 1134 | /* |
| 1135 | * Per the spec, the nonce may consist of any printable ASCII characters. |
| 1136 | * For convenience, however, we don't use the whole range available, |
| 1137 | * rather, we generate some random bytes, and base64 encode them. |
| 1138 | */ |
| 1139 | char raw_nonce[SCRAM_RAW_NONCE_LEN]; |
| 1140 | int encoded_len; |
| 1141 | |
| 1142 | if (!pg_strong_random(raw_nonce, SCRAM_RAW_NONCE_LEN)) |
| 1143 | ereport(ERROR, |
| 1144 | (errcode(ERRCODE_INTERNAL_ERROR), |
| 1145 | errmsg("could not generate random nonce" ))); |
| 1146 | |
| 1147 | state->server_nonce = palloc(pg_b64_enc_len(SCRAM_RAW_NONCE_LEN) + 1); |
| 1148 | encoded_len = pg_b64_encode(raw_nonce, SCRAM_RAW_NONCE_LEN, state->server_nonce); |
| 1149 | state->server_nonce[encoded_len] = '\0'; |
| 1150 | |
| 1151 | state->server_first_message = |
| 1152 | psprintf("r=%s%s,s=%s,i=%u" , |
| 1153 | state->client_nonce, state->server_nonce, |
| 1154 | state->salt, state->iterations); |
| 1155 | |
| 1156 | return pstrdup(state->server_first_message); |
| 1157 | } |
| 1158 | |
| 1159 | |
| 1160 | /* |
| 1161 | * Read and parse the final message received from client. |
| 1162 | */ |
| 1163 | static void |
| 1164 | read_client_final_message(scram_state *state, const char *input) |
| 1165 | { |
| 1166 | char attr; |
| 1167 | char *channel_binding; |
| 1168 | char *value; |
| 1169 | char *begin, |
| 1170 | *proof; |
| 1171 | char *p; |
| 1172 | char *client_proof; |
| 1173 | |
| 1174 | begin = p = pstrdup(input); |
| 1175 | |
| 1176 | /*------ |
| 1177 | * The syntax for the server-first-message is: (RFC 5802) |
| 1178 | * |
| 1179 | * gs2-header = gs2-cbind-flag "," [ authzid ] "," |
| 1180 | * ;; GS2 header for SCRAM |
| 1181 | * ;; (the actual GS2 header includes an optional |
| 1182 | * ;; flag to indicate that the GSS mechanism is not |
| 1183 | * ;; "standard", but since SCRAM is "standard", we |
| 1184 | * ;; don't include that flag). |
| 1185 | * |
| 1186 | * cbind-input = gs2-header [ cbind-data ] |
| 1187 | * ;; cbind-data MUST be present for |
| 1188 | * ;; gs2-cbind-flag of "p" and MUST be absent |
| 1189 | * ;; for "y" or "n". |
| 1190 | * |
| 1191 | * channel-binding = "c=" base64 |
| 1192 | * ;; base64 encoding of cbind-input. |
| 1193 | * |
| 1194 | * proof = "p=" base64 |
| 1195 | * |
| 1196 | * client-final-message-without-proof = |
| 1197 | * channel-binding "," nonce ["," |
| 1198 | * extensions] |
| 1199 | * |
| 1200 | * client-final-message = |
| 1201 | * client-final-message-without-proof "," proof |
| 1202 | *------ |
| 1203 | */ |
| 1204 | |
| 1205 | /* |
| 1206 | * Read channel binding. This repeats the channel-binding flags and is |
| 1207 | * then followed by the actual binding data depending on the type. |
| 1208 | */ |
| 1209 | channel_binding = read_attr_value(&p, 'c'); |
| 1210 | if (state->channel_binding_in_use) |
| 1211 | { |
| 1212 | #ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH |
| 1213 | const char *cbind_data = NULL; |
| 1214 | size_t cbind_data_len = 0; |
| 1215 | size_t cbind_header_len; |
| 1216 | char *cbind_input; |
| 1217 | size_t cbind_input_len; |
| 1218 | char *b64_message; |
| 1219 | int b64_message_len; |
| 1220 | |
| 1221 | Assert(state->cbind_flag == 'p'); |
| 1222 | |
| 1223 | /* Fetch hash data of server's SSL certificate */ |
| 1224 | cbind_data = be_tls_get_certificate_hash(state->port, |
| 1225 | &cbind_data_len); |
| 1226 | |
| 1227 | /* should not happen */ |
| 1228 | if (cbind_data == NULL || cbind_data_len == 0) |
| 1229 | elog(ERROR, "could not get server certificate hash" ); |
| 1230 | |
| 1231 | cbind_header_len = strlen("p=tls-server-end-point,," ); /* p=type,, */ |
| 1232 | cbind_input_len = cbind_header_len + cbind_data_len; |
| 1233 | cbind_input = palloc(cbind_input_len); |
| 1234 | snprintf(cbind_input, cbind_input_len, "p=tls-server-end-point,," ); |
| 1235 | memcpy(cbind_input + cbind_header_len, cbind_data, cbind_data_len); |
| 1236 | |
| 1237 | b64_message = palloc(pg_b64_enc_len(cbind_input_len) + 1); |
| 1238 | b64_message_len = pg_b64_encode(cbind_input, cbind_input_len, |
| 1239 | b64_message); |
| 1240 | b64_message[b64_message_len] = '\0'; |
| 1241 | |
| 1242 | /* |
| 1243 | * Compare the value sent by the client with the value expected by the |
| 1244 | * server. |
| 1245 | */ |
| 1246 | if (strcmp(channel_binding, b64_message) != 0) |
| 1247 | ereport(ERROR, |
| 1248 | (errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION), |
| 1249 | (errmsg("SCRAM channel binding check failed" )))); |
| 1250 | #else |
| 1251 | /* shouldn't happen, because we checked this earlier already */ |
| 1252 | elog(ERROR, "channel binding not supported by this build" ); |
| 1253 | #endif |
| 1254 | } |
| 1255 | else |
| 1256 | { |
| 1257 | /* |
| 1258 | * If we are not using channel binding, the binding data is expected |
| 1259 | * to always be "biws", which is "n,," base64-encoded, or "eSws", |
| 1260 | * which is "y,,". We also have to check whether the flag is the same |
| 1261 | * one that the client originally sent. |
| 1262 | */ |
| 1263 | if (!(strcmp(channel_binding, "biws" ) == 0 && state->cbind_flag == 'n') && |
| 1264 | !(strcmp(channel_binding, "eSws" ) == 0 && state->cbind_flag == 'y')) |
| 1265 | ereport(ERROR, |
| 1266 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1267 | (errmsg("unexpected SCRAM channel-binding attribute in client-final-message" )))); |
| 1268 | } |
| 1269 | |
| 1270 | state->client_final_nonce = read_attr_value(&p, 'r'); |
| 1271 | |
| 1272 | /* ignore optional extensions */ |
| 1273 | do |
| 1274 | { |
| 1275 | proof = p - 1; |
| 1276 | value = read_any_attr(&p, &attr); |
| 1277 | } while (attr != 'p'); |
| 1278 | |
| 1279 | client_proof = palloc(pg_b64_dec_len(strlen(value))); |
| 1280 | if (pg_b64_decode(value, strlen(value), client_proof) != SCRAM_KEY_LEN) |
| 1281 | ereport(ERROR, |
| 1282 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1283 | errmsg("malformed SCRAM message" ), |
| 1284 | errdetail("Malformed proof in client-final-message." ))); |
| 1285 | memcpy(state->ClientProof, client_proof, SCRAM_KEY_LEN); |
| 1286 | pfree(client_proof); |
| 1287 | |
| 1288 | if (*p != '\0') |
| 1289 | ereport(ERROR, |
| 1290 | (errcode(ERRCODE_PROTOCOL_VIOLATION), |
| 1291 | errmsg("malformed SCRAM message" ), |
| 1292 | errdetail("Garbage found at the end of client-final-message." ))); |
| 1293 | |
| 1294 | state->client_final_message_without_proof = palloc(proof - begin + 1); |
| 1295 | memcpy(state->client_final_message_without_proof, input, proof - begin); |
| 1296 | state->client_final_message_without_proof[proof - begin] = '\0'; |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * Build the final server-side message of an exchange. |
| 1301 | */ |
| 1302 | static char * |
| 1303 | build_server_final_message(scram_state *state) |
| 1304 | { |
| 1305 | uint8 ServerSignature[SCRAM_KEY_LEN]; |
| 1306 | char *server_signature_base64; |
| 1307 | int siglen; |
| 1308 | scram_HMAC_ctx ctx; |
| 1309 | |
| 1310 | /* calculate ServerSignature */ |
| 1311 | scram_HMAC_init(&ctx, state->ServerKey, SCRAM_KEY_LEN); |
| 1312 | scram_HMAC_update(&ctx, |
| 1313 | state->client_first_message_bare, |
| 1314 | strlen(state->client_first_message_bare)); |
| 1315 | scram_HMAC_update(&ctx, "," , 1); |
| 1316 | scram_HMAC_update(&ctx, |
| 1317 | state->server_first_message, |
| 1318 | strlen(state->server_first_message)); |
| 1319 | scram_HMAC_update(&ctx, "," , 1); |
| 1320 | scram_HMAC_update(&ctx, |
| 1321 | state->client_final_message_without_proof, |
| 1322 | strlen(state->client_final_message_without_proof)); |
| 1323 | scram_HMAC_final(ServerSignature, &ctx); |
| 1324 | |
| 1325 | server_signature_base64 = palloc(pg_b64_enc_len(SCRAM_KEY_LEN) + 1); |
| 1326 | siglen = pg_b64_encode((const char *) ServerSignature, |
| 1327 | SCRAM_KEY_LEN, server_signature_base64); |
| 1328 | server_signature_base64[siglen] = '\0'; |
| 1329 | |
| 1330 | /*------ |
| 1331 | * The syntax for the server-final-message is: (RFC 5802) |
| 1332 | * |
| 1333 | * verifier = "v=" base64 |
| 1334 | * ;; base-64 encoded ServerSignature. |
| 1335 | * |
| 1336 | * server-final-message = (server-error / verifier) |
| 1337 | * ["," extensions] |
| 1338 | * |
| 1339 | *------ |
| 1340 | */ |
| 1341 | return psprintf("v=%s" , server_signature_base64); |
| 1342 | } |
| 1343 | |
| 1344 | |
| 1345 | /* |
| 1346 | * Deterministically generate salt for mock authentication, using a SHA256 |
| 1347 | * hash based on the username and a cluster-level secret key. Returns a |
| 1348 | * pointer to a static buffer of size SCRAM_DEFAULT_SALT_LEN. |
| 1349 | */ |
| 1350 | static char * |
| 1351 | scram_mock_salt(const char *username) |
| 1352 | { |
| 1353 | pg_sha256_ctx ctx; |
| 1354 | static uint8 sha_digest[PG_SHA256_DIGEST_LENGTH]; |
| 1355 | char *mock_auth_nonce = GetMockAuthenticationNonce(); |
| 1356 | |
| 1357 | /* |
| 1358 | * Generate salt using a SHA256 hash of the username and the cluster's |
| 1359 | * mock authentication nonce. (This works as long as the salt length is |
| 1360 | * not larger the SHA256 digest length. If the salt is smaller, the caller |
| 1361 | * will just ignore the extra data.) |
| 1362 | */ |
| 1363 | StaticAssertStmt(PG_SHA256_DIGEST_LENGTH >= SCRAM_DEFAULT_SALT_LEN, |
| 1364 | "salt length greater than SHA256 digest length" ); |
| 1365 | |
| 1366 | pg_sha256_init(&ctx); |
| 1367 | pg_sha256_update(&ctx, (uint8 *) username, strlen(username)); |
| 1368 | pg_sha256_update(&ctx, (uint8 *) mock_auth_nonce, MOCK_AUTH_NONCE_LEN); |
| 1369 | pg_sha256_final(&ctx, sha_digest); |
| 1370 | |
| 1371 | return (char *) sha_digest; |
| 1372 | } |
| 1373 | |