| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * ifaddr.c |
| 4 | * IP netmask calculations, and enumerating network interfaces. |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/libpq/ifaddr.c |
| 12 | * |
| 13 | * This file and the IPV6 implementation were initially provided by |
| 14 | * Nigel Kukard <nkukard@lbsd.net>, Linux Based Systems Design |
| 15 | * http://www.lbsd.net. |
| 16 | * |
| 17 | *------------------------------------------------------------------------- |
| 18 | */ |
| 19 | |
| 20 | #include "postgres.h" |
| 21 | |
| 22 | #include <unistd.h> |
| 23 | #include <sys/stat.h> |
| 24 | #include <sys/socket.h> |
| 25 | #include <netdb.h> |
| 26 | #include <netinet/in.h> |
| 27 | #ifdef HAVE_NETINET_TCP_H |
| 28 | #include <netinet/tcp.h> |
| 29 | #endif |
| 30 | #include <sys/file.h> |
| 31 | |
| 32 | #include "libpq/ifaddr.h" |
| 33 | #include "port/pg_bswap.h" |
| 34 | |
| 35 | static int range_sockaddr_AF_INET(const struct sockaddr_in *addr, |
| 36 | const struct sockaddr_in *netaddr, |
| 37 | const struct sockaddr_in *netmask); |
| 38 | |
| 39 | #ifdef HAVE_IPV6 |
| 40 | static int range_sockaddr_AF_INET6(const struct sockaddr_in6 *addr, |
| 41 | const struct sockaddr_in6 *netaddr, |
| 42 | const struct sockaddr_in6 *netmask); |
| 43 | #endif |
| 44 | |
| 45 | |
| 46 | /* |
| 47 | * pg_range_sockaddr - is addr within the subnet specified by netaddr/netmask ? |
| 48 | * |
| 49 | * Note: caller must already have verified that all three addresses are |
| 50 | * in the same address family; and AF_UNIX addresses are not supported. |
| 51 | */ |
| 52 | int |
| 53 | pg_range_sockaddr(const struct sockaddr_storage *addr, |
| 54 | const struct sockaddr_storage *netaddr, |
| 55 | const struct sockaddr_storage *netmask) |
| 56 | { |
| 57 | if (addr->ss_family == AF_INET) |
| 58 | return range_sockaddr_AF_INET((const struct sockaddr_in *) addr, |
| 59 | (const struct sockaddr_in *) netaddr, |
| 60 | (const struct sockaddr_in *) netmask); |
| 61 | #ifdef HAVE_IPV6 |
| 62 | else if (addr->ss_family == AF_INET6) |
| 63 | return range_sockaddr_AF_INET6((const struct sockaddr_in6 *) addr, |
| 64 | (const struct sockaddr_in6 *) netaddr, |
| 65 | (const struct sockaddr_in6 *) netmask); |
| 66 | #endif |
| 67 | else |
| 68 | return 0; |
| 69 | } |
| 70 | |
| 71 | static int |
| 72 | range_sockaddr_AF_INET(const struct sockaddr_in *addr, |
| 73 | const struct sockaddr_in *netaddr, |
| 74 | const struct sockaddr_in *netmask) |
| 75 | { |
| 76 | if (((addr->sin_addr.s_addr ^ netaddr->sin_addr.s_addr) & |
| 77 | netmask->sin_addr.s_addr) == 0) |
| 78 | return 1; |
| 79 | else |
| 80 | return 0; |
| 81 | } |
| 82 | |
| 83 | |
| 84 | #ifdef HAVE_IPV6 |
| 85 | |
| 86 | static int |
| 87 | range_sockaddr_AF_INET6(const struct sockaddr_in6 *addr, |
| 88 | const struct sockaddr_in6 *netaddr, |
| 89 | const struct sockaddr_in6 *netmask) |
| 90 | { |
| 91 | int i; |
| 92 | |
| 93 | for (i = 0; i < 16; i++) |
| 94 | { |
| 95 | if (((addr->sin6_addr.s6_addr[i] ^ netaddr->sin6_addr.s6_addr[i]) & |
| 96 | netmask->sin6_addr.s6_addr[i]) != 0) |
| 97 | return 0; |
| 98 | } |
| 99 | |
| 100 | return 1; |
| 101 | } |
| 102 | #endif /* HAVE_IPV6 */ |
| 103 | |
| 104 | /* |
| 105 | * pg_sockaddr_cidr_mask - make a network mask of the appropriate family |
| 106 | * and required number of significant bits |
| 107 | * |
| 108 | * numbits can be null, in which case the mask is fully set. |
| 109 | * |
| 110 | * The resulting mask is placed in *mask, which had better be big enough. |
| 111 | * |
| 112 | * Return value is 0 if okay, -1 if not. |
| 113 | */ |
| 114 | int |
| 115 | pg_sockaddr_cidr_mask(struct sockaddr_storage *mask, char *numbits, int family) |
| 116 | { |
| 117 | long bits; |
| 118 | char *endptr; |
| 119 | |
| 120 | if (numbits == NULL) |
| 121 | { |
| 122 | bits = (family == AF_INET) ? 32 : 128; |
| 123 | } |
| 124 | else |
| 125 | { |
| 126 | bits = strtol(numbits, &endptr, 10); |
| 127 | if (*numbits == '\0' || *endptr != '\0') |
| 128 | return -1; |
| 129 | } |
| 130 | |
| 131 | switch (family) |
| 132 | { |
| 133 | case AF_INET: |
| 134 | { |
| 135 | struct sockaddr_in mask4; |
| 136 | long maskl; |
| 137 | |
| 138 | if (bits < 0 || bits > 32) |
| 139 | return -1; |
| 140 | memset(&mask4, 0, sizeof(mask4)); |
| 141 | /* avoid "x << 32", which is not portable */ |
| 142 | if (bits > 0) |
| 143 | maskl = (0xffffffffUL << (32 - (int) bits)) |
| 144 | & 0xffffffffUL; |
| 145 | else |
| 146 | maskl = 0; |
| 147 | mask4.sin_addr.s_addr = pg_hton32(maskl); |
| 148 | memcpy(mask, &mask4, sizeof(mask4)); |
| 149 | break; |
| 150 | } |
| 151 | |
| 152 | #ifdef HAVE_IPV6 |
| 153 | case AF_INET6: |
| 154 | { |
| 155 | struct sockaddr_in6 mask6; |
| 156 | int i; |
| 157 | |
| 158 | if (bits < 0 || bits > 128) |
| 159 | return -1; |
| 160 | memset(&mask6, 0, sizeof(mask6)); |
| 161 | for (i = 0; i < 16; i++) |
| 162 | { |
| 163 | if (bits <= 0) |
| 164 | mask6.sin6_addr.s6_addr[i] = 0; |
| 165 | else if (bits >= 8) |
| 166 | mask6.sin6_addr.s6_addr[i] = 0xff; |
| 167 | else |
| 168 | { |
| 169 | mask6.sin6_addr.s6_addr[i] = |
| 170 | (0xff << (8 - (int) bits)) & 0xff; |
| 171 | } |
| 172 | bits -= 8; |
| 173 | } |
| 174 | memcpy(mask, &mask6, sizeof(mask6)); |
| 175 | break; |
| 176 | } |
| 177 | #endif |
| 178 | default: |
| 179 | return -1; |
| 180 | } |
| 181 | |
| 182 | mask->ss_family = family; |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | |
| 187 | /* |
| 188 | * Run the callback function for the addr/mask, after making sure the |
| 189 | * mask is sane for the addr. |
| 190 | */ |
| 191 | static void |
| 192 | run_ifaddr_callback(PgIfAddrCallback callback, void *cb_data, |
| 193 | struct sockaddr *addr, struct sockaddr *mask) |
| 194 | { |
| 195 | struct sockaddr_storage fullmask; |
| 196 | |
| 197 | if (!addr) |
| 198 | return; |
| 199 | |
| 200 | /* Check that the mask is valid */ |
| 201 | if (mask) |
| 202 | { |
| 203 | if (mask->sa_family != addr->sa_family) |
| 204 | { |
| 205 | mask = NULL; |
| 206 | } |
| 207 | else if (mask->sa_family == AF_INET) |
| 208 | { |
| 209 | if (((struct sockaddr_in *) mask)->sin_addr.s_addr == INADDR_ANY) |
| 210 | mask = NULL; |
| 211 | } |
| 212 | #ifdef HAVE_IPV6 |
| 213 | else if (mask->sa_family == AF_INET6) |
| 214 | { |
| 215 | if (IN6_IS_ADDR_UNSPECIFIED(&((struct sockaddr_in6 *) mask)->sin6_addr)) |
| 216 | mask = NULL; |
| 217 | } |
| 218 | #endif |
| 219 | } |
| 220 | |
| 221 | /* If mask is invalid, generate our own fully-set mask */ |
| 222 | if (!mask) |
| 223 | { |
| 224 | pg_sockaddr_cidr_mask(&fullmask, NULL, addr->sa_family); |
| 225 | mask = (struct sockaddr *) &fullmask; |
| 226 | } |
| 227 | |
| 228 | (*callback) (addr, mask, cb_data); |
| 229 | } |
| 230 | |
| 231 | #ifdef WIN32 |
| 232 | |
| 233 | #include <winsock2.h> |
| 234 | #include <ws2tcpip.h> |
| 235 | |
| 236 | /* |
| 237 | * Enumerate the system's network interface addresses and call the callback |
| 238 | * for each one. Returns 0 if successful, -1 if trouble. |
| 239 | * |
| 240 | * This version is for Win32. Uses the Winsock 2 functions (ie: ws2_32.dll) |
| 241 | */ |
| 242 | int |
| 243 | pg_foreach_ifaddr(PgIfAddrCallback callback, void *cb_data) |
| 244 | { |
| 245 | INTERFACE_INFO *ptr, |
| 246 | *ii = NULL; |
| 247 | unsigned long length, |
| 248 | i; |
| 249 | unsigned long n_ii = 0; |
| 250 | SOCKET sock; |
| 251 | int error; |
| 252 | |
| 253 | sock = WSASocket(AF_INET, SOCK_DGRAM, 0, 0, 0, 0); |
| 254 | if (sock == INVALID_SOCKET) |
| 255 | return -1; |
| 256 | |
| 257 | while (n_ii < 1024) |
| 258 | { |
| 259 | n_ii += 64; |
| 260 | ptr = realloc(ii, sizeof(INTERFACE_INFO) * n_ii); |
| 261 | if (!ptr) |
| 262 | { |
| 263 | free(ii); |
| 264 | closesocket(sock); |
| 265 | errno = ENOMEM; |
| 266 | return -1; |
| 267 | } |
| 268 | |
| 269 | ii = ptr; |
| 270 | if (WSAIoctl(sock, SIO_GET_INTERFACE_LIST, 0, 0, |
| 271 | ii, n_ii * sizeof(INTERFACE_INFO), |
| 272 | &length, 0, 0) == SOCKET_ERROR) |
| 273 | { |
| 274 | error = WSAGetLastError(); |
| 275 | if (error == WSAEFAULT || error == WSAENOBUFS) |
| 276 | continue; /* need to make the buffer bigger */ |
| 277 | closesocket(sock); |
| 278 | free(ii); |
| 279 | return -1; |
| 280 | } |
| 281 | |
| 282 | break; |
| 283 | } |
| 284 | |
| 285 | for (i = 0; i < length / sizeof(INTERFACE_INFO); ++i) |
| 286 | run_ifaddr_callback(callback, cb_data, |
| 287 | (struct sockaddr *) &ii[i].iiAddress, |
| 288 | (struct sockaddr *) &ii[i].iiNetmask); |
| 289 | |
| 290 | closesocket(sock); |
| 291 | free(ii); |
| 292 | return 0; |
| 293 | } |
| 294 | #elif HAVE_GETIFADDRS /* && !WIN32 */ |
| 295 | |
| 296 | #ifdef HAVE_IFADDRS_H |
| 297 | #include <ifaddrs.h> |
| 298 | #endif |
| 299 | |
| 300 | /* |
| 301 | * Enumerate the system's network interface addresses and call the callback |
| 302 | * for each one. Returns 0 if successful, -1 if trouble. |
| 303 | * |
| 304 | * This version uses the getifaddrs() interface, which is available on |
| 305 | * BSDs, AIX, and modern Linux. |
| 306 | */ |
| 307 | int |
| 308 | pg_foreach_ifaddr(PgIfAddrCallback callback, void *cb_data) |
| 309 | { |
| 310 | struct ifaddrs *ifa, |
| 311 | *l; |
| 312 | |
| 313 | if (getifaddrs(&ifa) < 0) |
| 314 | return -1; |
| 315 | |
| 316 | for (l = ifa; l; l = l->ifa_next) |
| 317 | run_ifaddr_callback(callback, cb_data, |
| 318 | l->ifa_addr, l->ifa_netmask); |
| 319 | |
| 320 | freeifaddrs(ifa); |
| 321 | return 0; |
| 322 | } |
| 323 | #else /* !HAVE_GETIFADDRS && !WIN32 */ |
| 324 | |
| 325 | #include <sys/ioctl.h> |
| 326 | |
| 327 | #ifdef HAVE_NET_IF_H |
| 328 | #include <net/if.h> |
| 329 | #endif |
| 330 | |
| 331 | #ifdef HAVE_SYS_SOCKIO_H |
| 332 | #include <sys/sockio.h> |
| 333 | #endif |
| 334 | |
| 335 | /* |
| 336 | * SIOCGIFCONF does not return IPv6 addresses on Solaris |
| 337 | * and HP/UX. So we prefer SIOCGLIFCONF if it's available. |
| 338 | * |
| 339 | * On HP/UX, however, it *only* returns IPv6 addresses, |
| 340 | * and the structs are named slightly differently too. |
| 341 | * We'd have to do another call with SIOCGIFCONF to get the |
| 342 | * IPv4 addresses as well. We don't currently bother, just |
| 343 | * fall back to SIOCGIFCONF on HP/UX. |
| 344 | */ |
| 345 | |
| 346 | #if defined(SIOCGLIFCONF) && !defined(__hpux) |
| 347 | |
| 348 | /* |
| 349 | * Enumerate the system's network interface addresses and call the callback |
| 350 | * for each one. Returns 0 if successful, -1 if trouble. |
| 351 | * |
| 352 | * This version uses ioctl(SIOCGLIFCONF). |
| 353 | */ |
| 354 | int |
| 355 | pg_foreach_ifaddr(PgIfAddrCallback callback, void *cb_data) |
| 356 | { |
| 357 | struct lifconf lifc; |
| 358 | struct lifreq *lifr, |
| 359 | lmask; |
| 360 | struct sockaddr *addr, |
| 361 | *mask; |
| 362 | char *ptr, |
| 363 | *buffer = NULL; |
| 364 | size_t n_buffer = 1024; |
| 365 | pgsocket sock, |
| 366 | fd; |
| 367 | |
| 368 | #ifdef HAVE_IPV6 |
| 369 | pgsocket sock6; |
| 370 | #endif |
| 371 | int i, |
| 372 | total; |
| 373 | |
| 374 | sock = socket(AF_INET, SOCK_DGRAM, 0); |
| 375 | if (sock == PGINVALID_SOCKET) |
| 376 | return -1; |
| 377 | |
| 378 | while (n_buffer < 1024 * 100) |
| 379 | { |
| 380 | n_buffer += 1024; |
| 381 | ptr = realloc(buffer, n_buffer); |
| 382 | if (!ptr) |
| 383 | { |
| 384 | free(buffer); |
| 385 | close(sock); |
| 386 | errno = ENOMEM; |
| 387 | return -1; |
| 388 | } |
| 389 | |
| 390 | memset(&lifc, 0, sizeof(lifc)); |
| 391 | lifc.lifc_family = AF_UNSPEC; |
| 392 | lifc.lifc_buf = buffer = ptr; |
| 393 | lifc.lifc_len = n_buffer; |
| 394 | |
| 395 | if (ioctl(sock, SIOCGLIFCONF, &lifc) < 0) |
| 396 | { |
| 397 | if (errno == EINVAL) |
| 398 | continue; |
| 399 | free(buffer); |
| 400 | close(sock); |
| 401 | return -1; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Some Unixes try to return as much data as possible, with no |
| 406 | * indication of whether enough space allocated. Don't believe we have |
| 407 | * it all unless there's lots of slop. |
| 408 | */ |
| 409 | if (lifc.lifc_len < n_buffer - 1024) |
| 410 | break; |
| 411 | } |
| 412 | |
| 413 | #ifdef HAVE_IPV6 |
| 414 | /* We'll need an IPv6 socket too for the SIOCGLIFNETMASK ioctls */ |
| 415 | sock6 = socket(AF_INET6, SOCK_DGRAM, 0); |
| 416 | if (sock6 == PGINVALID_SOCKET) |
| 417 | { |
| 418 | free(buffer); |
| 419 | close(sock); |
| 420 | return -1; |
| 421 | } |
| 422 | #endif |
| 423 | |
| 424 | total = lifc.lifc_len / sizeof(struct lifreq); |
| 425 | lifr = lifc.lifc_req; |
| 426 | for (i = 0; i < total; ++i) |
| 427 | { |
| 428 | addr = (struct sockaddr *) &lifr[i].lifr_addr; |
| 429 | memcpy(&lmask, &lifr[i], sizeof(struct lifreq)); |
| 430 | #ifdef HAVE_IPV6 |
| 431 | fd = (addr->sa_family == AF_INET6) ? sock6 : sock; |
| 432 | #else |
| 433 | fd = sock; |
| 434 | #endif |
| 435 | if (ioctl(fd, SIOCGLIFNETMASK, &lmask) < 0) |
| 436 | mask = NULL; |
| 437 | else |
| 438 | mask = (struct sockaddr *) &lmask.lifr_addr; |
| 439 | run_ifaddr_callback(callback, cb_data, addr, mask); |
| 440 | } |
| 441 | |
| 442 | free(buffer); |
| 443 | close(sock); |
| 444 | #ifdef HAVE_IPV6 |
| 445 | close(sock6); |
| 446 | #endif |
| 447 | return 0; |
| 448 | } |
| 449 | #elif defined(SIOCGIFCONF) |
| 450 | |
| 451 | /* |
| 452 | * Remaining Unixes use SIOCGIFCONF. Some only return IPv4 information |
| 453 | * here, so this is the least preferred method. Note that there is no |
| 454 | * standard way to iterate the struct ifreq returned in the array. |
| 455 | * On some OSs the structures are padded large enough for any address, |
| 456 | * on others you have to calculate the size of the struct ifreq. |
| 457 | */ |
| 458 | |
| 459 | /* Some OSs have _SIZEOF_ADDR_IFREQ, so just use that */ |
| 460 | #ifndef _SIZEOF_ADDR_IFREQ |
| 461 | |
| 462 | /* Calculate based on sockaddr.sa_len */ |
| 463 | #ifdef HAVE_STRUCT_SOCKADDR_SA_LEN |
| 464 | #define _SIZEOF_ADDR_IFREQ(ifr) \ |
| 465 | ((ifr).ifr_addr.sa_len > sizeof(struct sockaddr) ? \ |
| 466 | (sizeof(struct ifreq) - sizeof(struct sockaddr) + \ |
| 467 | (ifr).ifr_addr.sa_len) : sizeof(struct ifreq)) |
| 468 | |
| 469 | /* Padded ifreq structure, simple */ |
| 470 | #else |
| 471 | #define _SIZEOF_ADDR_IFREQ(ifr) \ |
| 472 | sizeof (struct ifreq) |
| 473 | #endif |
| 474 | #endif /* !_SIZEOF_ADDR_IFREQ */ |
| 475 | |
| 476 | /* |
| 477 | * Enumerate the system's network interface addresses and call the callback |
| 478 | * for each one. Returns 0 if successful, -1 if trouble. |
| 479 | * |
| 480 | * This version uses ioctl(SIOCGIFCONF). |
| 481 | */ |
| 482 | int |
| 483 | pg_foreach_ifaddr(PgIfAddrCallback callback, void *cb_data) |
| 484 | { |
| 485 | struct ifconf ifc; |
| 486 | struct ifreq *ifr, |
| 487 | *end, |
| 488 | addr, |
| 489 | mask; |
| 490 | char *ptr, |
| 491 | *buffer = NULL; |
| 492 | size_t n_buffer = 1024; |
| 493 | pgsocket sock; |
| 494 | |
| 495 | sock = socket(AF_INET, SOCK_DGRAM, 0); |
| 496 | if (sock == PGINVALID_SOCKET) |
| 497 | return -1; |
| 498 | |
| 499 | while (n_buffer < 1024 * 100) |
| 500 | { |
| 501 | n_buffer += 1024; |
| 502 | ptr = realloc(buffer, n_buffer); |
| 503 | if (!ptr) |
| 504 | { |
| 505 | free(buffer); |
| 506 | close(sock); |
| 507 | errno = ENOMEM; |
| 508 | return -1; |
| 509 | } |
| 510 | |
| 511 | memset(&ifc, 0, sizeof(ifc)); |
| 512 | ifc.ifc_buf = buffer = ptr; |
| 513 | ifc.ifc_len = n_buffer; |
| 514 | |
| 515 | if (ioctl(sock, SIOCGIFCONF, &ifc) < 0) |
| 516 | { |
| 517 | if (errno == EINVAL) |
| 518 | continue; |
| 519 | free(buffer); |
| 520 | close(sock); |
| 521 | return -1; |
| 522 | } |
| 523 | |
| 524 | /* |
| 525 | * Some Unixes try to return as much data as possible, with no |
| 526 | * indication of whether enough space allocated. Don't believe we have |
| 527 | * it all unless there's lots of slop. |
| 528 | */ |
| 529 | if (ifc.ifc_len < n_buffer - 1024) |
| 530 | break; |
| 531 | } |
| 532 | |
| 533 | end = (struct ifreq *) (buffer + ifc.ifc_len); |
| 534 | for (ifr = ifc.ifc_req; ifr < end;) |
| 535 | { |
| 536 | memcpy(&addr, ifr, sizeof(addr)); |
| 537 | memcpy(&mask, ifr, sizeof(mask)); |
| 538 | if (ioctl(sock, SIOCGIFADDR, &addr, sizeof(addr)) == 0 && |
| 539 | ioctl(sock, SIOCGIFNETMASK, &mask, sizeof(mask)) == 0) |
| 540 | run_ifaddr_callback(callback, cb_data, |
| 541 | &addr.ifr_addr, &mask.ifr_addr); |
| 542 | ifr = (struct ifreq *) ((char *) ifr + _SIZEOF_ADDR_IFREQ(*ifr)); |
| 543 | } |
| 544 | |
| 545 | free(buffer); |
| 546 | close(sock); |
| 547 | return 0; |
| 548 | } |
| 549 | #else /* !defined(SIOCGIFCONF) */ |
| 550 | |
| 551 | /* |
| 552 | * Enumerate the system's network interface addresses and call the callback |
| 553 | * for each one. Returns 0 if successful, -1 if trouble. |
| 554 | * |
| 555 | * This version is our fallback if there's no known way to get the |
| 556 | * interface addresses. Just return the standard loopback addresses. |
| 557 | */ |
| 558 | int |
| 559 | pg_foreach_ifaddr(PgIfAddrCallback callback, void *cb_data) |
| 560 | { |
| 561 | struct sockaddr_in addr; |
| 562 | struct sockaddr_storage mask; |
| 563 | |
| 564 | #ifdef HAVE_IPV6 |
| 565 | struct sockaddr_in6 addr6; |
| 566 | #endif |
| 567 | |
| 568 | /* addr 127.0.0.1/8 */ |
| 569 | memset(&addr, 0, sizeof(addr)); |
| 570 | addr.sin_family = AF_INET; |
| 571 | addr.sin_addr.s_addr = pg_ntoh32(0x7f000001); |
| 572 | memset(&mask, 0, sizeof(mask)); |
| 573 | pg_sockaddr_cidr_mask(&mask, "8" , AF_INET); |
| 574 | run_ifaddr_callback(callback, cb_data, |
| 575 | (struct sockaddr *) &addr, |
| 576 | (struct sockaddr *) &mask); |
| 577 | |
| 578 | #ifdef HAVE_IPV6 |
| 579 | /* addr ::1/128 */ |
| 580 | memset(&addr6, 0, sizeof(addr6)); |
| 581 | addr6.sin6_family = AF_INET6; |
| 582 | addr6.sin6_addr.s6_addr[15] = 1; |
| 583 | memset(&mask, 0, sizeof(mask)); |
| 584 | pg_sockaddr_cidr_mask(&mask, "128" , AF_INET6); |
| 585 | run_ifaddr_callback(callback, cb_data, |
| 586 | (struct sockaddr *) &addr6, |
| 587 | (struct sockaddr *) &mask); |
| 588 | #endif |
| 589 | |
| 590 | return 0; |
| 591 | } |
| 592 | #endif /* !defined(SIOCGIFCONF) */ |
| 593 | |
| 594 | #endif /* !HAVE_GETIFADDRS */ |
| 595 | |