1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * bitmapset.c |
4 | * PostgreSQL generic bitmap set package |
5 | * |
6 | * A bitmap set can represent any set of nonnegative integers, although |
7 | * it is mainly intended for sets where the maximum value is not large, |
8 | * say at most a few hundred. By convention, a NULL pointer is always |
9 | * accepted by all operations to represent the empty set. (But beware |
10 | * that this is not the only representation of the empty set. Use |
11 | * bms_is_empty() in preference to testing for NULL.) |
12 | * |
13 | * |
14 | * Copyright (c) 2003-2019, PostgreSQL Global Development Group |
15 | * |
16 | * IDENTIFICATION |
17 | * src/backend/nodes/bitmapset.c |
18 | * |
19 | *------------------------------------------------------------------------- |
20 | */ |
21 | #include "postgres.h" |
22 | |
23 | #include "nodes/bitmapset.h" |
24 | #include "nodes/pg_list.h" |
25 | #include "port/pg_bitutils.h" |
26 | #include "utils/hashutils.h" |
27 | |
28 | |
29 | #define WORDNUM(x) ((x) / BITS_PER_BITMAPWORD) |
30 | #define BITNUM(x) ((x) % BITS_PER_BITMAPWORD) |
31 | |
32 | #define BITMAPSET_SIZE(nwords) \ |
33 | (offsetof(Bitmapset, words) + (nwords) * sizeof(bitmapword)) |
34 | |
35 | /*---------- |
36 | * This is a well-known cute trick for isolating the rightmost one-bit |
37 | * in a word. It assumes two's complement arithmetic. Consider any |
38 | * nonzero value, and focus attention on the rightmost one. The value is |
39 | * then something like |
40 | * xxxxxx10000 |
41 | * where x's are unspecified bits. The two's complement negative is formed |
42 | * by inverting all the bits and adding one. Inversion gives |
43 | * yyyyyy01111 |
44 | * where each y is the inverse of the corresponding x. Incrementing gives |
45 | * yyyyyy10000 |
46 | * and then ANDing with the original value gives |
47 | * 00000010000 |
48 | * This works for all cases except original value = zero, where of course |
49 | * we get zero. |
50 | *---------- |
51 | */ |
52 | #define RIGHTMOST_ONE(x) ((signedbitmapword) (x) & -((signedbitmapword) (x))) |
53 | |
54 | #define HAS_MULTIPLE_ONES(x) ((bitmapword) RIGHTMOST_ONE(x) != (x)) |
55 | |
56 | /* Select appropriate bit-twiddling functions for bitmap word size */ |
57 | #if BITS_PER_BITMAPWORD == 32 |
58 | #define bmw_leftmost_one_pos(w) pg_leftmost_one_pos32(w) |
59 | #define bmw_rightmost_one_pos(w) pg_rightmost_one_pos32(w) |
60 | #define bmw_popcount(w) pg_popcount32(w) |
61 | #elif BITS_PER_BITMAPWORD == 64 |
62 | #define bmw_leftmost_one_pos(w) pg_leftmost_one_pos64(w) |
63 | #define bmw_rightmost_one_pos(w) pg_rightmost_one_pos64(w) |
64 | #define bmw_popcount(w) pg_popcount64(w) |
65 | #else |
66 | #error "invalid BITS_PER_BITMAPWORD" |
67 | #endif |
68 | |
69 | |
70 | /* |
71 | * bms_copy - make a palloc'd copy of a bitmapset |
72 | */ |
73 | Bitmapset * |
74 | bms_copy(const Bitmapset *a) |
75 | { |
76 | Bitmapset *result; |
77 | size_t size; |
78 | |
79 | if (a == NULL) |
80 | return NULL; |
81 | size = BITMAPSET_SIZE(a->nwords); |
82 | result = (Bitmapset *) palloc(size); |
83 | memcpy(result, a, size); |
84 | return result; |
85 | } |
86 | |
87 | /* |
88 | * bms_equal - are two bitmapsets equal? |
89 | * |
90 | * This is logical not physical equality; in particular, a NULL pointer will |
91 | * be reported as equal to a palloc'd value containing no members. |
92 | */ |
93 | bool |
94 | bms_equal(const Bitmapset *a, const Bitmapset *b) |
95 | { |
96 | const Bitmapset *shorter; |
97 | const Bitmapset *longer; |
98 | int shortlen; |
99 | int longlen; |
100 | int i; |
101 | |
102 | /* Handle cases where either input is NULL */ |
103 | if (a == NULL) |
104 | { |
105 | if (b == NULL) |
106 | return true; |
107 | return bms_is_empty(b); |
108 | } |
109 | else if (b == NULL) |
110 | return bms_is_empty(a); |
111 | /* Identify shorter and longer input */ |
112 | if (a->nwords <= b->nwords) |
113 | { |
114 | shorter = a; |
115 | longer = b; |
116 | } |
117 | else |
118 | { |
119 | shorter = b; |
120 | longer = a; |
121 | } |
122 | /* And process */ |
123 | shortlen = shorter->nwords; |
124 | for (i = 0; i < shortlen; i++) |
125 | { |
126 | if (shorter->words[i] != longer->words[i]) |
127 | return false; |
128 | } |
129 | longlen = longer->nwords; |
130 | for (; i < longlen; i++) |
131 | { |
132 | if (longer->words[i] != 0) |
133 | return false; |
134 | } |
135 | return true; |
136 | } |
137 | |
138 | /* |
139 | * bms_compare - qsort-style comparator for bitmapsets |
140 | * |
141 | * This guarantees to report values as equal iff bms_equal would say they are |
142 | * equal. Otherwise, the highest-numbered bit that is set in one value but |
143 | * not the other determines the result. (This rule means that, for example, |
144 | * {6} is greater than {5}, which seems plausible.) |
145 | */ |
146 | int |
147 | bms_compare(const Bitmapset *a, const Bitmapset *b) |
148 | { |
149 | int shortlen; |
150 | int i; |
151 | |
152 | /* Handle cases where either input is NULL */ |
153 | if (a == NULL) |
154 | return bms_is_empty(b) ? 0 : -1; |
155 | else if (b == NULL) |
156 | return bms_is_empty(a) ? 0 : +1; |
157 | /* Handle cases where one input is longer than the other */ |
158 | shortlen = Min(a->nwords, b->nwords); |
159 | for (i = shortlen; i < a->nwords; i++) |
160 | { |
161 | if (a->words[i] != 0) |
162 | return +1; |
163 | } |
164 | for (i = shortlen; i < b->nwords; i++) |
165 | { |
166 | if (b->words[i] != 0) |
167 | return -1; |
168 | } |
169 | /* Process words in common */ |
170 | i = shortlen; |
171 | while (--i >= 0) |
172 | { |
173 | bitmapword aw = a->words[i]; |
174 | bitmapword bw = b->words[i]; |
175 | |
176 | if (aw != bw) |
177 | return (aw > bw) ? +1 : -1; |
178 | } |
179 | return 0; |
180 | } |
181 | |
182 | /* |
183 | * bms_make_singleton - build a bitmapset containing a single member |
184 | */ |
185 | Bitmapset * |
186 | bms_make_singleton(int x) |
187 | { |
188 | Bitmapset *result; |
189 | int wordnum, |
190 | bitnum; |
191 | |
192 | if (x < 0) |
193 | elog(ERROR, "negative bitmapset member not allowed" ); |
194 | wordnum = WORDNUM(x); |
195 | bitnum = BITNUM(x); |
196 | result = (Bitmapset *) palloc0(BITMAPSET_SIZE(wordnum + 1)); |
197 | result->nwords = wordnum + 1; |
198 | result->words[wordnum] = ((bitmapword) 1 << bitnum); |
199 | return result; |
200 | } |
201 | |
202 | /* |
203 | * bms_free - free a bitmapset |
204 | * |
205 | * Same as pfree except for allowing NULL input |
206 | */ |
207 | void |
208 | bms_free(Bitmapset *a) |
209 | { |
210 | if (a) |
211 | pfree(a); |
212 | } |
213 | |
214 | |
215 | /* |
216 | * These operations all make a freshly palloc'd result, |
217 | * leaving their inputs untouched |
218 | */ |
219 | |
220 | |
221 | /* |
222 | * bms_union - set union |
223 | */ |
224 | Bitmapset * |
225 | bms_union(const Bitmapset *a, const Bitmapset *b) |
226 | { |
227 | Bitmapset *result; |
228 | const Bitmapset *other; |
229 | int otherlen; |
230 | int i; |
231 | |
232 | /* Handle cases where either input is NULL */ |
233 | if (a == NULL) |
234 | return bms_copy(b); |
235 | if (b == NULL) |
236 | return bms_copy(a); |
237 | /* Identify shorter and longer input; copy the longer one */ |
238 | if (a->nwords <= b->nwords) |
239 | { |
240 | result = bms_copy(b); |
241 | other = a; |
242 | } |
243 | else |
244 | { |
245 | result = bms_copy(a); |
246 | other = b; |
247 | } |
248 | /* And union the shorter input into the result */ |
249 | otherlen = other->nwords; |
250 | for (i = 0; i < otherlen; i++) |
251 | result->words[i] |= other->words[i]; |
252 | return result; |
253 | } |
254 | |
255 | /* |
256 | * bms_intersect - set intersection |
257 | */ |
258 | Bitmapset * |
259 | bms_intersect(const Bitmapset *a, const Bitmapset *b) |
260 | { |
261 | Bitmapset *result; |
262 | const Bitmapset *other; |
263 | int resultlen; |
264 | int i; |
265 | |
266 | /* Handle cases where either input is NULL */ |
267 | if (a == NULL || b == NULL) |
268 | return NULL; |
269 | /* Identify shorter and longer input; copy the shorter one */ |
270 | if (a->nwords <= b->nwords) |
271 | { |
272 | result = bms_copy(a); |
273 | other = b; |
274 | } |
275 | else |
276 | { |
277 | result = bms_copy(b); |
278 | other = a; |
279 | } |
280 | /* And intersect the longer input with the result */ |
281 | resultlen = result->nwords; |
282 | for (i = 0; i < resultlen; i++) |
283 | result->words[i] &= other->words[i]; |
284 | return result; |
285 | } |
286 | |
287 | /* |
288 | * bms_difference - set difference (ie, A without members of B) |
289 | */ |
290 | Bitmapset * |
291 | bms_difference(const Bitmapset *a, const Bitmapset *b) |
292 | { |
293 | Bitmapset *result; |
294 | int shortlen; |
295 | int i; |
296 | |
297 | /* Handle cases where either input is NULL */ |
298 | if (a == NULL) |
299 | return NULL; |
300 | if (b == NULL) |
301 | return bms_copy(a); |
302 | /* Copy the left input */ |
303 | result = bms_copy(a); |
304 | /* And remove b's bits from result */ |
305 | shortlen = Min(a->nwords, b->nwords); |
306 | for (i = 0; i < shortlen; i++) |
307 | result->words[i] &= ~b->words[i]; |
308 | return result; |
309 | } |
310 | |
311 | /* |
312 | * bms_is_subset - is A a subset of B? |
313 | */ |
314 | bool |
315 | bms_is_subset(const Bitmapset *a, const Bitmapset *b) |
316 | { |
317 | int shortlen; |
318 | int longlen; |
319 | int i; |
320 | |
321 | /* Handle cases where either input is NULL */ |
322 | if (a == NULL) |
323 | return true; /* empty set is a subset of anything */ |
324 | if (b == NULL) |
325 | return bms_is_empty(a); |
326 | /* Check common words */ |
327 | shortlen = Min(a->nwords, b->nwords); |
328 | for (i = 0; i < shortlen; i++) |
329 | { |
330 | if ((a->words[i] & ~b->words[i]) != 0) |
331 | return false; |
332 | } |
333 | /* Check extra words */ |
334 | if (a->nwords > b->nwords) |
335 | { |
336 | longlen = a->nwords; |
337 | for (; i < longlen; i++) |
338 | { |
339 | if (a->words[i] != 0) |
340 | return false; |
341 | } |
342 | } |
343 | return true; |
344 | } |
345 | |
346 | /* |
347 | * bms_subset_compare - compare A and B for equality/subset relationships |
348 | * |
349 | * This is more efficient than testing bms_is_subset in both directions. |
350 | */ |
351 | BMS_Comparison |
352 | bms_subset_compare(const Bitmapset *a, const Bitmapset *b) |
353 | { |
354 | BMS_Comparison result; |
355 | int shortlen; |
356 | int longlen; |
357 | int i; |
358 | |
359 | /* Handle cases where either input is NULL */ |
360 | if (a == NULL) |
361 | { |
362 | if (b == NULL) |
363 | return BMS_EQUAL; |
364 | return bms_is_empty(b) ? BMS_EQUAL : BMS_SUBSET1; |
365 | } |
366 | if (b == NULL) |
367 | return bms_is_empty(a) ? BMS_EQUAL : BMS_SUBSET2; |
368 | /* Check common words */ |
369 | result = BMS_EQUAL; /* status so far */ |
370 | shortlen = Min(a->nwords, b->nwords); |
371 | for (i = 0; i < shortlen; i++) |
372 | { |
373 | bitmapword aword = a->words[i]; |
374 | bitmapword bword = b->words[i]; |
375 | |
376 | if ((aword & ~bword) != 0) |
377 | { |
378 | /* a is not a subset of b */ |
379 | if (result == BMS_SUBSET1) |
380 | return BMS_DIFFERENT; |
381 | result = BMS_SUBSET2; |
382 | } |
383 | if ((bword & ~aword) != 0) |
384 | { |
385 | /* b is not a subset of a */ |
386 | if (result == BMS_SUBSET2) |
387 | return BMS_DIFFERENT; |
388 | result = BMS_SUBSET1; |
389 | } |
390 | } |
391 | /* Check extra words */ |
392 | if (a->nwords > b->nwords) |
393 | { |
394 | longlen = a->nwords; |
395 | for (; i < longlen; i++) |
396 | { |
397 | if (a->words[i] != 0) |
398 | { |
399 | /* a is not a subset of b */ |
400 | if (result == BMS_SUBSET1) |
401 | return BMS_DIFFERENT; |
402 | result = BMS_SUBSET2; |
403 | } |
404 | } |
405 | } |
406 | else if (a->nwords < b->nwords) |
407 | { |
408 | longlen = b->nwords; |
409 | for (; i < longlen; i++) |
410 | { |
411 | if (b->words[i] != 0) |
412 | { |
413 | /* b is not a subset of a */ |
414 | if (result == BMS_SUBSET2) |
415 | return BMS_DIFFERENT; |
416 | result = BMS_SUBSET1; |
417 | } |
418 | } |
419 | } |
420 | return result; |
421 | } |
422 | |
423 | /* |
424 | * bms_is_member - is X a member of A? |
425 | */ |
426 | bool |
427 | bms_is_member(int x, const Bitmapset *a) |
428 | { |
429 | int wordnum, |
430 | bitnum; |
431 | |
432 | /* XXX better to just return false for x<0 ? */ |
433 | if (x < 0) |
434 | elog(ERROR, "negative bitmapset member not allowed" ); |
435 | if (a == NULL) |
436 | return false; |
437 | wordnum = WORDNUM(x); |
438 | bitnum = BITNUM(x); |
439 | if (wordnum >= a->nwords) |
440 | return false; |
441 | if ((a->words[wordnum] & ((bitmapword) 1 << bitnum)) != 0) |
442 | return true; |
443 | return false; |
444 | } |
445 | |
446 | /* |
447 | * bms_member_index |
448 | * determine 0-based index of member x in the bitmap |
449 | * |
450 | * Returns (-1) when x is not a member. |
451 | */ |
452 | int |
453 | bms_member_index(Bitmapset *a, int x) |
454 | { |
455 | int i; |
456 | int bitnum; |
457 | int wordnum; |
458 | int result = 0; |
459 | bitmapword mask; |
460 | |
461 | /* return -1 if not a member of the bitmap */ |
462 | if (!bms_is_member(x, a)) |
463 | return -1; |
464 | |
465 | wordnum = WORDNUM(x); |
466 | bitnum = BITNUM(x); |
467 | |
468 | /* count bits in preceding words */ |
469 | for (i = 0; i < wordnum; i++) |
470 | { |
471 | bitmapword w = a->words[i]; |
472 | |
473 | /* No need to count the bits in a zero word */ |
474 | if (w != 0) |
475 | result += bmw_popcount(w); |
476 | } |
477 | |
478 | /* |
479 | * Now add bits of the last word, but only those before the item. We can |
480 | * do that by applying a mask and then using popcount again. To get |
481 | * 0-based index, we want to count only preceding bits, not the item |
482 | * itself, so we subtract 1. |
483 | */ |
484 | mask = ((bitmapword) 1 << bitnum) - 1; |
485 | result += bmw_popcount(a->words[wordnum] & mask); |
486 | |
487 | return result; |
488 | } |
489 | |
490 | /* |
491 | * bms_overlap - do sets overlap (ie, have a nonempty intersection)? |
492 | */ |
493 | bool |
494 | bms_overlap(const Bitmapset *a, const Bitmapset *b) |
495 | { |
496 | int shortlen; |
497 | int i; |
498 | |
499 | /* Handle cases where either input is NULL */ |
500 | if (a == NULL || b == NULL) |
501 | return false; |
502 | /* Check words in common */ |
503 | shortlen = Min(a->nwords, b->nwords); |
504 | for (i = 0; i < shortlen; i++) |
505 | { |
506 | if ((a->words[i] & b->words[i]) != 0) |
507 | return true; |
508 | } |
509 | return false; |
510 | } |
511 | |
512 | /* |
513 | * bms_overlap_list - does a set overlap an integer list? |
514 | */ |
515 | bool |
516 | bms_overlap_list(const Bitmapset *a, const List *b) |
517 | { |
518 | ListCell *lc; |
519 | int wordnum, |
520 | bitnum; |
521 | |
522 | if (a == NULL || b == NIL) |
523 | return false; |
524 | |
525 | foreach(lc, b) |
526 | { |
527 | int x = lfirst_int(lc); |
528 | |
529 | if (x < 0) |
530 | elog(ERROR, "negative bitmapset member not allowed" ); |
531 | wordnum = WORDNUM(x); |
532 | bitnum = BITNUM(x); |
533 | if (wordnum < a->nwords) |
534 | if ((a->words[wordnum] & ((bitmapword) 1 << bitnum)) != 0) |
535 | return true; |
536 | } |
537 | |
538 | return false; |
539 | } |
540 | |
541 | /* |
542 | * bms_nonempty_difference - do sets have a nonempty difference? |
543 | */ |
544 | bool |
545 | bms_nonempty_difference(const Bitmapset *a, const Bitmapset *b) |
546 | { |
547 | int shortlen; |
548 | int i; |
549 | |
550 | /* Handle cases where either input is NULL */ |
551 | if (a == NULL) |
552 | return false; |
553 | if (b == NULL) |
554 | return !bms_is_empty(a); |
555 | /* Check words in common */ |
556 | shortlen = Min(a->nwords, b->nwords); |
557 | for (i = 0; i < shortlen; i++) |
558 | { |
559 | if ((a->words[i] & ~b->words[i]) != 0) |
560 | return true; |
561 | } |
562 | /* Check extra words in a */ |
563 | for (; i < a->nwords; i++) |
564 | { |
565 | if (a->words[i] != 0) |
566 | return true; |
567 | } |
568 | return false; |
569 | } |
570 | |
571 | /* |
572 | * bms_singleton_member - return the sole integer member of set |
573 | * |
574 | * Raises error if |a| is not 1. |
575 | */ |
576 | int |
577 | bms_singleton_member(const Bitmapset *a) |
578 | { |
579 | int result = -1; |
580 | int nwords; |
581 | int wordnum; |
582 | |
583 | if (a == NULL) |
584 | elog(ERROR, "bitmapset is empty" ); |
585 | nwords = a->nwords; |
586 | for (wordnum = 0; wordnum < nwords; wordnum++) |
587 | { |
588 | bitmapword w = a->words[wordnum]; |
589 | |
590 | if (w != 0) |
591 | { |
592 | if (result >= 0 || HAS_MULTIPLE_ONES(w)) |
593 | elog(ERROR, "bitmapset has multiple members" ); |
594 | result = wordnum * BITS_PER_BITMAPWORD; |
595 | result += bmw_rightmost_one_pos(w); |
596 | } |
597 | } |
598 | if (result < 0) |
599 | elog(ERROR, "bitmapset is empty" ); |
600 | return result; |
601 | } |
602 | |
603 | /* |
604 | * bms_get_singleton_member |
605 | * |
606 | * Test whether the given set is a singleton. |
607 | * If so, set *member to the value of its sole member, and return true. |
608 | * If not, return false, without changing *member. |
609 | * |
610 | * This is more convenient and faster than calling bms_membership() and then |
611 | * bms_singleton_member(), if we don't care about distinguishing empty sets |
612 | * from multiple-member sets. |
613 | */ |
614 | bool |
615 | bms_get_singleton_member(const Bitmapset *a, int *member) |
616 | { |
617 | int result = -1; |
618 | int nwords; |
619 | int wordnum; |
620 | |
621 | if (a == NULL) |
622 | return false; |
623 | nwords = a->nwords; |
624 | for (wordnum = 0; wordnum < nwords; wordnum++) |
625 | { |
626 | bitmapword w = a->words[wordnum]; |
627 | |
628 | if (w != 0) |
629 | { |
630 | if (result >= 0 || HAS_MULTIPLE_ONES(w)) |
631 | return false; |
632 | result = wordnum * BITS_PER_BITMAPWORD; |
633 | result += bmw_rightmost_one_pos(w); |
634 | } |
635 | } |
636 | if (result < 0) |
637 | return false; |
638 | *member = result; |
639 | return true; |
640 | } |
641 | |
642 | /* |
643 | * bms_num_members - count members of set |
644 | */ |
645 | int |
646 | bms_num_members(const Bitmapset *a) |
647 | { |
648 | int result = 0; |
649 | int nwords; |
650 | int wordnum; |
651 | |
652 | if (a == NULL) |
653 | return 0; |
654 | nwords = a->nwords; |
655 | for (wordnum = 0; wordnum < nwords; wordnum++) |
656 | { |
657 | bitmapword w = a->words[wordnum]; |
658 | |
659 | /* No need to count the bits in a zero word */ |
660 | if (w != 0) |
661 | result += bmw_popcount(w); |
662 | } |
663 | return result; |
664 | } |
665 | |
666 | /* |
667 | * bms_membership - does a set have zero, one, or multiple members? |
668 | * |
669 | * This is faster than making an exact count with bms_num_members(). |
670 | */ |
671 | BMS_Membership |
672 | bms_membership(const Bitmapset *a) |
673 | { |
674 | BMS_Membership result = BMS_EMPTY_SET; |
675 | int nwords; |
676 | int wordnum; |
677 | |
678 | if (a == NULL) |
679 | return BMS_EMPTY_SET; |
680 | nwords = a->nwords; |
681 | for (wordnum = 0; wordnum < nwords; wordnum++) |
682 | { |
683 | bitmapword w = a->words[wordnum]; |
684 | |
685 | if (w != 0) |
686 | { |
687 | if (result != BMS_EMPTY_SET || HAS_MULTIPLE_ONES(w)) |
688 | return BMS_MULTIPLE; |
689 | result = BMS_SINGLETON; |
690 | } |
691 | } |
692 | return result; |
693 | } |
694 | |
695 | /* |
696 | * bms_is_empty - is a set empty? |
697 | * |
698 | * This is even faster than bms_membership(). |
699 | */ |
700 | bool |
701 | bms_is_empty(const Bitmapset *a) |
702 | { |
703 | int nwords; |
704 | int wordnum; |
705 | |
706 | if (a == NULL) |
707 | return true; |
708 | nwords = a->nwords; |
709 | for (wordnum = 0; wordnum < nwords; wordnum++) |
710 | { |
711 | bitmapword w = a->words[wordnum]; |
712 | |
713 | if (w != 0) |
714 | return false; |
715 | } |
716 | return true; |
717 | } |
718 | |
719 | |
720 | /* |
721 | * These operations all "recycle" their non-const inputs, ie, either |
722 | * return the modified input or pfree it if it can't hold the result. |
723 | * |
724 | * These should generally be used in the style |
725 | * |
726 | * foo = bms_add_member(foo, x); |
727 | */ |
728 | |
729 | |
730 | /* |
731 | * bms_add_member - add a specified member to set |
732 | * |
733 | * Input set is modified or recycled! |
734 | */ |
735 | Bitmapset * |
736 | bms_add_member(Bitmapset *a, int x) |
737 | { |
738 | int wordnum, |
739 | bitnum; |
740 | |
741 | if (x < 0) |
742 | elog(ERROR, "negative bitmapset member not allowed" ); |
743 | if (a == NULL) |
744 | return bms_make_singleton(x); |
745 | wordnum = WORDNUM(x); |
746 | bitnum = BITNUM(x); |
747 | |
748 | /* enlarge the set if necessary */ |
749 | if (wordnum >= a->nwords) |
750 | { |
751 | int oldnwords = a->nwords; |
752 | int i; |
753 | |
754 | a = (Bitmapset *) repalloc(a, BITMAPSET_SIZE(wordnum + 1)); |
755 | a->nwords = wordnum + 1; |
756 | /* zero out the enlarged portion */ |
757 | for (i = oldnwords; i < a->nwords; i++) |
758 | a->words[i] = 0; |
759 | } |
760 | |
761 | a->words[wordnum] |= ((bitmapword) 1 << bitnum); |
762 | return a; |
763 | } |
764 | |
765 | /* |
766 | * bms_del_member - remove a specified member from set |
767 | * |
768 | * No error if x is not currently a member of set |
769 | * |
770 | * Input set is modified in-place! |
771 | */ |
772 | Bitmapset * |
773 | bms_del_member(Bitmapset *a, int x) |
774 | { |
775 | int wordnum, |
776 | bitnum; |
777 | |
778 | if (x < 0) |
779 | elog(ERROR, "negative bitmapset member not allowed" ); |
780 | if (a == NULL) |
781 | return NULL; |
782 | wordnum = WORDNUM(x); |
783 | bitnum = BITNUM(x); |
784 | if (wordnum < a->nwords) |
785 | a->words[wordnum] &= ~((bitmapword) 1 << bitnum); |
786 | return a; |
787 | } |
788 | |
789 | /* |
790 | * bms_add_members - like bms_union, but left input is recycled |
791 | */ |
792 | Bitmapset * |
793 | bms_add_members(Bitmapset *a, const Bitmapset *b) |
794 | { |
795 | Bitmapset *result; |
796 | const Bitmapset *other; |
797 | int otherlen; |
798 | int i; |
799 | |
800 | /* Handle cases where either input is NULL */ |
801 | if (a == NULL) |
802 | return bms_copy(b); |
803 | if (b == NULL) |
804 | return a; |
805 | /* Identify shorter and longer input; copy the longer one if needed */ |
806 | if (a->nwords < b->nwords) |
807 | { |
808 | result = bms_copy(b); |
809 | other = a; |
810 | } |
811 | else |
812 | { |
813 | result = a; |
814 | other = b; |
815 | } |
816 | /* And union the shorter input into the result */ |
817 | otherlen = other->nwords; |
818 | for (i = 0; i < otherlen; i++) |
819 | result->words[i] |= other->words[i]; |
820 | if (result != a) |
821 | pfree(a); |
822 | return result; |
823 | } |
824 | |
825 | /* |
826 | * bms_add_range |
827 | * Add members in the range of 'lower' to 'upper' to the set. |
828 | * |
829 | * Note this could also be done by calling bms_add_member in a loop, however, |
830 | * using this function will be faster when the range is large as we work at |
831 | * the bitmapword level rather than at bit level. |
832 | */ |
833 | Bitmapset * |
834 | bms_add_range(Bitmapset *a, int lower, int upper) |
835 | { |
836 | int lwordnum, |
837 | lbitnum, |
838 | uwordnum, |
839 | ushiftbits, |
840 | wordnum; |
841 | |
842 | /* do nothing if nothing is called for, without further checking */ |
843 | if (upper < lower) |
844 | return a; |
845 | |
846 | if (lower < 0) |
847 | elog(ERROR, "negative bitmapset member not allowed" ); |
848 | uwordnum = WORDNUM(upper); |
849 | |
850 | if (a == NULL) |
851 | { |
852 | a = (Bitmapset *) palloc0(BITMAPSET_SIZE(uwordnum + 1)); |
853 | a->nwords = uwordnum + 1; |
854 | } |
855 | else if (uwordnum >= a->nwords) |
856 | { |
857 | int oldnwords = a->nwords; |
858 | int i; |
859 | |
860 | /* ensure we have enough words to store the upper bit */ |
861 | a = (Bitmapset *) repalloc(a, BITMAPSET_SIZE(uwordnum + 1)); |
862 | a->nwords = uwordnum + 1; |
863 | /* zero out the enlarged portion */ |
864 | for (i = oldnwords; i < a->nwords; i++) |
865 | a->words[i] = 0; |
866 | } |
867 | |
868 | wordnum = lwordnum = WORDNUM(lower); |
869 | |
870 | lbitnum = BITNUM(lower); |
871 | ushiftbits = BITS_PER_BITMAPWORD - (BITNUM(upper) + 1); |
872 | |
873 | /* |
874 | * Special case when lwordnum is the same as uwordnum we must perform the |
875 | * upper and lower masking on the word. |
876 | */ |
877 | if (lwordnum == uwordnum) |
878 | { |
879 | a->words[lwordnum] |= ~(bitmapword) (((bitmapword) 1 << lbitnum) - 1) |
880 | & (~(bitmapword) 0) >> ushiftbits; |
881 | } |
882 | else |
883 | { |
884 | /* turn on lbitnum and all bits left of it */ |
885 | a->words[wordnum++] |= ~(bitmapword) (((bitmapword) 1 << lbitnum) - 1); |
886 | |
887 | /* turn on all bits for any intermediate words */ |
888 | while (wordnum < uwordnum) |
889 | a->words[wordnum++] = ~(bitmapword) 0; |
890 | |
891 | /* turn on upper's bit and all bits right of it. */ |
892 | a->words[uwordnum] |= (~(bitmapword) 0) >> ushiftbits; |
893 | } |
894 | |
895 | return a; |
896 | } |
897 | |
898 | /* |
899 | * bms_int_members - like bms_intersect, but left input is recycled |
900 | */ |
901 | Bitmapset * |
902 | bms_int_members(Bitmapset *a, const Bitmapset *b) |
903 | { |
904 | int shortlen; |
905 | int i; |
906 | |
907 | /* Handle cases where either input is NULL */ |
908 | if (a == NULL) |
909 | return NULL; |
910 | if (b == NULL) |
911 | { |
912 | pfree(a); |
913 | return NULL; |
914 | } |
915 | /* Intersect b into a; we need never copy */ |
916 | shortlen = Min(a->nwords, b->nwords); |
917 | for (i = 0; i < shortlen; i++) |
918 | a->words[i] &= b->words[i]; |
919 | for (; i < a->nwords; i++) |
920 | a->words[i] = 0; |
921 | return a; |
922 | } |
923 | |
924 | /* |
925 | * bms_del_members - like bms_difference, but left input is recycled |
926 | */ |
927 | Bitmapset * |
928 | bms_del_members(Bitmapset *a, const Bitmapset *b) |
929 | { |
930 | int shortlen; |
931 | int i; |
932 | |
933 | /* Handle cases where either input is NULL */ |
934 | if (a == NULL) |
935 | return NULL; |
936 | if (b == NULL) |
937 | return a; |
938 | /* Remove b's bits from a; we need never copy */ |
939 | shortlen = Min(a->nwords, b->nwords); |
940 | for (i = 0; i < shortlen; i++) |
941 | a->words[i] &= ~b->words[i]; |
942 | return a; |
943 | } |
944 | |
945 | /* |
946 | * bms_join - like bms_union, but *both* inputs are recycled |
947 | */ |
948 | Bitmapset * |
949 | bms_join(Bitmapset *a, Bitmapset *b) |
950 | { |
951 | Bitmapset *result; |
952 | Bitmapset *other; |
953 | int otherlen; |
954 | int i; |
955 | |
956 | /* Handle cases where either input is NULL */ |
957 | if (a == NULL) |
958 | return b; |
959 | if (b == NULL) |
960 | return a; |
961 | /* Identify shorter and longer input; use longer one as result */ |
962 | if (a->nwords < b->nwords) |
963 | { |
964 | result = b; |
965 | other = a; |
966 | } |
967 | else |
968 | { |
969 | result = a; |
970 | other = b; |
971 | } |
972 | /* And union the shorter input into the result */ |
973 | otherlen = other->nwords; |
974 | for (i = 0; i < otherlen; i++) |
975 | result->words[i] |= other->words[i]; |
976 | if (other != result) /* pure paranoia */ |
977 | pfree(other); |
978 | return result; |
979 | } |
980 | |
981 | /* |
982 | * bms_first_member - find and remove first member of a set |
983 | * |
984 | * Returns -1 if set is empty. NB: set is destructively modified! |
985 | * |
986 | * This is intended as support for iterating through the members of a set. |
987 | * The typical pattern is |
988 | * |
989 | * while ((x = bms_first_member(inputset)) >= 0) |
990 | * process member x; |
991 | * |
992 | * CAUTION: this destroys the content of "inputset". If the set must |
993 | * not be modified, use bms_next_member instead. |
994 | */ |
995 | int |
996 | bms_first_member(Bitmapset *a) |
997 | { |
998 | int nwords; |
999 | int wordnum; |
1000 | |
1001 | if (a == NULL) |
1002 | return -1; |
1003 | nwords = a->nwords; |
1004 | for (wordnum = 0; wordnum < nwords; wordnum++) |
1005 | { |
1006 | bitmapword w = a->words[wordnum]; |
1007 | |
1008 | if (w != 0) |
1009 | { |
1010 | int result; |
1011 | |
1012 | w = RIGHTMOST_ONE(w); |
1013 | a->words[wordnum] &= ~w; |
1014 | |
1015 | result = wordnum * BITS_PER_BITMAPWORD; |
1016 | result += bmw_rightmost_one_pos(w); |
1017 | return result; |
1018 | } |
1019 | } |
1020 | return -1; |
1021 | } |
1022 | |
1023 | /* |
1024 | * bms_next_member - find next member of a set |
1025 | * |
1026 | * Returns smallest member greater than "prevbit", or -2 if there is none. |
1027 | * "prevbit" must NOT be less than -1, or the behavior is unpredictable. |
1028 | * |
1029 | * This is intended as support for iterating through the members of a set. |
1030 | * The typical pattern is |
1031 | * |
1032 | * x = -1; |
1033 | * while ((x = bms_next_member(inputset, x)) >= 0) |
1034 | * process member x; |
1035 | * |
1036 | * Notice that when there are no more members, we return -2, not -1 as you |
1037 | * might expect. The rationale for that is to allow distinguishing the |
1038 | * loop-not-started state (x == -1) from the loop-completed state (x == -2). |
1039 | * It makes no difference in simple loop usage, but complex iteration logic |
1040 | * might need such an ability. |
1041 | */ |
1042 | int |
1043 | bms_next_member(const Bitmapset *a, int prevbit) |
1044 | { |
1045 | int nwords; |
1046 | int wordnum; |
1047 | bitmapword mask; |
1048 | |
1049 | if (a == NULL) |
1050 | return -2; |
1051 | nwords = a->nwords; |
1052 | prevbit++; |
1053 | mask = (~(bitmapword) 0) << BITNUM(prevbit); |
1054 | for (wordnum = WORDNUM(prevbit); wordnum < nwords; wordnum++) |
1055 | { |
1056 | bitmapword w = a->words[wordnum]; |
1057 | |
1058 | /* ignore bits before prevbit */ |
1059 | w &= mask; |
1060 | |
1061 | if (w != 0) |
1062 | { |
1063 | int result; |
1064 | |
1065 | result = wordnum * BITS_PER_BITMAPWORD; |
1066 | result += bmw_rightmost_one_pos(w); |
1067 | return result; |
1068 | } |
1069 | |
1070 | /* in subsequent words, consider all bits */ |
1071 | mask = (~(bitmapword) 0); |
1072 | } |
1073 | return -2; |
1074 | } |
1075 | |
1076 | /* |
1077 | * bms_prev_member - find prev member of a set |
1078 | * |
1079 | * Returns largest member less than "prevbit", or -2 if there is none. |
1080 | * "prevbit" must NOT be more than one above the highest possible bit that can |
1081 | * be set at the Bitmapset at its current size. |
1082 | * |
1083 | * To ease finding the highest set bit for the initial loop, the special |
1084 | * prevbit value of -1 can be passed to have the function find the highest |
1085 | * valued member in the set. |
1086 | * |
1087 | * This is intended as support for iterating through the members of a set in |
1088 | * reverse. The typical pattern is |
1089 | * |
1090 | * x = -1; |
1091 | * while ((x = bms_prev_member(inputset, x)) >= 0) |
1092 | * process member x; |
1093 | * |
1094 | * Notice that when there are no more members, we return -2, not -1 as you |
1095 | * might expect. The rationale for that is to allow distinguishing the |
1096 | * loop-not-started state (x == -1) from the loop-completed state (x == -2). |
1097 | * It makes no difference in simple loop usage, but complex iteration logic |
1098 | * might need such an ability. |
1099 | */ |
1100 | |
1101 | int |
1102 | bms_prev_member(const Bitmapset *a, int prevbit) |
1103 | { |
1104 | int wordnum; |
1105 | int ushiftbits; |
1106 | bitmapword mask; |
1107 | |
1108 | /* |
1109 | * If set is NULL or if there are no more bits to the right then we've |
1110 | * nothing to do. |
1111 | */ |
1112 | if (a == NULL || prevbit == 0) |
1113 | return -2; |
1114 | |
1115 | /* transform -1 to the highest possible bit we could have set */ |
1116 | if (prevbit == -1) |
1117 | prevbit = a->nwords * BITS_PER_BITMAPWORD - 1; |
1118 | else |
1119 | prevbit--; |
1120 | |
1121 | ushiftbits = BITS_PER_BITMAPWORD - (BITNUM(prevbit) + 1); |
1122 | mask = (~(bitmapword) 0) >> ushiftbits; |
1123 | for (wordnum = WORDNUM(prevbit); wordnum >= 0; wordnum--) |
1124 | { |
1125 | bitmapword w = a->words[wordnum]; |
1126 | |
1127 | /* mask out bits left of prevbit */ |
1128 | w &= mask; |
1129 | |
1130 | if (w != 0) |
1131 | { |
1132 | int result; |
1133 | |
1134 | result = wordnum * BITS_PER_BITMAPWORD; |
1135 | result += bmw_leftmost_one_pos(w); |
1136 | return result; |
1137 | } |
1138 | |
1139 | /* in subsequent words, consider all bits */ |
1140 | mask = (~(bitmapword) 0); |
1141 | } |
1142 | return -2; |
1143 | } |
1144 | |
1145 | /* |
1146 | * bms_hash_value - compute a hash key for a Bitmapset |
1147 | * |
1148 | * Note: we must ensure that any two bitmapsets that are bms_equal() will |
1149 | * hash to the same value; in practice this means that trailing all-zero |
1150 | * words must not affect the result. Hence we strip those before applying |
1151 | * hash_any(). |
1152 | */ |
1153 | uint32 |
1154 | bms_hash_value(const Bitmapset *a) |
1155 | { |
1156 | int lastword; |
1157 | |
1158 | if (a == NULL) |
1159 | return 0; /* All empty sets hash to 0 */ |
1160 | for (lastword = a->nwords; --lastword >= 0;) |
1161 | { |
1162 | if (a->words[lastword] != 0) |
1163 | break; |
1164 | } |
1165 | if (lastword < 0) |
1166 | return 0; /* All empty sets hash to 0 */ |
1167 | return DatumGetUInt32(hash_any((const unsigned char *) a->words, |
1168 | (lastword + 1) * sizeof(bitmapword))); |
1169 | } |
1170 | |