| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * nodeFuncs.c |
| 4 | * Various general-purpose manipulations of Node trees |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/nodes/nodeFuncs.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include "catalog/pg_collation.h" |
| 18 | #include "catalog/pg_type.h" |
| 19 | #include "miscadmin.h" |
| 20 | #include "nodes/makefuncs.h" |
| 21 | #include "nodes/execnodes.h" |
| 22 | #include "nodes/nodeFuncs.h" |
| 23 | #include "nodes/pathnodes.h" |
| 24 | #include "utils/builtins.h" |
| 25 | #include "utils/lsyscache.h" |
| 26 | |
| 27 | |
| 28 | static bool expression_returns_set_walker(Node *node, void *context); |
| 29 | static int leftmostLoc(int loc1, int loc2); |
| 30 | static bool fix_opfuncids_walker(Node *node, void *context); |
| 31 | static bool planstate_walk_subplans(List *plans, bool (*walker) (), |
| 32 | void *context); |
| 33 | static bool planstate_walk_members(PlanState **planstates, int nplans, |
| 34 | bool (*walker) (), void *context); |
| 35 | |
| 36 | |
| 37 | /* |
| 38 | * exprType - |
| 39 | * returns the Oid of the type of the expression's result. |
| 40 | */ |
| 41 | Oid |
| 42 | exprType(const Node *expr) |
| 43 | { |
| 44 | Oid type; |
| 45 | |
| 46 | if (!expr) |
| 47 | return InvalidOid; |
| 48 | |
| 49 | switch (nodeTag(expr)) |
| 50 | { |
| 51 | case T_Var: |
| 52 | type = ((const Var *) expr)->vartype; |
| 53 | break; |
| 54 | case T_Const: |
| 55 | type = ((const Const *) expr)->consttype; |
| 56 | break; |
| 57 | case T_Param: |
| 58 | type = ((const Param *) expr)->paramtype; |
| 59 | break; |
| 60 | case T_Aggref: |
| 61 | type = ((const Aggref *) expr)->aggtype; |
| 62 | break; |
| 63 | case T_GroupingFunc: |
| 64 | type = INT4OID; |
| 65 | break; |
| 66 | case T_WindowFunc: |
| 67 | type = ((const WindowFunc *) expr)->wintype; |
| 68 | break; |
| 69 | case T_SubscriptingRef: |
| 70 | { |
| 71 | const SubscriptingRef *sbsref = (const SubscriptingRef *) expr; |
| 72 | |
| 73 | /* slice and/or store operations yield the container type */ |
| 74 | if (sbsref->reflowerindexpr || sbsref->refassgnexpr) |
| 75 | type = sbsref->refcontainertype; |
| 76 | else |
| 77 | type = sbsref->refelemtype; |
| 78 | } |
| 79 | break; |
| 80 | case T_FuncExpr: |
| 81 | type = ((const FuncExpr *) expr)->funcresulttype; |
| 82 | break; |
| 83 | case T_NamedArgExpr: |
| 84 | type = exprType((Node *) ((const NamedArgExpr *) expr)->arg); |
| 85 | break; |
| 86 | case T_OpExpr: |
| 87 | type = ((const OpExpr *) expr)->opresulttype; |
| 88 | break; |
| 89 | case T_DistinctExpr: |
| 90 | type = ((const DistinctExpr *) expr)->opresulttype; |
| 91 | break; |
| 92 | case T_NullIfExpr: |
| 93 | type = ((const NullIfExpr *) expr)->opresulttype; |
| 94 | break; |
| 95 | case T_ScalarArrayOpExpr: |
| 96 | type = BOOLOID; |
| 97 | break; |
| 98 | case T_BoolExpr: |
| 99 | type = BOOLOID; |
| 100 | break; |
| 101 | case T_SubLink: |
| 102 | { |
| 103 | const SubLink *sublink = (const SubLink *) expr; |
| 104 | |
| 105 | if (sublink->subLinkType == EXPR_SUBLINK || |
| 106 | sublink->subLinkType == ARRAY_SUBLINK) |
| 107 | { |
| 108 | /* get the type of the subselect's first target column */ |
| 109 | Query *qtree = (Query *) sublink->subselect; |
| 110 | TargetEntry *tent; |
| 111 | |
| 112 | if (!qtree || !IsA(qtree, Query)) |
| 113 | elog(ERROR, "cannot get type for untransformed sublink" ); |
| 114 | tent = linitial_node(TargetEntry, qtree->targetList); |
| 115 | Assert(!tent->resjunk); |
| 116 | type = exprType((Node *) tent->expr); |
| 117 | if (sublink->subLinkType == ARRAY_SUBLINK) |
| 118 | { |
| 119 | type = get_promoted_array_type(type); |
| 120 | if (!OidIsValid(type)) |
| 121 | ereport(ERROR, |
| 122 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 123 | errmsg("could not find array type for data type %s" , |
| 124 | format_type_be(exprType((Node *) tent->expr))))); |
| 125 | } |
| 126 | } |
| 127 | else if (sublink->subLinkType == MULTIEXPR_SUBLINK) |
| 128 | { |
| 129 | /* MULTIEXPR is always considered to return RECORD */ |
| 130 | type = RECORDOID; |
| 131 | } |
| 132 | else |
| 133 | { |
| 134 | /* for all other sublink types, result is boolean */ |
| 135 | type = BOOLOID; |
| 136 | } |
| 137 | } |
| 138 | break; |
| 139 | case T_SubPlan: |
| 140 | { |
| 141 | const SubPlan *subplan = (const SubPlan *) expr; |
| 142 | |
| 143 | if (subplan->subLinkType == EXPR_SUBLINK || |
| 144 | subplan->subLinkType == ARRAY_SUBLINK) |
| 145 | { |
| 146 | /* get the type of the subselect's first target column */ |
| 147 | type = subplan->firstColType; |
| 148 | if (subplan->subLinkType == ARRAY_SUBLINK) |
| 149 | { |
| 150 | type = get_promoted_array_type(type); |
| 151 | if (!OidIsValid(type)) |
| 152 | ereport(ERROR, |
| 153 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
| 154 | errmsg("could not find array type for data type %s" , |
| 155 | format_type_be(subplan->firstColType)))); |
| 156 | } |
| 157 | } |
| 158 | else if (subplan->subLinkType == MULTIEXPR_SUBLINK) |
| 159 | { |
| 160 | /* MULTIEXPR is always considered to return RECORD */ |
| 161 | type = RECORDOID; |
| 162 | } |
| 163 | else |
| 164 | { |
| 165 | /* for all other subplan types, result is boolean */ |
| 166 | type = BOOLOID; |
| 167 | } |
| 168 | } |
| 169 | break; |
| 170 | case T_AlternativeSubPlan: |
| 171 | { |
| 172 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
| 173 | |
| 174 | /* subplans should all return the same thing */ |
| 175 | type = exprType((Node *) linitial(asplan->subplans)); |
| 176 | } |
| 177 | break; |
| 178 | case T_FieldSelect: |
| 179 | type = ((const FieldSelect *) expr)->resulttype; |
| 180 | break; |
| 181 | case T_FieldStore: |
| 182 | type = ((const FieldStore *) expr)->resulttype; |
| 183 | break; |
| 184 | case T_RelabelType: |
| 185 | type = ((const RelabelType *) expr)->resulttype; |
| 186 | break; |
| 187 | case T_CoerceViaIO: |
| 188 | type = ((const CoerceViaIO *) expr)->resulttype; |
| 189 | break; |
| 190 | case T_ArrayCoerceExpr: |
| 191 | type = ((const ArrayCoerceExpr *) expr)->resulttype; |
| 192 | break; |
| 193 | case T_ConvertRowtypeExpr: |
| 194 | type = ((const ConvertRowtypeExpr *) expr)->resulttype; |
| 195 | break; |
| 196 | case T_CollateExpr: |
| 197 | type = exprType((Node *) ((const CollateExpr *) expr)->arg); |
| 198 | break; |
| 199 | case T_CaseExpr: |
| 200 | type = ((const CaseExpr *) expr)->casetype; |
| 201 | break; |
| 202 | case T_CaseTestExpr: |
| 203 | type = ((const CaseTestExpr *) expr)->typeId; |
| 204 | break; |
| 205 | case T_ArrayExpr: |
| 206 | type = ((const ArrayExpr *) expr)->array_typeid; |
| 207 | break; |
| 208 | case T_RowExpr: |
| 209 | type = ((const RowExpr *) expr)->row_typeid; |
| 210 | break; |
| 211 | case T_RowCompareExpr: |
| 212 | type = BOOLOID; |
| 213 | break; |
| 214 | case T_CoalesceExpr: |
| 215 | type = ((const CoalesceExpr *) expr)->coalescetype; |
| 216 | break; |
| 217 | case T_MinMaxExpr: |
| 218 | type = ((const MinMaxExpr *) expr)->minmaxtype; |
| 219 | break; |
| 220 | case T_SQLValueFunction: |
| 221 | type = ((const SQLValueFunction *) expr)->type; |
| 222 | break; |
| 223 | case T_XmlExpr: |
| 224 | if (((const XmlExpr *) expr)->op == IS_DOCUMENT) |
| 225 | type = BOOLOID; |
| 226 | else if (((const XmlExpr *) expr)->op == IS_XMLSERIALIZE) |
| 227 | type = TEXTOID; |
| 228 | else |
| 229 | type = XMLOID; |
| 230 | break; |
| 231 | case T_NullTest: |
| 232 | type = BOOLOID; |
| 233 | break; |
| 234 | case T_BooleanTest: |
| 235 | type = BOOLOID; |
| 236 | break; |
| 237 | case T_CoerceToDomain: |
| 238 | type = ((const CoerceToDomain *) expr)->resulttype; |
| 239 | break; |
| 240 | case T_CoerceToDomainValue: |
| 241 | type = ((const CoerceToDomainValue *) expr)->typeId; |
| 242 | break; |
| 243 | case T_SetToDefault: |
| 244 | type = ((const SetToDefault *) expr)->typeId; |
| 245 | break; |
| 246 | case T_CurrentOfExpr: |
| 247 | type = BOOLOID; |
| 248 | break; |
| 249 | case T_NextValueExpr: |
| 250 | type = ((const NextValueExpr *) expr)->typeId; |
| 251 | break; |
| 252 | case T_InferenceElem: |
| 253 | { |
| 254 | const InferenceElem *n = (const InferenceElem *) expr; |
| 255 | |
| 256 | type = exprType((Node *) n->expr); |
| 257 | } |
| 258 | break; |
| 259 | case T_PlaceHolderVar: |
| 260 | type = exprType((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
| 261 | break; |
| 262 | default: |
| 263 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
| 264 | type = InvalidOid; /* keep compiler quiet */ |
| 265 | break; |
| 266 | } |
| 267 | return type; |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * exprTypmod - |
| 272 | * returns the type-specific modifier of the expression's result type, |
| 273 | * if it can be determined. In many cases, it can't and we return -1. |
| 274 | */ |
| 275 | int32 |
| 276 | exprTypmod(const Node *expr) |
| 277 | { |
| 278 | if (!expr) |
| 279 | return -1; |
| 280 | |
| 281 | switch (nodeTag(expr)) |
| 282 | { |
| 283 | case T_Var: |
| 284 | return ((const Var *) expr)->vartypmod; |
| 285 | case T_Const: |
| 286 | return ((const Const *) expr)->consttypmod; |
| 287 | case T_Param: |
| 288 | return ((const Param *) expr)->paramtypmod; |
| 289 | case T_SubscriptingRef: |
| 290 | /* typmod is the same for container or element */ |
| 291 | return ((const SubscriptingRef *) expr)->reftypmod; |
| 292 | case T_FuncExpr: |
| 293 | { |
| 294 | int32 coercedTypmod; |
| 295 | |
| 296 | /* Be smart about length-coercion functions... */ |
| 297 | if (exprIsLengthCoercion(expr, &coercedTypmod)) |
| 298 | return coercedTypmod; |
| 299 | } |
| 300 | break; |
| 301 | case T_NamedArgExpr: |
| 302 | return exprTypmod((Node *) ((const NamedArgExpr *) expr)->arg); |
| 303 | case T_NullIfExpr: |
| 304 | { |
| 305 | /* |
| 306 | * Result is either first argument or NULL, so we can report |
| 307 | * first argument's typmod if known. |
| 308 | */ |
| 309 | const NullIfExpr *nexpr = (const NullIfExpr *) expr; |
| 310 | |
| 311 | return exprTypmod((Node *) linitial(nexpr->args)); |
| 312 | } |
| 313 | break; |
| 314 | case T_SubLink: |
| 315 | { |
| 316 | const SubLink *sublink = (const SubLink *) expr; |
| 317 | |
| 318 | if (sublink->subLinkType == EXPR_SUBLINK || |
| 319 | sublink->subLinkType == ARRAY_SUBLINK) |
| 320 | { |
| 321 | /* get the typmod of the subselect's first target column */ |
| 322 | Query *qtree = (Query *) sublink->subselect; |
| 323 | TargetEntry *tent; |
| 324 | |
| 325 | if (!qtree || !IsA(qtree, Query)) |
| 326 | elog(ERROR, "cannot get type for untransformed sublink" ); |
| 327 | tent = linitial_node(TargetEntry, qtree->targetList); |
| 328 | Assert(!tent->resjunk); |
| 329 | return exprTypmod((Node *) tent->expr); |
| 330 | /* note we don't need to care if it's an array */ |
| 331 | } |
| 332 | /* otherwise, result is RECORD or BOOLEAN, typmod is -1 */ |
| 333 | } |
| 334 | break; |
| 335 | case T_SubPlan: |
| 336 | { |
| 337 | const SubPlan *subplan = (const SubPlan *) expr; |
| 338 | |
| 339 | if (subplan->subLinkType == EXPR_SUBLINK || |
| 340 | subplan->subLinkType == ARRAY_SUBLINK) |
| 341 | { |
| 342 | /* get the typmod of the subselect's first target column */ |
| 343 | /* note we don't need to care if it's an array */ |
| 344 | return subplan->firstColTypmod; |
| 345 | } |
| 346 | /* otherwise, result is RECORD or BOOLEAN, typmod is -1 */ |
| 347 | } |
| 348 | break; |
| 349 | case T_AlternativeSubPlan: |
| 350 | { |
| 351 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
| 352 | |
| 353 | /* subplans should all return the same thing */ |
| 354 | return exprTypmod((Node *) linitial(asplan->subplans)); |
| 355 | } |
| 356 | break; |
| 357 | case T_FieldSelect: |
| 358 | return ((const FieldSelect *) expr)->resulttypmod; |
| 359 | case T_RelabelType: |
| 360 | return ((const RelabelType *) expr)->resulttypmod; |
| 361 | case T_ArrayCoerceExpr: |
| 362 | return ((const ArrayCoerceExpr *) expr)->resulttypmod; |
| 363 | case T_CollateExpr: |
| 364 | return exprTypmod((Node *) ((const CollateExpr *) expr)->arg); |
| 365 | case T_CaseExpr: |
| 366 | { |
| 367 | /* |
| 368 | * If all the alternatives agree on type/typmod, return that |
| 369 | * typmod, else use -1 |
| 370 | */ |
| 371 | const CaseExpr *cexpr = (const CaseExpr *) expr; |
| 372 | Oid casetype = cexpr->casetype; |
| 373 | int32 typmod; |
| 374 | ListCell *arg; |
| 375 | |
| 376 | if (!cexpr->defresult) |
| 377 | return -1; |
| 378 | if (exprType((Node *) cexpr->defresult) != casetype) |
| 379 | return -1; |
| 380 | typmod = exprTypmod((Node *) cexpr->defresult); |
| 381 | if (typmod < 0) |
| 382 | return -1; /* no point in trying harder */ |
| 383 | foreach(arg, cexpr->args) |
| 384 | { |
| 385 | CaseWhen *w = lfirst_node(CaseWhen, arg); |
| 386 | |
| 387 | if (exprType((Node *) w->result) != casetype) |
| 388 | return -1; |
| 389 | if (exprTypmod((Node *) w->result) != typmod) |
| 390 | return -1; |
| 391 | } |
| 392 | return typmod; |
| 393 | } |
| 394 | break; |
| 395 | case T_CaseTestExpr: |
| 396 | return ((const CaseTestExpr *) expr)->typeMod; |
| 397 | case T_ArrayExpr: |
| 398 | { |
| 399 | /* |
| 400 | * If all the elements agree on type/typmod, return that |
| 401 | * typmod, else use -1 |
| 402 | */ |
| 403 | const ArrayExpr *arrayexpr = (const ArrayExpr *) expr; |
| 404 | Oid commontype; |
| 405 | int32 typmod; |
| 406 | ListCell *elem; |
| 407 | |
| 408 | if (arrayexpr->elements == NIL) |
| 409 | return -1; |
| 410 | typmod = exprTypmod((Node *) linitial(arrayexpr->elements)); |
| 411 | if (typmod < 0) |
| 412 | return -1; /* no point in trying harder */ |
| 413 | if (arrayexpr->multidims) |
| 414 | commontype = arrayexpr->array_typeid; |
| 415 | else |
| 416 | commontype = arrayexpr->element_typeid; |
| 417 | foreach(elem, arrayexpr->elements) |
| 418 | { |
| 419 | Node *e = (Node *) lfirst(elem); |
| 420 | |
| 421 | if (exprType(e) != commontype) |
| 422 | return -1; |
| 423 | if (exprTypmod(e) != typmod) |
| 424 | return -1; |
| 425 | } |
| 426 | return typmod; |
| 427 | } |
| 428 | break; |
| 429 | case T_CoalesceExpr: |
| 430 | { |
| 431 | /* |
| 432 | * If all the alternatives agree on type/typmod, return that |
| 433 | * typmod, else use -1 |
| 434 | */ |
| 435 | const CoalesceExpr *cexpr = (const CoalesceExpr *) expr; |
| 436 | Oid coalescetype = cexpr->coalescetype; |
| 437 | int32 typmod; |
| 438 | ListCell *arg; |
| 439 | |
| 440 | if (exprType((Node *) linitial(cexpr->args)) != coalescetype) |
| 441 | return -1; |
| 442 | typmod = exprTypmod((Node *) linitial(cexpr->args)); |
| 443 | if (typmod < 0) |
| 444 | return -1; /* no point in trying harder */ |
| 445 | for_each_cell(arg, lnext(list_head(cexpr->args))) |
| 446 | { |
| 447 | Node *e = (Node *) lfirst(arg); |
| 448 | |
| 449 | if (exprType(e) != coalescetype) |
| 450 | return -1; |
| 451 | if (exprTypmod(e) != typmod) |
| 452 | return -1; |
| 453 | } |
| 454 | return typmod; |
| 455 | } |
| 456 | break; |
| 457 | case T_MinMaxExpr: |
| 458 | { |
| 459 | /* |
| 460 | * If all the alternatives agree on type/typmod, return that |
| 461 | * typmod, else use -1 |
| 462 | */ |
| 463 | const MinMaxExpr *mexpr = (const MinMaxExpr *) expr; |
| 464 | Oid minmaxtype = mexpr->minmaxtype; |
| 465 | int32 typmod; |
| 466 | ListCell *arg; |
| 467 | |
| 468 | if (exprType((Node *) linitial(mexpr->args)) != minmaxtype) |
| 469 | return -1; |
| 470 | typmod = exprTypmod((Node *) linitial(mexpr->args)); |
| 471 | if (typmod < 0) |
| 472 | return -1; /* no point in trying harder */ |
| 473 | for_each_cell(arg, lnext(list_head(mexpr->args))) |
| 474 | { |
| 475 | Node *e = (Node *) lfirst(arg); |
| 476 | |
| 477 | if (exprType(e) != minmaxtype) |
| 478 | return -1; |
| 479 | if (exprTypmod(e) != typmod) |
| 480 | return -1; |
| 481 | } |
| 482 | return typmod; |
| 483 | } |
| 484 | break; |
| 485 | case T_SQLValueFunction: |
| 486 | return ((const SQLValueFunction *) expr)->typmod; |
| 487 | case T_CoerceToDomain: |
| 488 | return ((const CoerceToDomain *) expr)->resulttypmod; |
| 489 | case T_CoerceToDomainValue: |
| 490 | return ((const CoerceToDomainValue *) expr)->typeMod; |
| 491 | case T_SetToDefault: |
| 492 | return ((const SetToDefault *) expr)->typeMod; |
| 493 | case T_PlaceHolderVar: |
| 494 | return exprTypmod((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
| 495 | default: |
| 496 | break; |
| 497 | } |
| 498 | return -1; |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * exprIsLengthCoercion |
| 503 | * Detect whether an expression tree is an application of a datatype's |
| 504 | * typmod-coercion function. Optionally extract the result's typmod. |
| 505 | * |
| 506 | * If coercedTypmod is not NULL, the typmod is stored there if the expression |
| 507 | * is a length-coercion function, else -1 is stored there. |
| 508 | * |
| 509 | * Note that a combined type-and-length coercion will be treated as a |
| 510 | * length coercion by this routine. |
| 511 | */ |
| 512 | bool |
| 513 | exprIsLengthCoercion(const Node *expr, int32 *coercedTypmod) |
| 514 | { |
| 515 | if (coercedTypmod != NULL) |
| 516 | *coercedTypmod = -1; /* default result on failure */ |
| 517 | |
| 518 | /* |
| 519 | * Scalar-type length coercions are FuncExprs, array-type length coercions |
| 520 | * are ArrayCoerceExprs |
| 521 | */ |
| 522 | if (expr && IsA(expr, FuncExpr)) |
| 523 | { |
| 524 | const FuncExpr *func = (const FuncExpr *) expr; |
| 525 | int nargs; |
| 526 | Const *second_arg; |
| 527 | |
| 528 | /* |
| 529 | * If it didn't come from a coercion context, reject. |
| 530 | */ |
| 531 | if (func->funcformat != COERCE_EXPLICIT_CAST && |
| 532 | func->funcformat != COERCE_IMPLICIT_CAST) |
| 533 | return false; |
| 534 | |
| 535 | /* |
| 536 | * If it's not a two-argument or three-argument function with the |
| 537 | * second argument being an int4 constant, it can't have been created |
| 538 | * from a length coercion (it must be a type coercion, instead). |
| 539 | */ |
| 540 | nargs = list_length(func->args); |
| 541 | if (nargs < 2 || nargs > 3) |
| 542 | return false; |
| 543 | |
| 544 | second_arg = (Const *) lsecond(func->args); |
| 545 | if (!IsA(second_arg, Const) || |
| 546 | second_arg->consttype != INT4OID || |
| 547 | second_arg->constisnull) |
| 548 | return false; |
| 549 | |
| 550 | /* |
| 551 | * OK, it is indeed a length-coercion function. |
| 552 | */ |
| 553 | if (coercedTypmod != NULL) |
| 554 | *coercedTypmod = DatumGetInt32(second_arg->constvalue); |
| 555 | |
| 556 | return true; |
| 557 | } |
| 558 | |
| 559 | if (expr && IsA(expr, ArrayCoerceExpr)) |
| 560 | { |
| 561 | const ArrayCoerceExpr *acoerce = (const ArrayCoerceExpr *) expr; |
| 562 | |
| 563 | /* It's not a length coercion unless there's a nondefault typmod */ |
| 564 | if (acoerce->resulttypmod < 0) |
| 565 | return false; |
| 566 | |
| 567 | /* |
| 568 | * OK, it is indeed a length-coercion expression. |
| 569 | */ |
| 570 | if (coercedTypmod != NULL) |
| 571 | *coercedTypmod = acoerce->resulttypmod; |
| 572 | |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | return false; |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * relabel_to_typmod |
| 581 | * Add a RelabelType node that changes just the typmod of the expression. |
| 582 | * |
| 583 | * This is primarily intended to be used during planning. Therefore, it |
| 584 | * strips any existing RelabelType nodes to maintain the planner's invariant |
| 585 | * that there are not adjacent RelabelTypes. |
| 586 | */ |
| 587 | Node * |
| 588 | relabel_to_typmod(Node *expr, int32 typmod) |
| 589 | { |
| 590 | Oid type = exprType(expr); |
| 591 | Oid coll = exprCollation(expr); |
| 592 | |
| 593 | /* Strip any existing RelabelType node(s) */ |
| 594 | while (expr && IsA(expr, RelabelType)) |
| 595 | expr = (Node *) ((RelabelType *) expr)->arg; |
| 596 | |
| 597 | /* Apply new typmod, preserving the previous exposed type and collation */ |
| 598 | return (Node *) makeRelabelType((Expr *) expr, type, typmod, coll, |
| 599 | COERCE_EXPLICIT_CAST); |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * strip_implicit_coercions: remove implicit coercions at top level of tree |
| 604 | * |
| 605 | * This doesn't modify or copy the input expression tree, just return a |
| 606 | * pointer to a suitable place within it. |
| 607 | * |
| 608 | * Note: there isn't any useful thing we can do with a RowExpr here, so |
| 609 | * just return it unchanged, even if it's marked as an implicit coercion. |
| 610 | */ |
| 611 | Node * |
| 612 | strip_implicit_coercions(Node *node) |
| 613 | { |
| 614 | if (node == NULL) |
| 615 | return NULL; |
| 616 | if (IsA(node, FuncExpr)) |
| 617 | { |
| 618 | FuncExpr *f = (FuncExpr *) node; |
| 619 | |
| 620 | if (f->funcformat == COERCE_IMPLICIT_CAST) |
| 621 | return strip_implicit_coercions(linitial(f->args)); |
| 622 | } |
| 623 | else if (IsA(node, RelabelType)) |
| 624 | { |
| 625 | RelabelType *r = (RelabelType *) node; |
| 626 | |
| 627 | if (r->relabelformat == COERCE_IMPLICIT_CAST) |
| 628 | return strip_implicit_coercions((Node *) r->arg); |
| 629 | } |
| 630 | else if (IsA(node, CoerceViaIO)) |
| 631 | { |
| 632 | CoerceViaIO *c = (CoerceViaIO *) node; |
| 633 | |
| 634 | if (c->coerceformat == COERCE_IMPLICIT_CAST) |
| 635 | return strip_implicit_coercions((Node *) c->arg); |
| 636 | } |
| 637 | else if (IsA(node, ArrayCoerceExpr)) |
| 638 | { |
| 639 | ArrayCoerceExpr *c = (ArrayCoerceExpr *) node; |
| 640 | |
| 641 | if (c->coerceformat == COERCE_IMPLICIT_CAST) |
| 642 | return strip_implicit_coercions((Node *) c->arg); |
| 643 | } |
| 644 | else if (IsA(node, ConvertRowtypeExpr)) |
| 645 | { |
| 646 | ConvertRowtypeExpr *c = (ConvertRowtypeExpr *) node; |
| 647 | |
| 648 | if (c->convertformat == COERCE_IMPLICIT_CAST) |
| 649 | return strip_implicit_coercions((Node *) c->arg); |
| 650 | } |
| 651 | else if (IsA(node, CoerceToDomain)) |
| 652 | { |
| 653 | CoerceToDomain *c = (CoerceToDomain *) node; |
| 654 | |
| 655 | if (c->coercionformat == COERCE_IMPLICIT_CAST) |
| 656 | return strip_implicit_coercions((Node *) c->arg); |
| 657 | } |
| 658 | return node; |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * expression_returns_set |
| 663 | * Test whether an expression returns a set result. |
| 664 | * |
| 665 | * Because we use expression_tree_walker(), this can also be applied to |
| 666 | * whole targetlists; it'll produce true if any one of the tlist items |
| 667 | * returns a set. |
| 668 | */ |
| 669 | bool |
| 670 | expression_returns_set(Node *clause) |
| 671 | { |
| 672 | return expression_returns_set_walker(clause, NULL); |
| 673 | } |
| 674 | |
| 675 | static bool |
| 676 | expression_returns_set_walker(Node *node, void *context) |
| 677 | { |
| 678 | if (node == NULL) |
| 679 | return false; |
| 680 | if (IsA(node, FuncExpr)) |
| 681 | { |
| 682 | FuncExpr *expr = (FuncExpr *) node; |
| 683 | |
| 684 | if (expr->funcretset) |
| 685 | return true; |
| 686 | /* else fall through to check args */ |
| 687 | } |
| 688 | if (IsA(node, OpExpr)) |
| 689 | { |
| 690 | OpExpr *expr = (OpExpr *) node; |
| 691 | |
| 692 | if (expr->opretset) |
| 693 | return true; |
| 694 | /* else fall through to check args */ |
| 695 | } |
| 696 | |
| 697 | /* Avoid recursion for some cases that parser checks not to return a set */ |
| 698 | if (IsA(node, Aggref)) |
| 699 | return false; |
| 700 | if (IsA(node, WindowFunc)) |
| 701 | return false; |
| 702 | |
| 703 | return expression_tree_walker(node, expression_returns_set_walker, |
| 704 | context); |
| 705 | } |
| 706 | |
| 707 | |
| 708 | /* |
| 709 | * exprCollation - |
| 710 | * returns the Oid of the collation of the expression's result. |
| 711 | * |
| 712 | * Note: expression nodes that can invoke functions generally have an |
| 713 | * "inputcollid" field, which is what the function should use as collation. |
| 714 | * That is the resolved common collation of the node's inputs. It is often |
| 715 | * but not always the same as the result collation; in particular, if the |
| 716 | * function produces a non-collatable result type from collatable inputs |
| 717 | * or vice versa, the two are different. |
| 718 | */ |
| 719 | Oid |
| 720 | exprCollation(const Node *expr) |
| 721 | { |
| 722 | Oid coll; |
| 723 | |
| 724 | if (!expr) |
| 725 | return InvalidOid; |
| 726 | |
| 727 | switch (nodeTag(expr)) |
| 728 | { |
| 729 | case T_Var: |
| 730 | coll = ((const Var *) expr)->varcollid; |
| 731 | break; |
| 732 | case T_Const: |
| 733 | coll = ((const Const *) expr)->constcollid; |
| 734 | break; |
| 735 | case T_Param: |
| 736 | coll = ((const Param *) expr)->paramcollid; |
| 737 | break; |
| 738 | case T_Aggref: |
| 739 | coll = ((const Aggref *) expr)->aggcollid; |
| 740 | break; |
| 741 | case T_GroupingFunc: |
| 742 | coll = InvalidOid; |
| 743 | break; |
| 744 | case T_WindowFunc: |
| 745 | coll = ((const WindowFunc *) expr)->wincollid; |
| 746 | break; |
| 747 | case T_SubscriptingRef: |
| 748 | coll = ((const SubscriptingRef *) expr)->refcollid; |
| 749 | break; |
| 750 | case T_FuncExpr: |
| 751 | coll = ((const FuncExpr *) expr)->funccollid; |
| 752 | break; |
| 753 | case T_NamedArgExpr: |
| 754 | coll = exprCollation((Node *) ((const NamedArgExpr *) expr)->arg); |
| 755 | break; |
| 756 | case T_OpExpr: |
| 757 | coll = ((const OpExpr *) expr)->opcollid; |
| 758 | break; |
| 759 | case T_DistinctExpr: |
| 760 | coll = ((const DistinctExpr *) expr)->opcollid; |
| 761 | break; |
| 762 | case T_NullIfExpr: |
| 763 | coll = ((const NullIfExpr *) expr)->opcollid; |
| 764 | break; |
| 765 | case T_ScalarArrayOpExpr: |
| 766 | coll = InvalidOid; /* result is always boolean */ |
| 767 | break; |
| 768 | case T_BoolExpr: |
| 769 | coll = InvalidOid; /* result is always boolean */ |
| 770 | break; |
| 771 | case T_SubLink: |
| 772 | { |
| 773 | const SubLink *sublink = (const SubLink *) expr; |
| 774 | |
| 775 | if (sublink->subLinkType == EXPR_SUBLINK || |
| 776 | sublink->subLinkType == ARRAY_SUBLINK) |
| 777 | { |
| 778 | /* get the collation of subselect's first target column */ |
| 779 | Query *qtree = (Query *) sublink->subselect; |
| 780 | TargetEntry *tent; |
| 781 | |
| 782 | if (!qtree || !IsA(qtree, Query)) |
| 783 | elog(ERROR, "cannot get collation for untransformed sublink" ); |
| 784 | tent = linitial_node(TargetEntry, qtree->targetList); |
| 785 | Assert(!tent->resjunk); |
| 786 | coll = exprCollation((Node *) tent->expr); |
| 787 | /* collation doesn't change if it's converted to array */ |
| 788 | } |
| 789 | else |
| 790 | { |
| 791 | /* otherwise, result is RECORD or BOOLEAN */ |
| 792 | coll = InvalidOid; |
| 793 | } |
| 794 | } |
| 795 | break; |
| 796 | case T_SubPlan: |
| 797 | { |
| 798 | const SubPlan *subplan = (const SubPlan *) expr; |
| 799 | |
| 800 | if (subplan->subLinkType == EXPR_SUBLINK || |
| 801 | subplan->subLinkType == ARRAY_SUBLINK) |
| 802 | { |
| 803 | /* get the collation of subselect's first target column */ |
| 804 | coll = subplan->firstColCollation; |
| 805 | /* collation doesn't change if it's converted to array */ |
| 806 | } |
| 807 | else |
| 808 | { |
| 809 | /* otherwise, result is RECORD or BOOLEAN */ |
| 810 | coll = InvalidOid; |
| 811 | } |
| 812 | } |
| 813 | break; |
| 814 | case T_AlternativeSubPlan: |
| 815 | { |
| 816 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
| 817 | |
| 818 | /* subplans should all return the same thing */ |
| 819 | coll = exprCollation((Node *) linitial(asplan->subplans)); |
| 820 | } |
| 821 | break; |
| 822 | case T_FieldSelect: |
| 823 | coll = ((const FieldSelect *) expr)->resultcollid; |
| 824 | break; |
| 825 | case T_FieldStore: |
| 826 | coll = InvalidOid; /* result is always composite */ |
| 827 | break; |
| 828 | case T_RelabelType: |
| 829 | coll = ((const RelabelType *) expr)->resultcollid; |
| 830 | break; |
| 831 | case T_CoerceViaIO: |
| 832 | coll = ((const CoerceViaIO *) expr)->resultcollid; |
| 833 | break; |
| 834 | case T_ArrayCoerceExpr: |
| 835 | coll = ((const ArrayCoerceExpr *) expr)->resultcollid; |
| 836 | break; |
| 837 | case T_ConvertRowtypeExpr: |
| 838 | coll = InvalidOid; /* result is always composite */ |
| 839 | break; |
| 840 | case T_CollateExpr: |
| 841 | coll = ((const CollateExpr *) expr)->collOid; |
| 842 | break; |
| 843 | case T_CaseExpr: |
| 844 | coll = ((const CaseExpr *) expr)->casecollid; |
| 845 | break; |
| 846 | case T_CaseTestExpr: |
| 847 | coll = ((const CaseTestExpr *) expr)->collation; |
| 848 | break; |
| 849 | case T_ArrayExpr: |
| 850 | coll = ((const ArrayExpr *) expr)->array_collid; |
| 851 | break; |
| 852 | case T_RowExpr: |
| 853 | coll = InvalidOid; /* result is always composite */ |
| 854 | break; |
| 855 | case T_RowCompareExpr: |
| 856 | coll = InvalidOid; /* result is always boolean */ |
| 857 | break; |
| 858 | case T_CoalesceExpr: |
| 859 | coll = ((const CoalesceExpr *) expr)->coalescecollid; |
| 860 | break; |
| 861 | case T_MinMaxExpr: |
| 862 | coll = ((const MinMaxExpr *) expr)->minmaxcollid; |
| 863 | break; |
| 864 | case T_SQLValueFunction: |
| 865 | /* Returns either NAME or a non-collatable type */ |
| 866 | if (((const SQLValueFunction *) expr)->type == NAMEOID) |
| 867 | coll = C_COLLATION_OID; |
| 868 | else |
| 869 | coll = InvalidOid; |
| 870 | break; |
| 871 | case T_XmlExpr: |
| 872 | |
| 873 | /* |
| 874 | * XMLSERIALIZE returns text from non-collatable inputs, so its |
| 875 | * collation is always default. The other cases return boolean or |
| 876 | * XML, which are non-collatable. |
| 877 | */ |
| 878 | if (((const XmlExpr *) expr)->op == IS_XMLSERIALIZE) |
| 879 | coll = DEFAULT_COLLATION_OID; |
| 880 | else |
| 881 | coll = InvalidOid; |
| 882 | break; |
| 883 | case T_NullTest: |
| 884 | coll = InvalidOid; /* result is always boolean */ |
| 885 | break; |
| 886 | case T_BooleanTest: |
| 887 | coll = InvalidOid; /* result is always boolean */ |
| 888 | break; |
| 889 | case T_CoerceToDomain: |
| 890 | coll = ((const CoerceToDomain *) expr)->resultcollid; |
| 891 | break; |
| 892 | case T_CoerceToDomainValue: |
| 893 | coll = ((const CoerceToDomainValue *) expr)->collation; |
| 894 | break; |
| 895 | case T_SetToDefault: |
| 896 | coll = ((const SetToDefault *) expr)->collation; |
| 897 | break; |
| 898 | case T_CurrentOfExpr: |
| 899 | coll = InvalidOid; /* result is always boolean */ |
| 900 | break; |
| 901 | case T_NextValueExpr: |
| 902 | coll = InvalidOid; /* result is always an integer type */ |
| 903 | break; |
| 904 | case T_InferenceElem: |
| 905 | coll = exprCollation((Node *) ((const InferenceElem *) expr)->expr); |
| 906 | break; |
| 907 | case T_PlaceHolderVar: |
| 908 | coll = exprCollation((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
| 909 | break; |
| 910 | default: |
| 911 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
| 912 | coll = InvalidOid; /* keep compiler quiet */ |
| 913 | break; |
| 914 | } |
| 915 | return coll; |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * exprInputCollation - |
| 920 | * returns the Oid of the collation a function should use, if available. |
| 921 | * |
| 922 | * Result is InvalidOid if the node type doesn't store this information. |
| 923 | */ |
| 924 | Oid |
| 925 | exprInputCollation(const Node *expr) |
| 926 | { |
| 927 | Oid coll; |
| 928 | |
| 929 | if (!expr) |
| 930 | return InvalidOid; |
| 931 | |
| 932 | switch (nodeTag(expr)) |
| 933 | { |
| 934 | case T_Aggref: |
| 935 | coll = ((const Aggref *) expr)->inputcollid; |
| 936 | break; |
| 937 | case T_WindowFunc: |
| 938 | coll = ((const WindowFunc *) expr)->inputcollid; |
| 939 | break; |
| 940 | case T_FuncExpr: |
| 941 | coll = ((const FuncExpr *) expr)->inputcollid; |
| 942 | break; |
| 943 | case T_OpExpr: |
| 944 | coll = ((const OpExpr *) expr)->inputcollid; |
| 945 | break; |
| 946 | case T_DistinctExpr: |
| 947 | coll = ((const DistinctExpr *) expr)->inputcollid; |
| 948 | break; |
| 949 | case T_NullIfExpr: |
| 950 | coll = ((const NullIfExpr *) expr)->inputcollid; |
| 951 | break; |
| 952 | case T_ScalarArrayOpExpr: |
| 953 | coll = ((const ScalarArrayOpExpr *) expr)->inputcollid; |
| 954 | break; |
| 955 | case T_MinMaxExpr: |
| 956 | coll = ((const MinMaxExpr *) expr)->inputcollid; |
| 957 | break; |
| 958 | default: |
| 959 | coll = InvalidOid; |
| 960 | break; |
| 961 | } |
| 962 | return coll; |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * exprSetCollation - |
| 967 | * Assign collation information to an expression tree node. |
| 968 | * |
| 969 | * Note: since this is only used during parse analysis, we don't need to |
| 970 | * worry about subplans or PlaceHolderVars. |
| 971 | */ |
| 972 | void |
| 973 | exprSetCollation(Node *expr, Oid collation) |
| 974 | { |
| 975 | switch (nodeTag(expr)) |
| 976 | { |
| 977 | case T_Var: |
| 978 | ((Var *) expr)->varcollid = collation; |
| 979 | break; |
| 980 | case T_Const: |
| 981 | ((Const *) expr)->constcollid = collation; |
| 982 | break; |
| 983 | case T_Param: |
| 984 | ((Param *) expr)->paramcollid = collation; |
| 985 | break; |
| 986 | case T_Aggref: |
| 987 | ((Aggref *) expr)->aggcollid = collation; |
| 988 | break; |
| 989 | case T_GroupingFunc: |
| 990 | Assert(!OidIsValid(collation)); |
| 991 | break; |
| 992 | case T_WindowFunc: |
| 993 | ((WindowFunc *) expr)->wincollid = collation; |
| 994 | break; |
| 995 | case T_SubscriptingRef: |
| 996 | ((SubscriptingRef *) expr)->refcollid = collation; |
| 997 | break; |
| 998 | case T_FuncExpr: |
| 999 | ((FuncExpr *) expr)->funccollid = collation; |
| 1000 | break; |
| 1001 | case T_NamedArgExpr: |
| 1002 | Assert(collation == exprCollation((Node *) ((NamedArgExpr *) expr)->arg)); |
| 1003 | break; |
| 1004 | case T_OpExpr: |
| 1005 | ((OpExpr *) expr)->opcollid = collation; |
| 1006 | break; |
| 1007 | case T_DistinctExpr: |
| 1008 | ((DistinctExpr *) expr)->opcollid = collation; |
| 1009 | break; |
| 1010 | case T_NullIfExpr: |
| 1011 | ((NullIfExpr *) expr)->opcollid = collation; |
| 1012 | break; |
| 1013 | case T_ScalarArrayOpExpr: |
| 1014 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1015 | break; |
| 1016 | case T_BoolExpr: |
| 1017 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1018 | break; |
| 1019 | case T_SubLink: |
| 1020 | #ifdef USE_ASSERT_CHECKING |
| 1021 | { |
| 1022 | SubLink *sublink = (SubLink *) expr; |
| 1023 | |
| 1024 | if (sublink->subLinkType == EXPR_SUBLINK || |
| 1025 | sublink->subLinkType == ARRAY_SUBLINK) |
| 1026 | { |
| 1027 | /* get the collation of subselect's first target column */ |
| 1028 | Query *qtree = (Query *) sublink->subselect; |
| 1029 | TargetEntry *tent; |
| 1030 | |
| 1031 | if (!qtree || !IsA(qtree, Query)) |
| 1032 | elog(ERROR, "cannot set collation for untransformed sublink" ); |
| 1033 | tent = linitial_node(TargetEntry, qtree->targetList); |
| 1034 | Assert(!tent->resjunk); |
| 1035 | Assert(collation == exprCollation((Node *) tent->expr)); |
| 1036 | } |
| 1037 | else |
| 1038 | { |
| 1039 | /* otherwise, result is RECORD or BOOLEAN */ |
| 1040 | Assert(!OidIsValid(collation)); |
| 1041 | } |
| 1042 | } |
| 1043 | #endif /* USE_ASSERT_CHECKING */ |
| 1044 | break; |
| 1045 | case T_FieldSelect: |
| 1046 | ((FieldSelect *) expr)->resultcollid = collation; |
| 1047 | break; |
| 1048 | case T_FieldStore: |
| 1049 | Assert(!OidIsValid(collation)); /* result is always composite */ |
| 1050 | break; |
| 1051 | case T_RelabelType: |
| 1052 | ((RelabelType *) expr)->resultcollid = collation; |
| 1053 | break; |
| 1054 | case T_CoerceViaIO: |
| 1055 | ((CoerceViaIO *) expr)->resultcollid = collation; |
| 1056 | break; |
| 1057 | case T_ArrayCoerceExpr: |
| 1058 | ((ArrayCoerceExpr *) expr)->resultcollid = collation; |
| 1059 | break; |
| 1060 | case T_ConvertRowtypeExpr: |
| 1061 | Assert(!OidIsValid(collation)); /* result is always composite */ |
| 1062 | break; |
| 1063 | case T_CaseExpr: |
| 1064 | ((CaseExpr *) expr)->casecollid = collation; |
| 1065 | break; |
| 1066 | case T_ArrayExpr: |
| 1067 | ((ArrayExpr *) expr)->array_collid = collation; |
| 1068 | break; |
| 1069 | case T_RowExpr: |
| 1070 | Assert(!OidIsValid(collation)); /* result is always composite */ |
| 1071 | break; |
| 1072 | case T_RowCompareExpr: |
| 1073 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1074 | break; |
| 1075 | case T_CoalesceExpr: |
| 1076 | ((CoalesceExpr *) expr)->coalescecollid = collation; |
| 1077 | break; |
| 1078 | case T_MinMaxExpr: |
| 1079 | ((MinMaxExpr *) expr)->minmaxcollid = collation; |
| 1080 | break; |
| 1081 | case T_SQLValueFunction: |
| 1082 | Assert((((SQLValueFunction *) expr)->type == NAMEOID) ? |
| 1083 | (collation == C_COLLATION_OID) : |
| 1084 | (collation == InvalidOid)); |
| 1085 | break; |
| 1086 | case T_XmlExpr: |
| 1087 | Assert((((XmlExpr *) expr)->op == IS_XMLSERIALIZE) ? |
| 1088 | (collation == DEFAULT_COLLATION_OID) : |
| 1089 | (collation == InvalidOid)); |
| 1090 | break; |
| 1091 | case T_NullTest: |
| 1092 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1093 | break; |
| 1094 | case T_BooleanTest: |
| 1095 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1096 | break; |
| 1097 | case T_CoerceToDomain: |
| 1098 | ((CoerceToDomain *) expr)->resultcollid = collation; |
| 1099 | break; |
| 1100 | case T_CoerceToDomainValue: |
| 1101 | ((CoerceToDomainValue *) expr)->collation = collation; |
| 1102 | break; |
| 1103 | case T_SetToDefault: |
| 1104 | ((SetToDefault *) expr)->collation = collation; |
| 1105 | break; |
| 1106 | case T_CurrentOfExpr: |
| 1107 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
| 1108 | break; |
| 1109 | case T_NextValueExpr: |
| 1110 | Assert(!OidIsValid(collation)); /* result is always an integer |
| 1111 | * type */ |
| 1112 | break; |
| 1113 | default: |
| 1114 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
| 1115 | break; |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | /* |
| 1120 | * exprSetInputCollation - |
| 1121 | * Assign input-collation information to an expression tree node. |
| 1122 | * |
| 1123 | * This is a no-op for node types that don't store their input collation. |
| 1124 | * Note we omit RowCompareExpr, which needs special treatment since it |
| 1125 | * contains multiple input collation OIDs. |
| 1126 | */ |
| 1127 | void |
| 1128 | exprSetInputCollation(Node *expr, Oid inputcollation) |
| 1129 | { |
| 1130 | switch (nodeTag(expr)) |
| 1131 | { |
| 1132 | case T_Aggref: |
| 1133 | ((Aggref *) expr)->inputcollid = inputcollation; |
| 1134 | break; |
| 1135 | case T_WindowFunc: |
| 1136 | ((WindowFunc *) expr)->inputcollid = inputcollation; |
| 1137 | break; |
| 1138 | case T_FuncExpr: |
| 1139 | ((FuncExpr *) expr)->inputcollid = inputcollation; |
| 1140 | break; |
| 1141 | case T_OpExpr: |
| 1142 | ((OpExpr *) expr)->inputcollid = inputcollation; |
| 1143 | break; |
| 1144 | case T_DistinctExpr: |
| 1145 | ((DistinctExpr *) expr)->inputcollid = inputcollation; |
| 1146 | break; |
| 1147 | case T_NullIfExpr: |
| 1148 | ((NullIfExpr *) expr)->inputcollid = inputcollation; |
| 1149 | break; |
| 1150 | case T_ScalarArrayOpExpr: |
| 1151 | ((ScalarArrayOpExpr *) expr)->inputcollid = inputcollation; |
| 1152 | break; |
| 1153 | case T_MinMaxExpr: |
| 1154 | ((MinMaxExpr *) expr)->inputcollid = inputcollation; |
| 1155 | break; |
| 1156 | default: |
| 1157 | break; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | |
| 1162 | /* |
| 1163 | * exprLocation - |
| 1164 | * returns the parse location of an expression tree, for error reports |
| 1165 | * |
| 1166 | * -1 is returned if the location can't be determined. |
| 1167 | * |
| 1168 | * For expressions larger than a single token, the intent here is to |
| 1169 | * return the location of the expression's leftmost token, not necessarily |
| 1170 | * the topmost Node's location field. For example, an OpExpr's location |
| 1171 | * field will point at the operator name, but if it is not a prefix operator |
| 1172 | * then we should return the location of the left-hand operand instead. |
| 1173 | * The reason is that we want to reference the entire expression not just |
| 1174 | * that operator, and pointing to its start seems to be the most natural way. |
| 1175 | * |
| 1176 | * The location is not perfect --- for example, since the grammar doesn't |
| 1177 | * explicitly represent parentheses in the parsetree, given something that |
| 1178 | * had been written "(a + b) * c" we are going to point at "a" not "(". |
| 1179 | * But it should be plenty good enough for error reporting purposes. |
| 1180 | * |
| 1181 | * You might think that this code is overly general, for instance why check |
| 1182 | * the operands of a FuncExpr node, when the function name can be expected |
| 1183 | * to be to the left of them? There are a couple of reasons. The grammar |
| 1184 | * sometimes builds expressions that aren't quite what the user wrote; |
| 1185 | * for instance x IS NOT BETWEEN ... becomes a NOT-expression whose keyword |
| 1186 | * pointer is to the right of its leftmost argument. Also, nodes that were |
| 1187 | * inserted implicitly by parse analysis (such as FuncExprs for implicit |
| 1188 | * coercions) will have location -1, and so we can have odd combinations of |
| 1189 | * known and unknown locations in a tree. |
| 1190 | */ |
| 1191 | int |
| 1192 | exprLocation(const Node *expr) |
| 1193 | { |
| 1194 | int loc; |
| 1195 | |
| 1196 | if (expr == NULL) |
| 1197 | return -1; |
| 1198 | switch (nodeTag(expr)) |
| 1199 | { |
| 1200 | case T_RangeVar: |
| 1201 | loc = ((const RangeVar *) expr)->location; |
| 1202 | break; |
| 1203 | case T_TableFunc: |
| 1204 | loc = ((const TableFunc *) expr)->location; |
| 1205 | break; |
| 1206 | case T_Var: |
| 1207 | loc = ((const Var *) expr)->location; |
| 1208 | break; |
| 1209 | case T_Const: |
| 1210 | loc = ((const Const *) expr)->location; |
| 1211 | break; |
| 1212 | case T_Param: |
| 1213 | loc = ((const Param *) expr)->location; |
| 1214 | break; |
| 1215 | case T_Aggref: |
| 1216 | /* function name should always be the first thing */ |
| 1217 | loc = ((const Aggref *) expr)->location; |
| 1218 | break; |
| 1219 | case T_GroupingFunc: |
| 1220 | loc = ((const GroupingFunc *) expr)->location; |
| 1221 | break; |
| 1222 | case T_WindowFunc: |
| 1223 | /* function name should always be the first thing */ |
| 1224 | loc = ((const WindowFunc *) expr)->location; |
| 1225 | break; |
| 1226 | case T_SubscriptingRef: |
| 1227 | /* just use container argument's location */ |
| 1228 | loc = exprLocation((Node *) ((const SubscriptingRef *) expr)->refexpr); |
| 1229 | break; |
| 1230 | case T_FuncExpr: |
| 1231 | { |
| 1232 | const FuncExpr *fexpr = (const FuncExpr *) expr; |
| 1233 | |
| 1234 | /* consider both function name and leftmost arg */ |
| 1235 | loc = leftmostLoc(fexpr->location, |
| 1236 | exprLocation((Node *) fexpr->args)); |
| 1237 | } |
| 1238 | break; |
| 1239 | case T_NamedArgExpr: |
| 1240 | { |
| 1241 | const NamedArgExpr *na = (const NamedArgExpr *) expr; |
| 1242 | |
| 1243 | /* consider both argument name and value */ |
| 1244 | loc = leftmostLoc(na->location, |
| 1245 | exprLocation((Node *) na->arg)); |
| 1246 | } |
| 1247 | break; |
| 1248 | case T_OpExpr: |
| 1249 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
| 1250 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
| 1251 | { |
| 1252 | const OpExpr *opexpr = (const OpExpr *) expr; |
| 1253 | |
| 1254 | /* consider both operator name and leftmost arg */ |
| 1255 | loc = leftmostLoc(opexpr->location, |
| 1256 | exprLocation((Node *) opexpr->args)); |
| 1257 | } |
| 1258 | break; |
| 1259 | case T_ScalarArrayOpExpr: |
| 1260 | { |
| 1261 | const ScalarArrayOpExpr *saopexpr = (const ScalarArrayOpExpr *) expr; |
| 1262 | |
| 1263 | /* consider both operator name and leftmost arg */ |
| 1264 | loc = leftmostLoc(saopexpr->location, |
| 1265 | exprLocation((Node *) saopexpr->args)); |
| 1266 | } |
| 1267 | break; |
| 1268 | case T_BoolExpr: |
| 1269 | { |
| 1270 | const BoolExpr *bexpr = (const BoolExpr *) expr; |
| 1271 | |
| 1272 | /* |
| 1273 | * Same as above, to handle either NOT or AND/OR. We can't |
| 1274 | * special-case NOT because of the way that it's used for |
| 1275 | * things like IS NOT BETWEEN. |
| 1276 | */ |
| 1277 | loc = leftmostLoc(bexpr->location, |
| 1278 | exprLocation((Node *) bexpr->args)); |
| 1279 | } |
| 1280 | break; |
| 1281 | case T_SubLink: |
| 1282 | { |
| 1283 | const SubLink *sublink = (const SubLink *) expr; |
| 1284 | |
| 1285 | /* check the testexpr, if any, and the operator/keyword */ |
| 1286 | loc = leftmostLoc(exprLocation(sublink->testexpr), |
| 1287 | sublink->location); |
| 1288 | } |
| 1289 | break; |
| 1290 | case T_FieldSelect: |
| 1291 | /* just use argument's location */ |
| 1292 | loc = exprLocation((Node *) ((const FieldSelect *) expr)->arg); |
| 1293 | break; |
| 1294 | case T_FieldStore: |
| 1295 | /* just use argument's location */ |
| 1296 | loc = exprLocation((Node *) ((const FieldStore *) expr)->arg); |
| 1297 | break; |
| 1298 | case T_RelabelType: |
| 1299 | { |
| 1300 | const RelabelType *rexpr = (const RelabelType *) expr; |
| 1301 | |
| 1302 | /* Much as above */ |
| 1303 | loc = leftmostLoc(rexpr->location, |
| 1304 | exprLocation((Node *) rexpr->arg)); |
| 1305 | } |
| 1306 | break; |
| 1307 | case T_CoerceViaIO: |
| 1308 | { |
| 1309 | const CoerceViaIO *cexpr = (const CoerceViaIO *) expr; |
| 1310 | |
| 1311 | /* Much as above */ |
| 1312 | loc = leftmostLoc(cexpr->location, |
| 1313 | exprLocation((Node *) cexpr->arg)); |
| 1314 | } |
| 1315 | break; |
| 1316 | case T_ArrayCoerceExpr: |
| 1317 | { |
| 1318 | const ArrayCoerceExpr *cexpr = (const ArrayCoerceExpr *) expr; |
| 1319 | |
| 1320 | /* Much as above */ |
| 1321 | loc = leftmostLoc(cexpr->location, |
| 1322 | exprLocation((Node *) cexpr->arg)); |
| 1323 | } |
| 1324 | break; |
| 1325 | case T_ConvertRowtypeExpr: |
| 1326 | { |
| 1327 | const ConvertRowtypeExpr *cexpr = (const ConvertRowtypeExpr *) expr; |
| 1328 | |
| 1329 | /* Much as above */ |
| 1330 | loc = leftmostLoc(cexpr->location, |
| 1331 | exprLocation((Node *) cexpr->arg)); |
| 1332 | } |
| 1333 | break; |
| 1334 | case T_CollateExpr: |
| 1335 | /* just use argument's location */ |
| 1336 | loc = exprLocation((Node *) ((const CollateExpr *) expr)->arg); |
| 1337 | break; |
| 1338 | case T_CaseExpr: |
| 1339 | /* CASE keyword should always be the first thing */ |
| 1340 | loc = ((const CaseExpr *) expr)->location; |
| 1341 | break; |
| 1342 | case T_CaseWhen: |
| 1343 | /* WHEN keyword should always be the first thing */ |
| 1344 | loc = ((const CaseWhen *) expr)->location; |
| 1345 | break; |
| 1346 | case T_ArrayExpr: |
| 1347 | /* the location points at ARRAY or [, which must be leftmost */ |
| 1348 | loc = ((const ArrayExpr *) expr)->location; |
| 1349 | break; |
| 1350 | case T_RowExpr: |
| 1351 | /* the location points at ROW or (, which must be leftmost */ |
| 1352 | loc = ((const RowExpr *) expr)->location; |
| 1353 | break; |
| 1354 | case T_RowCompareExpr: |
| 1355 | /* just use leftmost argument's location */ |
| 1356 | loc = exprLocation((Node *) ((const RowCompareExpr *) expr)->largs); |
| 1357 | break; |
| 1358 | case T_CoalesceExpr: |
| 1359 | /* COALESCE keyword should always be the first thing */ |
| 1360 | loc = ((const CoalesceExpr *) expr)->location; |
| 1361 | break; |
| 1362 | case T_MinMaxExpr: |
| 1363 | /* GREATEST/LEAST keyword should always be the first thing */ |
| 1364 | loc = ((const MinMaxExpr *) expr)->location; |
| 1365 | break; |
| 1366 | case T_SQLValueFunction: |
| 1367 | /* function keyword should always be the first thing */ |
| 1368 | loc = ((const SQLValueFunction *) expr)->location; |
| 1369 | break; |
| 1370 | case T_XmlExpr: |
| 1371 | { |
| 1372 | const XmlExpr *xexpr = (const XmlExpr *) expr; |
| 1373 | |
| 1374 | /* consider both function name and leftmost arg */ |
| 1375 | loc = leftmostLoc(xexpr->location, |
| 1376 | exprLocation((Node *) xexpr->args)); |
| 1377 | } |
| 1378 | break; |
| 1379 | case T_NullTest: |
| 1380 | { |
| 1381 | const NullTest *nexpr = (const NullTest *) expr; |
| 1382 | |
| 1383 | /* Much as above */ |
| 1384 | loc = leftmostLoc(nexpr->location, |
| 1385 | exprLocation((Node *) nexpr->arg)); |
| 1386 | } |
| 1387 | break; |
| 1388 | case T_BooleanTest: |
| 1389 | { |
| 1390 | const BooleanTest *bexpr = (const BooleanTest *) expr; |
| 1391 | |
| 1392 | /* Much as above */ |
| 1393 | loc = leftmostLoc(bexpr->location, |
| 1394 | exprLocation((Node *) bexpr->arg)); |
| 1395 | } |
| 1396 | break; |
| 1397 | case T_CoerceToDomain: |
| 1398 | { |
| 1399 | const CoerceToDomain *cexpr = (const CoerceToDomain *) expr; |
| 1400 | |
| 1401 | /* Much as above */ |
| 1402 | loc = leftmostLoc(cexpr->location, |
| 1403 | exprLocation((Node *) cexpr->arg)); |
| 1404 | } |
| 1405 | break; |
| 1406 | case T_CoerceToDomainValue: |
| 1407 | loc = ((const CoerceToDomainValue *) expr)->location; |
| 1408 | break; |
| 1409 | case T_SetToDefault: |
| 1410 | loc = ((const SetToDefault *) expr)->location; |
| 1411 | break; |
| 1412 | case T_TargetEntry: |
| 1413 | /* just use argument's location */ |
| 1414 | loc = exprLocation((Node *) ((const TargetEntry *) expr)->expr); |
| 1415 | break; |
| 1416 | case T_IntoClause: |
| 1417 | /* use the contained RangeVar's location --- close enough */ |
| 1418 | loc = exprLocation((Node *) ((const IntoClause *) expr)->rel); |
| 1419 | break; |
| 1420 | case T_List: |
| 1421 | { |
| 1422 | /* report location of first list member that has a location */ |
| 1423 | ListCell *lc; |
| 1424 | |
| 1425 | loc = -1; /* just to suppress compiler warning */ |
| 1426 | foreach(lc, (const List *) expr) |
| 1427 | { |
| 1428 | loc = exprLocation((Node *) lfirst(lc)); |
| 1429 | if (loc >= 0) |
| 1430 | break; |
| 1431 | } |
| 1432 | } |
| 1433 | break; |
| 1434 | case T_A_Expr: |
| 1435 | { |
| 1436 | const A_Expr *aexpr = (const A_Expr *) expr; |
| 1437 | |
| 1438 | /* use leftmost of operator or left operand (if any) */ |
| 1439 | /* we assume right operand can't be to left of operator */ |
| 1440 | loc = leftmostLoc(aexpr->location, |
| 1441 | exprLocation(aexpr->lexpr)); |
| 1442 | } |
| 1443 | break; |
| 1444 | case T_ColumnRef: |
| 1445 | loc = ((const ColumnRef *) expr)->location; |
| 1446 | break; |
| 1447 | case T_ParamRef: |
| 1448 | loc = ((const ParamRef *) expr)->location; |
| 1449 | break; |
| 1450 | case T_A_Const: |
| 1451 | loc = ((const A_Const *) expr)->location; |
| 1452 | break; |
| 1453 | case T_FuncCall: |
| 1454 | { |
| 1455 | const FuncCall *fc = (const FuncCall *) expr; |
| 1456 | |
| 1457 | /* consider both function name and leftmost arg */ |
| 1458 | /* (we assume any ORDER BY nodes must be to right of name) */ |
| 1459 | loc = leftmostLoc(fc->location, |
| 1460 | exprLocation((Node *) fc->args)); |
| 1461 | } |
| 1462 | break; |
| 1463 | case T_A_ArrayExpr: |
| 1464 | /* the location points at ARRAY or [, which must be leftmost */ |
| 1465 | loc = ((const A_ArrayExpr *) expr)->location; |
| 1466 | break; |
| 1467 | case T_ResTarget: |
| 1468 | /* we need not examine the contained expression (if any) */ |
| 1469 | loc = ((const ResTarget *) expr)->location; |
| 1470 | break; |
| 1471 | case T_MultiAssignRef: |
| 1472 | loc = exprLocation(((const MultiAssignRef *) expr)->source); |
| 1473 | break; |
| 1474 | case T_TypeCast: |
| 1475 | { |
| 1476 | const TypeCast *tc = (const TypeCast *) expr; |
| 1477 | |
| 1478 | /* |
| 1479 | * This could represent CAST(), ::, or TypeName 'literal', so |
| 1480 | * any of the components might be leftmost. |
| 1481 | */ |
| 1482 | loc = exprLocation(tc->arg); |
| 1483 | loc = leftmostLoc(loc, tc->typeName->location); |
| 1484 | loc = leftmostLoc(loc, tc->location); |
| 1485 | } |
| 1486 | break; |
| 1487 | case T_CollateClause: |
| 1488 | /* just use argument's location */ |
| 1489 | loc = exprLocation(((const CollateClause *) expr)->arg); |
| 1490 | break; |
| 1491 | case T_SortBy: |
| 1492 | /* just use argument's location (ignore operator, if any) */ |
| 1493 | loc = exprLocation(((const SortBy *) expr)->node); |
| 1494 | break; |
| 1495 | case T_WindowDef: |
| 1496 | loc = ((const WindowDef *) expr)->location; |
| 1497 | break; |
| 1498 | case T_RangeTableSample: |
| 1499 | loc = ((const RangeTableSample *) expr)->location; |
| 1500 | break; |
| 1501 | case T_TypeName: |
| 1502 | loc = ((const TypeName *) expr)->location; |
| 1503 | break; |
| 1504 | case T_ColumnDef: |
| 1505 | loc = ((const ColumnDef *) expr)->location; |
| 1506 | break; |
| 1507 | case T_Constraint: |
| 1508 | loc = ((const Constraint *) expr)->location; |
| 1509 | break; |
| 1510 | case T_FunctionParameter: |
| 1511 | /* just use typename's location */ |
| 1512 | loc = exprLocation((Node *) ((const FunctionParameter *) expr)->argType); |
| 1513 | break; |
| 1514 | case T_XmlSerialize: |
| 1515 | /* XMLSERIALIZE keyword should always be the first thing */ |
| 1516 | loc = ((const XmlSerialize *) expr)->location; |
| 1517 | break; |
| 1518 | case T_GroupingSet: |
| 1519 | loc = ((const GroupingSet *) expr)->location; |
| 1520 | break; |
| 1521 | case T_WithClause: |
| 1522 | loc = ((const WithClause *) expr)->location; |
| 1523 | break; |
| 1524 | case T_InferClause: |
| 1525 | loc = ((const InferClause *) expr)->location; |
| 1526 | break; |
| 1527 | case T_OnConflictClause: |
| 1528 | loc = ((const OnConflictClause *) expr)->location; |
| 1529 | break; |
| 1530 | case T_CommonTableExpr: |
| 1531 | loc = ((const CommonTableExpr *) expr)->location; |
| 1532 | break; |
| 1533 | case T_PlaceHolderVar: |
| 1534 | /* just use argument's location */ |
| 1535 | loc = exprLocation((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
| 1536 | break; |
| 1537 | case T_InferenceElem: |
| 1538 | /* just use nested expr's location */ |
| 1539 | loc = exprLocation((Node *) ((const InferenceElem *) expr)->expr); |
| 1540 | break; |
| 1541 | case T_PartitionElem: |
| 1542 | loc = ((const PartitionElem *) expr)->location; |
| 1543 | break; |
| 1544 | case T_PartitionSpec: |
| 1545 | loc = ((const PartitionSpec *) expr)->location; |
| 1546 | break; |
| 1547 | case T_PartitionBoundSpec: |
| 1548 | loc = ((const PartitionBoundSpec *) expr)->location; |
| 1549 | break; |
| 1550 | case T_PartitionRangeDatum: |
| 1551 | loc = ((const PartitionRangeDatum *) expr)->location; |
| 1552 | break; |
| 1553 | default: |
| 1554 | /* for any other node type it's just unknown... */ |
| 1555 | loc = -1; |
| 1556 | break; |
| 1557 | } |
| 1558 | return loc; |
| 1559 | } |
| 1560 | |
| 1561 | /* |
| 1562 | * leftmostLoc - support for exprLocation |
| 1563 | * |
| 1564 | * Take the minimum of two parse location values, but ignore unknowns |
| 1565 | */ |
| 1566 | static int |
| 1567 | leftmostLoc(int loc1, int loc2) |
| 1568 | { |
| 1569 | if (loc1 < 0) |
| 1570 | return loc2; |
| 1571 | else if (loc2 < 0) |
| 1572 | return loc1; |
| 1573 | else |
| 1574 | return Min(loc1, loc2); |
| 1575 | } |
| 1576 | |
| 1577 | |
| 1578 | /* |
| 1579 | * fix_opfuncids |
| 1580 | * Calculate opfuncid field from opno for each OpExpr node in given tree. |
| 1581 | * The given tree can be anything expression_tree_walker handles. |
| 1582 | * |
| 1583 | * The argument is modified in-place. (This is OK since we'd want the |
| 1584 | * same change for any node, even if it gets visited more than once due to |
| 1585 | * shared structure.) |
| 1586 | */ |
| 1587 | void |
| 1588 | fix_opfuncids(Node *node) |
| 1589 | { |
| 1590 | /* This tree walk requires no special setup, so away we go... */ |
| 1591 | fix_opfuncids_walker(node, NULL); |
| 1592 | } |
| 1593 | |
| 1594 | static bool |
| 1595 | fix_opfuncids_walker(Node *node, void *context) |
| 1596 | { |
| 1597 | if (node == NULL) |
| 1598 | return false; |
| 1599 | if (IsA(node, OpExpr)) |
| 1600 | set_opfuncid((OpExpr *) node); |
| 1601 | else if (IsA(node, DistinctExpr)) |
| 1602 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
| 1603 | else if (IsA(node, NullIfExpr)) |
| 1604 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
| 1605 | else if (IsA(node, ScalarArrayOpExpr)) |
| 1606 | set_sa_opfuncid((ScalarArrayOpExpr *) node); |
| 1607 | return expression_tree_walker(node, fix_opfuncids_walker, context); |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * set_opfuncid |
| 1612 | * Set the opfuncid (procedure OID) in an OpExpr node, |
| 1613 | * if it hasn't been set already. |
| 1614 | * |
| 1615 | * Because of struct equivalence, this can also be used for |
| 1616 | * DistinctExpr and NullIfExpr nodes. |
| 1617 | */ |
| 1618 | void |
| 1619 | set_opfuncid(OpExpr *opexpr) |
| 1620 | { |
| 1621 | if (opexpr->opfuncid == InvalidOid) |
| 1622 | opexpr->opfuncid = get_opcode(opexpr->opno); |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * set_sa_opfuncid |
| 1627 | * As above, for ScalarArrayOpExpr nodes. |
| 1628 | */ |
| 1629 | void |
| 1630 | set_sa_opfuncid(ScalarArrayOpExpr *opexpr) |
| 1631 | { |
| 1632 | if (opexpr->opfuncid == InvalidOid) |
| 1633 | opexpr->opfuncid = get_opcode(opexpr->opno); |
| 1634 | } |
| 1635 | |
| 1636 | |
| 1637 | /* |
| 1638 | * check_functions_in_node - |
| 1639 | * apply checker() to each function OID contained in given expression node |
| 1640 | * |
| 1641 | * Returns true if the checker() function does; for nodes representing more |
| 1642 | * than one function call, returns true if the checker() function does so |
| 1643 | * for any of those functions. Returns false if node does not invoke any |
| 1644 | * SQL-visible function. Caller must not pass node == NULL. |
| 1645 | * |
| 1646 | * This function examines only the given node; it does not recurse into any |
| 1647 | * sub-expressions. Callers typically prefer to keep control of the recursion |
| 1648 | * for themselves, in case additional checks should be made, or because they |
| 1649 | * have special rules about which parts of the tree need to be visited. |
| 1650 | * |
| 1651 | * Note: we ignore MinMaxExpr, SQLValueFunction, XmlExpr, CoerceToDomain, |
| 1652 | * and NextValueExpr nodes, because they do not contain SQL function OIDs. |
| 1653 | * However, they can invoke SQL-visible functions, so callers should take |
| 1654 | * thought about how to treat them. |
| 1655 | */ |
| 1656 | bool |
| 1657 | check_functions_in_node(Node *node, check_function_callback checker, |
| 1658 | void *context) |
| 1659 | { |
| 1660 | switch (nodeTag(node)) |
| 1661 | { |
| 1662 | case T_Aggref: |
| 1663 | { |
| 1664 | Aggref *expr = (Aggref *) node; |
| 1665 | |
| 1666 | if (checker(expr->aggfnoid, context)) |
| 1667 | return true; |
| 1668 | } |
| 1669 | break; |
| 1670 | case T_WindowFunc: |
| 1671 | { |
| 1672 | WindowFunc *expr = (WindowFunc *) node; |
| 1673 | |
| 1674 | if (checker(expr->winfnoid, context)) |
| 1675 | return true; |
| 1676 | } |
| 1677 | break; |
| 1678 | case T_FuncExpr: |
| 1679 | { |
| 1680 | FuncExpr *expr = (FuncExpr *) node; |
| 1681 | |
| 1682 | if (checker(expr->funcid, context)) |
| 1683 | return true; |
| 1684 | } |
| 1685 | break; |
| 1686 | case T_OpExpr: |
| 1687 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
| 1688 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
| 1689 | { |
| 1690 | OpExpr *expr = (OpExpr *) node; |
| 1691 | |
| 1692 | /* Set opfuncid if it wasn't set already */ |
| 1693 | set_opfuncid(expr); |
| 1694 | if (checker(expr->opfuncid, context)) |
| 1695 | return true; |
| 1696 | } |
| 1697 | break; |
| 1698 | case T_ScalarArrayOpExpr: |
| 1699 | { |
| 1700 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
| 1701 | |
| 1702 | set_sa_opfuncid(expr); |
| 1703 | if (checker(expr->opfuncid, context)) |
| 1704 | return true; |
| 1705 | } |
| 1706 | break; |
| 1707 | case T_CoerceViaIO: |
| 1708 | { |
| 1709 | CoerceViaIO *expr = (CoerceViaIO *) node; |
| 1710 | Oid iofunc; |
| 1711 | Oid typioparam; |
| 1712 | bool typisvarlena; |
| 1713 | |
| 1714 | /* check the result type's input function */ |
| 1715 | getTypeInputInfo(expr->resulttype, |
| 1716 | &iofunc, &typioparam); |
| 1717 | if (checker(iofunc, context)) |
| 1718 | return true; |
| 1719 | /* check the input type's output function */ |
| 1720 | getTypeOutputInfo(exprType((Node *) expr->arg), |
| 1721 | &iofunc, &typisvarlena); |
| 1722 | if (checker(iofunc, context)) |
| 1723 | return true; |
| 1724 | } |
| 1725 | break; |
| 1726 | case T_RowCompareExpr: |
| 1727 | { |
| 1728 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
| 1729 | ListCell *opid; |
| 1730 | |
| 1731 | foreach(opid, rcexpr->opnos) |
| 1732 | { |
| 1733 | Oid opfuncid = get_opcode(lfirst_oid(opid)); |
| 1734 | |
| 1735 | if (checker(opfuncid, context)) |
| 1736 | return true; |
| 1737 | } |
| 1738 | } |
| 1739 | break; |
| 1740 | default: |
| 1741 | break; |
| 1742 | } |
| 1743 | return false; |
| 1744 | } |
| 1745 | |
| 1746 | |
| 1747 | /* |
| 1748 | * Standard expression-tree walking support |
| 1749 | * |
| 1750 | * We used to have near-duplicate code in many different routines that |
| 1751 | * understood how to recurse through an expression node tree. That was |
| 1752 | * a pain to maintain, and we frequently had bugs due to some particular |
| 1753 | * routine neglecting to support a particular node type. In most cases, |
| 1754 | * these routines only actually care about certain node types, and don't |
| 1755 | * care about other types except insofar as they have to recurse through |
| 1756 | * non-primitive node types. Therefore, we now provide generic tree-walking |
| 1757 | * logic to consolidate the redundant "boilerplate" code. There are |
| 1758 | * two versions: expression_tree_walker() and expression_tree_mutator(). |
| 1759 | */ |
| 1760 | |
| 1761 | /* |
| 1762 | * expression_tree_walker() is designed to support routines that traverse |
| 1763 | * a tree in a read-only fashion (although it will also work for routines |
| 1764 | * that modify nodes in-place but never add/delete/replace nodes). |
| 1765 | * A walker routine should look like this: |
| 1766 | * |
| 1767 | * bool my_walker (Node *node, my_struct *context) |
| 1768 | * { |
| 1769 | * if (node == NULL) |
| 1770 | * return false; |
| 1771 | * // check for nodes that special work is required for, eg: |
| 1772 | * if (IsA(node, Var)) |
| 1773 | * { |
| 1774 | * ... do special actions for Var nodes |
| 1775 | * } |
| 1776 | * else if (IsA(node, ...)) |
| 1777 | * { |
| 1778 | * ... do special actions for other node types |
| 1779 | * } |
| 1780 | * // for any node type not specially processed, do: |
| 1781 | * return expression_tree_walker(node, my_walker, (void *) context); |
| 1782 | * } |
| 1783 | * |
| 1784 | * The "context" argument points to a struct that holds whatever context |
| 1785 | * information the walker routine needs --- it can be used to return data |
| 1786 | * gathered by the walker, too. This argument is not touched by |
| 1787 | * expression_tree_walker, but it is passed down to recursive sub-invocations |
| 1788 | * of my_walker. The tree walk is started from a setup routine that |
| 1789 | * fills in the appropriate context struct, calls my_walker with the top-level |
| 1790 | * node of the tree, and then examines the results. |
| 1791 | * |
| 1792 | * The walker routine should return "false" to continue the tree walk, or |
| 1793 | * "true" to abort the walk and immediately return "true" to the top-level |
| 1794 | * caller. This can be used to short-circuit the traversal if the walker |
| 1795 | * has found what it came for. "false" is returned to the top-level caller |
| 1796 | * iff no invocation of the walker returned "true". |
| 1797 | * |
| 1798 | * The node types handled by expression_tree_walker include all those |
| 1799 | * normally found in target lists and qualifier clauses during the planning |
| 1800 | * stage. In particular, it handles List nodes since a cnf-ified qual clause |
| 1801 | * will have List structure at the top level, and it handles TargetEntry nodes |
| 1802 | * so that a scan of a target list can be handled without additional code. |
| 1803 | * Also, RangeTblRef, FromExpr, JoinExpr, and SetOperationStmt nodes are |
| 1804 | * handled, so that query jointrees and setOperation trees can be processed |
| 1805 | * without additional code. |
| 1806 | * |
| 1807 | * expression_tree_walker will handle SubLink nodes by recursing normally |
| 1808 | * into the "testexpr" subtree (which is an expression belonging to the outer |
| 1809 | * plan). It will also call the walker on the sub-Query node; however, when |
| 1810 | * expression_tree_walker itself is called on a Query node, it does nothing |
| 1811 | * and returns "false". The net effect is that unless the walker does |
| 1812 | * something special at a Query node, sub-selects will not be visited during |
| 1813 | * an expression tree walk. This is exactly the behavior wanted in many cases |
| 1814 | * --- and for those walkers that do want to recurse into sub-selects, special |
| 1815 | * behavior is typically needed anyway at the entry to a sub-select (such as |
| 1816 | * incrementing a depth counter). A walker that wants to examine sub-selects |
| 1817 | * should include code along the lines of: |
| 1818 | * |
| 1819 | * if (IsA(node, Query)) |
| 1820 | * { |
| 1821 | * adjust context for subquery; |
| 1822 | * result = query_tree_walker((Query *) node, my_walker, context, |
| 1823 | * 0); // adjust flags as needed |
| 1824 | * restore context if needed; |
| 1825 | * return result; |
| 1826 | * } |
| 1827 | * |
| 1828 | * query_tree_walker is a convenience routine (see below) that calls the |
| 1829 | * walker on all the expression subtrees of the given Query node. |
| 1830 | * |
| 1831 | * expression_tree_walker will handle SubPlan nodes by recursing normally |
| 1832 | * into the "testexpr" and the "args" list (which are expressions belonging to |
| 1833 | * the outer plan). It will not touch the completed subplan, however. Since |
| 1834 | * there is no link to the original Query, it is not possible to recurse into |
| 1835 | * subselects of an already-planned expression tree. This is OK for current |
| 1836 | * uses, but may need to be revisited in future. |
| 1837 | */ |
| 1838 | |
| 1839 | bool |
| 1840 | expression_tree_walker(Node *node, |
| 1841 | bool (*walker) (), |
| 1842 | void *context) |
| 1843 | { |
| 1844 | ListCell *temp; |
| 1845 | |
| 1846 | /* |
| 1847 | * The walker has already visited the current node, and so we need only |
| 1848 | * recurse into any sub-nodes it has. |
| 1849 | * |
| 1850 | * We assume that the walker is not interested in List nodes per se, so |
| 1851 | * when we expect a List we just recurse directly to self without |
| 1852 | * bothering to call the walker. |
| 1853 | */ |
| 1854 | if (node == NULL) |
| 1855 | return false; |
| 1856 | |
| 1857 | /* Guard against stack overflow due to overly complex expressions */ |
| 1858 | check_stack_depth(); |
| 1859 | |
| 1860 | switch (nodeTag(node)) |
| 1861 | { |
| 1862 | case T_Var: |
| 1863 | case T_Const: |
| 1864 | case T_Param: |
| 1865 | case T_CaseTestExpr: |
| 1866 | case T_SQLValueFunction: |
| 1867 | case T_CoerceToDomainValue: |
| 1868 | case T_SetToDefault: |
| 1869 | case T_CurrentOfExpr: |
| 1870 | case T_NextValueExpr: |
| 1871 | case T_RangeTblRef: |
| 1872 | case T_SortGroupClause: |
| 1873 | /* primitive node types with no expression subnodes */ |
| 1874 | break; |
| 1875 | case T_WithCheckOption: |
| 1876 | return walker(((WithCheckOption *) node)->qual, context); |
| 1877 | case T_Aggref: |
| 1878 | { |
| 1879 | Aggref *expr = (Aggref *) node; |
| 1880 | |
| 1881 | /* recurse directly on List */ |
| 1882 | if (expression_tree_walker((Node *) expr->aggdirectargs, |
| 1883 | walker, context)) |
| 1884 | return true; |
| 1885 | if (expression_tree_walker((Node *) expr->args, |
| 1886 | walker, context)) |
| 1887 | return true; |
| 1888 | if (expression_tree_walker((Node *) expr->aggorder, |
| 1889 | walker, context)) |
| 1890 | return true; |
| 1891 | if (expression_tree_walker((Node *) expr->aggdistinct, |
| 1892 | walker, context)) |
| 1893 | return true; |
| 1894 | if (walker((Node *) expr->aggfilter, context)) |
| 1895 | return true; |
| 1896 | } |
| 1897 | break; |
| 1898 | case T_GroupingFunc: |
| 1899 | { |
| 1900 | GroupingFunc *grouping = (GroupingFunc *) node; |
| 1901 | |
| 1902 | if (expression_tree_walker((Node *) grouping->args, |
| 1903 | walker, context)) |
| 1904 | return true; |
| 1905 | } |
| 1906 | break; |
| 1907 | case T_WindowFunc: |
| 1908 | { |
| 1909 | WindowFunc *expr = (WindowFunc *) node; |
| 1910 | |
| 1911 | /* recurse directly on List */ |
| 1912 | if (expression_tree_walker((Node *) expr->args, |
| 1913 | walker, context)) |
| 1914 | return true; |
| 1915 | if (walker((Node *) expr->aggfilter, context)) |
| 1916 | return true; |
| 1917 | } |
| 1918 | break; |
| 1919 | case T_SubscriptingRef: |
| 1920 | { |
| 1921 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
| 1922 | |
| 1923 | /* recurse directly for upper/lower container index lists */ |
| 1924 | if (expression_tree_walker((Node *) sbsref->refupperindexpr, |
| 1925 | walker, context)) |
| 1926 | return true; |
| 1927 | if (expression_tree_walker((Node *) sbsref->reflowerindexpr, |
| 1928 | walker, context)) |
| 1929 | return true; |
| 1930 | /* walker must see the refexpr and refassgnexpr, however */ |
| 1931 | if (walker(sbsref->refexpr, context)) |
| 1932 | return true; |
| 1933 | |
| 1934 | if (walker(sbsref->refassgnexpr, context)) |
| 1935 | return true; |
| 1936 | } |
| 1937 | break; |
| 1938 | case T_FuncExpr: |
| 1939 | { |
| 1940 | FuncExpr *expr = (FuncExpr *) node; |
| 1941 | |
| 1942 | if (expression_tree_walker((Node *) expr->args, |
| 1943 | walker, context)) |
| 1944 | return true; |
| 1945 | } |
| 1946 | break; |
| 1947 | case T_NamedArgExpr: |
| 1948 | return walker(((NamedArgExpr *) node)->arg, context); |
| 1949 | case T_OpExpr: |
| 1950 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
| 1951 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
| 1952 | { |
| 1953 | OpExpr *expr = (OpExpr *) node; |
| 1954 | |
| 1955 | if (expression_tree_walker((Node *) expr->args, |
| 1956 | walker, context)) |
| 1957 | return true; |
| 1958 | } |
| 1959 | break; |
| 1960 | case T_ScalarArrayOpExpr: |
| 1961 | { |
| 1962 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
| 1963 | |
| 1964 | if (expression_tree_walker((Node *) expr->args, |
| 1965 | walker, context)) |
| 1966 | return true; |
| 1967 | } |
| 1968 | break; |
| 1969 | case T_BoolExpr: |
| 1970 | { |
| 1971 | BoolExpr *expr = (BoolExpr *) node; |
| 1972 | |
| 1973 | if (expression_tree_walker((Node *) expr->args, |
| 1974 | walker, context)) |
| 1975 | return true; |
| 1976 | } |
| 1977 | break; |
| 1978 | case T_SubLink: |
| 1979 | { |
| 1980 | SubLink *sublink = (SubLink *) node; |
| 1981 | |
| 1982 | if (walker(sublink->testexpr, context)) |
| 1983 | return true; |
| 1984 | |
| 1985 | /* |
| 1986 | * Also invoke the walker on the sublink's Query node, so it |
| 1987 | * can recurse into the sub-query if it wants to. |
| 1988 | */ |
| 1989 | return walker(sublink->subselect, context); |
| 1990 | } |
| 1991 | break; |
| 1992 | case T_SubPlan: |
| 1993 | { |
| 1994 | SubPlan *subplan = (SubPlan *) node; |
| 1995 | |
| 1996 | /* recurse into the testexpr, but not into the Plan */ |
| 1997 | if (walker(subplan->testexpr, context)) |
| 1998 | return true; |
| 1999 | /* also examine args list */ |
| 2000 | if (expression_tree_walker((Node *) subplan->args, |
| 2001 | walker, context)) |
| 2002 | return true; |
| 2003 | } |
| 2004 | break; |
| 2005 | case T_AlternativeSubPlan: |
| 2006 | return walker(((AlternativeSubPlan *) node)->subplans, context); |
| 2007 | case T_FieldSelect: |
| 2008 | return walker(((FieldSelect *) node)->arg, context); |
| 2009 | case T_FieldStore: |
| 2010 | { |
| 2011 | FieldStore *fstore = (FieldStore *) node; |
| 2012 | |
| 2013 | if (walker(fstore->arg, context)) |
| 2014 | return true; |
| 2015 | if (walker(fstore->newvals, context)) |
| 2016 | return true; |
| 2017 | } |
| 2018 | break; |
| 2019 | case T_RelabelType: |
| 2020 | return walker(((RelabelType *) node)->arg, context); |
| 2021 | case T_CoerceViaIO: |
| 2022 | return walker(((CoerceViaIO *) node)->arg, context); |
| 2023 | case T_ArrayCoerceExpr: |
| 2024 | { |
| 2025 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
| 2026 | |
| 2027 | if (walker(acoerce->arg, context)) |
| 2028 | return true; |
| 2029 | if (walker(acoerce->elemexpr, context)) |
| 2030 | return true; |
| 2031 | } |
| 2032 | break; |
| 2033 | case T_ConvertRowtypeExpr: |
| 2034 | return walker(((ConvertRowtypeExpr *) node)->arg, context); |
| 2035 | case T_CollateExpr: |
| 2036 | return walker(((CollateExpr *) node)->arg, context); |
| 2037 | case T_CaseExpr: |
| 2038 | { |
| 2039 | CaseExpr *caseexpr = (CaseExpr *) node; |
| 2040 | |
| 2041 | if (walker(caseexpr->arg, context)) |
| 2042 | return true; |
| 2043 | /* we assume walker doesn't care about CaseWhens, either */ |
| 2044 | foreach(temp, caseexpr->args) |
| 2045 | { |
| 2046 | CaseWhen *when = lfirst_node(CaseWhen, temp); |
| 2047 | |
| 2048 | if (walker(when->expr, context)) |
| 2049 | return true; |
| 2050 | if (walker(when->result, context)) |
| 2051 | return true; |
| 2052 | } |
| 2053 | if (walker(caseexpr->defresult, context)) |
| 2054 | return true; |
| 2055 | } |
| 2056 | break; |
| 2057 | case T_ArrayExpr: |
| 2058 | return walker(((ArrayExpr *) node)->elements, context); |
| 2059 | case T_RowExpr: |
| 2060 | /* Assume colnames isn't interesting */ |
| 2061 | return walker(((RowExpr *) node)->args, context); |
| 2062 | case T_RowCompareExpr: |
| 2063 | { |
| 2064 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
| 2065 | |
| 2066 | if (walker(rcexpr->largs, context)) |
| 2067 | return true; |
| 2068 | if (walker(rcexpr->rargs, context)) |
| 2069 | return true; |
| 2070 | } |
| 2071 | break; |
| 2072 | case T_CoalesceExpr: |
| 2073 | return walker(((CoalesceExpr *) node)->args, context); |
| 2074 | case T_MinMaxExpr: |
| 2075 | return walker(((MinMaxExpr *) node)->args, context); |
| 2076 | case T_XmlExpr: |
| 2077 | { |
| 2078 | XmlExpr *xexpr = (XmlExpr *) node; |
| 2079 | |
| 2080 | if (walker(xexpr->named_args, context)) |
| 2081 | return true; |
| 2082 | /* we assume walker doesn't care about arg_names */ |
| 2083 | if (walker(xexpr->args, context)) |
| 2084 | return true; |
| 2085 | } |
| 2086 | break; |
| 2087 | case T_NullTest: |
| 2088 | return walker(((NullTest *) node)->arg, context); |
| 2089 | case T_BooleanTest: |
| 2090 | return walker(((BooleanTest *) node)->arg, context); |
| 2091 | case T_CoerceToDomain: |
| 2092 | return walker(((CoerceToDomain *) node)->arg, context); |
| 2093 | case T_TargetEntry: |
| 2094 | return walker(((TargetEntry *) node)->expr, context); |
| 2095 | case T_Query: |
| 2096 | /* Do nothing with a sub-Query, per discussion above */ |
| 2097 | break; |
| 2098 | case T_WindowClause: |
| 2099 | { |
| 2100 | WindowClause *wc = (WindowClause *) node; |
| 2101 | |
| 2102 | if (walker(wc->partitionClause, context)) |
| 2103 | return true; |
| 2104 | if (walker(wc->orderClause, context)) |
| 2105 | return true; |
| 2106 | if (walker(wc->startOffset, context)) |
| 2107 | return true; |
| 2108 | if (walker(wc->endOffset, context)) |
| 2109 | return true; |
| 2110 | } |
| 2111 | break; |
| 2112 | case T_CommonTableExpr: |
| 2113 | { |
| 2114 | CommonTableExpr *cte = (CommonTableExpr *) node; |
| 2115 | |
| 2116 | /* |
| 2117 | * Invoke the walker on the CTE's Query node, so it can |
| 2118 | * recurse into the sub-query if it wants to. |
| 2119 | */ |
| 2120 | return walker(cte->ctequery, context); |
| 2121 | } |
| 2122 | break; |
| 2123 | case T_List: |
| 2124 | foreach(temp, (List *) node) |
| 2125 | { |
| 2126 | if (walker((Node *) lfirst(temp), context)) |
| 2127 | return true; |
| 2128 | } |
| 2129 | break; |
| 2130 | case T_FromExpr: |
| 2131 | { |
| 2132 | FromExpr *from = (FromExpr *) node; |
| 2133 | |
| 2134 | if (walker(from->fromlist, context)) |
| 2135 | return true; |
| 2136 | if (walker(from->quals, context)) |
| 2137 | return true; |
| 2138 | } |
| 2139 | break; |
| 2140 | case T_OnConflictExpr: |
| 2141 | { |
| 2142 | OnConflictExpr *onconflict = (OnConflictExpr *) node; |
| 2143 | |
| 2144 | if (walker((Node *) onconflict->arbiterElems, context)) |
| 2145 | return true; |
| 2146 | if (walker(onconflict->arbiterWhere, context)) |
| 2147 | return true; |
| 2148 | if (walker(onconflict->onConflictSet, context)) |
| 2149 | return true; |
| 2150 | if (walker(onconflict->onConflictWhere, context)) |
| 2151 | return true; |
| 2152 | if (walker(onconflict->exclRelTlist, context)) |
| 2153 | return true; |
| 2154 | } |
| 2155 | break; |
| 2156 | case T_PartitionPruneStepOp: |
| 2157 | { |
| 2158 | PartitionPruneStepOp *opstep = (PartitionPruneStepOp *) node; |
| 2159 | |
| 2160 | if (walker((Node *) opstep->exprs, context)) |
| 2161 | return true; |
| 2162 | } |
| 2163 | break; |
| 2164 | case T_PartitionPruneStepCombine: |
| 2165 | /* no expression subnodes */ |
| 2166 | break; |
| 2167 | case T_JoinExpr: |
| 2168 | { |
| 2169 | JoinExpr *join = (JoinExpr *) node; |
| 2170 | |
| 2171 | if (walker(join->larg, context)) |
| 2172 | return true; |
| 2173 | if (walker(join->rarg, context)) |
| 2174 | return true; |
| 2175 | if (walker(join->quals, context)) |
| 2176 | return true; |
| 2177 | |
| 2178 | /* |
| 2179 | * alias clause, using list are deemed uninteresting. |
| 2180 | */ |
| 2181 | } |
| 2182 | break; |
| 2183 | case T_SetOperationStmt: |
| 2184 | { |
| 2185 | SetOperationStmt *setop = (SetOperationStmt *) node; |
| 2186 | |
| 2187 | if (walker(setop->larg, context)) |
| 2188 | return true; |
| 2189 | if (walker(setop->rarg, context)) |
| 2190 | return true; |
| 2191 | |
| 2192 | /* groupClauses are deemed uninteresting */ |
| 2193 | } |
| 2194 | break; |
| 2195 | case T_IndexClause: |
| 2196 | { |
| 2197 | IndexClause *iclause = (IndexClause *) node; |
| 2198 | |
| 2199 | if (walker(iclause->rinfo, context)) |
| 2200 | return true; |
| 2201 | if (expression_tree_walker((Node *) iclause->indexquals, |
| 2202 | walker, context)) |
| 2203 | return true; |
| 2204 | } |
| 2205 | break; |
| 2206 | case T_PlaceHolderVar: |
| 2207 | return walker(((PlaceHolderVar *) node)->phexpr, context); |
| 2208 | case T_InferenceElem: |
| 2209 | return walker(((InferenceElem *) node)->expr, context); |
| 2210 | case T_AppendRelInfo: |
| 2211 | { |
| 2212 | AppendRelInfo *appinfo = (AppendRelInfo *) node; |
| 2213 | |
| 2214 | if (expression_tree_walker((Node *) appinfo->translated_vars, |
| 2215 | walker, context)) |
| 2216 | return true; |
| 2217 | } |
| 2218 | break; |
| 2219 | case T_PlaceHolderInfo: |
| 2220 | return walker(((PlaceHolderInfo *) node)->ph_var, context); |
| 2221 | case T_RangeTblFunction: |
| 2222 | return walker(((RangeTblFunction *) node)->funcexpr, context); |
| 2223 | case T_TableSampleClause: |
| 2224 | { |
| 2225 | TableSampleClause *tsc = (TableSampleClause *) node; |
| 2226 | |
| 2227 | if (expression_tree_walker((Node *) tsc->args, |
| 2228 | walker, context)) |
| 2229 | return true; |
| 2230 | if (walker((Node *) tsc->repeatable, context)) |
| 2231 | return true; |
| 2232 | } |
| 2233 | break; |
| 2234 | case T_TableFunc: |
| 2235 | { |
| 2236 | TableFunc *tf = (TableFunc *) node; |
| 2237 | |
| 2238 | if (walker(tf->ns_uris, context)) |
| 2239 | return true; |
| 2240 | if (walker(tf->docexpr, context)) |
| 2241 | return true; |
| 2242 | if (walker(tf->rowexpr, context)) |
| 2243 | return true; |
| 2244 | if (walker(tf->colexprs, context)) |
| 2245 | return true; |
| 2246 | if (walker(tf->coldefexprs, context)) |
| 2247 | return true; |
| 2248 | } |
| 2249 | break; |
| 2250 | default: |
| 2251 | elog(ERROR, "unrecognized node type: %d" , |
| 2252 | (int) nodeTag(node)); |
| 2253 | break; |
| 2254 | } |
| 2255 | return false; |
| 2256 | } |
| 2257 | |
| 2258 | /* |
| 2259 | * query_tree_walker --- initiate a walk of a Query's expressions |
| 2260 | * |
| 2261 | * This routine exists just to reduce the number of places that need to know |
| 2262 | * where all the expression subtrees of a Query are. Note it can be used |
| 2263 | * for starting a walk at top level of a Query regardless of whether the |
| 2264 | * walker intends to descend into subqueries. It is also useful for |
| 2265 | * descending into subqueries within a walker. |
| 2266 | * |
| 2267 | * Some callers want to suppress visitation of certain items in the sub-Query, |
| 2268 | * typically because they need to process them specially, or don't actually |
| 2269 | * want to recurse into subqueries. This is supported by the flags argument, |
| 2270 | * which is the bitwise OR of flag values to add or suppress visitation of |
| 2271 | * indicated items. (More flag bits may be added as needed.) |
| 2272 | */ |
| 2273 | bool |
| 2274 | query_tree_walker(Query *query, |
| 2275 | bool (*walker) (), |
| 2276 | void *context, |
| 2277 | int flags) |
| 2278 | { |
| 2279 | Assert(query != NULL && IsA(query, Query)); |
| 2280 | |
| 2281 | if (walker((Node *) query->targetList, context)) |
| 2282 | return true; |
| 2283 | if (walker((Node *) query->withCheckOptions, context)) |
| 2284 | return true; |
| 2285 | if (walker((Node *) query->onConflict, context)) |
| 2286 | return true; |
| 2287 | if (walker((Node *) query->returningList, context)) |
| 2288 | return true; |
| 2289 | if (walker((Node *) query->jointree, context)) |
| 2290 | return true; |
| 2291 | if (walker(query->setOperations, context)) |
| 2292 | return true; |
| 2293 | if (walker(query->havingQual, context)) |
| 2294 | return true; |
| 2295 | if (walker(query->limitOffset, context)) |
| 2296 | return true; |
| 2297 | if (walker(query->limitCount, context)) |
| 2298 | return true; |
| 2299 | if (!(flags & QTW_IGNORE_CTE_SUBQUERIES)) |
| 2300 | { |
| 2301 | if (walker((Node *) query->cteList, context)) |
| 2302 | return true; |
| 2303 | } |
| 2304 | if (!(flags & QTW_IGNORE_RANGE_TABLE)) |
| 2305 | { |
| 2306 | if (range_table_walker(query->rtable, walker, context, flags)) |
| 2307 | return true; |
| 2308 | } |
| 2309 | return false; |
| 2310 | } |
| 2311 | |
| 2312 | /* |
| 2313 | * range_table_walker is just the part of query_tree_walker that scans |
| 2314 | * a query's rangetable. This is split out since it can be useful on |
| 2315 | * its own. |
| 2316 | */ |
| 2317 | bool |
| 2318 | range_table_walker(List *rtable, |
| 2319 | bool (*walker) (), |
| 2320 | void *context, |
| 2321 | int flags) |
| 2322 | { |
| 2323 | ListCell *rt; |
| 2324 | |
| 2325 | foreach(rt, rtable) |
| 2326 | { |
| 2327 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
| 2328 | |
| 2329 | /* |
| 2330 | * Walkers might need to examine the RTE node itself either before or |
| 2331 | * after visiting its contents (or, conceivably, both). Note that if |
| 2332 | * you specify neither flag, the walker won't visit the RTE at all. |
| 2333 | */ |
| 2334 | if (flags & QTW_EXAMINE_RTES_BEFORE) |
| 2335 | if (walker(rte, context)) |
| 2336 | return true; |
| 2337 | |
| 2338 | switch (rte->rtekind) |
| 2339 | { |
| 2340 | case RTE_RELATION: |
| 2341 | if (walker(rte->tablesample, context)) |
| 2342 | return true; |
| 2343 | break; |
| 2344 | case RTE_SUBQUERY: |
| 2345 | if (!(flags & QTW_IGNORE_RT_SUBQUERIES)) |
| 2346 | if (walker(rte->subquery, context)) |
| 2347 | return true; |
| 2348 | break; |
| 2349 | case RTE_JOIN: |
| 2350 | if (!(flags & QTW_IGNORE_JOINALIASES)) |
| 2351 | if (walker(rte->joinaliasvars, context)) |
| 2352 | return true; |
| 2353 | break; |
| 2354 | case RTE_FUNCTION: |
| 2355 | if (walker(rte->functions, context)) |
| 2356 | return true; |
| 2357 | break; |
| 2358 | case RTE_TABLEFUNC: |
| 2359 | if (walker(rte->tablefunc, context)) |
| 2360 | return true; |
| 2361 | break; |
| 2362 | case RTE_VALUES: |
| 2363 | if (walker(rte->values_lists, context)) |
| 2364 | return true; |
| 2365 | break; |
| 2366 | case RTE_CTE: |
| 2367 | case RTE_NAMEDTUPLESTORE: |
| 2368 | case RTE_RESULT: |
| 2369 | /* nothing to do */ |
| 2370 | break; |
| 2371 | } |
| 2372 | |
| 2373 | if (walker(rte->securityQuals, context)) |
| 2374 | return true; |
| 2375 | |
| 2376 | if (flags & QTW_EXAMINE_RTES_AFTER) |
| 2377 | if (walker(rte, context)) |
| 2378 | return true; |
| 2379 | } |
| 2380 | return false; |
| 2381 | } |
| 2382 | |
| 2383 | |
| 2384 | /* |
| 2385 | * expression_tree_mutator() is designed to support routines that make a |
| 2386 | * modified copy of an expression tree, with some nodes being added, |
| 2387 | * removed, or replaced by new subtrees. The original tree is (normally) |
| 2388 | * not changed. Each recursion level is responsible for returning a copy of |
| 2389 | * (or appropriately modified substitute for) the subtree it is handed. |
| 2390 | * A mutator routine should look like this: |
| 2391 | * |
| 2392 | * Node * my_mutator (Node *node, my_struct *context) |
| 2393 | * { |
| 2394 | * if (node == NULL) |
| 2395 | * return NULL; |
| 2396 | * // check for nodes that special work is required for, eg: |
| 2397 | * if (IsA(node, Var)) |
| 2398 | * { |
| 2399 | * ... create and return modified copy of Var node |
| 2400 | * } |
| 2401 | * else if (IsA(node, ...)) |
| 2402 | * { |
| 2403 | * ... do special transformations of other node types |
| 2404 | * } |
| 2405 | * // for any node type not specially processed, do: |
| 2406 | * return expression_tree_mutator(node, my_mutator, (void *) context); |
| 2407 | * } |
| 2408 | * |
| 2409 | * The "context" argument points to a struct that holds whatever context |
| 2410 | * information the mutator routine needs --- it can be used to return extra |
| 2411 | * data gathered by the mutator, too. This argument is not touched by |
| 2412 | * expression_tree_mutator, but it is passed down to recursive sub-invocations |
| 2413 | * of my_mutator. The tree walk is started from a setup routine that |
| 2414 | * fills in the appropriate context struct, calls my_mutator with the |
| 2415 | * top-level node of the tree, and does any required post-processing. |
| 2416 | * |
| 2417 | * Each level of recursion must return an appropriately modified Node. |
| 2418 | * If expression_tree_mutator() is called, it will make an exact copy |
| 2419 | * of the given Node, but invoke my_mutator() to copy the sub-node(s) |
| 2420 | * of that Node. In this way, my_mutator() has full control over the |
| 2421 | * copying process but need not directly deal with expression trees |
| 2422 | * that it has no interest in. |
| 2423 | * |
| 2424 | * Just as for expression_tree_walker, the node types handled by |
| 2425 | * expression_tree_mutator include all those normally found in target lists |
| 2426 | * and qualifier clauses during the planning stage. |
| 2427 | * |
| 2428 | * expression_tree_mutator will handle SubLink nodes by recursing normally |
| 2429 | * into the "testexpr" subtree (which is an expression belonging to the outer |
| 2430 | * plan). It will also call the mutator on the sub-Query node; however, when |
| 2431 | * expression_tree_mutator itself is called on a Query node, it does nothing |
| 2432 | * and returns the unmodified Query node. The net effect is that unless the |
| 2433 | * mutator does something special at a Query node, sub-selects will not be |
| 2434 | * visited or modified; the original sub-select will be linked to by the new |
| 2435 | * SubLink node. Mutators that want to descend into sub-selects will usually |
| 2436 | * do so by recognizing Query nodes and calling query_tree_mutator (below). |
| 2437 | * |
| 2438 | * expression_tree_mutator will handle a SubPlan node by recursing into the |
| 2439 | * "testexpr" and the "args" list (which belong to the outer plan), but it |
| 2440 | * will simply copy the link to the inner plan, since that's typically what |
| 2441 | * expression tree mutators want. A mutator that wants to modify the subplan |
| 2442 | * can force appropriate behavior by recognizing SubPlan expression nodes |
| 2443 | * and doing the right thing. |
| 2444 | */ |
| 2445 | |
| 2446 | Node * |
| 2447 | expression_tree_mutator(Node *node, |
| 2448 | Node *(*mutator) (), |
| 2449 | void *context) |
| 2450 | { |
| 2451 | /* |
| 2452 | * The mutator has already decided not to modify the current node, but we |
| 2453 | * must call the mutator for any sub-nodes. |
| 2454 | */ |
| 2455 | |
| 2456 | #define FLATCOPY(newnode, node, nodetype) \ |
| 2457 | ( (newnode) = (nodetype *) palloc(sizeof(nodetype)), \ |
| 2458 | memcpy((newnode), (node), sizeof(nodetype)) ) |
| 2459 | |
| 2460 | #define CHECKFLATCOPY(newnode, node, nodetype) \ |
| 2461 | ( AssertMacro(IsA((node), nodetype)), \ |
| 2462 | (newnode) = (nodetype *) palloc(sizeof(nodetype)), \ |
| 2463 | memcpy((newnode), (node), sizeof(nodetype)) ) |
| 2464 | |
| 2465 | #define MUTATE(newfield, oldfield, fieldtype) \ |
| 2466 | ( (newfield) = (fieldtype) mutator((Node *) (oldfield), context) ) |
| 2467 | |
| 2468 | if (node == NULL) |
| 2469 | return NULL; |
| 2470 | |
| 2471 | /* Guard against stack overflow due to overly complex expressions */ |
| 2472 | check_stack_depth(); |
| 2473 | |
| 2474 | switch (nodeTag(node)) |
| 2475 | { |
| 2476 | /* |
| 2477 | * Primitive node types with no expression subnodes. Var and |
| 2478 | * Const are frequent enough to deserve special cases, the others |
| 2479 | * we just use copyObject for. |
| 2480 | */ |
| 2481 | case T_Var: |
| 2482 | { |
| 2483 | Var *var = (Var *) node; |
| 2484 | Var *newnode; |
| 2485 | |
| 2486 | FLATCOPY(newnode, var, Var); |
| 2487 | return (Node *) newnode; |
| 2488 | } |
| 2489 | break; |
| 2490 | case T_Const: |
| 2491 | { |
| 2492 | Const *oldnode = (Const *) node; |
| 2493 | Const *newnode; |
| 2494 | |
| 2495 | FLATCOPY(newnode, oldnode, Const); |
| 2496 | /* XXX we don't bother with datumCopy; should we? */ |
| 2497 | return (Node *) newnode; |
| 2498 | } |
| 2499 | break; |
| 2500 | case T_Param: |
| 2501 | case T_CaseTestExpr: |
| 2502 | case T_SQLValueFunction: |
| 2503 | case T_CoerceToDomainValue: |
| 2504 | case T_SetToDefault: |
| 2505 | case T_CurrentOfExpr: |
| 2506 | case T_NextValueExpr: |
| 2507 | case T_RangeTblRef: |
| 2508 | case T_SortGroupClause: |
| 2509 | return (Node *) copyObject(node); |
| 2510 | case T_WithCheckOption: |
| 2511 | { |
| 2512 | WithCheckOption *wco = (WithCheckOption *) node; |
| 2513 | WithCheckOption *newnode; |
| 2514 | |
| 2515 | FLATCOPY(newnode, wco, WithCheckOption); |
| 2516 | MUTATE(newnode->qual, wco->qual, Node *); |
| 2517 | return (Node *) newnode; |
| 2518 | } |
| 2519 | case T_Aggref: |
| 2520 | { |
| 2521 | Aggref *aggref = (Aggref *) node; |
| 2522 | Aggref *newnode; |
| 2523 | |
| 2524 | FLATCOPY(newnode, aggref, Aggref); |
| 2525 | /* assume mutation doesn't change types of arguments */ |
| 2526 | newnode->aggargtypes = list_copy(aggref->aggargtypes); |
| 2527 | MUTATE(newnode->aggdirectargs, aggref->aggdirectargs, List *); |
| 2528 | MUTATE(newnode->args, aggref->args, List *); |
| 2529 | MUTATE(newnode->aggorder, aggref->aggorder, List *); |
| 2530 | MUTATE(newnode->aggdistinct, aggref->aggdistinct, List *); |
| 2531 | MUTATE(newnode->aggfilter, aggref->aggfilter, Expr *); |
| 2532 | return (Node *) newnode; |
| 2533 | } |
| 2534 | break; |
| 2535 | case T_GroupingFunc: |
| 2536 | { |
| 2537 | GroupingFunc *grouping = (GroupingFunc *) node; |
| 2538 | GroupingFunc *newnode; |
| 2539 | |
| 2540 | FLATCOPY(newnode, grouping, GroupingFunc); |
| 2541 | MUTATE(newnode->args, grouping->args, List *); |
| 2542 | |
| 2543 | /* |
| 2544 | * We assume here that mutating the arguments does not change |
| 2545 | * the semantics, i.e. that the arguments are not mutated in a |
| 2546 | * way that makes them semantically different from their |
| 2547 | * previously matching expressions in the GROUP BY clause. |
| 2548 | * |
| 2549 | * If a mutator somehow wanted to do this, it would have to |
| 2550 | * handle the refs and cols lists itself as appropriate. |
| 2551 | */ |
| 2552 | newnode->refs = list_copy(grouping->refs); |
| 2553 | newnode->cols = list_copy(grouping->cols); |
| 2554 | |
| 2555 | return (Node *) newnode; |
| 2556 | } |
| 2557 | break; |
| 2558 | case T_WindowFunc: |
| 2559 | { |
| 2560 | WindowFunc *wfunc = (WindowFunc *) node; |
| 2561 | WindowFunc *newnode; |
| 2562 | |
| 2563 | FLATCOPY(newnode, wfunc, WindowFunc); |
| 2564 | MUTATE(newnode->args, wfunc->args, List *); |
| 2565 | MUTATE(newnode->aggfilter, wfunc->aggfilter, Expr *); |
| 2566 | return (Node *) newnode; |
| 2567 | } |
| 2568 | break; |
| 2569 | case T_SubscriptingRef: |
| 2570 | { |
| 2571 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
| 2572 | SubscriptingRef *newnode; |
| 2573 | |
| 2574 | FLATCOPY(newnode, sbsref, SubscriptingRef); |
| 2575 | MUTATE(newnode->refupperindexpr, sbsref->refupperindexpr, |
| 2576 | List *); |
| 2577 | MUTATE(newnode->reflowerindexpr, sbsref->reflowerindexpr, |
| 2578 | List *); |
| 2579 | MUTATE(newnode->refexpr, sbsref->refexpr, |
| 2580 | Expr *); |
| 2581 | MUTATE(newnode->refassgnexpr, sbsref->refassgnexpr, |
| 2582 | Expr *); |
| 2583 | |
| 2584 | return (Node *) newnode; |
| 2585 | } |
| 2586 | break; |
| 2587 | case T_FuncExpr: |
| 2588 | { |
| 2589 | FuncExpr *expr = (FuncExpr *) node; |
| 2590 | FuncExpr *newnode; |
| 2591 | |
| 2592 | FLATCOPY(newnode, expr, FuncExpr); |
| 2593 | MUTATE(newnode->args, expr->args, List *); |
| 2594 | return (Node *) newnode; |
| 2595 | } |
| 2596 | break; |
| 2597 | case T_NamedArgExpr: |
| 2598 | { |
| 2599 | NamedArgExpr *nexpr = (NamedArgExpr *) node; |
| 2600 | NamedArgExpr *newnode; |
| 2601 | |
| 2602 | FLATCOPY(newnode, nexpr, NamedArgExpr); |
| 2603 | MUTATE(newnode->arg, nexpr->arg, Expr *); |
| 2604 | return (Node *) newnode; |
| 2605 | } |
| 2606 | break; |
| 2607 | case T_OpExpr: |
| 2608 | { |
| 2609 | OpExpr *expr = (OpExpr *) node; |
| 2610 | OpExpr *newnode; |
| 2611 | |
| 2612 | FLATCOPY(newnode, expr, OpExpr); |
| 2613 | MUTATE(newnode->args, expr->args, List *); |
| 2614 | return (Node *) newnode; |
| 2615 | } |
| 2616 | break; |
| 2617 | case T_DistinctExpr: |
| 2618 | { |
| 2619 | DistinctExpr *expr = (DistinctExpr *) node; |
| 2620 | DistinctExpr *newnode; |
| 2621 | |
| 2622 | FLATCOPY(newnode, expr, DistinctExpr); |
| 2623 | MUTATE(newnode->args, expr->args, List *); |
| 2624 | return (Node *) newnode; |
| 2625 | } |
| 2626 | break; |
| 2627 | case T_NullIfExpr: |
| 2628 | { |
| 2629 | NullIfExpr *expr = (NullIfExpr *) node; |
| 2630 | NullIfExpr *newnode; |
| 2631 | |
| 2632 | FLATCOPY(newnode, expr, NullIfExpr); |
| 2633 | MUTATE(newnode->args, expr->args, List *); |
| 2634 | return (Node *) newnode; |
| 2635 | } |
| 2636 | break; |
| 2637 | case T_ScalarArrayOpExpr: |
| 2638 | { |
| 2639 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
| 2640 | ScalarArrayOpExpr *newnode; |
| 2641 | |
| 2642 | FLATCOPY(newnode, expr, ScalarArrayOpExpr); |
| 2643 | MUTATE(newnode->args, expr->args, List *); |
| 2644 | return (Node *) newnode; |
| 2645 | } |
| 2646 | break; |
| 2647 | case T_BoolExpr: |
| 2648 | { |
| 2649 | BoolExpr *expr = (BoolExpr *) node; |
| 2650 | BoolExpr *newnode; |
| 2651 | |
| 2652 | FLATCOPY(newnode, expr, BoolExpr); |
| 2653 | MUTATE(newnode->args, expr->args, List *); |
| 2654 | return (Node *) newnode; |
| 2655 | } |
| 2656 | break; |
| 2657 | case T_SubLink: |
| 2658 | { |
| 2659 | SubLink *sublink = (SubLink *) node; |
| 2660 | SubLink *newnode; |
| 2661 | |
| 2662 | FLATCOPY(newnode, sublink, SubLink); |
| 2663 | MUTATE(newnode->testexpr, sublink->testexpr, Node *); |
| 2664 | |
| 2665 | /* |
| 2666 | * Also invoke the mutator on the sublink's Query node, so it |
| 2667 | * can recurse into the sub-query if it wants to. |
| 2668 | */ |
| 2669 | MUTATE(newnode->subselect, sublink->subselect, Node *); |
| 2670 | return (Node *) newnode; |
| 2671 | } |
| 2672 | break; |
| 2673 | case T_SubPlan: |
| 2674 | { |
| 2675 | SubPlan *subplan = (SubPlan *) node; |
| 2676 | SubPlan *newnode; |
| 2677 | |
| 2678 | FLATCOPY(newnode, subplan, SubPlan); |
| 2679 | /* transform testexpr */ |
| 2680 | MUTATE(newnode->testexpr, subplan->testexpr, Node *); |
| 2681 | /* transform args list (params to be passed to subplan) */ |
| 2682 | MUTATE(newnode->args, subplan->args, List *); |
| 2683 | /* but not the sub-Plan itself, which is referenced as-is */ |
| 2684 | return (Node *) newnode; |
| 2685 | } |
| 2686 | break; |
| 2687 | case T_AlternativeSubPlan: |
| 2688 | { |
| 2689 | AlternativeSubPlan *asplan = (AlternativeSubPlan *) node; |
| 2690 | AlternativeSubPlan *newnode; |
| 2691 | |
| 2692 | FLATCOPY(newnode, asplan, AlternativeSubPlan); |
| 2693 | MUTATE(newnode->subplans, asplan->subplans, List *); |
| 2694 | return (Node *) newnode; |
| 2695 | } |
| 2696 | break; |
| 2697 | case T_FieldSelect: |
| 2698 | { |
| 2699 | FieldSelect *fselect = (FieldSelect *) node; |
| 2700 | FieldSelect *newnode; |
| 2701 | |
| 2702 | FLATCOPY(newnode, fselect, FieldSelect); |
| 2703 | MUTATE(newnode->arg, fselect->arg, Expr *); |
| 2704 | return (Node *) newnode; |
| 2705 | } |
| 2706 | break; |
| 2707 | case T_FieldStore: |
| 2708 | { |
| 2709 | FieldStore *fstore = (FieldStore *) node; |
| 2710 | FieldStore *newnode; |
| 2711 | |
| 2712 | FLATCOPY(newnode, fstore, FieldStore); |
| 2713 | MUTATE(newnode->arg, fstore->arg, Expr *); |
| 2714 | MUTATE(newnode->newvals, fstore->newvals, List *); |
| 2715 | newnode->fieldnums = list_copy(fstore->fieldnums); |
| 2716 | return (Node *) newnode; |
| 2717 | } |
| 2718 | break; |
| 2719 | case T_RelabelType: |
| 2720 | { |
| 2721 | RelabelType *relabel = (RelabelType *) node; |
| 2722 | RelabelType *newnode; |
| 2723 | |
| 2724 | FLATCOPY(newnode, relabel, RelabelType); |
| 2725 | MUTATE(newnode->arg, relabel->arg, Expr *); |
| 2726 | return (Node *) newnode; |
| 2727 | } |
| 2728 | break; |
| 2729 | case T_CoerceViaIO: |
| 2730 | { |
| 2731 | CoerceViaIO *iocoerce = (CoerceViaIO *) node; |
| 2732 | CoerceViaIO *newnode; |
| 2733 | |
| 2734 | FLATCOPY(newnode, iocoerce, CoerceViaIO); |
| 2735 | MUTATE(newnode->arg, iocoerce->arg, Expr *); |
| 2736 | return (Node *) newnode; |
| 2737 | } |
| 2738 | break; |
| 2739 | case T_ArrayCoerceExpr: |
| 2740 | { |
| 2741 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
| 2742 | ArrayCoerceExpr *newnode; |
| 2743 | |
| 2744 | FLATCOPY(newnode, acoerce, ArrayCoerceExpr); |
| 2745 | MUTATE(newnode->arg, acoerce->arg, Expr *); |
| 2746 | MUTATE(newnode->elemexpr, acoerce->elemexpr, Expr *); |
| 2747 | return (Node *) newnode; |
| 2748 | } |
| 2749 | break; |
| 2750 | case T_ConvertRowtypeExpr: |
| 2751 | { |
| 2752 | ConvertRowtypeExpr *convexpr = (ConvertRowtypeExpr *) node; |
| 2753 | ConvertRowtypeExpr *newnode; |
| 2754 | |
| 2755 | FLATCOPY(newnode, convexpr, ConvertRowtypeExpr); |
| 2756 | MUTATE(newnode->arg, convexpr->arg, Expr *); |
| 2757 | return (Node *) newnode; |
| 2758 | } |
| 2759 | break; |
| 2760 | case T_CollateExpr: |
| 2761 | { |
| 2762 | CollateExpr *collate = (CollateExpr *) node; |
| 2763 | CollateExpr *newnode; |
| 2764 | |
| 2765 | FLATCOPY(newnode, collate, CollateExpr); |
| 2766 | MUTATE(newnode->arg, collate->arg, Expr *); |
| 2767 | return (Node *) newnode; |
| 2768 | } |
| 2769 | break; |
| 2770 | case T_CaseExpr: |
| 2771 | { |
| 2772 | CaseExpr *caseexpr = (CaseExpr *) node; |
| 2773 | CaseExpr *newnode; |
| 2774 | |
| 2775 | FLATCOPY(newnode, caseexpr, CaseExpr); |
| 2776 | MUTATE(newnode->arg, caseexpr->arg, Expr *); |
| 2777 | MUTATE(newnode->args, caseexpr->args, List *); |
| 2778 | MUTATE(newnode->defresult, caseexpr->defresult, Expr *); |
| 2779 | return (Node *) newnode; |
| 2780 | } |
| 2781 | break; |
| 2782 | case T_CaseWhen: |
| 2783 | { |
| 2784 | CaseWhen *casewhen = (CaseWhen *) node; |
| 2785 | CaseWhen *newnode; |
| 2786 | |
| 2787 | FLATCOPY(newnode, casewhen, CaseWhen); |
| 2788 | MUTATE(newnode->expr, casewhen->expr, Expr *); |
| 2789 | MUTATE(newnode->result, casewhen->result, Expr *); |
| 2790 | return (Node *) newnode; |
| 2791 | } |
| 2792 | break; |
| 2793 | case T_ArrayExpr: |
| 2794 | { |
| 2795 | ArrayExpr *arrayexpr = (ArrayExpr *) node; |
| 2796 | ArrayExpr *newnode; |
| 2797 | |
| 2798 | FLATCOPY(newnode, arrayexpr, ArrayExpr); |
| 2799 | MUTATE(newnode->elements, arrayexpr->elements, List *); |
| 2800 | return (Node *) newnode; |
| 2801 | } |
| 2802 | break; |
| 2803 | case T_RowExpr: |
| 2804 | { |
| 2805 | RowExpr *rowexpr = (RowExpr *) node; |
| 2806 | RowExpr *newnode; |
| 2807 | |
| 2808 | FLATCOPY(newnode, rowexpr, RowExpr); |
| 2809 | MUTATE(newnode->args, rowexpr->args, List *); |
| 2810 | /* Assume colnames needn't be duplicated */ |
| 2811 | return (Node *) newnode; |
| 2812 | } |
| 2813 | break; |
| 2814 | case T_RowCompareExpr: |
| 2815 | { |
| 2816 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
| 2817 | RowCompareExpr *newnode; |
| 2818 | |
| 2819 | FLATCOPY(newnode, rcexpr, RowCompareExpr); |
| 2820 | MUTATE(newnode->largs, rcexpr->largs, List *); |
| 2821 | MUTATE(newnode->rargs, rcexpr->rargs, List *); |
| 2822 | return (Node *) newnode; |
| 2823 | } |
| 2824 | break; |
| 2825 | case T_CoalesceExpr: |
| 2826 | { |
| 2827 | CoalesceExpr *coalesceexpr = (CoalesceExpr *) node; |
| 2828 | CoalesceExpr *newnode; |
| 2829 | |
| 2830 | FLATCOPY(newnode, coalesceexpr, CoalesceExpr); |
| 2831 | MUTATE(newnode->args, coalesceexpr->args, List *); |
| 2832 | return (Node *) newnode; |
| 2833 | } |
| 2834 | break; |
| 2835 | case T_MinMaxExpr: |
| 2836 | { |
| 2837 | MinMaxExpr *minmaxexpr = (MinMaxExpr *) node; |
| 2838 | MinMaxExpr *newnode; |
| 2839 | |
| 2840 | FLATCOPY(newnode, minmaxexpr, MinMaxExpr); |
| 2841 | MUTATE(newnode->args, minmaxexpr->args, List *); |
| 2842 | return (Node *) newnode; |
| 2843 | } |
| 2844 | break; |
| 2845 | case T_XmlExpr: |
| 2846 | { |
| 2847 | XmlExpr *xexpr = (XmlExpr *) node; |
| 2848 | XmlExpr *newnode; |
| 2849 | |
| 2850 | FLATCOPY(newnode, xexpr, XmlExpr); |
| 2851 | MUTATE(newnode->named_args, xexpr->named_args, List *); |
| 2852 | /* assume mutator does not care about arg_names */ |
| 2853 | MUTATE(newnode->args, xexpr->args, List *); |
| 2854 | return (Node *) newnode; |
| 2855 | } |
| 2856 | break; |
| 2857 | case T_NullTest: |
| 2858 | { |
| 2859 | NullTest *ntest = (NullTest *) node; |
| 2860 | NullTest *newnode; |
| 2861 | |
| 2862 | FLATCOPY(newnode, ntest, NullTest); |
| 2863 | MUTATE(newnode->arg, ntest->arg, Expr *); |
| 2864 | return (Node *) newnode; |
| 2865 | } |
| 2866 | break; |
| 2867 | case T_BooleanTest: |
| 2868 | { |
| 2869 | BooleanTest *btest = (BooleanTest *) node; |
| 2870 | BooleanTest *newnode; |
| 2871 | |
| 2872 | FLATCOPY(newnode, btest, BooleanTest); |
| 2873 | MUTATE(newnode->arg, btest->arg, Expr *); |
| 2874 | return (Node *) newnode; |
| 2875 | } |
| 2876 | break; |
| 2877 | case T_CoerceToDomain: |
| 2878 | { |
| 2879 | CoerceToDomain *ctest = (CoerceToDomain *) node; |
| 2880 | CoerceToDomain *newnode; |
| 2881 | |
| 2882 | FLATCOPY(newnode, ctest, CoerceToDomain); |
| 2883 | MUTATE(newnode->arg, ctest->arg, Expr *); |
| 2884 | return (Node *) newnode; |
| 2885 | } |
| 2886 | break; |
| 2887 | case T_TargetEntry: |
| 2888 | { |
| 2889 | TargetEntry *targetentry = (TargetEntry *) node; |
| 2890 | TargetEntry *newnode; |
| 2891 | |
| 2892 | FLATCOPY(newnode, targetentry, TargetEntry); |
| 2893 | MUTATE(newnode->expr, targetentry->expr, Expr *); |
| 2894 | return (Node *) newnode; |
| 2895 | } |
| 2896 | break; |
| 2897 | case T_Query: |
| 2898 | /* Do nothing with a sub-Query, per discussion above */ |
| 2899 | return node; |
| 2900 | case T_WindowClause: |
| 2901 | { |
| 2902 | WindowClause *wc = (WindowClause *) node; |
| 2903 | WindowClause *newnode; |
| 2904 | |
| 2905 | FLATCOPY(newnode, wc, WindowClause); |
| 2906 | MUTATE(newnode->partitionClause, wc->partitionClause, List *); |
| 2907 | MUTATE(newnode->orderClause, wc->orderClause, List *); |
| 2908 | MUTATE(newnode->startOffset, wc->startOffset, Node *); |
| 2909 | MUTATE(newnode->endOffset, wc->endOffset, Node *); |
| 2910 | return (Node *) newnode; |
| 2911 | } |
| 2912 | break; |
| 2913 | case T_CommonTableExpr: |
| 2914 | { |
| 2915 | CommonTableExpr *cte = (CommonTableExpr *) node; |
| 2916 | CommonTableExpr *newnode; |
| 2917 | |
| 2918 | FLATCOPY(newnode, cte, CommonTableExpr); |
| 2919 | |
| 2920 | /* |
| 2921 | * Also invoke the mutator on the CTE's Query node, so it can |
| 2922 | * recurse into the sub-query if it wants to. |
| 2923 | */ |
| 2924 | MUTATE(newnode->ctequery, cte->ctequery, Node *); |
| 2925 | return (Node *) newnode; |
| 2926 | } |
| 2927 | break; |
| 2928 | case T_List: |
| 2929 | { |
| 2930 | /* |
| 2931 | * We assume the mutator isn't interested in the list nodes |
| 2932 | * per se, so just invoke it on each list element. NOTE: this |
| 2933 | * would fail badly on a list with integer elements! |
| 2934 | */ |
| 2935 | List *resultlist; |
| 2936 | ListCell *temp; |
| 2937 | |
| 2938 | resultlist = NIL; |
| 2939 | foreach(temp, (List *) node) |
| 2940 | { |
| 2941 | resultlist = lappend(resultlist, |
| 2942 | mutator((Node *) lfirst(temp), |
| 2943 | context)); |
| 2944 | } |
| 2945 | return (Node *) resultlist; |
| 2946 | } |
| 2947 | break; |
| 2948 | case T_FromExpr: |
| 2949 | { |
| 2950 | FromExpr *from = (FromExpr *) node; |
| 2951 | FromExpr *newnode; |
| 2952 | |
| 2953 | FLATCOPY(newnode, from, FromExpr); |
| 2954 | MUTATE(newnode->fromlist, from->fromlist, List *); |
| 2955 | MUTATE(newnode->quals, from->quals, Node *); |
| 2956 | return (Node *) newnode; |
| 2957 | } |
| 2958 | break; |
| 2959 | case T_OnConflictExpr: |
| 2960 | { |
| 2961 | OnConflictExpr *oc = (OnConflictExpr *) node; |
| 2962 | OnConflictExpr *newnode; |
| 2963 | |
| 2964 | FLATCOPY(newnode, oc, OnConflictExpr); |
| 2965 | MUTATE(newnode->arbiterElems, oc->arbiterElems, List *); |
| 2966 | MUTATE(newnode->arbiterWhere, oc->arbiterWhere, Node *); |
| 2967 | MUTATE(newnode->onConflictSet, oc->onConflictSet, List *); |
| 2968 | MUTATE(newnode->onConflictWhere, oc->onConflictWhere, Node *); |
| 2969 | MUTATE(newnode->exclRelTlist, oc->exclRelTlist, List *); |
| 2970 | |
| 2971 | return (Node *) newnode; |
| 2972 | } |
| 2973 | break; |
| 2974 | case T_PartitionPruneStepOp: |
| 2975 | { |
| 2976 | PartitionPruneStepOp *opstep = (PartitionPruneStepOp *) node; |
| 2977 | PartitionPruneStepOp *newnode; |
| 2978 | |
| 2979 | FLATCOPY(newnode, opstep, PartitionPruneStepOp); |
| 2980 | MUTATE(newnode->exprs, opstep->exprs, List *); |
| 2981 | |
| 2982 | return (Node *) newnode; |
| 2983 | } |
| 2984 | break; |
| 2985 | case T_PartitionPruneStepCombine: |
| 2986 | /* no expression sub-nodes */ |
| 2987 | return (Node *) copyObject(node); |
| 2988 | case T_JoinExpr: |
| 2989 | { |
| 2990 | JoinExpr *join = (JoinExpr *) node; |
| 2991 | JoinExpr *newnode; |
| 2992 | |
| 2993 | FLATCOPY(newnode, join, JoinExpr); |
| 2994 | MUTATE(newnode->larg, join->larg, Node *); |
| 2995 | MUTATE(newnode->rarg, join->rarg, Node *); |
| 2996 | MUTATE(newnode->quals, join->quals, Node *); |
| 2997 | /* We do not mutate alias or using by default */ |
| 2998 | return (Node *) newnode; |
| 2999 | } |
| 3000 | break; |
| 3001 | case T_SetOperationStmt: |
| 3002 | { |
| 3003 | SetOperationStmt *setop = (SetOperationStmt *) node; |
| 3004 | SetOperationStmt *newnode; |
| 3005 | |
| 3006 | FLATCOPY(newnode, setop, SetOperationStmt); |
| 3007 | MUTATE(newnode->larg, setop->larg, Node *); |
| 3008 | MUTATE(newnode->rarg, setop->rarg, Node *); |
| 3009 | /* We do not mutate groupClauses by default */ |
| 3010 | return (Node *) newnode; |
| 3011 | } |
| 3012 | break; |
| 3013 | case T_IndexClause: |
| 3014 | { |
| 3015 | IndexClause *iclause = (IndexClause *) node; |
| 3016 | IndexClause *newnode; |
| 3017 | |
| 3018 | FLATCOPY(newnode, iclause, IndexClause); |
| 3019 | MUTATE(newnode->rinfo, iclause->rinfo, RestrictInfo *); |
| 3020 | MUTATE(newnode->indexquals, iclause->indexquals, List *); |
| 3021 | return (Node *) newnode; |
| 3022 | } |
| 3023 | break; |
| 3024 | case T_PlaceHolderVar: |
| 3025 | { |
| 3026 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 3027 | PlaceHolderVar *newnode; |
| 3028 | |
| 3029 | FLATCOPY(newnode, phv, PlaceHolderVar); |
| 3030 | MUTATE(newnode->phexpr, phv->phexpr, Expr *); |
| 3031 | /* Assume we need not copy the relids bitmapset */ |
| 3032 | return (Node *) newnode; |
| 3033 | } |
| 3034 | break; |
| 3035 | case T_InferenceElem: |
| 3036 | { |
| 3037 | InferenceElem *inferenceelemdexpr = (InferenceElem *) node; |
| 3038 | InferenceElem *newnode; |
| 3039 | |
| 3040 | FLATCOPY(newnode, inferenceelemdexpr, InferenceElem); |
| 3041 | MUTATE(newnode->expr, newnode->expr, Node *); |
| 3042 | return (Node *) newnode; |
| 3043 | } |
| 3044 | break; |
| 3045 | case T_AppendRelInfo: |
| 3046 | { |
| 3047 | AppendRelInfo *appinfo = (AppendRelInfo *) node; |
| 3048 | AppendRelInfo *newnode; |
| 3049 | |
| 3050 | FLATCOPY(newnode, appinfo, AppendRelInfo); |
| 3051 | MUTATE(newnode->translated_vars, appinfo->translated_vars, List *); |
| 3052 | return (Node *) newnode; |
| 3053 | } |
| 3054 | break; |
| 3055 | case T_PlaceHolderInfo: |
| 3056 | { |
| 3057 | PlaceHolderInfo *phinfo = (PlaceHolderInfo *) node; |
| 3058 | PlaceHolderInfo *newnode; |
| 3059 | |
| 3060 | FLATCOPY(newnode, phinfo, PlaceHolderInfo); |
| 3061 | MUTATE(newnode->ph_var, phinfo->ph_var, PlaceHolderVar *); |
| 3062 | /* Assume we need not copy the relids bitmapsets */ |
| 3063 | return (Node *) newnode; |
| 3064 | } |
| 3065 | break; |
| 3066 | case T_RangeTblFunction: |
| 3067 | { |
| 3068 | RangeTblFunction *rtfunc = (RangeTblFunction *) node; |
| 3069 | RangeTblFunction *newnode; |
| 3070 | |
| 3071 | FLATCOPY(newnode, rtfunc, RangeTblFunction); |
| 3072 | MUTATE(newnode->funcexpr, rtfunc->funcexpr, Node *); |
| 3073 | /* Assume we need not copy the coldef info lists */ |
| 3074 | return (Node *) newnode; |
| 3075 | } |
| 3076 | break; |
| 3077 | case T_TableSampleClause: |
| 3078 | { |
| 3079 | TableSampleClause *tsc = (TableSampleClause *) node; |
| 3080 | TableSampleClause *newnode; |
| 3081 | |
| 3082 | FLATCOPY(newnode, tsc, TableSampleClause); |
| 3083 | MUTATE(newnode->args, tsc->args, List *); |
| 3084 | MUTATE(newnode->repeatable, tsc->repeatable, Expr *); |
| 3085 | return (Node *) newnode; |
| 3086 | } |
| 3087 | break; |
| 3088 | case T_TableFunc: |
| 3089 | { |
| 3090 | TableFunc *tf = (TableFunc *) node; |
| 3091 | TableFunc *newnode; |
| 3092 | |
| 3093 | FLATCOPY(newnode, tf, TableFunc); |
| 3094 | MUTATE(newnode->ns_uris, tf->ns_uris, List *); |
| 3095 | MUTATE(newnode->docexpr, tf->docexpr, Node *); |
| 3096 | MUTATE(newnode->rowexpr, tf->rowexpr, Node *); |
| 3097 | MUTATE(newnode->colexprs, tf->colexprs, List *); |
| 3098 | MUTATE(newnode->coldefexprs, tf->coldefexprs, List *); |
| 3099 | return (Node *) newnode; |
| 3100 | } |
| 3101 | break; |
| 3102 | default: |
| 3103 | elog(ERROR, "unrecognized node type: %d" , |
| 3104 | (int) nodeTag(node)); |
| 3105 | break; |
| 3106 | } |
| 3107 | /* can't get here, but keep compiler happy */ |
| 3108 | return NULL; |
| 3109 | } |
| 3110 | |
| 3111 | |
| 3112 | /* |
| 3113 | * query_tree_mutator --- initiate modification of a Query's expressions |
| 3114 | * |
| 3115 | * This routine exists just to reduce the number of places that need to know |
| 3116 | * where all the expression subtrees of a Query are. Note it can be used |
| 3117 | * for starting a walk at top level of a Query regardless of whether the |
| 3118 | * mutator intends to descend into subqueries. It is also useful for |
| 3119 | * descending into subqueries within a mutator. |
| 3120 | * |
| 3121 | * Some callers want to suppress mutating of certain items in the Query, |
| 3122 | * typically because they need to process them specially, or don't actually |
| 3123 | * want to recurse into subqueries. This is supported by the flags argument, |
| 3124 | * which is the bitwise OR of flag values to suppress mutating of |
| 3125 | * indicated items. (More flag bits may be added as needed.) |
| 3126 | * |
| 3127 | * Normally the Query node itself is copied, but some callers want it to be |
| 3128 | * modified in-place; they must pass QTW_DONT_COPY_QUERY in flags. All |
| 3129 | * modified substructure is safely copied in any case. |
| 3130 | */ |
| 3131 | Query * |
| 3132 | query_tree_mutator(Query *query, |
| 3133 | Node *(*mutator) (), |
| 3134 | void *context, |
| 3135 | int flags) |
| 3136 | { |
| 3137 | Assert(query != NULL && IsA(query, Query)); |
| 3138 | |
| 3139 | if (!(flags & QTW_DONT_COPY_QUERY)) |
| 3140 | { |
| 3141 | Query *newquery; |
| 3142 | |
| 3143 | FLATCOPY(newquery, query, Query); |
| 3144 | query = newquery; |
| 3145 | } |
| 3146 | |
| 3147 | MUTATE(query->targetList, query->targetList, List *); |
| 3148 | MUTATE(query->withCheckOptions, query->withCheckOptions, List *); |
| 3149 | MUTATE(query->onConflict, query->onConflict, OnConflictExpr *); |
| 3150 | MUTATE(query->returningList, query->returningList, List *); |
| 3151 | MUTATE(query->jointree, query->jointree, FromExpr *); |
| 3152 | MUTATE(query->setOperations, query->setOperations, Node *); |
| 3153 | MUTATE(query->havingQual, query->havingQual, Node *); |
| 3154 | MUTATE(query->limitOffset, query->limitOffset, Node *); |
| 3155 | MUTATE(query->limitCount, query->limitCount, Node *); |
| 3156 | if (!(flags & QTW_IGNORE_CTE_SUBQUERIES)) |
| 3157 | MUTATE(query->cteList, query->cteList, List *); |
| 3158 | else /* else copy CTE list as-is */ |
| 3159 | query->cteList = copyObject(query->cteList); |
| 3160 | query->rtable = range_table_mutator(query->rtable, |
| 3161 | mutator, context, flags); |
| 3162 | return query; |
| 3163 | } |
| 3164 | |
| 3165 | /* |
| 3166 | * range_table_mutator is just the part of query_tree_mutator that processes |
| 3167 | * a query's rangetable. This is split out since it can be useful on |
| 3168 | * its own. |
| 3169 | */ |
| 3170 | List * |
| 3171 | range_table_mutator(List *rtable, |
| 3172 | Node *(*mutator) (), |
| 3173 | void *context, |
| 3174 | int flags) |
| 3175 | { |
| 3176 | List *newrt = NIL; |
| 3177 | ListCell *rt; |
| 3178 | |
| 3179 | foreach(rt, rtable) |
| 3180 | { |
| 3181 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
| 3182 | RangeTblEntry *newrte; |
| 3183 | |
| 3184 | FLATCOPY(newrte, rte, RangeTblEntry); |
| 3185 | switch (rte->rtekind) |
| 3186 | { |
| 3187 | case RTE_RELATION: |
| 3188 | MUTATE(newrte->tablesample, rte->tablesample, |
| 3189 | TableSampleClause *); |
| 3190 | /* we don't bother to copy eref, aliases, etc; OK? */ |
| 3191 | break; |
| 3192 | case RTE_SUBQUERY: |
| 3193 | if (!(flags & QTW_IGNORE_RT_SUBQUERIES)) |
| 3194 | { |
| 3195 | CHECKFLATCOPY(newrte->subquery, rte->subquery, Query); |
| 3196 | MUTATE(newrte->subquery, newrte->subquery, Query *); |
| 3197 | } |
| 3198 | else |
| 3199 | { |
| 3200 | /* else, copy RT subqueries as-is */ |
| 3201 | newrte->subquery = copyObject(rte->subquery); |
| 3202 | } |
| 3203 | break; |
| 3204 | case RTE_JOIN: |
| 3205 | if (!(flags & QTW_IGNORE_JOINALIASES)) |
| 3206 | MUTATE(newrte->joinaliasvars, rte->joinaliasvars, List *); |
| 3207 | else |
| 3208 | { |
| 3209 | /* else, copy join aliases as-is */ |
| 3210 | newrte->joinaliasvars = copyObject(rte->joinaliasvars); |
| 3211 | } |
| 3212 | break; |
| 3213 | case RTE_FUNCTION: |
| 3214 | MUTATE(newrte->functions, rte->functions, List *); |
| 3215 | break; |
| 3216 | case RTE_TABLEFUNC: |
| 3217 | MUTATE(newrte->tablefunc, rte->tablefunc, TableFunc *); |
| 3218 | break; |
| 3219 | case RTE_VALUES: |
| 3220 | MUTATE(newrte->values_lists, rte->values_lists, List *); |
| 3221 | break; |
| 3222 | case RTE_CTE: |
| 3223 | case RTE_NAMEDTUPLESTORE: |
| 3224 | case RTE_RESULT: |
| 3225 | /* nothing to do */ |
| 3226 | break; |
| 3227 | } |
| 3228 | MUTATE(newrte->securityQuals, rte->securityQuals, List *); |
| 3229 | newrt = lappend(newrt, newrte); |
| 3230 | } |
| 3231 | return newrt; |
| 3232 | } |
| 3233 | |
| 3234 | /* |
| 3235 | * query_or_expression_tree_walker --- hybrid form |
| 3236 | * |
| 3237 | * This routine will invoke query_tree_walker if called on a Query node, |
| 3238 | * else will invoke the walker directly. This is a useful way of starting |
| 3239 | * the recursion when the walker's normal change of state is not appropriate |
| 3240 | * for the outermost Query node. |
| 3241 | */ |
| 3242 | bool |
| 3243 | query_or_expression_tree_walker(Node *node, |
| 3244 | bool (*walker) (), |
| 3245 | void *context, |
| 3246 | int flags) |
| 3247 | { |
| 3248 | if (node && IsA(node, Query)) |
| 3249 | return query_tree_walker((Query *) node, |
| 3250 | walker, |
| 3251 | context, |
| 3252 | flags); |
| 3253 | else |
| 3254 | return walker(node, context); |
| 3255 | } |
| 3256 | |
| 3257 | /* |
| 3258 | * query_or_expression_tree_mutator --- hybrid form |
| 3259 | * |
| 3260 | * This routine will invoke query_tree_mutator if called on a Query node, |
| 3261 | * else will invoke the mutator directly. This is a useful way of starting |
| 3262 | * the recursion when the mutator's normal change of state is not appropriate |
| 3263 | * for the outermost Query node. |
| 3264 | */ |
| 3265 | Node * |
| 3266 | query_or_expression_tree_mutator(Node *node, |
| 3267 | Node *(*mutator) (), |
| 3268 | void *context, |
| 3269 | int flags) |
| 3270 | { |
| 3271 | if (node && IsA(node, Query)) |
| 3272 | return (Node *) query_tree_mutator((Query *) node, |
| 3273 | mutator, |
| 3274 | context, |
| 3275 | flags); |
| 3276 | else |
| 3277 | return mutator(node, context); |
| 3278 | } |
| 3279 | |
| 3280 | |
| 3281 | /* |
| 3282 | * raw_expression_tree_walker --- walk raw parse trees |
| 3283 | * |
| 3284 | * This has exactly the same API as expression_tree_walker, but instead of |
| 3285 | * walking post-analysis parse trees, it knows how to walk the node types |
| 3286 | * found in raw grammar output. (There is not currently any need for a |
| 3287 | * combined walker, so we keep them separate in the name of efficiency.) |
| 3288 | * Unlike expression_tree_walker, there is no special rule about query |
| 3289 | * boundaries: we descend to everything that's possibly interesting. |
| 3290 | * |
| 3291 | * Currently, the node type coverage here extends only to DML statements |
| 3292 | * (SELECT/INSERT/UPDATE/DELETE) and nodes that can appear in them, because |
| 3293 | * this is used mainly during analysis of CTEs, and only DML statements can |
| 3294 | * appear in CTEs. |
| 3295 | */ |
| 3296 | bool |
| 3297 | raw_expression_tree_walker(Node *node, |
| 3298 | bool (*walker) (), |
| 3299 | void *context) |
| 3300 | { |
| 3301 | ListCell *temp; |
| 3302 | |
| 3303 | /* |
| 3304 | * The walker has already visited the current node, and so we need only |
| 3305 | * recurse into any sub-nodes it has. |
| 3306 | */ |
| 3307 | if (node == NULL) |
| 3308 | return false; |
| 3309 | |
| 3310 | /* Guard against stack overflow due to overly complex expressions */ |
| 3311 | check_stack_depth(); |
| 3312 | |
| 3313 | switch (nodeTag(node)) |
| 3314 | { |
| 3315 | case T_SetToDefault: |
| 3316 | case T_CurrentOfExpr: |
| 3317 | case T_SQLValueFunction: |
| 3318 | case T_Integer: |
| 3319 | case T_Float: |
| 3320 | case T_String: |
| 3321 | case T_BitString: |
| 3322 | case T_Null: |
| 3323 | case T_ParamRef: |
| 3324 | case T_A_Const: |
| 3325 | case T_A_Star: |
| 3326 | /* primitive node types with no subnodes */ |
| 3327 | break; |
| 3328 | case T_Alias: |
| 3329 | /* we assume the colnames list isn't interesting */ |
| 3330 | break; |
| 3331 | case T_RangeVar: |
| 3332 | return walker(((RangeVar *) node)->alias, context); |
| 3333 | case T_GroupingFunc: |
| 3334 | return walker(((GroupingFunc *) node)->args, context); |
| 3335 | case T_SubLink: |
| 3336 | { |
| 3337 | SubLink *sublink = (SubLink *) node; |
| 3338 | |
| 3339 | if (walker(sublink->testexpr, context)) |
| 3340 | return true; |
| 3341 | /* we assume the operName is not interesting */ |
| 3342 | if (walker(sublink->subselect, context)) |
| 3343 | return true; |
| 3344 | } |
| 3345 | break; |
| 3346 | case T_CaseExpr: |
| 3347 | { |
| 3348 | CaseExpr *caseexpr = (CaseExpr *) node; |
| 3349 | |
| 3350 | if (walker(caseexpr->arg, context)) |
| 3351 | return true; |
| 3352 | /* we assume walker doesn't care about CaseWhens, either */ |
| 3353 | foreach(temp, caseexpr->args) |
| 3354 | { |
| 3355 | CaseWhen *when = lfirst_node(CaseWhen, temp); |
| 3356 | |
| 3357 | if (walker(when->expr, context)) |
| 3358 | return true; |
| 3359 | if (walker(when->result, context)) |
| 3360 | return true; |
| 3361 | } |
| 3362 | if (walker(caseexpr->defresult, context)) |
| 3363 | return true; |
| 3364 | } |
| 3365 | break; |
| 3366 | case T_RowExpr: |
| 3367 | /* Assume colnames isn't interesting */ |
| 3368 | return walker(((RowExpr *) node)->args, context); |
| 3369 | case T_CoalesceExpr: |
| 3370 | return walker(((CoalesceExpr *) node)->args, context); |
| 3371 | case T_MinMaxExpr: |
| 3372 | return walker(((MinMaxExpr *) node)->args, context); |
| 3373 | case T_XmlExpr: |
| 3374 | { |
| 3375 | XmlExpr *xexpr = (XmlExpr *) node; |
| 3376 | |
| 3377 | if (walker(xexpr->named_args, context)) |
| 3378 | return true; |
| 3379 | /* we assume walker doesn't care about arg_names */ |
| 3380 | if (walker(xexpr->args, context)) |
| 3381 | return true; |
| 3382 | } |
| 3383 | break; |
| 3384 | case T_NullTest: |
| 3385 | return walker(((NullTest *) node)->arg, context); |
| 3386 | case T_BooleanTest: |
| 3387 | return walker(((BooleanTest *) node)->arg, context); |
| 3388 | case T_JoinExpr: |
| 3389 | { |
| 3390 | JoinExpr *join = (JoinExpr *) node; |
| 3391 | |
| 3392 | if (walker(join->larg, context)) |
| 3393 | return true; |
| 3394 | if (walker(join->rarg, context)) |
| 3395 | return true; |
| 3396 | if (walker(join->quals, context)) |
| 3397 | return true; |
| 3398 | if (walker(join->alias, context)) |
| 3399 | return true; |
| 3400 | /* using list is deemed uninteresting */ |
| 3401 | } |
| 3402 | break; |
| 3403 | case T_IntoClause: |
| 3404 | { |
| 3405 | IntoClause *into = (IntoClause *) node; |
| 3406 | |
| 3407 | if (walker(into->rel, context)) |
| 3408 | return true; |
| 3409 | /* colNames, options are deemed uninteresting */ |
| 3410 | /* viewQuery should be null in raw parsetree, but check it */ |
| 3411 | if (walker(into->viewQuery, context)) |
| 3412 | return true; |
| 3413 | } |
| 3414 | break; |
| 3415 | case T_List: |
| 3416 | foreach(temp, (List *) node) |
| 3417 | { |
| 3418 | if (walker((Node *) lfirst(temp), context)) |
| 3419 | return true; |
| 3420 | } |
| 3421 | break; |
| 3422 | case T_InsertStmt: |
| 3423 | { |
| 3424 | InsertStmt *stmt = (InsertStmt *) node; |
| 3425 | |
| 3426 | if (walker(stmt->relation, context)) |
| 3427 | return true; |
| 3428 | if (walker(stmt->cols, context)) |
| 3429 | return true; |
| 3430 | if (walker(stmt->selectStmt, context)) |
| 3431 | return true; |
| 3432 | if (walker(stmt->onConflictClause, context)) |
| 3433 | return true; |
| 3434 | if (walker(stmt->returningList, context)) |
| 3435 | return true; |
| 3436 | if (walker(stmt->withClause, context)) |
| 3437 | return true; |
| 3438 | } |
| 3439 | break; |
| 3440 | case T_DeleteStmt: |
| 3441 | { |
| 3442 | DeleteStmt *stmt = (DeleteStmt *) node; |
| 3443 | |
| 3444 | if (walker(stmt->relation, context)) |
| 3445 | return true; |
| 3446 | if (walker(stmt->usingClause, context)) |
| 3447 | return true; |
| 3448 | if (walker(stmt->whereClause, context)) |
| 3449 | return true; |
| 3450 | if (walker(stmt->returningList, context)) |
| 3451 | return true; |
| 3452 | if (walker(stmt->withClause, context)) |
| 3453 | return true; |
| 3454 | } |
| 3455 | break; |
| 3456 | case T_UpdateStmt: |
| 3457 | { |
| 3458 | UpdateStmt *stmt = (UpdateStmt *) node; |
| 3459 | |
| 3460 | if (walker(stmt->relation, context)) |
| 3461 | return true; |
| 3462 | if (walker(stmt->targetList, context)) |
| 3463 | return true; |
| 3464 | if (walker(stmt->whereClause, context)) |
| 3465 | return true; |
| 3466 | if (walker(stmt->fromClause, context)) |
| 3467 | return true; |
| 3468 | if (walker(stmt->returningList, context)) |
| 3469 | return true; |
| 3470 | if (walker(stmt->withClause, context)) |
| 3471 | return true; |
| 3472 | } |
| 3473 | break; |
| 3474 | case T_SelectStmt: |
| 3475 | { |
| 3476 | SelectStmt *stmt = (SelectStmt *) node; |
| 3477 | |
| 3478 | if (walker(stmt->distinctClause, context)) |
| 3479 | return true; |
| 3480 | if (walker(stmt->intoClause, context)) |
| 3481 | return true; |
| 3482 | if (walker(stmt->targetList, context)) |
| 3483 | return true; |
| 3484 | if (walker(stmt->fromClause, context)) |
| 3485 | return true; |
| 3486 | if (walker(stmt->whereClause, context)) |
| 3487 | return true; |
| 3488 | if (walker(stmt->groupClause, context)) |
| 3489 | return true; |
| 3490 | if (walker(stmt->havingClause, context)) |
| 3491 | return true; |
| 3492 | if (walker(stmt->windowClause, context)) |
| 3493 | return true; |
| 3494 | if (walker(stmt->valuesLists, context)) |
| 3495 | return true; |
| 3496 | if (walker(stmt->sortClause, context)) |
| 3497 | return true; |
| 3498 | if (walker(stmt->limitOffset, context)) |
| 3499 | return true; |
| 3500 | if (walker(stmt->limitCount, context)) |
| 3501 | return true; |
| 3502 | if (walker(stmt->lockingClause, context)) |
| 3503 | return true; |
| 3504 | if (walker(stmt->withClause, context)) |
| 3505 | return true; |
| 3506 | if (walker(stmt->larg, context)) |
| 3507 | return true; |
| 3508 | if (walker(stmt->rarg, context)) |
| 3509 | return true; |
| 3510 | } |
| 3511 | break; |
| 3512 | case T_A_Expr: |
| 3513 | { |
| 3514 | A_Expr *expr = (A_Expr *) node; |
| 3515 | |
| 3516 | if (walker(expr->lexpr, context)) |
| 3517 | return true; |
| 3518 | if (walker(expr->rexpr, context)) |
| 3519 | return true; |
| 3520 | /* operator name is deemed uninteresting */ |
| 3521 | } |
| 3522 | break; |
| 3523 | case T_BoolExpr: |
| 3524 | { |
| 3525 | BoolExpr *expr = (BoolExpr *) node; |
| 3526 | |
| 3527 | if (walker(expr->args, context)) |
| 3528 | return true; |
| 3529 | } |
| 3530 | break; |
| 3531 | case T_ColumnRef: |
| 3532 | /* we assume the fields contain nothing interesting */ |
| 3533 | break; |
| 3534 | case T_FuncCall: |
| 3535 | { |
| 3536 | FuncCall *fcall = (FuncCall *) node; |
| 3537 | |
| 3538 | if (walker(fcall->args, context)) |
| 3539 | return true; |
| 3540 | if (walker(fcall->agg_order, context)) |
| 3541 | return true; |
| 3542 | if (walker(fcall->agg_filter, context)) |
| 3543 | return true; |
| 3544 | if (walker(fcall->over, context)) |
| 3545 | return true; |
| 3546 | /* function name is deemed uninteresting */ |
| 3547 | } |
| 3548 | break; |
| 3549 | case T_NamedArgExpr: |
| 3550 | return walker(((NamedArgExpr *) node)->arg, context); |
| 3551 | case T_A_Indices: |
| 3552 | { |
| 3553 | A_Indices *indices = (A_Indices *) node; |
| 3554 | |
| 3555 | if (walker(indices->lidx, context)) |
| 3556 | return true; |
| 3557 | if (walker(indices->uidx, context)) |
| 3558 | return true; |
| 3559 | } |
| 3560 | break; |
| 3561 | case T_A_Indirection: |
| 3562 | { |
| 3563 | A_Indirection *indir = (A_Indirection *) node; |
| 3564 | |
| 3565 | if (walker(indir->arg, context)) |
| 3566 | return true; |
| 3567 | if (walker(indir->indirection, context)) |
| 3568 | return true; |
| 3569 | } |
| 3570 | break; |
| 3571 | case T_A_ArrayExpr: |
| 3572 | return walker(((A_ArrayExpr *) node)->elements, context); |
| 3573 | case T_ResTarget: |
| 3574 | { |
| 3575 | ResTarget *rt = (ResTarget *) node; |
| 3576 | |
| 3577 | if (walker(rt->indirection, context)) |
| 3578 | return true; |
| 3579 | if (walker(rt->val, context)) |
| 3580 | return true; |
| 3581 | } |
| 3582 | break; |
| 3583 | case T_MultiAssignRef: |
| 3584 | return walker(((MultiAssignRef *) node)->source, context); |
| 3585 | case T_TypeCast: |
| 3586 | { |
| 3587 | TypeCast *tc = (TypeCast *) node; |
| 3588 | |
| 3589 | if (walker(tc->arg, context)) |
| 3590 | return true; |
| 3591 | if (walker(tc->typeName, context)) |
| 3592 | return true; |
| 3593 | } |
| 3594 | break; |
| 3595 | case T_CollateClause: |
| 3596 | return walker(((CollateClause *) node)->arg, context); |
| 3597 | case T_SortBy: |
| 3598 | return walker(((SortBy *) node)->node, context); |
| 3599 | case T_WindowDef: |
| 3600 | { |
| 3601 | WindowDef *wd = (WindowDef *) node; |
| 3602 | |
| 3603 | if (walker(wd->partitionClause, context)) |
| 3604 | return true; |
| 3605 | if (walker(wd->orderClause, context)) |
| 3606 | return true; |
| 3607 | if (walker(wd->startOffset, context)) |
| 3608 | return true; |
| 3609 | if (walker(wd->endOffset, context)) |
| 3610 | return true; |
| 3611 | } |
| 3612 | break; |
| 3613 | case T_RangeSubselect: |
| 3614 | { |
| 3615 | RangeSubselect *rs = (RangeSubselect *) node; |
| 3616 | |
| 3617 | if (walker(rs->subquery, context)) |
| 3618 | return true; |
| 3619 | if (walker(rs->alias, context)) |
| 3620 | return true; |
| 3621 | } |
| 3622 | break; |
| 3623 | case T_RangeFunction: |
| 3624 | { |
| 3625 | RangeFunction *rf = (RangeFunction *) node; |
| 3626 | |
| 3627 | if (walker(rf->functions, context)) |
| 3628 | return true; |
| 3629 | if (walker(rf->alias, context)) |
| 3630 | return true; |
| 3631 | if (walker(rf->coldeflist, context)) |
| 3632 | return true; |
| 3633 | } |
| 3634 | break; |
| 3635 | case T_RangeTableSample: |
| 3636 | { |
| 3637 | RangeTableSample *rts = (RangeTableSample *) node; |
| 3638 | |
| 3639 | if (walker(rts->relation, context)) |
| 3640 | return true; |
| 3641 | /* method name is deemed uninteresting */ |
| 3642 | if (walker(rts->args, context)) |
| 3643 | return true; |
| 3644 | if (walker(rts->repeatable, context)) |
| 3645 | return true; |
| 3646 | } |
| 3647 | break; |
| 3648 | case T_RangeTableFunc: |
| 3649 | { |
| 3650 | RangeTableFunc *rtf = (RangeTableFunc *) node; |
| 3651 | |
| 3652 | if (walker(rtf->docexpr, context)) |
| 3653 | return true; |
| 3654 | if (walker(rtf->rowexpr, context)) |
| 3655 | return true; |
| 3656 | if (walker(rtf->namespaces, context)) |
| 3657 | return true; |
| 3658 | if (walker(rtf->columns, context)) |
| 3659 | return true; |
| 3660 | if (walker(rtf->alias, context)) |
| 3661 | return true; |
| 3662 | } |
| 3663 | break; |
| 3664 | case T_RangeTableFuncCol: |
| 3665 | { |
| 3666 | RangeTableFuncCol *rtfc = (RangeTableFuncCol *) node; |
| 3667 | |
| 3668 | if (walker(rtfc->colexpr, context)) |
| 3669 | return true; |
| 3670 | if (walker(rtfc->coldefexpr, context)) |
| 3671 | return true; |
| 3672 | } |
| 3673 | break; |
| 3674 | case T_TypeName: |
| 3675 | { |
| 3676 | TypeName *tn = (TypeName *) node; |
| 3677 | |
| 3678 | if (walker(tn->typmods, context)) |
| 3679 | return true; |
| 3680 | if (walker(tn->arrayBounds, context)) |
| 3681 | return true; |
| 3682 | /* type name itself is deemed uninteresting */ |
| 3683 | } |
| 3684 | break; |
| 3685 | case T_ColumnDef: |
| 3686 | { |
| 3687 | ColumnDef *coldef = (ColumnDef *) node; |
| 3688 | |
| 3689 | if (walker(coldef->typeName, context)) |
| 3690 | return true; |
| 3691 | if (walker(coldef->raw_default, context)) |
| 3692 | return true; |
| 3693 | if (walker(coldef->collClause, context)) |
| 3694 | return true; |
| 3695 | /* for now, constraints are ignored */ |
| 3696 | } |
| 3697 | break; |
| 3698 | case T_IndexElem: |
| 3699 | { |
| 3700 | IndexElem *indelem = (IndexElem *) node; |
| 3701 | |
| 3702 | if (walker(indelem->expr, context)) |
| 3703 | return true; |
| 3704 | /* collation and opclass names are deemed uninteresting */ |
| 3705 | } |
| 3706 | break; |
| 3707 | case T_GroupingSet: |
| 3708 | return walker(((GroupingSet *) node)->content, context); |
| 3709 | case T_LockingClause: |
| 3710 | return walker(((LockingClause *) node)->lockedRels, context); |
| 3711 | case T_XmlSerialize: |
| 3712 | { |
| 3713 | XmlSerialize *xs = (XmlSerialize *) node; |
| 3714 | |
| 3715 | if (walker(xs->expr, context)) |
| 3716 | return true; |
| 3717 | if (walker(xs->typeName, context)) |
| 3718 | return true; |
| 3719 | } |
| 3720 | break; |
| 3721 | case T_WithClause: |
| 3722 | return walker(((WithClause *) node)->ctes, context); |
| 3723 | case T_InferClause: |
| 3724 | { |
| 3725 | InferClause *stmt = (InferClause *) node; |
| 3726 | |
| 3727 | if (walker(stmt->indexElems, context)) |
| 3728 | return true; |
| 3729 | if (walker(stmt->whereClause, context)) |
| 3730 | return true; |
| 3731 | } |
| 3732 | break; |
| 3733 | case T_OnConflictClause: |
| 3734 | { |
| 3735 | OnConflictClause *stmt = (OnConflictClause *) node; |
| 3736 | |
| 3737 | if (walker(stmt->infer, context)) |
| 3738 | return true; |
| 3739 | if (walker(stmt->targetList, context)) |
| 3740 | return true; |
| 3741 | if (walker(stmt->whereClause, context)) |
| 3742 | return true; |
| 3743 | } |
| 3744 | break; |
| 3745 | case T_CommonTableExpr: |
| 3746 | return walker(((CommonTableExpr *) node)->ctequery, context); |
| 3747 | default: |
| 3748 | elog(ERROR, "unrecognized node type: %d" , |
| 3749 | (int) nodeTag(node)); |
| 3750 | break; |
| 3751 | } |
| 3752 | return false; |
| 3753 | } |
| 3754 | |
| 3755 | /* |
| 3756 | * planstate_tree_walker --- walk plan state trees |
| 3757 | * |
| 3758 | * The walker has already visited the current node, and so we need only |
| 3759 | * recurse into any sub-nodes it has. |
| 3760 | */ |
| 3761 | bool |
| 3762 | planstate_tree_walker(PlanState *planstate, |
| 3763 | bool (*walker) (), |
| 3764 | void *context) |
| 3765 | { |
| 3766 | Plan *plan = planstate->plan; |
| 3767 | ListCell *lc; |
| 3768 | |
| 3769 | /* Guard against stack overflow due to overly complex plan trees */ |
| 3770 | check_stack_depth(); |
| 3771 | |
| 3772 | /* initPlan-s */ |
| 3773 | if (planstate_walk_subplans(planstate->initPlan, walker, context)) |
| 3774 | return true; |
| 3775 | |
| 3776 | /* lefttree */ |
| 3777 | if (outerPlanState(planstate)) |
| 3778 | { |
| 3779 | if (walker(outerPlanState(planstate), context)) |
| 3780 | return true; |
| 3781 | } |
| 3782 | |
| 3783 | /* righttree */ |
| 3784 | if (innerPlanState(planstate)) |
| 3785 | { |
| 3786 | if (walker(innerPlanState(planstate), context)) |
| 3787 | return true; |
| 3788 | } |
| 3789 | |
| 3790 | /* special child plans */ |
| 3791 | switch (nodeTag(plan)) |
| 3792 | { |
| 3793 | case T_ModifyTable: |
| 3794 | if (planstate_walk_members(((ModifyTableState *) planstate)->mt_plans, |
| 3795 | ((ModifyTableState *) planstate)->mt_nplans, |
| 3796 | walker, context)) |
| 3797 | return true; |
| 3798 | break; |
| 3799 | case T_Append: |
| 3800 | if (planstate_walk_members(((AppendState *) planstate)->appendplans, |
| 3801 | ((AppendState *) planstate)->as_nplans, |
| 3802 | walker, context)) |
| 3803 | return true; |
| 3804 | break; |
| 3805 | case T_MergeAppend: |
| 3806 | if (planstate_walk_members(((MergeAppendState *) planstate)->mergeplans, |
| 3807 | ((MergeAppendState *) planstate)->ms_nplans, |
| 3808 | walker, context)) |
| 3809 | return true; |
| 3810 | break; |
| 3811 | case T_BitmapAnd: |
| 3812 | if (planstate_walk_members(((BitmapAndState *) planstate)->bitmapplans, |
| 3813 | ((BitmapAndState *) planstate)->nplans, |
| 3814 | walker, context)) |
| 3815 | return true; |
| 3816 | break; |
| 3817 | case T_BitmapOr: |
| 3818 | if (planstate_walk_members(((BitmapOrState *) planstate)->bitmapplans, |
| 3819 | ((BitmapOrState *) planstate)->nplans, |
| 3820 | walker, context)) |
| 3821 | return true; |
| 3822 | break; |
| 3823 | case T_SubqueryScan: |
| 3824 | if (walker(((SubqueryScanState *) planstate)->subplan, context)) |
| 3825 | return true; |
| 3826 | break; |
| 3827 | case T_CustomScan: |
| 3828 | foreach(lc, ((CustomScanState *) planstate)->custom_ps) |
| 3829 | { |
| 3830 | if (walker((PlanState *) lfirst(lc), context)) |
| 3831 | return true; |
| 3832 | } |
| 3833 | break; |
| 3834 | default: |
| 3835 | break; |
| 3836 | } |
| 3837 | |
| 3838 | /* subPlan-s */ |
| 3839 | if (planstate_walk_subplans(planstate->subPlan, walker, context)) |
| 3840 | return true; |
| 3841 | |
| 3842 | return false; |
| 3843 | } |
| 3844 | |
| 3845 | /* |
| 3846 | * Walk a list of SubPlans (or initPlans, which also use SubPlan nodes). |
| 3847 | */ |
| 3848 | static bool |
| 3849 | planstate_walk_subplans(List *plans, |
| 3850 | bool (*walker) (), |
| 3851 | void *context) |
| 3852 | { |
| 3853 | ListCell *lc; |
| 3854 | |
| 3855 | foreach(lc, plans) |
| 3856 | { |
| 3857 | SubPlanState *sps = lfirst_node(SubPlanState, lc); |
| 3858 | |
| 3859 | if (walker(sps->planstate, context)) |
| 3860 | return true; |
| 3861 | } |
| 3862 | |
| 3863 | return false; |
| 3864 | } |
| 3865 | |
| 3866 | /* |
| 3867 | * Walk the constituent plans of a ModifyTable, Append, MergeAppend, |
| 3868 | * BitmapAnd, or BitmapOr node. |
| 3869 | */ |
| 3870 | static bool |
| 3871 | planstate_walk_members(PlanState **planstates, int nplans, |
| 3872 | bool (*walker) (), void *context) |
| 3873 | { |
| 3874 | int j; |
| 3875 | |
| 3876 | for (j = 0; j < nplans; j++) |
| 3877 | { |
| 3878 | if (walker(planstates[j], context)) |
| 3879 | return true; |
| 3880 | } |
| 3881 | |
| 3882 | return false; |
| 3883 | } |
| 3884 | |