1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * nodeFuncs.c |
4 | * Various general-purpose manipulations of Node trees |
5 | * |
6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
7 | * Portions Copyright (c) 1994, Regents of the University of California |
8 | * |
9 | * |
10 | * IDENTIFICATION |
11 | * src/backend/nodes/nodeFuncs.c |
12 | * |
13 | *------------------------------------------------------------------------- |
14 | */ |
15 | #include "postgres.h" |
16 | |
17 | #include "catalog/pg_collation.h" |
18 | #include "catalog/pg_type.h" |
19 | #include "miscadmin.h" |
20 | #include "nodes/makefuncs.h" |
21 | #include "nodes/execnodes.h" |
22 | #include "nodes/nodeFuncs.h" |
23 | #include "nodes/pathnodes.h" |
24 | #include "utils/builtins.h" |
25 | #include "utils/lsyscache.h" |
26 | |
27 | |
28 | static bool expression_returns_set_walker(Node *node, void *context); |
29 | static int leftmostLoc(int loc1, int loc2); |
30 | static bool fix_opfuncids_walker(Node *node, void *context); |
31 | static bool planstate_walk_subplans(List *plans, bool (*walker) (), |
32 | void *context); |
33 | static bool planstate_walk_members(PlanState **planstates, int nplans, |
34 | bool (*walker) (), void *context); |
35 | |
36 | |
37 | /* |
38 | * exprType - |
39 | * returns the Oid of the type of the expression's result. |
40 | */ |
41 | Oid |
42 | exprType(const Node *expr) |
43 | { |
44 | Oid type; |
45 | |
46 | if (!expr) |
47 | return InvalidOid; |
48 | |
49 | switch (nodeTag(expr)) |
50 | { |
51 | case T_Var: |
52 | type = ((const Var *) expr)->vartype; |
53 | break; |
54 | case T_Const: |
55 | type = ((const Const *) expr)->consttype; |
56 | break; |
57 | case T_Param: |
58 | type = ((const Param *) expr)->paramtype; |
59 | break; |
60 | case T_Aggref: |
61 | type = ((const Aggref *) expr)->aggtype; |
62 | break; |
63 | case T_GroupingFunc: |
64 | type = INT4OID; |
65 | break; |
66 | case T_WindowFunc: |
67 | type = ((const WindowFunc *) expr)->wintype; |
68 | break; |
69 | case T_SubscriptingRef: |
70 | { |
71 | const SubscriptingRef *sbsref = (const SubscriptingRef *) expr; |
72 | |
73 | /* slice and/or store operations yield the container type */ |
74 | if (sbsref->reflowerindexpr || sbsref->refassgnexpr) |
75 | type = sbsref->refcontainertype; |
76 | else |
77 | type = sbsref->refelemtype; |
78 | } |
79 | break; |
80 | case T_FuncExpr: |
81 | type = ((const FuncExpr *) expr)->funcresulttype; |
82 | break; |
83 | case T_NamedArgExpr: |
84 | type = exprType((Node *) ((const NamedArgExpr *) expr)->arg); |
85 | break; |
86 | case T_OpExpr: |
87 | type = ((const OpExpr *) expr)->opresulttype; |
88 | break; |
89 | case T_DistinctExpr: |
90 | type = ((const DistinctExpr *) expr)->opresulttype; |
91 | break; |
92 | case T_NullIfExpr: |
93 | type = ((const NullIfExpr *) expr)->opresulttype; |
94 | break; |
95 | case T_ScalarArrayOpExpr: |
96 | type = BOOLOID; |
97 | break; |
98 | case T_BoolExpr: |
99 | type = BOOLOID; |
100 | break; |
101 | case T_SubLink: |
102 | { |
103 | const SubLink *sublink = (const SubLink *) expr; |
104 | |
105 | if (sublink->subLinkType == EXPR_SUBLINK || |
106 | sublink->subLinkType == ARRAY_SUBLINK) |
107 | { |
108 | /* get the type of the subselect's first target column */ |
109 | Query *qtree = (Query *) sublink->subselect; |
110 | TargetEntry *tent; |
111 | |
112 | if (!qtree || !IsA(qtree, Query)) |
113 | elog(ERROR, "cannot get type for untransformed sublink" ); |
114 | tent = linitial_node(TargetEntry, qtree->targetList); |
115 | Assert(!tent->resjunk); |
116 | type = exprType((Node *) tent->expr); |
117 | if (sublink->subLinkType == ARRAY_SUBLINK) |
118 | { |
119 | type = get_promoted_array_type(type); |
120 | if (!OidIsValid(type)) |
121 | ereport(ERROR, |
122 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
123 | errmsg("could not find array type for data type %s" , |
124 | format_type_be(exprType((Node *) tent->expr))))); |
125 | } |
126 | } |
127 | else if (sublink->subLinkType == MULTIEXPR_SUBLINK) |
128 | { |
129 | /* MULTIEXPR is always considered to return RECORD */ |
130 | type = RECORDOID; |
131 | } |
132 | else |
133 | { |
134 | /* for all other sublink types, result is boolean */ |
135 | type = BOOLOID; |
136 | } |
137 | } |
138 | break; |
139 | case T_SubPlan: |
140 | { |
141 | const SubPlan *subplan = (const SubPlan *) expr; |
142 | |
143 | if (subplan->subLinkType == EXPR_SUBLINK || |
144 | subplan->subLinkType == ARRAY_SUBLINK) |
145 | { |
146 | /* get the type of the subselect's first target column */ |
147 | type = subplan->firstColType; |
148 | if (subplan->subLinkType == ARRAY_SUBLINK) |
149 | { |
150 | type = get_promoted_array_type(type); |
151 | if (!OidIsValid(type)) |
152 | ereport(ERROR, |
153 | (errcode(ERRCODE_UNDEFINED_OBJECT), |
154 | errmsg("could not find array type for data type %s" , |
155 | format_type_be(subplan->firstColType)))); |
156 | } |
157 | } |
158 | else if (subplan->subLinkType == MULTIEXPR_SUBLINK) |
159 | { |
160 | /* MULTIEXPR is always considered to return RECORD */ |
161 | type = RECORDOID; |
162 | } |
163 | else |
164 | { |
165 | /* for all other subplan types, result is boolean */ |
166 | type = BOOLOID; |
167 | } |
168 | } |
169 | break; |
170 | case T_AlternativeSubPlan: |
171 | { |
172 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
173 | |
174 | /* subplans should all return the same thing */ |
175 | type = exprType((Node *) linitial(asplan->subplans)); |
176 | } |
177 | break; |
178 | case T_FieldSelect: |
179 | type = ((const FieldSelect *) expr)->resulttype; |
180 | break; |
181 | case T_FieldStore: |
182 | type = ((const FieldStore *) expr)->resulttype; |
183 | break; |
184 | case T_RelabelType: |
185 | type = ((const RelabelType *) expr)->resulttype; |
186 | break; |
187 | case T_CoerceViaIO: |
188 | type = ((const CoerceViaIO *) expr)->resulttype; |
189 | break; |
190 | case T_ArrayCoerceExpr: |
191 | type = ((const ArrayCoerceExpr *) expr)->resulttype; |
192 | break; |
193 | case T_ConvertRowtypeExpr: |
194 | type = ((const ConvertRowtypeExpr *) expr)->resulttype; |
195 | break; |
196 | case T_CollateExpr: |
197 | type = exprType((Node *) ((const CollateExpr *) expr)->arg); |
198 | break; |
199 | case T_CaseExpr: |
200 | type = ((const CaseExpr *) expr)->casetype; |
201 | break; |
202 | case T_CaseTestExpr: |
203 | type = ((const CaseTestExpr *) expr)->typeId; |
204 | break; |
205 | case T_ArrayExpr: |
206 | type = ((const ArrayExpr *) expr)->array_typeid; |
207 | break; |
208 | case T_RowExpr: |
209 | type = ((const RowExpr *) expr)->row_typeid; |
210 | break; |
211 | case T_RowCompareExpr: |
212 | type = BOOLOID; |
213 | break; |
214 | case T_CoalesceExpr: |
215 | type = ((const CoalesceExpr *) expr)->coalescetype; |
216 | break; |
217 | case T_MinMaxExpr: |
218 | type = ((const MinMaxExpr *) expr)->minmaxtype; |
219 | break; |
220 | case T_SQLValueFunction: |
221 | type = ((const SQLValueFunction *) expr)->type; |
222 | break; |
223 | case T_XmlExpr: |
224 | if (((const XmlExpr *) expr)->op == IS_DOCUMENT) |
225 | type = BOOLOID; |
226 | else if (((const XmlExpr *) expr)->op == IS_XMLSERIALIZE) |
227 | type = TEXTOID; |
228 | else |
229 | type = XMLOID; |
230 | break; |
231 | case T_NullTest: |
232 | type = BOOLOID; |
233 | break; |
234 | case T_BooleanTest: |
235 | type = BOOLOID; |
236 | break; |
237 | case T_CoerceToDomain: |
238 | type = ((const CoerceToDomain *) expr)->resulttype; |
239 | break; |
240 | case T_CoerceToDomainValue: |
241 | type = ((const CoerceToDomainValue *) expr)->typeId; |
242 | break; |
243 | case T_SetToDefault: |
244 | type = ((const SetToDefault *) expr)->typeId; |
245 | break; |
246 | case T_CurrentOfExpr: |
247 | type = BOOLOID; |
248 | break; |
249 | case T_NextValueExpr: |
250 | type = ((const NextValueExpr *) expr)->typeId; |
251 | break; |
252 | case T_InferenceElem: |
253 | { |
254 | const InferenceElem *n = (const InferenceElem *) expr; |
255 | |
256 | type = exprType((Node *) n->expr); |
257 | } |
258 | break; |
259 | case T_PlaceHolderVar: |
260 | type = exprType((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
261 | break; |
262 | default: |
263 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
264 | type = InvalidOid; /* keep compiler quiet */ |
265 | break; |
266 | } |
267 | return type; |
268 | } |
269 | |
270 | /* |
271 | * exprTypmod - |
272 | * returns the type-specific modifier of the expression's result type, |
273 | * if it can be determined. In many cases, it can't and we return -1. |
274 | */ |
275 | int32 |
276 | exprTypmod(const Node *expr) |
277 | { |
278 | if (!expr) |
279 | return -1; |
280 | |
281 | switch (nodeTag(expr)) |
282 | { |
283 | case T_Var: |
284 | return ((const Var *) expr)->vartypmod; |
285 | case T_Const: |
286 | return ((const Const *) expr)->consttypmod; |
287 | case T_Param: |
288 | return ((const Param *) expr)->paramtypmod; |
289 | case T_SubscriptingRef: |
290 | /* typmod is the same for container or element */ |
291 | return ((const SubscriptingRef *) expr)->reftypmod; |
292 | case T_FuncExpr: |
293 | { |
294 | int32 coercedTypmod; |
295 | |
296 | /* Be smart about length-coercion functions... */ |
297 | if (exprIsLengthCoercion(expr, &coercedTypmod)) |
298 | return coercedTypmod; |
299 | } |
300 | break; |
301 | case T_NamedArgExpr: |
302 | return exprTypmod((Node *) ((const NamedArgExpr *) expr)->arg); |
303 | case T_NullIfExpr: |
304 | { |
305 | /* |
306 | * Result is either first argument or NULL, so we can report |
307 | * first argument's typmod if known. |
308 | */ |
309 | const NullIfExpr *nexpr = (const NullIfExpr *) expr; |
310 | |
311 | return exprTypmod((Node *) linitial(nexpr->args)); |
312 | } |
313 | break; |
314 | case T_SubLink: |
315 | { |
316 | const SubLink *sublink = (const SubLink *) expr; |
317 | |
318 | if (sublink->subLinkType == EXPR_SUBLINK || |
319 | sublink->subLinkType == ARRAY_SUBLINK) |
320 | { |
321 | /* get the typmod of the subselect's first target column */ |
322 | Query *qtree = (Query *) sublink->subselect; |
323 | TargetEntry *tent; |
324 | |
325 | if (!qtree || !IsA(qtree, Query)) |
326 | elog(ERROR, "cannot get type for untransformed sublink" ); |
327 | tent = linitial_node(TargetEntry, qtree->targetList); |
328 | Assert(!tent->resjunk); |
329 | return exprTypmod((Node *) tent->expr); |
330 | /* note we don't need to care if it's an array */ |
331 | } |
332 | /* otherwise, result is RECORD or BOOLEAN, typmod is -1 */ |
333 | } |
334 | break; |
335 | case T_SubPlan: |
336 | { |
337 | const SubPlan *subplan = (const SubPlan *) expr; |
338 | |
339 | if (subplan->subLinkType == EXPR_SUBLINK || |
340 | subplan->subLinkType == ARRAY_SUBLINK) |
341 | { |
342 | /* get the typmod of the subselect's first target column */ |
343 | /* note we don't need to care if it's an array */ |
344 | return subplan->firstColTypmod; |
345 | } |
346 | /* otherwise, result is RECORD or BOOLEAN, typmod is -1 */ |
347 | } |
348 | break; |
349 | case T_AlternativeSubPlan: |
350 | { |
351 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
352 | |
353 | /* subplans should all return the same thing */ |
354 | return exprTypmod((Node *) linitial(asplan->subplans)); |
355 | } |
356 | break; |
357 | case T_FieldSelect: |
358 | return ((const FieldSelect *) expr)->resulttypmod; |
359 | case T_RelabelType: |
360 | return ((const RelabelType *) expr)->resulttypmod; |
361 | case T_ArrayCoerceExpr: |
362 | return ((const ArrayCoerceExpr *) expr)->resulttypmod; |
363 | case T_CollateExpr: |
364 | return exprTypmod((Node *) ((const CollateExpr *) expr)->arg); |
365 | case T_CaseExpr: |
366 | { |
367 | /* |
368 | * If all the alternatives agree on type/typmod, return that |
369 | * typmod, else use -1 |
370 | */ |
371 | const CaseExpr *cexpr = (const CaseExpr *) expr; |
372 | Oid casetype = cexpr->casetype; |
373 | int32 typmod; |
374 | ListCell *arg; |
375 | |
376 | if (!cexpr->defresult) |
377 | return -1; |
378 | if (exprType((Node *) cexpr->defresult) != casetype) |
379 | return -1; |
380 | typmod = exprTypmod((Node *) cexpr->defresult); |
381 | if (typmod < 0) |
382 | return -1; /* no point in trying harder */ |
383 | foreach(arg, cexpr->args) |
384 | { |
385 | CaseWhen *w = lfirst_node(CaseWhen, arg); |
386 | |
387 | if (exprType((Node *) w->result) != casetype) |
388 | return -1; |
389 | if (exprTypmod((Node *) w->result) != typmod) |
390 | return -1; |
391 | } |
392 | return typmod; |
393 | } |
394 | break; |
395 | case T_CaseTestExpr: |
396 | return ((const CaseTestExpr *) expr)->typeMod; |
397 | case T_ArrayExpr: |
398 | { |
399 | /* |
400 | * If all the elements agree on type/typmod, return that |
401 | * typmod, else use -1 |
402 | */ |
403 | const ArrayExpr *arrayexpr = (const ArrayExpr *) expr; |
404 | Oid commontype; |
405 | int32 typmod; |
406 | ListCell *elem; |
407 | |
408 | if (arrayexpr->elements == NIL) |
409 | return -1; |
410 | typmod = exprTypmod((Node *) linitial(arrayexpr->elements)); |
411 | if (typmod < 0) |
412 | return -1; /* no point in trying harder */ |
413 | if (arrayexpr->multidims) |
414 | commontype = arrayexpr->array_typeid; |
415 | else |
416 | commontype = arrayexpr->element_typeid; |
417 | foreach(elem, arrayexpr->elements) |
418 | { |
419 | Node *e = (Node *) lfirst(elem); |
420 | |
421 | if (exprType(e) != commontype) |
422 | return -1; |
423 | if (exprTypmod(e) != typmod) |
424 | return -1; |
425 | } |
426 | return typmod; |
427 | } |
428 | break; |
429 | case T_CoalesceExpr: |
430 | { |
431 | /* |
432 | * If all the alternatives agree on type/typmod, return that |
433 | * typmod, else use -1 |
434 | */ |
435 | const CoalesceExpr *cexpr = (const CoalesceExpr *) expr; |
436 | Oid coalescetype = cexpr->coalescetype; |
437 | int32 typmod; |
438 | ListCell *arg; |
439 | |
440 | if (exprType((Node *) linitial(cexpr->args)) != coalescetype) |
441 | return -1; |
442 | typmod = exprTypmod((Node *) linitial(cexpr->args)); |
443 | if (typmod < 0) |
444 | return -1; /* no point in trying harder */ |
445 | for_each_cell(arg, lnext(list_head(cexpr->args))) |
446 | { |
447 | Node *e = (Node *) lfirst(arg); |
448 | |
449 | if (exprType(e) != coalescetype) |
450 | return -1; |
451 | if (exprTypmod(e) != typmod) |
452 | return -1; |
453 | } |
454 | return typmod; |
455 | } |
456 | break; |
457 | case T_MinMaxExpr: |
458 | { |
459 | /* |
460 | * If all the alternatives agree on type/typmod, return that |
461 | * typmod, else use -1 |
462 | */ |
463 | const MinMaxExpr *mexpr = (const MinMaxExpr *) expr; |
464 | Oid minmaxtype = mexpr->minmaxtype; |
465 | int32 typmod; |
466 | ListCell *arg; |
467 | |
468 | if (exprType((Node *) linitial(mexpr->args)) != minmaxtype) |
469 | return -1; |
470 | typmod = exprTypmod((Node *) linitial(mexpr->args)); |
471 | if (typmod < 0) |
472 | return -1; /* no point in trying harder */ |
473 | for_each_cell(arg, lnext(list_head(mexpr->args))) |
474 | { |
475 | Node *e = (Node *) lfirst(arg); |
476 | |
477 | if (exprType(e) != minmaxtype) |
478 | return -1; |
479 | if (exprTypmod(e) != typmod) |
480 | return -1; |
481 | } |
482 | return typmod; |
483 | } |
484 | break; |
485 | case T_SQLValueFunction: |
486 | return ((const SQLValueFunction *) expr)->typmod; |
487 | case T_CoerceToDomain: |
488 | return ((const CoerceToDomain *) expr)->resulttypmod; |
489 | case T_CoerceToDomainValue: |
490 | return ((const CoerceToDomainValue *) expr)->typeMod; |
491 | case T_SetToDefault: |
492 | return ((const SetToDefault *) expr)->typeMod; |
493 | case T_PlaceHolderVar: |
494 | return exprTypmod((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
495 | default: |
496 | break; |
497 | } |
498 | return -1; |
499 | } |
500 | |
501 | /* |
502 | * exprIsLengthCoercion |
503 | * Detect whether an expression tree is an application of a datatype's |
504 | * typmod-coercion function. Optionally extract the result's typmod. |
505 | * |
506 | * If coercedTypmod is not NULL, the typmod is stored there if the expression |
507 | * is a length-coercion function, else -1 is stored there. |
508 | * |
509 | * Note that a combined type-and-length coercion will be treated as a |
510 | * length coercion by this routine. |
511 | */ |
512 | bool |
513 | exprIsLengthCoercion(const Node *expr, int32 *coercedTypmod) |
514 | { |
515 | if (coercedTypmod != NULL) |
516 | *coercedTypmod = -1; /* default result on failure */ |
517 | |
518 | /* |
519 | * Scalar-type length coercions are FuncExprs, array-type length coercions |
520 | * are ArrayCoerceExprs |
521 | */ |
522 | if (expr && IsA(expr, FuncExpr)) |
523 | { |
524 | const FuncExpr *func = (const FuncExpr *) expr; |
525 | int nargs; |
526 | Const *second_arg; |
527 | |
528 | /* |
529 | * If it didn't come from a coercion context, reject. |
530 | */ |
531 | if (func->funcformat != COERCE_EXPLICIT_CAST && |
532 | func->funcformat != COERCE_IMPLICIT_CAST) |
533 | return false; |
534 | |
535 | /* |
536 | * If it's not a two-argument or three-argument function with the |
537 | * second argument being an int4 constant, it can't have been created |
538 | * from a length coercion (it must be a type coercion, instead). |
539 | */ |
540 | nargs = list_length(func->args); |
541 | if (nargs < 2 || nargs > 3) |
542 | return false; |
543 | |
544 | second_arg = (Const *) lsecond(func->args); |
545 | if (!IsA(second_arg, Const) || |
546 | second_arg->consttype != INT4OID || |
547 | second_arg->constisnull) |
548 | return false; |
549 | |
550 | /* |
551 | * OK, it is indeed a length-coercion function. |
552 | */ |
553 | if (coercedTypmod != NULL) |
554 | *coercedTypmod = DatumGetInt32(second_arg->constvalue); |
555 | |
556 | return true; |
557 | } |
558 | |
559 | if (expr && IsA(expr, ArrayCoerceExpr)) |
560 | { |
561 | const ArrayCoerceExpr *acoerce = (const ArrayCoerceExpr *) expr; |
562 | |
563 | /* It's not a length coercion unless there's a nondefault typmod */ |
564 | if (acoerce->resulttypmod < 0) |
565 | return false; |
566 | |
567 | /* |
568 | * OK, it is indeed a length-coercion expression. |
569 | */ |
570 | if (coercedTypmod != NULL) |
571 | *coercedTypmod = acoerce->resulttypmod; |
572 | |
573 | return true; |
574 | } |
575 | |
576 | return false; |
577 | } |
578 | |
579 | /* |
580 | * relabel_to_typmod |
581 | * Add a RelabelType node that changes just the typmod of the expression. |
582 | * |
583 | * This is primarily intended to be used during planning. Therefore, it |
584 | * strips any existing RelabelType nodes to maintain the planner's invariant |
585 | * that there are not adjacent RelabelTypes. |
586 | */ |
587 | Node * |
588 | relabel_to_typmod(Node *expr, int32 typmod) |
589 | { |
590 | Oid type = exprType(expr); |
591 | Oid coll = exprCollation(expr); |
592 | |
593 | /* Strip any existing RelabelType node(s) */ |
594 | while (expr && IsA(expr, RelabelType)) |
595 | expr = (Node *) ((RelabelType *) expr)->arg; |
596 | |
597 | /* Apply new typmod, preserving the previous exposed type and collation */ |
598 | return (Node *) makeRelabelType((Expr *) expr, type, typmod, coll, |
599 | COERCE_EXPLICIT_CAST); |
600 | } |
601 | |
602 | /* |
603 | * strip_implicit_coercions: remove implicit coercions at top level of tree |
604 | * |
605 | * This doesn't modify or copy the input expression tree, just return a |
606 | * pointer to a suitable place within it. |
607 | * |
608 | * Note: there isn't any useful thing we can do with a RowExpr here, so |
609 | * just return it unchanged, even if it's marked as an implicit coercion. |
610 | */ |
611 | Node * |
612 | strip_implicit_coercions(Node *node) |
613 | { |
614 | if (node == NULL) |
615 | return NULL; |
616 | if (IsA(node, FuncExpr)) |
617 | { |
618 | FuncExpr *f = (FuncExpr *) node; |
619 | |
620 | if (f->funcformat == COERCE_IMPLICIT_CAST) |
621 | return strip_implicit_coercions(linitial(f->args)); |
622 | } |
623 | else if (IsA(node, RelabelType)) |
624 | { |
625 | RelabelType *r = (RelabelType *) node; |
626 | |
627 | if (r->relabelformat == COERCE_IMPLICIT_CAST) |
628 | return strip_implicit_coercions((Node *) r->arg); |
629 | } |
630 | else if (IsA(node, CoerceViaIO)) |
631 | { |
632 | CoerceViaIO *c = (CoerceViaIO *) node; |
633 | |
634 | if (c->coerceformat == COERCE_IMPLICIT_CAST) |
635 | return strip_implicit_coercions((Node *) c->arg); |
636 | } |
637 | else if (IsA(node, ArrayCoerceExpr)) |
638 | { |
639 | ArrayCoerceExpr *c = (ArrayCoerceExpr *) node; |
640 | |
641 | if (c->coerceformat == COERCE_IMPLICIT_CAST) |
642 | return strip_implicit_coercions((Node *) c->arg); |
643 | } |
644 | else if (IsA(node, ConvertRowtypeExpr)) |
645 | { |
646 | ConvertRowtypeExpr *c = (ConvertRowtypeExpr *) node; |
647 | |
648 | if (c->convertformat == COERCE_IMPLICIT_CAST) |
649 | return strip_implicit_coercions((Node *) c->arg); |
650 | } |
651 | else if (IsA(node, CoerceToDomain)) |
652 | { |
653 | CoerceToDomain *c = (CoerceToDomain *) node; |
654 | |
655 | if (c->coercionformat == COERCE_IMPLICIT_CAST) |
656 | return strip_implicit_coercions((Node *) c->arg); |
657 | } |
658 | return node; |
659 | } |
660 | |
661 | /* |
662 | * expression_returns_set |
663 | * Test whether an expression returns a set result. |
664 | * |
665 | * Because we use expression_tree_walker(), this can also be applied to |
666 | * whole targetlists; it'll produce true if any one of the tlist items |
667 | * returns a set. |
668 | */ |
669 | bool |
670 | expression_returns_set(Node *clause) |
671 | { |
672 | return expression_returns_set_walker(clause, NULL); |
673 | } |
674 | |
675 | static bool |
676 | expression_returns_set_walker(Node *node, void *context) |
677 | { |
678 | if (node == NULL) |
679 | return false; |
680 | if (IsA(node, FuncExpr)) |
681 | { |
682 | FuncExpr *expr = (FuncExpr *) node; |
683 | |
684 | if (expr->funcretset) |
685 | return true; |
686 | /* else fall through to check args */ |
687 | } |
688 | if (IsA(node, OpExpr)) |
689 | { |
690 | OpExpr *expr = (OpExpr *) node; |
691 | |
692 | if (expr->opretset) |
693 | return true; |
694 | /* else fall through to check args */ |
695 | } |
696 | |
697 | /* Avoid recursion for some cases that parser checks not to return a set */ |
698 | if (IsA(node, Aggref)) |
699 | return false; |
700 | if (IsA(node, WindowFunc)) |
701 | return false; |
702 | |
703 | return expression_tree_walker(node, expression_returns_set_walker, |
704 | context); |
705 | } |
706 | |
707 | |
708 | /* |
709 | * exprCollation - |
710 | * returns the Oid of the collation of the expression's result. |
711 | * |
712 | * Note: expression nodes that can invoke functions generally have an |
713 | * "inputcollid" field, which is what the function should use as collation. |
714 | * That is the resolved common collation of the node's inputs. It is often |
715 | * but not always the same as the result collation; in particular, if the |
716 | * function produces a non-collatable result type from collatable inputs |
717 | * or vice versa, the two are different. |
718 | */ |
719 | Oid |
720 | exprCollation(const Node *expr) |
721 | { |
722 | Oid coll; |
723 | |
724 | if (!expr) |
725 | return InvalidOid; |
726 | |
727 | switch (nodeTag(expr)) |
728 | { |
729 | case T_Var: |
730 | coll = ((const Var *) expr)->varcollid; |
731 | break; |
732 | case T_Const: |
733 | coll = ((const Const *) expr)->constcollid; |
734 | break; |
735 | case T_Param: |
736 | coll = ((const Param *) expr)->paramcollid; |
737 | break; |
738 | case T_Aggref: |
739 | coll = ((const Aggref *) expr)->aggcollid; |
740 | break; |
741 | case T_GroupingFunc: |
742 | coll = InvalidOid; |
743 | break; |
744 | case T_WindowFunc: |
745 | coll = ((const WindowFunc *) expr)->wincollid; |
746 | break; |
747 | case T_SubscriptingRef: |
748 | coll = ((const SubscriptingRef *) expr)->refcollid; |
749 | break; |
750 | case T_FuncExpr: |
751 | coll = ((const FuncExpr *) expr)->funccollid; |
752 | break; |
753 | case T_NamedArgExpr: |
754 | coll = exprCollation((Node *) ((const NamedArgExpr *) expr)->arg); |
755 | break; |
756 | case T_OpExpr: |
757 | coll = ((const OpExpr *) expr)->opcollid; |
758 | break; |
759 | case T_DistinctExpr: |
760 | coll = ((const DistinctExpr *) expr)->opcollid; |
761 | break; |
762 | case T_NullIfExpr: |
763 | coll = ((const NullIfExpr *) expr)->opcollid; |
764 | break; |
765 | case T_ScalarArrayOpExpr: |
766 | coll = InvalidOid; /* result is always boolean */ |
767 | break; |
768 | case T_BoolExpr: |
769 | coll = InvalidOid; /* result is always boolean */ |
770 | break; |
771 | case T_SubLink: |
772 | { |
773 | const SubLink *sublink = (const SubLink *) expr; |
774 | |
775 | if (sublink->subLinkType == EXPR_SUBLINK || |
776 | sublink->subLinkType == ARRAY_SUBLINK) |
777 | { |
778 | /* get the collation of subselect's first target column */ |
779 | Query *qtree = (Query *) sublink->subselect; |
780 | TargetEntry *tent; |
781 | |
782 | if (!qtree || !IsA(qtree, Query)) |
783 | elog(ERROR, "cannot get collation for untransformed sublink" ); |
784 | tent = linitial_node(TargetEntry, qtree->targetList); |
785 | Assert(!tent->resjunk); |
786 | coll = exprCollation((Node *) tent->expr); |
787 | /* collation doesn't change if it's converted to array */ |
788 | } |
789 | else |
790 | { |
791 | /* otherwise, result is RECORD or BOOLEAN */ |
792 | coll = InvalidOid; |
793 | } |
794 | } |
795 | break; |
796 | case T_SubPlan: |
797 | { |
798 | const SubPlan *subplan = (const SubPlan *) expr; |
799 | |
800 | if (subplan->subLinkType == EXPR_SUBLINK || |
801 | subplan->subLinkType == ARRAY_SUBLINK) |
802 | { |
803 | /* get the collation of subselect's first target column */ |
804 | coll = subplan->firstColCollation; |
805 | /* collation doesn't change if it's converted to array */ |
806 | } |
807 | else |
808 | { |
809 | /* otherwise, result is RECORD or BOOLEAN */ |
810 | coll = InvalidOid; |
811 | } |
812 | } |
813 | break; |
814 | case T_AlternativeSubPlan: |
815 | { |
816 | const AlternativeSubPlan *asplan = (const AlternativeSubPlan *) expr; |
817 | |
818 | /* subplans should all return the same thing */ |
819 | coll = exprCollation((Node *) linitial(asplan->subplans)); |
820 | } |
821 | break; |
822 | case T_FieldSelect: |
823 | coll = ((const FieldSelect *) expr)->resultcollid; |
824 | break; |
825 | case T_FieldStore: |
826 | coll = InvalidOid; /* result is always composite */ |
827 | break; |
828 | case T_RelabelType: |
829 | coll = ((const RelabelType *) expr)->resultcollid; |
830 | break; |
831 | case T_CoerceViaIO: |
832 | coll = ((const CoerceViaIO *) expr)->resultcollid; |
833 | break; |
834 | case T_ArrayCoerceExpr: |
835 | coll = ((const ArrayCoerceExpr *) expr)->resultcollid; |
836 | break; |
837 | case T_ConvertRowtypeExpr: |
838 | coll = InvalidOid; /* result is always composite */ |
839 | break; |
840 | case T_CollateExpr: |
841 | coll = ((const CollateExpr *) expr)->collOid; |
842 | break; |
843 | case T_CaseExpr: |
844 | coll = ((const CaseExpr *) expr)->casecollid; |
845 | break; |
846 | case T_CaseTestExpr: |
847 | coll = ((const CaseTestExpr *) expr)->collation; |
848 | break; |
849 | case T_ArrayExpr: |
850 | coll = ((const ArrayExpr *) expr)->array_collid; |
851 | break; |
852 | case T_RowExpr: |
853 | coll = InvalidOid; /* result is always composite */ |
854 | break; |
855 | case T_RowCompareExpr: |
856 | coll = InvalidOid; /* result is always boolean */ |
857 | break; |
858 | case T_CoalesceExpr: |
859 | coll = ((const CoalesceExpr *) expr)->coalescecollid; |
860 | break; |
861 | case T_MinMaxExpr: |
862 | coll = ((const MinMaxExpr *) expr)->minmaxcollid; |
863 | break; |
864 | case T_SQLValueFunction: |
865 | /* Returns either NAME or a non-collatable type */ |
866 | if (((const SQLValueFunction *) expr)->type == NAMEOID) |
867 | coll = C_COLLATION_OID; |
868 | else |
869 | coll = InvalidOid; |
870 | break; |
871 | case T_XmlExpr: |
872 | |
873 | /* |
874 | * XMLSERIALIZE returns text from non-collatable inputs, so its |
875 | * collation is always default. The other cases return boolean or |
876 | * XML, which are non-collatable. |
877 | */ |
878 | if (((const XmlExpr *) expr)->op == IS_XMLSERIALIZE) |
879 | coll = DEFAULT_COLLATION_OID; |
880 | else |
881 | coll = InvalidOid; |
882 | break; |
883 | case T_NullTest: |
884 | coll = InvalidOid; /* result is always boolean */ |
885 | break; |
886 | case T_BooleanTest: |
887 | coll = InvalidOid; /* result is always boolean */ |
888 | break; |
889 | case T_CoerceToDomain: |
890 | coll = ((const CoerceToDomain *) expr)->resultcollid; |
891 | break; |
892 | case T_CoerceToDomainValue: |
893 | coll = ((const CoerceToDomainValue *) expr)->collation; |
894 | break; |
895 | case T_SetToDefault: |
896 | coll = ((const SetToDefault *) expr)->collation; |
897 | break; |
898 | case T_CurrentOfExpr: |
899 | coll = InvalidOid; /* result is always boolean */ |
900 | break; |
901 | case T_NextValueExpr: |
902 | coll = InvalidOid; /* result is always an integer type */ |
903 | break; |
904 | case T_InferenceElem: |
905 | coll = exprCollation((Node *) ((const InferenceElem *) expr)->expr); |
906 | break; |
907 | case T_PlaceHolderVar: |
908 | coll = exprCollation((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
909 | break; |
910 | default: |
911 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
912 | coll = InvalidOid; /* keep compiler quiet */ |
913 | break; |
914 | } |
915 | return coll; |
916 | } |
917 | |
918 | /* |
919 | * exprInputCollation - |
920 | * returns the Oid of the collation a function should use, if available. |
921 | * |
922 | * Result is InvalidOid if the node type doesn't store this information. |
923 | */ |
924 | Oid |
925 | exprInputCollation(const Node *expr) |
926 | { |
927 | Oid coll; |
928 | |
929 | if (!expr) |
930 | return InvalidOid; |
931 | |
932 | switch (nodeTag(expr)) |
933 | { |
934 | case T_Aggref: |
935 | coll = ((const Aggref *) expr)->inputcollid; |
936 | break; |
937 | case T_WindowFunc: |
938 | coll = ((const WindowFunc *) expr)->inputcollid; |
939 | break; |
940 | case T_FuncExpr: |
941 | coll = ((const FuncExpr *) expr)->inputcollid; |
942 | break; |
943 | case T_OpExpr: |
944 | coll = ((const OpExpr *) expr)->inputcollid; |
945 | break; |
946 | case T_DistinctExpr: |
947 | coll = ((const DistinctExpr *) expr)->inputcollid; |
948 | break; |
949 | case T_NullIfExpr: |
950 | coll = ((const NullIfExpr *) expr)->inputcollid; |
951 | break; |
952 | case T_ScalarArrayOpExpr: |
953 | coll = ((const ScalarArrayOpExpr *) expr)->inputcollid; |
954 | break; |
955 | case T_MinMaxExpr: |
956 | coll = ((const MinMaxExpr *) expr)->inputcollid; |
957 | break; |
958 | default: |
959 | coll = InvalidOid; |
960 | break; |
961 | } |
962 | return coll; |
963 | } |
964 | |
965 | /* |
966 | * exprSetCollation - |
967 | * Assign collation information to an expression tree node. |
968 | * |
969 | * Note: since this is only used during parse analysis, we don't need to |
970 | * worry about subplans or PlaceHolderVars. |
971 | */ |
972 | void |
973 | exprSetCollation(Node *expr, Oid collation) |
974 | { |
975 | switch (nodeTag(expr)) |
976 | { |
977 | case T_Var: |
978 | ((Var *) expr)->varcollid = collation; |
979 | break; |
980 | case T_Const: |
981 | ((Const *) expr)->constcollid = collation; |
982 | break; |
983 | case T_Param: |
984 | ((Param *) expr)->paramcollid = collation; |
985 | break; |
986 | case T_Aggref: |
987 | ((Aggref *) expr)->aggcollid = collation; |
988 | break; |
989 | case T_GroupingFunc: |
990 | Assert(!OidIsValid(collation)); |
991 | break; |
992 | case T_WindowFunc: |
993 | ((WindowFunc *) expr)->wincollid = collation; |
994 | break; |
995 | case T_SubscriptingRef: |
996 | ((SubscriptingRef *) expr)->refcollid = collation; |
997 | break; |
998 | case T_FuncExpr: |
999 | ((FuncExpr *) expr)->funccollid = collation; |
1000 | break; |
1001 | case T_NamedArgExpr: |
1002 | Assert(collation == exprCollation((Node *) ((NamedArgExpr *) expr)->arg)); |
1003 | break; |
1004 | case T_OpExpr: |
1005 | ((OpExpr *) expr)->opcollid = collation; |
1006 | break; |
1007 | case T_DistinctExpr: |
1008 | ((DistinctExpr *) expr)->opcollid = collation; |
1009 | break; |
1010 | case T_NullIfExpr: |
1011 | ((NullIfExpr *) expr)->opcollid = collation; |
1012 | break; |
1013 | case T_ScalarArrayOpExpr: |
1014 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1015 | break; |
1016 | case T_BoolExpr: |
1017 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1018 | break; |
1019 | case T_SubLink: |
1020 | #ifdef USE_ASSERT_CHECKING |
1021 | { |
1022 | SubLink *sublink = (SubLink *) expr; |
1023 | |
1024 | if (sublink->subLinkType == EXPR_SUBLINK || |
1025 | sublink->subLinkType == ARRAY_SUBLINK) |
1026 | { |
1027 | /* get the collation of subselect's first target column */ |
1028 | Query *qtree = (Query *) sublink->subselect; |
1029 | TargetEntry *tent; |
1030 | |
1031 | if (!qtree || !IsA(qtree, Query)) |
1032 | elog(ERROR, "cannot set collation for untransformed sublink" ); |
1033 | tent = linitial_node(TargetEntry, qtree->targetList); |
1034 | Assert(!tent->resjunk); |
1035 | Assert(collation == exprCollation((Node *) tent->expr)); |
1036 | } |
1037 | else |
1038 | { |
1039 | /* otherwise, result is RECORD or BOOLEAN */ |
1040 | Assert(!OidIsValid(collation)); |
1041 | } |
1042 | } |
1043 | #endif /* USE_ASSERT_CHECKING */ |
1044 | break; |
1045 | case T_FieldSelect: |
1046 | ((FieldSelect *) expr)->resultcollid = collation; |
1047 | break; |
1048 | case T_FieldStore: |
1049 | Assert(!OidIsValid(collation)); /* result is always composite */ |
1050 | break; |
1051 | case T_RelabelType: |
1052 | ((RelabelType *) expr)->resultcollid = collation; |
1053 | break; |
1054 | case T_CoerceViaIO: |
1055 | ((CoerceViaIO *) expr)->resultcollid = collation; |
1056 | break; |
1057 | case T_ArrayCoerceExpr: |
1058 | ((ArrayCoerceExpr *) expr)->resultcollid = collation; |
1059 | break; |
1060 | case T_ConvertRowtypeExpr: |
1061 | Assert(!OidIsValid(collation)); /* result is always composite */ |
1062 | break; |
1063 | case T_CaseExpr: |
1064 | ((CaseExpr *) expr)->casecollid = collation; |
1065 | break; |
1066 | case T_ArrayExpr: |
1067 | ((ArrayExpr *) expr)->array_collid = collation; |
1068 | break; |
1069 | case T_RowExpr: |
1070 | Assert(!OidIsValid(collation)); /* result is always composite */ |
1071 | break; |
1072 | case T_RowCompareExpr: |
1073 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1074 | break; |
1075 | case T_CoalesceExpr: |
1076 | ((CoalesceExpr *) expr)->coalescecollid = collation; |
1077 | break; |
1078 | case T_MinMaxExpr: |
1079 | ((MinMaxExpr *) expr)->minmaxcollid = collation; |
1080 | break; |
1081 | case T_SQLValueFunction: |
1082 | Assert((((SQLValueFunction *) expr)->type == NAMEOID) ? |
1083 | (collation == C_COLLATION_OID) : |
1084 | (collation == InvalidOid)); |
1085 | break; |
1086 | case T_XmlExpr: |
1087 | Assert((((XmlExpr *) expr)->op == IS_XMLSERIALIZE) ? |
1088 | (collation == DEFAULT_COLLATION_OID) : |
1089 | (collation == InvalidOid)); |
1090 | break; |
1091 | case T_NullTest: |
1092 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1093 | break; |
1094 | case T_BooleanTest: |
1095 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1096 | break; |
1097 | case T_CoerceToDomain: |
1098 | ((CoerceToDomain *) expr)->resultcollid = collation; |
1099 | break; |
1100 | case T_CoerceToDomainValue: |
1101 | ((CoerceToDomainValue *) expr)->collation = collation; |
1102 | break; |
1103 | case T_SetToDefault: |
1104 | ((SetToDefault *) expr)->collation = collation; |
1105 | break; |
1106 | case T_CurrentOfExpr: |
1107 | Assert(!OidIsValid(collation)); /* result is always boolean */ |
1108 | break; |
1109 | case T_NextValueExpr: |
1110 | Assert(!OidIsValid(collation)); /* result is always an integer |
1111 | * type */ |
1112 | break; |
1113 | default: |
1114 | elog(ERROR, "unrecognized node type: %d" , (int) nodeTag(expr)); |
1115 | break; |
1116 | } |
1117 | } |
1118 | |
1119 | /* |
1120 | * exprSetInputCollation - |
1121 | * Assign input-collation information to an expression tree node. |
1122 | * |
1123 | * This is a no-op for node types that don't store their input collation. |
1124 | * Note we omit RowCompareExpr, which needs special treatment since it |
1125 | * contains multiple input collation OIDs. |
1126 | */ |
1127 | void |
1128 | exprSetInputCollation(Node *expr, Oid inputcollation) |
1129 | { |
1130 | switch (nodeTag(expr)) |
1131 | { |
1132 | case T_Aggref: |
1133 | ((Aggref *) expr)->inputcollid = inputcollation; |
1134 | break; |
1135 | case T_WindowFunc: |
1136 | ((WindowFunc *) expr)->inputcollid = inputcollation; |
1137 | break; |
1138 | case T_FuncExpr: |
1139 | ((FuncExpr *) expr)->inputcollid = inputcollation; |
1140 | break; |
1141 | case T_OpExpr: |
1142 | ((OpExpr *) expr)->inputcollid = inputcollation; |
1143 | break; |
1144 | case T_DistinctExpr: |
1145 | ((DistinctExpr *) expr)->inputcollid = inputcollation; |
1146 | break; |
1147 | case T_NullIfExpr: |
1148 | ((NullIfExpr *) expr)->inputcollid = inputcollation; |
1149 | break; |
1150 | case T_ScalarArrayOpExpr: |
1151 | ((ScalarArrayOpExpr *) expr)->inputcollid = inputcollation; |
1152 | break; |
1153 | case T_MinMaxExpr: |
1154 | ((MinMaxExpr *) expr)->inputcollid = inputcollation; |
1155 | break; |
1156 | default: |
1157 | break; |
1158 | } |
1159 | } |
1160 | |
1161 | |
1162 | /* |
1163 | * exprLocation - |
1164 | * returns the parse location of an expression tree, for error reports |
1165 | * |
1166 | * -1 is returned if the location can't be determined. |
1167 | * |
1168 | * For expressions larger than a single token, the intent here is to |
1169 | * return the location of the expression's leftmost token, not necessarily |
1170 | * the topmost Node's location field. For example, an OpExpr's location |
1171 | * field will point at the operator name, but if it is not a prefix operator |
1172 | * then we should return the location of the left-hand operand instead. |
1173 | * The reason is that we want to reference the entire expression not just |
1174 | * that operator, and pointing to its start seems to be the most natural way. |
1175 | * |
1176 | * The location is not perfect --- for example, since the grammar doesn't |
1177 | * explicitly represent parentheses in the parsetree, given something that |
1178 | * had been written "(a + b) * c" we are going to point at "a" not "(". |
1179 | * But it should be plenty good enough for error reporting purposes. |
1180 | * |
1181 | * You might think that this code is overly general, for instance why check |
1182 | * the operands of a FuncExpr node, when the function name can be expected |
1183 | * to be to the left of them? There are a couple of reasons. The grammar |
1184 | * sometimes builds expressions that aren't quite what the user wrote; |
1185 | * for instance x IS NOT BETWEEN ... becomes a NOT-expression whose keyword |
1186 | * pointer is to the right of its leftmost argument. Also, nodes that were |
1187 | * inserted implicitly by parse analysis (such as FuncExprs for implicit |
1188 | * coercions) will have location -1, and so we can have odd combinations of |
1189 | * known and unknown locations in a tree. |
1190 | */ |
1191 | int |
1192 | exprLocation(const Node *expr) |
1193 | { |
1194 | int loc; |
1195 | |
1196 | if (expr == NULL) |
1197 | return -1; |
1198 | switch (nodeTag(expr)) |
1199 | { |
1200 | case T_RangeVar: |
1201 | loc = ((const RangeVar *) expr)->location; |
1202 | break; |
1203 | case T_TableFunc: |
1204 | loc = ((const TableFunc *) expr)->location; |
1205 | break; |
1206 | case T_Var: |
1207 | loc = ((const Var *) expr)->location; |
1208 | break; |
1209 | case T_Const: |
1210 | loc = ((const Const *) expr)->location; |
1211 | break; |
1212 | case T_Param: |
1213 | loc = ((const Param *) expr)->location; |
1214 | break; |
1215 | case T_Aggref: |
1216 | /* function name should always be the first thing */ |
1217 | loc = ((const Aggref *) expr)->location; |
1218 | break; |
1219 | case T_GroupingFunc: |
1220 | loc = ((const GroupingFunc *) expr)->location; |
1221 | break; |
1222 | case T_WindowFunc: |
1223 | /* function name should always be the first thing */ |
1224 | loc = ((const WindowFunc *) expr)->location; |
1225 | break; |
1226 | case T_SubscriptingRef: |
1227 | /* just use container argument's location */ |
1228 | loc = exprLocation((Node *) ((const SubscriptingRef *) expr)->refexpr); |
1229 | break; |
1230 | case T_FuncExpr: |
1231 | { |
1232 | const FuncExpr *fexpr = (const FuncExpr *) expr; |
1233 | |
1234 | /* consider both function name and leftmost arg */ |
1235 | loc = leftmostLoc(fexpr->location, |
1236 | exprLocation((Node *) fexpr->args)); |
1237 | } |
1238 | break; |
1239 | case T_NamedArgExpr: |
1240 | { |
1241 | const NamedArgExpr *na = (const NamedArgExpr *) expr; |
1242 | |
1243 | /* consider both argument name and value */ |
1244 | loc = leftmostLoc(na->location, |
1245 | exprLocation((Node *) na->arg)); |
1246 | } |
1247 | break; |
1248 | case T_OpExpr: |
1249 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
1250 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
1251 | { |
1252 | const OpExpr *opexpr = (const OpExpr *) expr; |
1253 | |
1254 | /* consider both operator name and leftmost arg */ |
1255 | loc = leftmostLoc(opexpr->location, |
1256 | exprLocation((Node *) opexpr->args)); |
1257 | } |
1258 | break; |
1259 | case T_ScalarArrayOpExpr: |
1260 | { |
1261 | const ScalarArrayOpExpr *saopexpr = (const ScalarArrayOpExpr *) expr; |
1262 | |
1263 | /* consider both operator name and leftmost arg */ |
1264 | loc = leftmostLoc(saopexpr->location, |
1265 | exprLocation((Node *) saopexpr->args)); |
1266 | } |
1267 | break; |
1268 | case T_BoolExpr: |
1269 | { |
1270 | const BoolExpr *bexpr = (const BoolExpr *) expr; |
1271 | |
1272 | /* |
1273 | * Same as above, to handle either NOT or AND/OR. We can't |
1274 | * special-case NOT because of the way that it's used for |
1275 | * things like IS NOT BETWEEN. |
1276 | */ |
1277 | loc = leftmostLoc(bexpr->location, |
1278 | exprLocation((Node *) bexpr->args)); |
1279 | } |
1280 | break; |
1281 | case T_SubLink: |
1282 | { |
1283 | const SubLink *sublink = (const SubLink *) expr; |
1284 | |
1285 | /* check the testexpr, if any, and the operator/keyword */ |
1286 | loc = leftmostLoc(exprLocation(sublink->testexpr), |
1287 | sublink->location); |
1288 | } |
1289 | break; |
1290 | case T_FieldSelect: |
1291 | /* just use argument's location */ |
1292 | loc = exprLocation((Node *) ((const FieldSelect *) expr)->arg); |
1293 | break; |
1294 | case T_FieldStore: |
1295 | /* just use argument's location */ |
1296 | loc = exprLocation((Node *) ((const FieldStore *) expr)->arg); |
1297 | break; |
1298 | case T_RelabelType: |
1299 | { |
1300 | const RelabelType *rexpr = (const RelabelType *) expr; |
1301 | |
1302 | /* Much as above */ |
1303 | loc = leftmostLoc(rexpr->location, |
1304 | exprLocation((Node *) rexpr->arg)); |
1305 | } |
1306 | break; |
1307 | case T_CoerceViaIO: |
1308 | { |
1309 | const CoerceViaIO *cexpr = (const CoerceViaIO *) expr; |
1310 | |
1311 | /* Much as above */ |
1312 | loc = leftmostLoc(cexpr->location, |
1313 | exprLocation((Node *) cexpr->arg)); |
1314 | } |
1315 | break; |
1316 | case T_ArrayCoerceExpr: |
1317 | { |
1318 | const ArrayCoerceExpr *cexpr = (const ArrayCoerceExpr *) expr; |
1319 | |
1320 | /* Much as above */ |
1321 | loc = leftmostLoc(cexpr->location, |
1322 | exprLocation((Node *) cexpr->arg)); |
1323 | } |
1324 | break; |
1325 | case T_ConvertRowtypeExpr: |
1326 | { |
1327 | const ConvertRowtypeExpr *cexpr = (const ConvertRowtypeExpr *) expr; |
1328 | |
1329 | /* Much as above */ |
1330 | loc = leftmostLoc(cexpr->location, |
1331 | exprLocation((Node *) cexpr->arg)); |
1332 | } |
1333 | break; |
1334 | case T_CollateExpr: |
1335 | /* just use argument's location */ |
1336 | loc = exprLocation((Node *) ((const CollateExpr *) expr)->arg); |
1337 | break; |
1338 | case T_CaseExpr: |
1339 | /* CASE keyword should always be the first thing */ |
1340 | loc = ((const CaseExpr *) expr)->location; |
1341 | break; |
1342 | case T_CaseWhen: |
1343 | /* WHEN keyword should always be the first thing */ |
1344 | loc = ((const CaseWhen *) expr)->location; |
1345 | break; |
1346 | case T_ArrayExpr: |
1347 | /* the location points at ARRAY or [, which must be leftmost */ |
1348 | loc = ((const ArrayExpr *) expr)->location; |
1349 | break; |
1350 | case T_RowExpr: |
1351 | /* the location points at ROW or (, which must be leftmost */ |
1352 | loc = ((const RowExpr *) expr)->location; |
1353 | break; |
1354 | case T_RowCompareExpr: |
1355 | /* just use leftmost argument's location */ |
1356 | loc = exprLocation((Node *) ((const RowCompareExpr *) expr)->largs); |
1357 | break; |
1358 | case T_CoalesceExpr: |
1359 | /* COALESCE keyword should always be the first thing */ |
1360 | loc = ((const CoalesceExpr *) expr)->location; |
1361 | break; |
1362 | case T_MinMaxExpr: |
1363 | /* GREATEST/LEAST keyword should always be the first thing */ |
1364 | loc = ((const MinMaxExpr *) expr)->location; |
1365 | break; |
1366 | case T_SQLValueFunction: |
1367 | /* function keyword should always be the first thing */ |
1368 | loc = ((const SQLValueFunction *) expr)->location; |
1369 | break; |
1370 | case T_XmlExpr: |
1371 | { |
1372 | const XmlExpr *xexpr = (const XmlExpr *) expr; |
1373 | |
1374 | /* consider both function name and leftmost arg */ |
1375 | loc = leftmostLoc(xexpr->location, |
1376 | exprLocation((Node *) xexpr->args)); |
1377 | } |
1378 | break; |
1379 | case T_NullTest: |
1380 | { |
1381 | const NullTest *nexpr = (const NullTest *) expr; |
1382 | |
1383 | /* Much as above */ |
1384 | loc = leftmostLoc(nexpr->location, |
1385 | exprLocation((Node *) nexpr->arg)); |
1386 | } |
1387 | break; |
1388 | case T_BooleanTest: |
1389 | { |
1390 | const BooleanTest *bexpr = (const BooleanTest *) expr; |
1391 | |
1392 | /* Much as above */ |
1393 | loc = leftmostLoc(bexpr->location, |
1394 | exprLocation((Node *) bexpr->arg)); |
1395 | } |
1396 | break; |
1397 | case T_CoerceToDomain: |
1398 | { |
1399 | const CoerceToDomain *cexpr = (const CoerceToDomain *) expr; |
1400 | |
1401 | /* Much as above */ |
1402 | loc = leftmostLoc(cexpr->location, |
1403 | exprLocation((Node *) cexpr->arg)); |
1404 | } |
1405 | break; |
1406 | case T_CoerceToDomainValue: |
1407 | loc = ((const CoerceToDomainValue *) expr)->location; |
1408 | break; |
1409 | case T_SetToDefault: |
1410 | loc = ((const SetToDefault *) expr)->location; |
1411 | break; |
1412 | case T_TargetEntry: |
1413 | /* just use argument's location */ |
1414 | loc = exprLocation((Node *) ((const TargetEntry *) expr)->expr); |
1415 | break; |
1416 | case T_IntoClause: |
1417 | /* use the contained RangeVar's location --- close enough */ |
1418 | loc = exprLocation((Node *) ((const IntoClause *) expr)->rel); |
1419 | break; |
1420 | case T_List: |
1421 | { |
1422 | /* report location of first list member that has a location */ |
1423 | ListCell *lc; |
1424 | |
1425 | loc = -1; /* just to suppress compiler warning */ |
1426 | foreach(lc, (const List *) expr) |
1427 | { |
1428 | loc = exprLocation((Node *) lfirst(lc)); |
1429 | if (loc >= 0) |
1430 | break; |
1431 | } |
1432 | } |
1433 | break; |
1434 | case T_A_Expr: |
1435 | { |
1436 | const A_Expr *aexpr = (const A_Expr *) expr; |
1437 | |
1438 | /* use leftmost of operator or left operand (if any) */ |
1439 | /* we assume right operand can't be to left of operator */ |
1440 | loc = leftmostLoc(aexpr->location, |
1441 | exprLocation(aexpr->lexpr)); |
1442 | } |
1443 | break; |
1444 | case T_ColumnRef: |
1445 | loc = ((const ColumnRef *) expr)->location; |
1446 | break; |
1447 | case T_ParamRef: |
1448 | loc = ((const ParamRef *) expr)->location; |
1449 | break; |
1450 | case T_A_Const: |
1451 | loc = ((const A_Const *) expr)->location; |
1452 | break; |
1453 | case T_FuncCall: |
1454 | { |
1455 | const FuncCall *fc = (const FuncCall *) expr; |
1456 | |
1457 | /* consider both function name and leftmost arg */ |
1458 | /* (we assume any ORDER BY nodes must be to right of name) */ |
1459 | loc = leftmostLoc(fc->location, |
1460 | exprLocation((Node *) fc->args)); |
1461 | } |
1462 | break; |
1463 | case T_A_ArrayExpr: |
1464 | /* the location points at ARRAY or [, which must be leftmost */ |
1465 | loc = ((const A_ArrayExpr *) expr)->location; |
1466 | break; |
1467 | case T_ResTarget: |
1468 | /* we need not examine the contained expression (if any) */ |
1469 | loc = ((const ResTarget *) expr)->location; |
1470 | break; |
1471 | case T_MultiAssignRef: |
1472 | loc = exprLocation(((const MultiAssignRef *) expr)->source); |
1473 | break; |
1474 | case T_TypeCast: |
1475 | { |
1476 | const TypeCast *tc = (const TypeCast *) expr; |
1477 | |
1478 | /* |
1479 | * This could represent CAST(), ::, or TypeName 'literal', so |
1480 | * any of the components might be leftmost. |
1481 | */ |
1482 | loc = exprLocation(tc->arg); |
1483 | loc = leftmostLoc(loc, tc->typeName->location); |
1484 | loc = leftmostLoc(loc, tc->location); |
1485 | } |
1486 | break; |
1487 | case T_CollateClause: |
1488 | /* just use argument's location */ |
1489 | loc = exprLocation(((const CollateClause *) expr)->arg); |
1490 | break; |
1491 | case T_SortBy: |
1492 | /* just use argument's location (ignore operator, if any) */ |
1493 | loc = exprLocation(((const SortBy *) expr)->node); |
1494 | break; |
1495 | case T_WindowDef: |
1496 | loc = ((const WindowDef *) expr)->location; |
1497 | break; |
1498 | case T_RangeTableSample: |
1499 | loc = ((const RangeTableSample *) expr)->location; |
1500 | break; |
1501 | case T_TypeName: |
1502 | loc = ((const TypeName *) expr)->location; |
1503 | break; |
1504 | case T_ColumnDef: |
1505 | loc = ((const ColumnDef *) expr)->location; |
1506 | break; |
1507 | case T_Constraint: |
1508 | loc = ((const Constraint *) expr)->location; |
1509 | break; |
1510 | case T_FunctionParameter: |
1511 | /* just use typename's location */ |
1512 | loc = exprLocation((Node *) ((const FunctionParameter *) expr)->argType); |
1513 | break; |
1514 | case T_XmlSerialize: |
1515 | /* XMLSERIALIZE keyword should always be the first thing */ |
1516 | loc = ((const XmlSerialize *) expr)->location; |
1517 | break; |
1518 | case T_GroupingSet: |
1519 | loc = ((const GroupingSet *) expr)->location; |
1520 | break; |
1521 | case T_WithClause: |
1522 | loc = ((const WithClause *) expr)->location; |
1523 | break; |
1524 | case T_InferClause: |
1525 | loc = ((const InferClause *) expr)->location; |
1526 | break; |
1527 | case T_OnConflictClause: |
1528 | loc = ((const OnConflictClause *) expr)->location; |
1529 | break; |
1530 | case T_CommonTableExpr: |
1531 | loc = ((const CommonTableExpr *) expr)->location; |
1532 | break; |
1533 | case T_PlaceHolderVar: |
1534 | /* just use argument's location */ |
1535 | loc = exprLocation((Node *) ((const PlaceHolderVar *) expr)->phexpr); |
1536 | break; |
1537 | case T_InferenceElem: |
1538 | /* just use nested expr's location */ |
1539 | loc = exprLocation((Node *) ((const InferenceElem *) expr)->expr); |
1540 | break; |
1541 | case T_PartitionElem: |
1542 | loc = ((const PartitionElem *) expr)->location; |
1543 | break; |
1544 | case T_PartitionSpec: |
1545 | loc = ((const PartitionSpec *) expr)->location; |
1546 | break; |
1547 | case T_PartitionBoundSpec: |
1548 | loc = ((const PartitionBoundSpec *) expr)->location; |
1549 | break; |
1550 | case T_PartitionRangeDatum: |
1551 | loc = ((const PartitionRangeDatum *) expr)->location; |
1552 | break; |
1553 | default: |
1554 | /* for any other node type it's just unknown... */ |
1555 | loc = -1; |
1556 | break; |
1557 | } |
1558 | return loc; |
1559 | } |
1560 | |
1561 | /* |
1562 | * leftmostLoc - support for exprLocation |
1563 | * |
1564 | * Take the minimum of two parse location values, but ignore unknowns |
1565 | */ |
1566 | static int |
1567 | leftmostLoc(int loc1, int loc2) |
1568 | { |
1569 | if (loc1 < 0) |
1570 | return loc2; |
1571 | else if (loc2 < 0) |
1572 | return loc1; |
1573 | else |
1574 | return Min(loc1, loc2); |
1575 | } |
1576 | |
1577 | |
1578 | /* |
1579 | * fix_opfuncids |
1580 | * Calculate opfuncid field from opno for each OpExpr node in given tree. |
1581 | * The given tree can be anything expression_tree_walker handles. |
1582 | * |
1583 | * The argument is modified in-place. (This is OK since we'd want the |
1584 | * same change for any node, even if it gets visited more than once due to |
1585 | * shared structure.) |
1586 | */ |
1587 | void |
1588 | fix_opfuncids(Node *node) |
1589 | { |
1590 | /* This tree walk requires no special setup, so away we go... */ |
1591 | fix_opfuncids_walker(node, NULL); |
1592 | } |
1593 | |
1594 | static bool |
1595 | fix_opfuncids_walker(Node *node, void *context) |
1596 | { |
1597 | if (node == NULL) |
1598 | return false; |
1599 | if (IsA(node, OpExpr)) |
1600 | set_opfuncid((OpExpr *) node); |
1601 | else if (IsA(node, DistinctExpr)) |
1602 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
1603 | else if (IsA(node, NullIfExpr)) |
1604 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
1605 | else if (IsA(node, ScalarArrayOpExpr)) |
1606 | set_sa_opfuncid((ScalarArrayOpExpr *) node); |
1607 | return expression_tree_walker(node, fix_opfuncids_walker, context); |
1608 | } |
1609 | |
1610 | /* |
1611 | * set_opfuncid |
1612 | * Set the opfuncid (procedure OID) in an OpExpr node, |
1613 | * if it hasn't been set already. |
1614 | * |
1615 | * Because of struct equivalence, this can also be used for |
1616 | * DistinctExpr and NullIfExpr nodes. |
1617 | */ |
1618 | void |
1619 | set_opfuncid(OpExpr *opexpr) |
1620 | { |
1621 | if (opexpr->opfuncid == InvalidOid) |
1622 | opexpr->opfuncid = get_opcode(opexpr->opno); |
1623 | } |
1624 | |
1625 | /* |
1626 | * set_sa_opfuncid |
1627 | * As above, for ScalarArrayOpExpr nodes. |
1628 | */ |
1629 | void |
1630 | set_sa_opfuncid(ScalarArrayOpExpr *opexpr) |
1631 | { |
1632 | if (opexpr->opfuncid == InvalidOid) |
1633 | opexpr->opfuncid = get_opcode(opexpr->opno); |
1634 | } |
1635 | |
1636 | |
1637 | /* |
1638 | * check_functions_in_node - |
1639 | * apply checker() to each function OID contained in given expression node |
1640 | * |
1641 | * Returns true if the checker() function does; for nodes representing more |
1642 | * than one function call, returns true if the checker() function does so |
1643 | * for any of those functions. Returns false if node does not invoke any |
1644 | * SQL-visible function. Caller must not pass node == NULL. |
1645 | * |
1646 | * This function examines only the given node; it does not recurse into any |
1647 | * sub-expressions. Callers typically prefer to keep control of the recursion |
1648 | * for themselves, in case additional checks should be made, or because they |
1649 | * have special rules about which parts of the tree need to be visited. |
1650 | * |
1651 | * Note: we ignore MinMaxExpr, SQLValueFunction, XmlExpr, CoerceToDomain, |
1652 | * and NextValueExpr nodes, because they do not contain SQL function OIDs. |
1653 | * However, they can invoke SQL-visible functions, so callers should take |
1654 | * thought about how to treat them. |
1655 | */ |
1656 | bool |
1657 | check_functions_in_node(Node *node, check_function_callback checker, |
1658 | void *context) |
1659 | { |
1660 | switch (nodeTag(node)) |
1661 | { |
1662 | case T_Aggref: |
1663 | { |
1664 | Aggref *expr = (Aggref *) node; |
1665 | |
1666 | if (checker(expr->aggfnoid, context)) |
1667 | return true; |
1668 | } |
1669 | break; |
1670 | case T_WindowFunc: |
1671 | { |
1672 | WindowFunc *expr = (WindowFunc *) node; |
1673 | |
1674 | if (checker(expr->winfnoid, context)) |
1675 | return true; |
1676 | } |
1677 | break; |
1678 | case T_FuncExpr: |
1679 | { |
1680 | FuncExpr *expr = (FuncExpr *) node; |
1681 | |
1682 | if (checker(expr->funcid, context)) |
1683 | return true; |
1684 | } |
1685 | break; |
1686 | case T_OpExpr: |
1687 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
1688 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
1689 | { |
1690 | OpExpr *expr = (OpExpr *) node; |
1691 | |
1692 | /* Set opfuncid if it wasn't set already */ |
1693 | set_opfuncid(expr); |
1694 | if (checker(expr->opfuncid, context)) |
1695 | return true; |
1696 | } |
1697 | break; |
1698 | case T_ScalarArrayOpExpr: |
1699 | { |
1700 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
1701 | |
1702 | set_sa_opfuncid(expr); |
1703 | if (checker(expr->opfuncid, context)) |
1704 | return true; |
1705 | } |
1706 | break; |
1707 | case T_CoerceViaIO: |
1708 | { |
1709 | CoerceViaIO *expr = (CoerceViaIO *) node; |
1710 | Oid iofunc; |
1711 | Oid typioparam; |
1712 | bool typisvarlena; |
1713 | |
1714 | /* check the result type's input function */ |
1715 | getTypeInputInfo(expr->resulttype, |
1716 | &iofunc, &typioparam); |
1717 | if (checker(iofunc, context)) |
1718 | return true; |
1719 | /* check the input type's output function */ |
1720 | getTypeOutputInfo(exprType((Node *) expr->arg), |
1721 | &iofunc, &typisvarlena); |
1722 | if (checker(iofunc, context)) |
1723 | return true; |
1724 | } |
1725 | break; |
1726 | case T_RowCompareExpr: |
1727 | { |
1728 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
1729 | ListCell *opid; |
1730 | |
1731 | foreach(opid, rcexpr->opnos) |
1732 | { |
1733 | Oid opfuncid = get_opcode(lfirst_oid(opid)); |
1734 | |
1735 | if (checker(opfuncid, context)) |
1736 | return true; |
1737 | } |
1738 | } |
1739 | break; |
1740 | default: |
1741 | break; |
1742 | } |
1743 | return false; |
1744 | } |
1745 | |
1746 | |
1747 | /* |
1748 | * Standard expression-tree walking support |
1749 | * |
1750 | * We used to have near-duplicate code in many different routines that |
1751 | * understood how to recurse through an expression node tree. That was |
1752 | * a pain to maintain, and we frequently had bugs due to some particular |
1753 | * routine neglecting to support a particular node type. In most cases, |
1754 | * these routines only actually care about certain node types, and don't |
1755 | * care about other types except insofar as they have to recurse through |
1756 | * non-primitive node types. Therefore, we now provide generic tree-walking |
1757 | * logic to consolidate the redundant "boilerplate" code. There are |
1758 | * two versions: expression_tree_walker() and expression_tree_mutator(). |
1759 | */ |
1760 | |
1761 | /* |
1762 | * expression_tree_walker() is designed to support routines that traverse |
1763 | * a tree in a read-only fashion (although it will also work for routines |
1764 | * that modify nodes in-place but never add/delete/replace nodes). |
1765 | * A walker routine should look like this: |
1766 | * |
1767 | * bool my_walker (Node *node, my_struct *context) |
1768 | * { |
1769 | * if (node == NULL) |
1770 | * return false; |
1771 | * // check for nodes that special work is required for, eg: |
1772 | * if (IsA(node, Var)) |
1773 | * { |
1774 | * ... do special actions for Var nodes |
1775 | * } |
1776 | * else if (IsA(node, ...)) |
1777 | * { |
1778 | * ... do special actions for other node types |
1779 | * } |
1780 | * // for any node type not specially processed, do: |
1781 | * return expression_tree_walker(node, my_walker, (void *) context); |
1782 | * } |
1783 | * |
1784 | * The "context" argument points to a struct that holds whatever context |
1785 | * information the walker routine needs --- it can be used to return data |
1786 | * gathered by the walker, too. This argument is not touched by |
1787 | * expression_tree_walker, but it is passed down to recursive sub-invocations |
1788 | * of my_walker. The tree walk is started from a setup routine that |
1789 | * fills in the appropriate context struct, calls my_walker with the top-level |
1790 | * node of the tree, and then examines the results. |
1791 | * |
1792 | * The walker routine should return "false" to continue the tree walk, or |
1793 | * "true" to abort the walk and immediately return "true" to the top-level |
1794 | * caller. This can be used to short-circuit the traversal if the walker |
1795 | * has found what it came for. "false" is returned to the top-level caller |
1796 | * iff no invocation of the walker returned "true". |
1797 | * |
1798 | * The node types handled by expression_tree_walker include all those |
1799 | * normally found in target lists and qualifier clauses during the planning |
1800 | * stage. In particular, it handles List nodes since a cnf-ified qual clause |
1801 | * will have List structure at the top level, and it handles TargetEntry nodes |
1802 | * so that a scan of a target list can be handled without additional code. |
1803 | * Also, RangeTblRef, FromExpr, JoinExpr, and SetOperationStmt nodes are |
1804 | * handled, so that query jointrees and setOperation trees can be processed |
1805 | * without additional code. |
1806 | * |
1807 | * expression_tree_walker will handle SubLink nodes by recursing normally |
1808 | * into the "testexpr" subtree (which is an expression belonging to the outer |
1809 | * plan). It will also call the walker on the sub-Query node; however, when |
1810 | * expression_tree_walker itself is called on a Query node, it does nothing |
1811 | * and returns "false". The net effect is that unless the walker does |
1812 | * something special at a Query node, sub-selects will not be visited during |
1813 | * an expression tree walk. This is exactly the behavior wanted in many cases |
1814 | * --- and for those walkers that do want to recurse into sub-selects, special |
1815 | * behavior is typically needed anyway at the entry to a sub-select (such as |
1816 | * incrementing a depth counter). A walker that wants to examine sub-selects |
1817 | * should include code along the lines of: |
1818 | * |
1819 | * if (IsA(node, Query)) |
1820 | * { |
1821 | * adjust context for subquery; |
1822 | * result = query_tree_walker((Query *) node, my_walker, context, |
1823 | * 0); // adjust flags as needed |
1824 | * restore context if needed; |
1825 | * return result; |
1826 | * } |
1827 | * |
1828 | * query_tree_walker is a convenience routine (see below) that calls the |
1829 | * walker on all the expression subtrees of the given Query node. |
1830 | * |
1831 | * expression_tree_walker will handle SubPlan nodes by recursing normally |
1832 | * into the "testexpr" and the "args" list (which are expressions belonging to |
1833 | * the outer plan). It will not touch the completed subplan, however. Since |
1834 | * there is no link to the original Query, it is not possible to recurse into |
1835 | * subselects of an already-planned expression tree. This is OK for current |
1836 | * uses, but may need to be revisited in future. |
1837 | */ |
1838 | |
1839 | bool |
1840 | expression_tree_walker(Node *node, |
1841 | bool (*walker) (), |
1842 | void *context) |
1843 | { |
1844 | ListCell *temp; |
1845 | |
1846 | /* |
1847 | * The walker has already visited the current node, and so we need only |
1848 | * recurse into any sub-nodes it has. |
1849 | * |
1850 | * We assume that the walker is not interested in List nodes per se, so |
1851 | * when we expect a List we just recurse directly to self without |
1852 | * bothering to call the walker. |
1853 | */ |
1854 | if (node == NULL) |
1855 | return false; |
1856 | |
1857 | /* Guard against stack overflow due to overly complex expressions */ |
1858 | check_stack_depth(); |
1859 | |
1860 | switch (nodeTag(node)) |
1861 | { |
1862 | case T_Var: |
1863 | case T_Const: |
1864 | case T_Param: |
1865 | case T_CaseTestExpr: |
1866 | case T_SQLValueFunction: |
1867 | case T_CoerceToDomainValue: |
1868 | case T_SetToDefault: |
1869 | case T_CurrentOfExpr: |
1870 | case T_NextValueExpr: |
1871 | case T_RangeTblRef: |
1872 | case T_SortGroupClause: |
1873 | /* primitive node types with no expression subnodes */ |
1874 | break; |
1875 | case T_WithCheckOption: |
1876 | return walker(((WithCheckOption *) node)->qual, context); |
1877 | case T_Aggref: |
1878 | { |
1879 | Aggref *expr = (Aggref *) node; |
1880 | |
1881 | /* recurse directly on List */ |
1882 | if (expression_tree_walker((Node *) expr->aggdirectargs, |
1883 | walker, context)) |
1884 | return true; |
1885 | if (expression_tree_walker((Node *) expr->args, |
1886 | walker, context)) |
1887 | return true; |
1888 | if (expression_tree_walker((Node *) expr->aggorder, |
1889 | walker, context)) |
1890 | return true; |
1891 | if (expression_tree_walker((Node *) expr->aggdistinct, |
1892 | walker, context)) |
1893 | return true; |
1894 | if (walker((Node *) expr->aggfilter, context)) |
1895 | return true; |
1896 | } |
1897 | break; |
1898 | case T_GroupingFunc: |
1899 | { |
1900 | GroupingFunc *grouping = (GroupingFunc *) node; |
1901 | |
1902 | if (expression_tree_walker((Node *) grouping->args, |
1903 | walker, context)) |
1904 | return true; |
1905 | } |
1906 | break; |
1907 | case T_WindowFunc: |
1908 | { |
1909 | WindowFunc *expr = (WindowFunc *) node; |
1910 | |
1911 | /* recurse directly on List */ |
1912 | if (expression_tree_walker((Node *) expr->args, |
1913 | walker, context)) |
1914 | return true; |
1915 | if (walker((Node *) expr->aggfilter, context)) |
1916 | return true; |
1917 | } |
1918 | break; |
1919 | case T_SubscriptingRef: |
1920 | { |
1921 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
1922 | |
1923 | /* recurse directly for upper/lower container index lists */ |
1924 | if (expression_tree_walker((Node *) sbsref->refupperindexpr, |
1925 | walker, context)) |
1926 | return true; |
1927 | if (expression_tree_walker((Node *) sbsref->reflowerindexpr, |
1928 | walker, context)) |
1929 | return true; |
1930 | /* walker must see the refexpr and refassgnexpr, however */ |
1931 | if (walker(sbsref->refexpr, context)) |
1932 | return true; |
1933 | |
1934 | if (walker(sbsref->refassgnexpr, context)) |
1935 | return true; |
1936 | } |
1937 | break; |
1938 | case T_FuncExpr: |
1939 | { |
1940 | FuncExpr *expr = (FuncExpr *) node; |
1941 | |
1942 | if (expression_tree_walker((Node *) expr->args, |
1943 | walker, context)) |
1944 | return true; |
1945 | } |
1946 | break; |
1947 | case T_NamedArgExpr: |
1948 | return walker(((NamedArgExpr *) node)->arg, context); |
1949 | case T_OpExpr: |
1950 | case T_DistinctExpr: /* struct-equivalent to OpExpr */ |
1951 | case T_NullIfExpr: /* struct-equivalent to OpExpr */ |
1952 | { |
1953 | OpExpr *expr = (OpExpr *) node; |
1954 | |
1955 | if (expression_tree_walker((Node *) expr->args, |
1956 | walker, context)) |
1957 | return true; |
1958 | } |
1959 | break; |
1960 | case T_ScalarArrayOpExpr: |
1961 | { |
1962 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
1963 | |
1964 | if (expression_tree_walker((Node *) expr->args, |
1965 | walker, context)) |
1966 | return true; |
1967 | } |
1968 | break; |
1969 | case T_BoolExpr: |
1970 | { |
1971 | BoolExpr *expr = (BoolExpr *) node; |
1972 | |
1973 | if (expression_tree_walker((Node *) expr->args, |
1974 | walker, context)) |
1975 | return true; |
1976 | } |
1977 | break; |
1978 | case T_SubLink: |
1979 | { |
1980 | SubLink *sublink = (SubLink *) node; |
1981 | |
1982 | if (walker(sublink->testexpr, context)) |
1983 | return true; |
1984 | |
1985 | /* |
1986 | * Also invoke the walker on the sublink's Query node, so it |
1987 | * can recurse into the sub-query if it wants to. |
1988 | */ |
1989 | return walker(sublink->subselect, context); |
1990 | } |
1991 | break; |
1992 | case T_SubPlan: |
1993 | { |
1994 | SubPlan *subplan = (SubPlan *) node; |
1995 | |
1996 | /* recurse into the testexpr, but not into the Plan */ |
1997 | if (walker(subplan->testexpr, context)) |
1998 | return true; |
1999 | /* also examine args list */ |
2000 | if (expression_tree_walker((Node *) subplan->args, |
2001 | walker, context)) |
2002 | return true; |
2003 | } |
2004 | break; |
2005 | case T_AlternativeSubPlan: |
2006 | return walker(((AlternativeSubPlan *) node)->subplans, context); |
2007 | case T_FieldSelect: |
2008 | return walker(((FieldSelect *) node)->arg, context); |
2009 | case T_FieldStore: |
2010 | { |
2011 | FieldStore *fstore = (FieldStore *) node; |
2012 | |
2013 | if (walker(fstore->arg, context)) |
2014 | return true; |
2015 | if (walker(fstore->newvals, context)) |
2016 | return true; |
2017 | } |
2018 | break; |
2019 | case T_RelabelType: |
2020 | return walker(((RelabelType *) node)->arg, context); |
2021 | case T_CoerceViaIO: |
2022 | return walker(((CoerceViaIO *) node)->arg, context); |
2023 | case T_ArrayCoerceExpr: |
2024 | { |
2025 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
2026 | |
2027 | if (walker(acoerce->arg, context)) |
2028 | return true; |
2029 | if (walker(acoerce->elemexpr, context)) |
2030 | return true; |
2031 | } |
2032 | break; |
2033 | case T_ConvertRowtypeExpr: |
2034 | return walker(((ConvertRowtypeExpr *) node)->arg, context); |
2035 | case T_CollateExpr: |
2036 | return walker(((CollateExpr *) node)->arg, context); |
2037 | case T_CaseExpr: |
2038 | { |
2039 | CaseExpr *caseexpr = (CaseExpr *) node; |
2040 | |
2041 | if (walker(caseexpr->arg, context)) |
2042 | return true; |
2043 | /* we assume walker doesn't care about CaseWhens, either */ |
2044 | foreach(temp, caseexpr->args) |
2045 | { |
2046 | CaseWhen *when = lfirst_node(CaseWhen, temp); |
2047 | |
2048 | if (walker(when->expr, context)) |
2049 | return true; |
2050 | if (walker(when->result, context)) |
2051 | return true; |
2052 | } |
2053 | if (walker(caseexpr->defresult, context)) |
2054 | return true; |
2055 | } |
2056 | break; |
2057 | case T_ArrayExpr: |
2058 | return walker(((ArrayExpr *) node)->elements, context); |
2059 | case T_RowExpr: |
2060 | /* Assume colnames isn't interesting */ |
2061 | return walker(((RowExpr *) node)->args, context); |
2062 | case T_RowCompareExpr: |
2063 | { |
2064 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
2065 | |
2066 | if (walker(rcexpr->largs, context)) |
2067 | return true; |
2068 | if (walker(rcexpr->rargs, context)) |
2069 | return true; |
2070 | } |
2071 | break; |
2072 | case T_CoalesceExpr: |
2073 | return walker(((CoalesceExpr *) node)->args, context); |
2074 | case T_MinMaxExpr: |
2075 | return walker(((MinMaxExpr *) node)->args, context); |
2076 | case T_XmlExpr: |
2077 | { |
2078 | XmlExpr *xexpr = (XmlExpr *) node; |
2079 | |
2080 | if (walker(xexpr->named_args, context)) |
2081 | return true; |
2082 | /* we assume walker doesn't care about arg_names */ |
2083 | if (walker(xexpr->args, context)) |
2084 | return true; |
2085 | } |
2086 | break; |
2087 | case T_NullTest: |
2088 | return walker(((NullTest *) node)->arg, context); |
2089 | case T_BooleanTest: |
2090 | return walker(((BooleanTest *) node)->arg, context); |
2091 | case T_CoerceToDomain: |
2092 | return walker(((CoerceToDomain *) node)->arg, context); |
2093 | case T_TargetEntry: |
2094 | return walker(((TargetEntry *) node)->expr, context); |
2095 | case T_Query: |
2096 | /* Do nothing with a sub-Query, per discussion above */ |
2097 | break; |
2098 | case T_WindowClause: |
2099 | { |
2100 | WindowClause *wc = (WindowClause *) node; |
2101 | |
2102 | if (walker(wc->partitionClause, context)) |
2103 | return true; |
2104 | if (walker(wc->orderClause, context)) |
2105 | return true; |
2106 | if (walker(wc->startOffset, context)) |
2107 | return true; |
2108 | if (walker(wc->endOffset, context)) |
2109 | return true; |
2110 | } |
2111 | break; |
2112 | case T_CommonTableExpr: |
2113 | { |
2114 | CommonTableExpr *cte = (CommonTableExpr *) node; |
2115 | |
2116 | /* |
2117 | * Invoke the walker on the CTE's Query node, so it can |
2118 | * recurse into the sub-query if it wants to. |
2119 | */ |
2120 | return walker(cte->ctequery, context); |
2121 | } |
2122 | break; |
2123 | case T_List: |
2124 | foreach(temp, (List *) node) |
2125 | { |
2126 | if (walker((Node *) lfirst(temp), context)) |
2127 | return true; |
2128 | } |
2129 | break; |
2130 | case T_FromExpr: |
2131 | { |
2132 | FromExpr *from = (FromExpr *) node; |
2133 | |
2134 | if (walker(from->fromlist, context)) |
2135 | return true; |
2136 | if (walker(from->quals, context)) |
2137 | return true; |
2138 | } |
2139 | break; |
2140 | case T_OnConflictExpr: |
2141 | { |
2142 | OnConflictExpr *onconflict = (OnConflictExpr *) node; |
2143 | |
2144 | if (walker((Node *) onconflict->arbiterElems, context)) |
2145 | return true; |
2146 | if (walker(onconflict->arbiterWhere, context)) |
2147 | return true; |
2148 | if (walker(onconflict->onConflictSet, context)) |
2149 | return true; |
2150 | if (walker(onconflict->onConflictWhere, context)) |
2151 | return true; |
2152 | if (walker(onconflict->exclRelTlist, context)) |
2153 | return true; |
2154 | } |
2155 | break; |
2156 | case T_PartitionPruneStepOp: |
2157 | { |
2158 | PartitionPruneStepOp *opstep = (PartitionPruneStepOp *) node; |
2159 | |
2160 | if (walker((Node *) opstep->exprs, context)) |
2161 | return true; |
2162 | } |
2163 | break; |
2164 | case T_PartitionPruneStepCombine: |
2165 | /* no expression subnodes */ |
2166 | break; |
2167 | case T_JoinExpr: |
2168 | { |
2169 | JoinExpr *join = (JoinExpr *) node; |
2170 | |
2171 | if (walker(join->larg, context)) |
2172 | return true; |
2173 | if (walker(join->rarg, context)) |
2174 | return true; |
2175 | if (walker(join->quals, context)) |
2176 | return true; |
2177 | |
2178 | /* |
2179 | * alias clause, using list are deemed uninteresting. |
2180 | */ |
2181 | } |
2182 | break; |
2183 | case T_SetOperationStmt: |
2184 | { |
2185 | SetOperationStmt *setop = (SetOperationStmt *) node; |
2186 | |
2187 | if (walker(setop->larg, context)) |
2188 | return true; |
2189 | if (walker(setop->rarg, context)) |
2190 | return true; |
2191 | |
2192 | /* groupClauses are deemed uninteresting */ |
2193 | } |
2194 | break; |
2195 | case T_IndexClause: |
2196 | { |
2197 | IndexClause *iclause = (IndexClause *) node; |
2198 | |
2199 | if (walker(iclause->rinfo, context)) |
2200 | return true; |
2201 | if (expression_tree_walker((Node *) iclause->indexquals, |
2202 | walker, context)) |
2203 | return true; |
2204 | } |
2205 | break; |
2206 | case T_PlaceHolderVar: |
2207 | return walker(((PlaceHolderVar *) node)->phexpr, context); |
2208 | case T_InferenceElem: |
2209 | return walker(((InferenceElem *) node)->expr, context); |
2210 | case T_AppendRelInfo: |
2211 | { |
2212 | AppendRelInfo *appinfo = (AppendRelInfo *) node; |
2213 | |
2214 | if (expression_tree_walker((Node *) appinfo->translated_vars, |
2215 | walker, context)) |
2216 | return true; |
2217 | } |
2218 | break; |
2219 | case T_PlaceHolderInfo: |
2220 | return walker(((PlaceHolderInfo *) node)->ph_var, context); |
2221 | case T_RangeTblFunction: |
2222 | return walker(((RangeTblFunction *) node)->funcexpr, context); |
2223 | case T_TableSampleClause: |
2224 | { |
2225 | TableSampleClause *tsc = (TableSampleClause *) node; |
2226 | |
2227 | if (expression_tree_walker((Node *) tsc->args, |
2228 | walker, context)) |
2229 | return true; |
2230 | if (walker((Node *) tsc->repeatable, context)) |
2231 | return true; |
2232 | } |
2233 | break; |
2234 | case T_TableFunc: |
2235 | { |
2236 | TableFunc *tf = (TableFunc *) node; |
2237 | |
2238 | if (walker(tf->ns_uris, context)) |
2239 | return true; |
2240 | if (walker(tf->docexpr, context)) |
2241 | return true; |
2242 | if (walker(tf->rowexpr, context)) |
2243 | return true; |
2244 | if (walker(tf->colexprs, context)) |
2245 | return true; |
2246 | if (walker(tf->coldefexprs, context)) |
2247 | return true; |
2248 | } |
2249 | break; |
2250 | default: |
2251 | elog(ERROR, "unrecognized node type: %d" , |
2252 | (int) nodeTag(node)); |
2253 | break; |
2254 | } |
2255 | return false; |
2256 | } |
2257 | |
2258 | /* |
2259 | * query_tree_walker --- initiate a walk of a Query's expressions |
2260 | * |
2261 | * This routine exists just to reduce the number of places that need to know |
2262 | * where all the expression subtrees of a Query are. Note it can be used |
2263 | * for starting a walk at top level of a Query regardless of whether the |
2264 | * walker intends to descend into subqueries. It is also useful for |
2265 | * descending into subqueries within a walker. |
2266 | * |
2267 | * Some callers want to suppress visitation of certain items in the sub-Query, |
2268 | * typically because they need to process them specially, or don't actually |
2269 | * want to recurse into subqueries. This is supported by the flags argument, |
2270 | * which is the bitwise OR of flag values to add or suppress visitation of |
2271 | * indicated items. (More flag bits may be added as needed.) |
2272 | */ |
2273 | bool |
2274 | query_tree_walker(Query *query, |
2275 | bool (*walker) (), |
2276 | void *context, |
2277 | int flags) |
2278 | { |
2279 | Assert(query != NULL && IsA(query, Query)); |
2280 | |
2281 | if (walker((Node *) query->targetList, context)) |
2282 | return true; |
2283 | if (walker((Node *) query->withCheckOptions, context)) |
2284 | return true; |
2285 | if (walker((Node *) query->onConflict, context)) |
2286 | return true; |
2287 | if (walker((Node *) query->returningList, context)) |
2288 | return true; |
2289 | if (walker((Node *) query->jointree, context)) |
2290 | return true; |
2291 | if (walker(query->setOperations, context)) |
2292 | return true; |
2293 | if (walker(query->havingQual, context)) |
2294 | return true; |
2295 | if (walker(query->limitOffset, context)) |
2296 | return true; |
2297 | if (walker(query->limitCount, context)) |
2298 | return true; |
2299 | if (!(flags & QTW_IGNORE_CTE_SUBQUERIES)) |
2300 | { |
2301 | if (walker((Node *) query->cteList, context)) |
2302 | return true; |
2303 | } |
2304 | if (!(flags & QTW_IGNORE_RANGE_TABLE)) |
2305 | { |
2306 | if (range_table_walker(query->rtable, walker, context, flags)) |
2307 | return true; |
2308 | } |
2309 | return false; |
2310 | } |
2311 | |
2312 | /* |
2313 | * range_table_walker is just the part of query_tree_walker that scans |
2314 | * a query's rangetable. This is split out since it can be useful on |
2315 | * its own. |
2316 | */ |
2317 | bool |
2318 | range_table_walker(List *rtable, |
2319 | bool (*walker) (), |
2320 | void *context, |
2321 | int flags) |
2322 | { |
2323 | ListCell *rt; |
2324 | |
2325 | foreach(rt, rtable) |
2326 | { |
2327 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
2328 | |
2329 | /* |
2330 | * Walkers might need to examine the RTE node itself either before or |
2331 | * after visiting its contents (or, conceivably, both). Note that if |
2332 | * you specify neither flag, the walker won't visit the RTE at all. |
2333 | */ |
2334 | if (flags & QTW_EXAMINE_RTES_BEFORE) |
2335 | if (walker(rte, context)) |
2336 | return true; |
2337 | |
2338 | switch (rte->rtekind) |
2339 | { |
2340 | case RTE_RELATION: |
2341 | if (walker(rte->tablesample, context)) |
2342 | return true; |
2343 | break; |
2344 | case RTE_SUBQUERY: |
2345 | if (!(flags & QTW_IGNORE_RT_SUBQUERIES)) |
2346 | if (walker(rte->subquery, context)) |
2347 | return true; |
2348 | break; |
2349 | case RTE_JOIN: |
2350 | if (!(flags & QTW_IGNORE_JOINALIASES)) |
2351 | if (walker(rte->joinaliasvars, context)) |
2352 | return true; |
2353 | break; |
2354 | case RTE_FUNCTION: |
2355 | if (walker(rte->functions, context)) |
2356 | return true; |
2357 | break; |
2358 | case RTE_TABLEFUNC: |
2359 | if (walker(rte->tablefunc, context)) |
2360 | return true; |
2361 | break; |
2362 | case RTE_VALUES: |
2363 | if (walker(rte->values_lists, context)) |
2364 | return true; |
2365 | break; |
2366 | case RTE_CTE: |
2367 | case RTE_NAMEDTUPLESTORE: |
2368 | case RTE_RESULT: |
2369 | /* nothing to do */ |
2370 | break; |
2371 | } |
2372 | |
2373 | if (walker(rte->securityQuals, context)) |
2374 | return true; |
2375 | |
2376 | if (flags & QTW_EXAMINE_RTES_AFTER) |
2377 | if (walker(rte, context)) |
2378 | return true; |
2379 | } |
2380 | return false; |
2381 | } |
2382 | |
2383 | |
2384 | /* |
2385 | * expression_tree_mutator() is designed to support routines that make a |
2386 | * modified copy of an expression tree, with some nodes being added, |
2387 | * removed, or replaced by new subtrees. The original tree is (normally) |
2388 | * not changed. Each recursion level is responsible for returning a copy of |
2389 | * (or appropriately modified substitute for) the subtree it is handed. |
2390 | * A mutator routine should look like this: |
2391 | * |
2392 | * Node * my_mutator (Node *node, my_struct *context) |
2393 | * { |
2394 | * if (node == NULL) |
2395 | * return NULL; |
2396 | * // check for nodes that special work is required for, eg: |
2397 | * if (IsA(node, Var)) |
2398 | * { |
2399 | * ... create and return modified copy of Var node |
2400 | * } |
2401 | * else if (IsA(node, ...)) |
2402 | * { |
2403 | * ... do special transformations of other node types |
2404 | * } |
2405 | * // for any node type not specially processed, do: |
2406 | * return expression_tree_mutator(node, my_mutator, (void *) context); |
2407 | * } |
2408 | * |
2409 | * The "context" argument points to a struct that holds whatever context |
2410 | * information the mutator routine needs --- it can be used to return extra |
2411 | * data gathered by the mutator, too. This argument is not touched by |
2412 | * expression_tree_mutator, but it is passed down to recursive sub-invocations |
2413 | * of my_mutator. The tree walk is started from a setup routine that |
2414 | * fills in the appropriate context struct, calls my_mutator with the |
2415 | * top-level node of the tree, and does any required post-processing. |
2416 | * |
2417 | * Each level of recursion must return an appropriately modified Node. |
2418 | * If expression_tree_mutator() is called, it will make an exact copy |
2419 | * of the given Node, but invoke my_mutator() to copy the sub-node(s) |
2420 | * of that Node. In this way, my_mutator() has full control over the |
2421 | * copying process but need not directly deal with expression trees |
2422 | * that it has no interest in. |
2423 | * |
2424 | * Just as for expression_tree_walker, the node types handled by |
2425 | * expression_tree_mutator include all those normally found in target lists |
2426 | * and qualifier clauses during the planning stage. |
2427 | * |
2428 | * expression_tree_mutator will handle SubLink nodes by recursing normally |
2429 | * into the "testexpr" subtree (which is an expression belonging to the outer |
2430 | * plan). It will also call the mutator on the sub-Query node; however, when |
2431 | * expression_tree_mutator itself is called on a Query node, it does nothing |
2432 | * and returns the unmodified Query node. The net effect is that unless the |
2433 | * mutator does something special at a Query node, sub-selects will not be |
2434 | * visited or modified; the original sub-select will be linked to by the new |
2435 | * SubLink node. Mutators that want to descend into sub-selects will usually |
2436 | * do so by recognizing Query nodes and calling query_tree_mutator (below). |
2437 | * |
2438 | * expression_tree_mutator will handle a SubPlan node by recursing into the |
2439 | * "testexpr" and the "args" list (which belong to the outer plan), but it |
2440 | * will simply copy the link to the inner plan, since that's typically what |
2441 | * expression tree mutators want. A mutator that wants to modify the subplan |
2442 | * can force appropriate behavior by recognizing SubPlan expression nodes |
2443 | * and doing the right thing. |
2444 | */ |
2445 | |
2446 | Node * |
2447 | expression_tree_mutator(Node *node, |
2448 | Node *(*mutator) (), |
2449 | void *context) |
2450 | { |
2451 | /* |
2452 | * The mutator has already decided not to modify the current node, but we |
2453 | * must call the mutator for any sub-nodes. |
2454 | */ |
2455 | |
2456 | #define FLATCOPY(newnode, node, nodetype) \ |
2457 | ( (newnode) = (nodetype *) palloc(sizeof(nodetype)), \ |
2458 | memcpy((newnode), (node), sizeof(nodetype)) ) |
2459 | |
2460 | #define CHECKFLATCOPY(newnode, node, nodetype) \ |
2461 | ( AssertMacro(IsA((node), nodetype)), \ |
2462 | (newnode) = (nodetype *) palloc(sizeof(nodetype)), \ |
2463 | memcpy((newnode), (node), sizeof(nodetype)) ) |
2464 | |
2465 | #define MUTATE(newfield, oldfield, fieldtype) \ |
2466 | ( (newfield) = (fieldtype) mutator((Node *) (oldfield), context) ) |
2467 | |
2468 | if (node == NULL) |
2469 | return NULL; |
2470 | |
2471 | /* Guard against stack overflow due to overly complex expressions */ |
2472 | check_stack_depth(); |
2473 | |
2474 | switch (nodeTag(node)) |
2475 | { |
2476 | /* |
2477 | * Primitive node types with no expression subnodes. Var and |
2478 | * Const are frequent enough to deserve special cases, the others |
2479 | * we just use copyObject for. |
2480 | */ |
2481 | case T_Var: |
2482 | { |
2483 | Var *var = (Var *) node; |
2484 | Var *newnode; |
2485 | |
2486 | FLATCOPY(newnode, var, Var); |
2487 | return (Node *) newnode; |
2488 | } |
2489 | break; |
2490 | case T_Const: |
2491 | { |
2492 | Const *oldnode = (Const *) node; |
2493 | Const *newnode; |
2494 | |
2495 | FLATCOPY(newnode, oldnode, Const); |
2496 | /* XXX we don't bother with datumCopy; should we? */ |
2497 | return (Node *) newnode; |
2498 | } |
2499 | break; |
2500 | case T_Param: |
2501 | case T_CaseTestExpr: |
2502 | case T_SQLValueFunction: |
2503 | case T_CoerceToDomainValue: |
2504 | case T_SetToDefault: |
2505 | case T_CurrentOfExpr: |
2506 | case T_NextValueExpr: |
2507 | case T_RangeTblRef: |
2508 | case T_SortGroupClause: |
2509 | return (Node *) copyObject(node); |
2510 | case T_WithCheckOption: |
2511 | { |
2512 | WithCheckOption *wco = (WithCheckOption *) node; |
2513 | WithCheckOption *newnode; |
2514 | |
2515 | FLATCOPY(newnode, wco, WithCheckOption); |
2516 | MUTATE(newnode->qual, wco->qual, Node *); |
2517 | return (Node *) newnode; |
2518 | } |
2519 | case T_Aggref: |
2520 | { |
2521 | Aggref *aggref = (Aggref *) node; |
2522 | Aggref *newnode; |
2523 | |
2524 | FLATCOPY(newnode, aggref, Aggref); |
2525 | /* assume mutation doesn't change types of arguments */ |
2526 | newnode->aggargtypes = list_copy(aggref->aggargtypes); |
2527 | MUTATE(newnode->aggdirectargs, aggref->aggdirectargs, List *); |
2528 | MUTATE(newnode->args, aggref->args, List *); |
2529 | MUTATE(newnode->aggorder, aggref->aggorder, List *); |
2530 | MUTATE(newnode->aggdistinct, aggref->aggdistinct, List *); |
2531 | MUTATE(newnode->aggfilter, aggref->aggfilter, Expr *); |
2532 | return (Node *) newnode; |
2533 | } |
2534 | break; |
2535 | case T_GroupingFunc: |
2536 | { |
2537 | GroupingFunc *grouping = (GroupingFunc *) node; |
2538 | GroupingFunc *newnode; |
2539 | |
2540 | FLATCOPY(newnode, grouping, GroupingFunc); |
2541 | MUTATE(newnode->args, grouping->args, List *); |
2542 | |
2543 | /* |
2544 | * We assume here that mutating the arguments does not change |
2545 | * the semantics, i.e. that the arguments are not mutated in a |
2546 | * way that makes them semantically different from their |
2547 | * previously matching expressions in the GROUP BY clause. |
2548 | * |
2549 | * If a mutator somehow wanted to do this, it would have to |
2550 | * handle the refs and cols lists itself as appropriate. |
2551 | */ |
2552 | newnode->refs = list_copy(grouping->refs); |
2553 | newnode->cols = list_copy(grouping->cols); |
2554 | |
2555 | return (Node *) newnode; |
2556 | } |
2557 | break; |
2558 | case T_WindowFunc: |
2559 | { |
2560 | WindowFunc *wfunc = (WindowFunc *) node; |
2561 | WindowFunc *newnode; |
2562 | |
2563 | FLATCOPY(newnode, wfunc, WindowFunc); |
2564 | MUTATE(newnode->args, wfunc->args, List *); |
2565 | MUTATE(newnode->aggfilter, wfunc->aggfilter, Expr *); |
2566 | return (Node *) newnode; |
2567 | } |
2568 | break; |
2569 | case T_SubscriptingRef: |
2570 | { |
2571 | SubscriptingRef *sbsref = (SubscriptingRef *) node; |
2572 | SubscriptingRef *newnode; |
2573 | |
2574 | FLATCOPY(newnode, sbsref, SubscriptingRef); |
2575 | MUTATE(newnode->refupperindexpr, sbsref->refupperindexpr, |
2576 | List *); |
2577 | MUTATE(newnode->reflowerindexpr, sbsref->reflowerindexpr, |
2578 | List *); |
2579 | MUTATE(newnode->refexpr, sbsref->refexpr, |
2580 | Expr *); |
2581 | MUTATE(newnode->refassgnexpr, sbsref->refassgnexpr, |
2582 | Expr *); |
2583 | |
2584 | return (Node *) newnode; |
2585 | } |
2586 | break; |
2587 | case T_FuncExpr: |
2588 | { |
2589 | FuncExpr *expr = (FuncExpr *) node; |
2590 | FuncExpr *newnode; |
2591 | |
2592 | FLATCOPY(newnode, expr, FuncExpr); |
2593 | MUTATE(newnode->args, expr->args, List *); |
2594 | return (Node *) newnode; |
2595 | } |
2596 | break; |
2597 | case T_NamedArgExpr: |
2598 | { |
2599 | NamedArgExpr *nexpr = (NamedArgExpr *) node; |
2600 | NamedArgExpr *newnode; |
2601 | |
2602 | FLATCOPY(newnode, nexpr, NamedArgExpr); |
2603 | MUTATE(newnode->arg, nexpr->arg, Expr *); |
2604 | return (Node *) newnode; |
2605 | } |
2606 | break; |
2607 | case T_OpExpr: |
2608 | { |
2609 | OpExpr *expr = (OpExpr *) node; |
2610 | OpExpr *newnode; |
2611 | |
2612 | FLATCOPY(newnode, expr, OpExpr); |
2613 | MUTATE(newnode->args, expr->args, List *); |
2614 | return (Node *) newnode; |
2615 | } |
2616 | break; |
2617 | case T_DistinctExpr: |
2618 | { |
2619 | DistinctExpr *expr = (DistinctExpr *) node; |
2620 | DistinctExpr *newnode; |
2621 | |
2622 | FLATCOPY(newnode, expr, DistinctExpr); |
2623 | MUTATE(newnode->args, expr->args, List *); |
2624 | return (Node *) newnode; |
2625 | } |
2626 | break; |
2627 | case T_NullIfExpr: |
2628 | { |
2629 | NullIfExpr *expr = (NullIfExpr *) node; |
2630 | NullIfExpr *newnode; |
2631 | |
2632 | FLATCOPY(newnode, expr, NullIfExpr); |
2633 | MUTATE(newnode->args, expr->args, List *); |
2634 | return (Node *) newnode; |
2635 | } |
2636 | break; |
2637 | case T_ScalarArrayOpExpr: |
2638 | { |
2639 | ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node; |
2640 | ScalarArrayOpExpr *newnode; |
2641 | |
2642 | FLATCOPY(newnode, expr, ScalarArrayOpExpr); |
2643 | MUTATE(newnode->args, expr->args, List *); |
2644 | return (Node *) newnode; |
2645 | } |
2646 | break; |
2647 | case T_BoolExpr: |
2648 | { |
2649 | BoolExpr *expr = (BoolExpr *) node; |
2650 | BoolExpr *newnode; |
2651 | |
2652 | FLATCOPY(newnode, expr, BoolExpr); |
2653 | MUTATE(newnode->args, expr->args, List *); |
2654 | return (Node *) newnode; |
2655 | } |
2656 | break; |
2657 | case T_SubLink: |
2658 | { |
2659 | SubLink *sublink = (SubLink *) node; |
2660 | SubLink *newnode; |
2661 | |
2662 | FLATCOPY(newnode, sublink, SubLink); |
2663 | MUTATE(newnode->testexpr, sublink->testexpr, Node *); |
2664 | |
2665 | /* |
2666 | * Also invoke the mutator on the sublink's Query node, so it |
2667 | * can recurse into the sub-query if it wants to. |
2668 | */ |
2669 | MUTATE(newnode->subselect, sublink->subselect, Node *); |
2670 | return (Node *) newnode; |
2671 | } |
2672 | break; |
2673 | case T_SubPlan: |
2674 | { |
2675 | SubPlan *subplan = (SubPlan *) node; |
2676 | SubPlan *newnode; |
2677 | |
2678 | FLATCOPY(newnode, subplan, SubPlan); |
2679 | /* transform testexpr */ |
2680 | MUTATE(newnode->testexpr, subplan->testexpr, Node *); |
2681 | /* transform args list (params to be passed to subplan) */ |
2682 | MUTATE(newnode->args, subplan->args, List *); |
2683 | /* but not the sub-Plan itself, which is referenced as-is */ |
2684 | return (Node *) newnode; |
2685 | } |
2686 | break; |
2687 | case T_AlternativeSubPlan: |
2688 | { |
2689 | AlternativeSubPlan *asplan = (AlternativeSubPlan *) node; |
2690 | AlternativeSubPlan *newnode; |
2691 | |
2692 | FLATCOPY(newnode, asplan, AlternativeSubPlan); |
2693 | MUTATE(newnode->subplans, asplan->subplans, List *); |
2694 | return (Node *) newnode; |
2695 | } |
2696 | break; |
2697 | case T_FieldSelect: |
2698 | { |
2699 | FieldSelect *fselect = (FieldSelect *) node; |
2700 | FieldSelect *newnode; |
2701 | |
2702 | FLATCOPY(newnode, fselect, FieldSelect); |
2703 | MUTATE(newnode->arg, fselect->arg, Expr *); |
2704 | return (Node *) newnode; |
2705 | } |
2706 | break; |
2707 | case T_FieldStore: |
2708 | { |
2709 | FieldStore *fstore = (FieldStore *) node; |
2710 | FieldStore *newnode; |
2711 | |
2712 | FLATCOPY(newnode, fstore, FieldStore); |
2713 | MUTATE(newnode->arg, fstore->arg, Expr *); |
2714 | MUTATE(newnode->newvals, fstore->newvals, List *); |
2715 | newnode->fieldnums = list_copy(fstore->fieldnums); |
2716 | return (Node *) newnode; |
2717 | } |
2718 | break; |
2719 | case T_RelabelType: |
2720 | { |
2721 | RelabelType *relabel = (RelabelType *) node; |
2722 | RelabelType *newnode; |
2723 | |
2724 | FLATCOPY(newnode, relabel, RelabelType); |
2725 | MUTATE(newnode->arg, relabel->arg, Expr *); |
2726 | return (Node *) newnode; |
2727 | } |
2728 | break; |
2729 | case T_CoerceViaIO: |
2730 | { |
2731 | CoerceViaIO *iocoerce = (CoerceViaIO *) node; |
2732 | CoerceViaIO *newnode; |
2733 | |
2734 | FLATCOPY(newnode, iocoerce, CoerceViaIO); |
2735 | MUTATE(newnode->arg, iocoerce->arg, Expr *); |
2736 | return (Node *) newnode; |
2737 | } |
2738 | break; |
2739 | case T_ArrayCoerceExpr: |
2740 | { |
2741 | ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node; |
2742 | ArrayCoerceExpr *newnode; |
2743 | |
2744 | FLATCOPY(newnode, acoerce, ArrayCoerceExpr); |
2745 | MUTATE(newnode->arg, acoerce->arg, Expr *); |
2746 | MUTATE(newnode->elemexpr, acoerce->elemexpr, Expr *); |
2747 | return (Node *) newnode; |
2748 | } |
2749 | break; |
2750 | case T_ConvertRowtypeExpr: |
2751 | { |
2752 | ConvertRowtypeExpr *convexpr = (ConvertRowtypeExpr *) node; |
2753 | ConvertRowtypeExpr *newnode; |
2754 | |
2755 | FLATCOPY(newnode, convexpr, ConvertRowtypeExpr); |
2756 | MUTATE(newnode->arg, convexpr->arg, Expr *); |
2757 | return (Node *) newnode; |
2758 | } |
2759 | break; |
2760 | case T_CollateExpr: |
2761 | { |
2762 | CollateExpr *collate = (CollateExpr *) node; |
2763 | CollateExpr *newnode; |
2764 | |
2765 | FLATCOPY(newnode, collate, CollateExpr); |
2766 | MUTATE(newnode->arg, collate->arg, Expr *); |
2767 | return (Node *) newnode; |
2768 | } |
2769 | break; |
2770 | case T_CaseExpr: |
2771 | { |
2772 | CaseExpr *caseexpr = (CaseExpr *) node; |
2773 | CaseExpr *newnode; |
2774 | |
2775 | FLATCOPY(newnode, caseexpr, CaseExpr); |
2776 | MUTATE(newnode->arg, caseexpr->arg, Expr *); |
2777 | MUTATE(newnode->args, caseexpr->args, List *); |
2778 | MUTATE(newnode->defresult, caseexpr->defresult, Expr *); |
2779 | return (Node *) newnode; |
2780 | } |
2781 | break; |
2782 | case T_CaseWhen: |
2783 | { |
2784 | CaseWhen *casewhen = (CaseWhen *) node; |
2785 | CaseWhen *newnode; |
2786 | |
2787 | FLATCOPY(newnode, casewhen, CaseWhen); |
2788 | MUTATE(newnode->expr, casewhen->expr, Expr *); |
2789 | MUTATE(newnode->result, casewhen->result, Expr *); |
2790 | return (Node *) newnode; |
2791 | } |
2792 | break; |
2793 | case T_ArrayExpr: |
2794 | { |
2795 | ArrayExpr *arrayexpr = (ArrayExpr *) node; |
2796 | ArrayExpr *newnode; |
2797 | |
2798 | FLATCOPY(newnode, arrayexpr, ArrayExpr); |
2799 | MUTATE(newnode->elements, arrayexpr->elements, List *); |
2800 | return (Node *) newnode; |
2801 | } |
2802 | break; |
2803 | case T_RowExpr: |
2804 | { |
2805 | RowExpr *rowexpr = (RowExpr *) node; |
2806 | RowExpr *newnode; |
2807 | |
2808 | FLATCOPY(newnode, rowexpr, RowExpr); |
2809 | MUTATE(newnode->args, rowexpr->args, List *); |
2810 | /* Assume colnames needn't be duplicated */ |
2811 | return (Node *) newnode; |
2812 | } |
2813 | break; |
2814 | case T_RowCompareExpr: |
2815 | { |
2816 | RowCompareExpr *rcexpr = (RowCompareExpr *) node; |
2817 | RowCompareExpr *newnode; |
2818 | |
2819 | FLATCOPY(newnode, rcexpr, RowCompareExpr); |
2820 | MUTATE(newnode->largs, rcexpr->largs, List *); |
2821 | MUTATE(newnode->rargs, rcexpr->rargs, List *); |
2822 | return (Node *) newnode; |
2823 | } |
2824 | break; |
2825 | case T_CoalesceExpr: |
2826 | { |
2827 | CoalesceExpr *coalesceexpr = (CoalesceExpr *) node; |
2828 | CoalesceExpr *newnode; |
2829 | |
2830 | FLATCOPY(newnode, coalesceexpr, CoalesceExpr); |
2831 | MUTATE(newnode->args, coalesceexpr->args, List *); |
2832 | return (Node *) newnode; |
2833 | } |
2834 | break; |
2835 | case T_MinMaxExpr: |
2836 | { |
2837 | MinMaxExpr *minmaxexpr = (MinMaxExpr *) node; |
2838 | MinMaxExpr *newnode; |
2839 | |
2840 | FLATCOPY(newnode, minmaxexpr, MinMaxExpr); |
2841 | MUTATE(newnode->args, minmaxexpr->args, List *); |
2842 | return (Node *) newnode; |
2843 | } |
2844 | break; |
2845 | case T_XmlExpr: |
2846 | { |
2847 | XmlExpr *xexpr = (XmlExpr *) node; |
2848 | XmlExpr *newnode; |
2849 | |
2850 | FLATCOPY(newnode, xexpr, XmlExpr); |
2851 | MUTATE(newnode->named_args, xexpr->named_args, List *); |
2852 | /* assume mutator does not care about arg_names */ |
2853 | MUTATE(newnode->args, xexpr->args, List *); |
2854 | return (Node *) newnode; |
2855 | } |
2856 | break; |
2857 | case T_NullTest: |
2858 | { |
2859 | NullTest *ntest = (NullTest *) node; |
2860 | NullTest *newnode; |
2861 | |
2862 | FLATCOPY(newnode, ntest, NullTest); |
2863 | MUTATE(newnode->arg, ntest->arg, Expr *); |
2864 | return (Node *) newnode; |
2865 | } |
2866 | break; |
2867 | case T_BooleanTest: |
2868 | { |
2869 | BooleanTest *btest = (BooleanTest *) node; |
2870 | BooleanTest *newnode; |
2871 | |
2872 | FLATCOPY(newnode, btest, BooleanTest); |
2873 | MUTATE(newnode->arg, btest->arg, Expr *); |
2874 | return (Node *) newnode; |
2875 | } |
2876 | break; |
2877 | case T_CoerceToDomain: |
2878 | { |
2879 | CoerceToDomain *ctest = (CoerceToDomain *) node; |
2880 | CoerceToDomain *newnode; |
2881 | |
2882 | FLATCOPY(newnode, ctest, CoerceToDomain); |
2883 | MUTATE(newnode->arg, ctest->arg, Expr *); |
2884 | return (Node *) newnode; |
2885 | } |
2886 | break; |
2887 | case T_TargetEntry: |
2888 | { |
2889 | TargetEntry *targetentry = (TargetEntry *) node; |
2890 | TargetEntry *newnode; |
2891 | |
2892 | FLATCOPY(newnode, targetentry, TargetEntry); |
2893 | MUTATE(newnode->expr, targetentry->expr, Expr *); |
2894 | return (Node *) newnode; |
2895 | } |
2896 | break; |
2897 | case T_Query: |
2898 | /* Do nothing with a sub-Query, per discussion above */ |
2899 | return node; |
2900 | case T_WindowClause: |
2901 | { |
2902 | WindowClause *wc = (WindowClause *) node; |
2903 | WindowClause *newnode; |
2904 | |
2905 | FLATCOPY(newnode, wc, WindowClause); |
2906 | MUTATE(newnode->partitionClause, wc->partitionClause, List *); |
2907 | MUTATE(newnode->orderClause, wc->orderClause, List *); |
2908 | MUTATE(newnode->startOffset, wc->startOffset, Node *); |
2909 | MUTATE(newnode->endOffset, wc->endOffset, Node *); |
2910 | return (Node *) newnode; |
2911 | } |
2912 | break; |
2913 | case T_CommonTableExpr: |
2914 | { |
2915 | CommonTableExpr *cte = (CommonTableExpr *) node; |
2916 | CommonTableExpr *newnode; |
2917 | |
2918 | FLATCOPY(newnode, cte, CommonTableExpr); |
2919 | |
2920 | /* |
2921 | * Also invoke the mutator on the CTE's Query node, so it can |
2922 | * recurse into the sub-query if it wants to. |
2923 | */ |
2924 | MUTATE(newnode->ctequery, cte->ctequery, Node *); |
2925 | return (Node *) newnode; |
2926 | } |
2927 | break; |
2928 | case T_List: |
2929 | { |
2930 | /* |
2931 | * We assume the mutator isn't interested in the list nodes |
2932 | * per se, so just invoke it on each list element. NOTE: this |
2933 | * would fail badly on a list with integer elements! |
2934 | */ |
2935 | List *resultlist; |
2936 | ListCell *temp; |
2937 | |
2938 | resultlist = NIL; |
2939 | foreach(temp, (List *) node) |
2940 | { |
2941 | resultlist = lappend(resultlist, |
2942 | mutator((Node *) lfirst(temp), |
2943 | context)); |
2944 | } |
2945 | return (Node *) resultlist; |
2946 | } |
2947 | break; |
2948 | case T_FromExpr: |
2949 | { |
2950 | FromExpr *from = (FromExpr *) node; |
2951 | FromExpr *newnode; |
2952 | |
2953 | FLATCOPY(newnode, from, FromExpr); |
2954 | MUTATE(newnode->fromlist, from->fromlist, List *); |
2955 | MUTATE(newnode->quals, from->quals, Node *); |
2956 | return (Node *) newnode; |
2957 | } |
2958 | break; |
2959 | case T_OnConflictExpr: |
2960 | { |
2961 | OnConflictExpr *oc = (OnConflictExpr *) node; |
2962 | OnConflictExpr *newnode; |
2963 | |
2964 | FLATCOPY(newnode, oc, OnConflictExpr); |
2965 | MUTATE(newnode->arbiterElems, oc->arbiterElems, List *); |
2966 | MUTATE(newnode->arbiterWhere, oc->arbiterWhere, Node *); |
2967 | MUTATE(newnode->onConflictSet, oc->onConflictSet, List *); |
2968 | MUTATE(newnode->onConflictWhere, oc->onConflictWhere, Node *); |
2969 | MUTATE(newnode->exclRelTlist, oc->exclRelTlist, List *); |
2970 | |
2971 | return (Node *) newnode; |
2972 | } |
2973 | break; |
2974 | case T_PartitionPruneStepOp: |
2975 | { |
2976 | PartitionPruneStepOp *opstep = (PartitionPruneStepOp *) node; |
2977 | PartitionPruneStepOp *newnode; |
2978 | |
2979 | FLATCOPY(newnode, opstep, PartitionPruneStepOp); |
2980 | MUTATE(newnode->exprs, opstep->exprs, List *); |
2981 | |
2982 | return (Node *) newnode; |
2983 | } |
2984 | break; |
2985 | case T_PartitionPruneStepCombine: |
2986 | /* no expression sub-nodes */ |
2987 | return (Node *) copyObject(node); |
2988 | case T_JoinExpr: |
2989 | { |
2990 | JoinExpr *join = (JoinExpr *) node; |
2991 | JoinExpr *newnode; |
2992 | |
2993 | FLATCOPY(newnode, join, JoinExpr); |
2994 | MUTATE(newnode->larg, join->larg, Node *); |
2995 | MUTATE(newnode->rarg, join->rarg, Node *); |
2996 | MUTATE(newnode->quals, join->quals, Node *); |
2997 | /* We do not mutate alias or using by default */ |
2998 | return (Node *) newnode; |
2999 | } |
3000 | break; |
3001 | case T_SetOperationStmt: |
3002 | { |
3003 | SetOperationStmt *setop = (SetOperationStmt *) node; |
3004 | SetOperationStmt *newnode; |
3005 | |
3006 | FLATCOPY(newnode, setop, SetOperationStmt); |
3007 | MUTATE(newnode->larg, setop->larg, Node *); |
3008 | MUTATE(newnode->rarg, setop->rarg, Node *); |
3009 | /* We do not mutate groupClauses by default */ |
3010 | return (Node *) newnode; |
3011 | } |
3012 | break; |
3013 | case T_IndexClause: |
3014 | { |
3015 | IndexClause *iclause = (IndexClause *) node; |
3016 | IndexClause *newnode; |
3017 | |
3018 | FLATCOPY(newnode, iclause, IndexClause); |
3019 | MUTATE(newnode->rinfo, iclause->rinfo, RestrictInfo *); |
3020 | MUTATE(newnode->indexquals, iclause->indexquals, List *); |
3021 | return (Node *) newnode; |
3022 | } |
3023 | break; |
3024 | case T_PlaceHolderVar: |
3025 | { |
3026 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
3027 | PlaceHolderVar *newnode; |
3028 | |
3029 | FLATCOPY(newnode, phv, PlaceHolderVar); |
3030 | MUTATE(newnode->phexpr, phv->phexpr, Expr *); |
3031 | /* Assume we need not copy the relids bitmapset */ |
3032 | return (Node *) newnode; |
3033 | } |
3034 | break; |
3035 | case T_InferenceElem: |
3036 | { |
3037 | InferenceElem *inferenceelemdexpr = (InferenceElem *) node; |
3038 | InferenceElem *newnode; |
3039 | |
3040 | FLATCOPY(newnode, inferenceelemdexpr, InferenceElem); |
3041 | MUTATE(newnode->expr, newnode->expr, Node *); |
3042 | return (Node *) newnode; |
3043 | } |
3044 | break; |
3045 | case T_AppendRelInfo: |
3046 | { |
3047 | AppendRelInfo *appinfo = (AppendRelInfo *) node; |
3048 | AppendRelInfo *newnode; |
3049 | |
3050 | FLATCOPY(newnode, appinfo, AppendRelInfo); |
3051 | MUTATE(newnode->translated_vars, appinfo->translated_vars, List *); |
3052 | return (Node *) newnode; |
3053 | } |
3054 | break; |
3055 | case T_PlaceHolderInfo: |
3056 | { |
3057 | PlaceHolderInfo *phinfo = (PlaceHolderInfo *) node; |
3058 | PlaceHolderInfo *newnode; |
3059 | |
3060 | FLATCOPY(newnode, phinfo, PlaceHolderInfo); |
3061 | MUTATE(newnode->ph_var, phinfo->ph_var, PlaceHolderVar *); |
3062 | /* Assume we need not copy the relids bitmapsets */ |
3063 | return (Node *) newnode; |
3064 | } |
3065 | break; |
3066 | case T_RangeTblFunction: |
3067 | { |
3068 | RangeTblFunction *rtfunc = (RangeTblFunction *) node; |
3069 | RangeTblFunction *newnode; |
3070 | |
3071 | FLATCOPY(newnode, rtfunc, RangeTblFunction); |
3072 | MUTATE(newnode->funcexpr, rtfunc->funcexpr, Node *); |
3073 | /* Assume we need not copy the coldef info lists */ |
3074 | return (Node *) newnode; |
3075 | } |
3076 | break; |
3077 | case T_TableSampleClause: |
3078 | { |
3079 | TableSampleClause *tsc = (TableSampleClause *) node; |
3080 | TableSampleClause *newnode; |
3081 | |
3082 | FLATCOPY(newnode, tsc, TableSampleClause); |
3083 | MUTATE(newnode->args, tsc->args, List *); |
3084 | MUTATE(newnode->repeatable, tsc->repeatable, Expr *); |
3085 | return (Node *) newnode; |
3086 | } |
3087 | break; |
3088 | case T_TableFunc: |
3089 | { |
3090 | TableFunc *tf = (TableFunc *) node; |
3091 | TableFunc *newnode; |
3092 | |
3093 | FLATCOPY(newnode, tf, TableFunc); |
3094 | MUTATE(newnode->ns_uris, tf->ns_uris, List *); |
3095 | MUTATE(newnode->docexpr, tf->docexpr, Node *); |
3096 | MUTATE(newnode->rowexpr, tf->rowexpr, Node *); |
3097 | MUTATE(newnode->colexprs, tf->colexprs, List *); |
3098 | MUTATE(newnode->coldefexprs, tf->coldefexprs, List *); |
3099 | return (Node *) newnode; |
3100 | } |
3101 | break; |
3102 | default: |
3103 | elog(ERROR, "unrecognized node type: %d" , |
3104 | (int) nodeTag(node)); |
3105 | break; |
3106 | } |
3107 | /* can't get here, but keep compiler happy */ |
3108 | return NULL; |
3109 | } |
3110 | |
3111 | |
3112 | /* |
3113 | * query_tree_mutator --- initiate modification of a Query's expressions |
3114 | * |
3115 | * This routine exists just to reduce the number of places that need to know |
3116 | * where all the expression subtrees of a Query are. Note it can be used |
3117 | * for starting a walk at top level of a Query regardless of whether the |
3118 | * mutator intends to descend into subqueries. It is also useful for |
3119 | * descending into subqueries within a mutator. |
3120 | * |
3121 | * Some callers want to suppress mutating of certain items in the Query, |
3122 | * typically because they need to process them specially, or don't actually |
3123 | * want to recurse into subqueries. This is supported by the flags argument, |
3124 | * which is the bitwise OR of flag values to suppress mutating of |
3125 | * indicated items. (More flag bits may be added as needed.) |
3126 | * |
3127 | * Normally the Query node itself is copied, but some callers want it to be |
3128 | * modified in-place; they must pass QTW_DONT_COPY_QUERY in flags. All |
3129 | * modified substructure is safely copied in any case. |
3130 | */ |
3131 | Query * |
3132 | query_tree_mutator(Query *query, |
3133 | Node *(*mutator) (), |
3134 | void *context, |
3135 | int flags) |
3136 | { |
3137 | Assert(query != NULL && IsA(query, Query)); |
3138 | |
3139 | if (!(flags & QTW_DONT_COPY_QUERY)) |
3140 | { |
3141 | Query *newquery; |
3142 | |
3143 | FLATCOPY(newquery, query, Query); |
3144 | query = newquery; |
3145 | } |
3146 | |
3147 | MUTATE(query->targetList, query->targetList, List *); |
3148 | MUTATE(query->withCheckOptions, query->withCheckOptions, List *); |
3149 | MUTATE(query->onConflict, query->onConflict, OnConflictExpr *); |
3150 | MUTATE(query->returningList, query->returningList, List *); |
3151 | MUTATE(query->jointree, query->jointree, FromExpr *); |
3152 | MUTATE(query->setOperations, query->setOperations, Node *); |
3153 | MUTATE(query->havingQual, query->havingQual, Node *); |
3154 | MUTATE(query->limitOffset, query->limitOffset, Node *); |
3155 | MUTATE(query->limitCount, query->limitCount, Node *); |
3156 | if (!(flags & QTW_IGNORE_CTE_SUBQUERIES)) |
3157 | MUTATE(query->cteList, query->cteList, List *); |
3158 | else /* else copy CTE list as-is */ |
3159 | query->cteList = copyObject(query->cteList); |
3160 | query->rtable = range_table_mutator(query->rtable, |
3161 | mutator, context, flags); |
3162 | return query; |
3163 | } |
3164 | |
3165 | /* |
3166 | * range_table_mutator is just the part of query_tree_mutator that processes |
3167 | * a query's rangetable. This is split out since it can be useful on |
3168 | * its own. |
3169 | */ |
3170 | List * |
3171 | range_table_mutator(List *rtable, |
3172 | Node *(*mutator) (), |
3173 | void *context, |
3174 | int flags) |
3175 | { |
3176 | List *newrt = NIL; |
3177 | ListCell *rt; |
3178 | |
3179 | foreach(rt, rtable) |
3180 | { |
3181 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
3182 | RangeTblEntry *newrte; |
3183 | |
3184 | FLATCOPY(newrte, rte, RangeTblEntry); |
3185 | switch (rte->rtekind) |
3186 | { |
3187 | case RTE_RELATION: |
3188 | MUTATE(newrte->tablesample, rte->tablesample, |
3189 | TableSampleClause *); |
3190 | /* we don't bother to copy eref, aliases, etc; OK? */ |
3191 | break; |
3192 | case RTE_SUBQUERY: |
3193 | if (!(flags & QTW_IGNORE_RT_SUBQUERIES)) |
3194 | { |
3195 | CHECKFLATCOPY(newrte->subquery, rte->subquery, Query); |
3196 | MUTATE(newrte->subquery, newrte->subquery, Query *); |
3197 | } |
3198 | else |
3199 | { |
3200 | /* else, copy RT subqueries as-is */ |
3201 | newrte->subquery = copyObject(rte->subquery); |
3202 | } |
3203 | break; |
3204 | case RTE_JOIN: |
3205 | if (!(flags & QTW_IGNORE_JOINALIASES)) |
3206 | MUTATE(newrte->joinaliasvars, rte->joinaliasvars, List *); |
3207 | else |
3208 | { |
3209 | /* else, copy join aliases as-is */ |
3210 | newrte->joinaliasvars = copyObject(rte->joinaliasvars); |
3211 | } |
3212 | break; |
3213 | case RTE_FUNCTION: |
3214 | MUTATE(newrte->functions, rte->functions, List *); |
3215 | break; |
3216 | case RTE_TABLEFUNC: |
3217 | MUTATE(newrte->tablefunc, rte->tablefunc, TableFunc *); |
3218 | break; |
3219 | case RTE_VALUES: |
3220 | MUTATE(newrte->values_lists, rte->values_lists, List *); |
3221 | break; |
3222 | case RTE_CTE: |
3223 | case RTE_NAMEDTUPLESTORE: |
3224 | case RTE_RESULT: |
3225 | /* nothing to do */ |
3226 | break; |
3227 | } |
3228 | MUTATE(newrte->securityQuals, rte->securityQuals, List *); |
3229 | newrt = lappend(newrt, newrte); |
3230 | } |
3231 | return newrt; |
3232 | } |
3233 | |
3234 | /* |
3235 | * query_or_expression_tree_walker --- hybrid form |
3236 | * |
3237 | * This routine will invoke query_tree_walker if called on a Query node, |
3238 | * else will invoke the walker directly. This is a useful way of starting |
3239 | * the recursion when the walker's normal change of state is not appropriate |
3240 | * for the outermost Query node. |
3241 | */ |
3242 | bool |
3243 | query_or_expression_tree_walker(Node *node, |
3244 | bool (*walker) (), |
3245 | void *context, |
3246 | int flags) |
3247 | { |
3248 | if (node && IsA(node, Query)) |
3249 | return query_tree_walker((Query *) node, |
3250 | walker, |
3251 | context, |
3252 | flags); |
3253 | else |
3254 | return walker(node, context); |
3255 | } |
3256 | |
3257 | /* |
3258 | * query_or_expression_tree_mutator --- hybrid form |
3259 | * |
3260 | * This routine will invoke query_tree_mutator if called on a Query node, |
3261 | * else will invoke the mutator directly. This is a useful way of starting |
3262 | * the recursion when the mutator's normal change of state is not appropriate |
3263 | * for the outermost Query node. |
3264 | */ |
3265 | Node * |
3266 | query_or_expression_tree_mutator(Node *node, |
3267 | Node *(*mutator) (), |
3268 | void *context, |
3269 | int flags) |
3270 | { |
3271 | if (node && IsA(node, Query)) |
3272 | return (Node *) query_tree_mutator((Query *) node, |
3273 | mutator, |
3274 | context, |
3275 | flags); |
3276 | else |
3277 | return mutator(node, context); |
3278 | } |
3279 | |
3280 | |
3281 | /* |
3282 | * raw_expression_tree_walker --- walk raw parse trees |
3283 | * |
3284 | * This has exactly the same API as expression_tree_walker, but instead of |
3285 | * walking post-analysis parse trees, it knows how to walk the node types |
3286 | * found in raw grammar output. (There is not currently any need for a |
3287 | * combined walker, so we keep them separate in the name of efficiency.) |
3288 | * Unlike expression_tree_walker, there is no special rule about query |
3289 | * boundaries: we descend to everything that's possibly interesting. |
3290 | * |
3291 | * Currently, the node type coverage here extends only to DML statements |
3292 | * (SELECT/INSERT/UPDATE/DELETE) and nodes that can appear in them, because |
3293 | * this is used mainly during analysis of CTEs, and only DML statements can |
3294 | * appear in CTEs. |
3295 | */ |
3296 | bool |
3297 | raw_expression_tree_walker(Node *node, |
3298 | bool (*walker) (), |
3299 | void *context) |
3300 | { |
3301 | ListCell *temp; |
3302 | |
3303 | /* |
3304 | * The walker has already visited the current node, and so we need only |
3305 | * recurse into any sub-nodes it has. |
3306 | */ |
3307 | if (node == NULL) |
3308 | return false; |
3309 | |
3310 | /* Guard against stack overflow due to overly complex expressions */ |
3311 | check_stack_depth(); |
3312 | |
3313 | switch (nodeTag(node)) |
3314 | { |
3315 | case T_SetToDefault: |
3316 | case T_CurrentOfExpr: |
3317 | case T_SQLValueFunction: |
3318 | case T_Integer: |
3319 | case T_Float: |
3320 | case T_String: |
3321 | case T_BitString: |
3322 | case T_Null: |
3323 | case T_ParamRef: |
3324 | case T_A_Const: |
3325 | case T_A_Star: |
3326 | /* primitive node types with no subnodes */ |
3327 | break; |
3328 | case T_Alias: |
3329 | /* we assume the colnames list isn't interesting */ |
3330 | break; |
3331 | case T_RangeVar: |
3332 | return walker(((RangeVar *) node)->alias, context); |
3333 | case T_GroupingFunc: |
3334 | return walker(((GroupingFunc *) node)->args, context); |
3335 | case T_SubLink: |
3336 | { |
3337 | SubLink *sublink = (SubLink *) node; |
3338 | |
3339 | if (walker(sublink->testexpr, context)) |
3340 | return true; |
3341 | /* we assume the operName is not interesting */ |
3342 | if (walker(sublink->subselect, context)) |
3343 | return true; |
3344 | } |
3345 | break; |
3346 | case T_CaseExpr: |
3347 | { |
3348 | CaseExpr *caseexpr = (CaseExpr *) node; |
3349 | |
3350 | if (walker(caseexpr->arg, context)) |
3351 | return true; |
3352 | /* we assume walker doesn't care about CaseWhens, either */ |
3353 | foreach(temp, caseexpr->args) |
3354 | { |
3355 | CaseWhen *when = lfirst_node(CaseWhen, temp); |
3356 | |
3357 | if (walker(when->expr, context)) |
3358 | return true; |
3359 | if (walker(when->result, context)) |
3360 | return true; |
3361 | } |
3362 | if (walker(caseexpr->defresult, context)) |
3363 | return true; |
3364 | } |
3365 | break; |
3366 | case T_RowExpr: |
3367 | /* Assume colnames isn't interesting */ |
3368 | return walker(((RowExpr *) node)->args, context); |
3369 | case T_CoalesceExpr: |
3370 | return walker(((CoalesceExpr *) node)->args, context); |
3371 | case T_MinMaxExpr: |
3372 | return walker(((MinMaxExpr *) node)->args, context); |
3373 | case T_XmlExpr: |
3374 | { |
3375 | XmlExpr *xexpr = (XmlExpr *) node; |
3376 | |
3377 | if (walker(xexpr->named_args, context)) |
3378 | return true; |
3379 | /* we assume walker doesn't care about arg_names */ |
3380 | if (walker(xexpr->args, context)) |
3381 | return true; |
3382 | } |
3383 | break; |
3384 | case T_NullTest: |
3385 | return walker(((NullTest *) node)->arg, context); |
3386 | case T_BooleanTest: |
3387 | return walker(((BooleanTest *) node)->arg, context); |
3388 | case T_JoinExpr: |
3389 | { |
3390 | JoinExpr *join = (JoinExpr *) node; |
3391 | |
3392 | if (walker(join->larg, context)) |
3393 | return true; |
3394 | if (walker(join->rarg, context)) |
3395 | return true; |
3396 | if (walker(join->quals, context)) |
3397 | return true; |
3398 | if (walker(join->alias, context)) |
3399 | return true; |
3400 | /* using list is deemed uninteresting */ |
3401 | } |
3402 | break; |
3403 | case T_IntoClause: |
3404 | { |
3405 | IntoClause *into = (IntoClause *) node; |
3406 | |
3407 | if (walker(into->rel, context)) |
3408 | return true; |
3409 | /* colNames, options are deemed uninteresting */ |
3410 | /* viewQuery should be null in raw parsetree, but check it */ |
3411 | if (walker(into->viewQuery, context)) |
3412 | return true; |
3413 | } |
3414 | break; |
3415 | case T_List: |
3416 | foreach(temp, (List *) node) |
3417 | { |
3418 | if (walker((Node *) lfirst(temp), context)) |
3419 | return true; |
3420 | } |
3421 | break; |
3422 | case T_InsertStmt: |
3423 | { |
3424 | InsertStmt *stmt = (InsertStmt *) node; |
3425 | |
3426 | if (walker(stmt->relation, context)) |
3427 | return true; |
3428 | if (walker(stmt->cols, context)) |
3429 | return true; |
3430 | if (walker(stmt->selectStmt, context)) |
3431 | return true; |
3432 | if (walker(stmt->onConflictClause, context)) |
3433 | return true; |
3434 | if (walker(stmt->returningList, context)) |
3435 | return true; |
3436 | if (walker(stmt->withClause, context)) |
3437 | return true; |
3438 | } |
3439 | break; |
3440 | case T_DeleteStmt: |
3441 | { |
3442 | DeleteStmt *stmt = (DeleteStmt *) node; |
3443 | |
3444 | if (walker(stmt->relation, context)) |
3445 | return true; |
3446 | if (walker(stmt->usingClause, context)) |
3447 | return true; |
3448 | if (walker(stmt->whereClause, context)) |
3449 | return true; |
3450 | if (walker(stmt->returningList, context)) |
3451 | return true; |
3452 | if (walker(stmt->withClause, context)) |
3453 | return true; |
3454 | } |
3455 | break; |
3456 | case T_UpdateStmt: |
3457 | { |
3458 | UpdateStmt *stmt = (UpdateStmt *) node; |
3459 | |
3460 | if (walker(stmt->relation, context)) |
3461 | return true; |
3462 | if (walker(stmt->targetList, context)) |
3463 | return true; |
3464 | if (walker(stmt->whereClause, context)) |
3465 | return true; |
3466 | if (walker(stmt->fromClause, context)) |
3467 | return true; |
3468 | if (walker(stmt->returningList, context)) |
3469 | return true; |
3470 | if (walker(stmt->withClause, context)) |
3471 | return true; |
3472 | } |
3473 | break; |
3474 | case T_SelectStmt: |
3475 | { |
3476 | SelectStmt *stmt = (SelectStmt *) node; |
3477 | |
3478 | if (walker(stmt->distinctClause, context)) |
3479 | return true; |
3480 | if (walker(stmt->intoClause, context)) |
3481 | return true; |
3482 | if (walker(stmt->targetList, context)) |
3483 | return true; |
3484 | if (walker(stmt->fromClause, context)) |
3485 | return true; |
3486 | if (walker(stmt->whereClause, context)) |
3487 | return true; |
3488 | if (walker(stmt->groupClause, context)) |
3489 | return true; |
3490 | if (walker(stmt->havingClause, context)) |
3491 | return true; |
3492 | if (walker(stmt->windowClause, context)) |
3493 | return true; |
3494 | if (walker(stmt->valuesLists, context)) |
3495 | return true; |
3496 | if (walker(stmt->sortClause, context)) |
3497 | return true; |
3498 | if (walker(stmt->limitOffset, context)) |
3499 | return true; |
3500 | if (walker(stmt->limitCount, context)) |
3501 | return true; |
3502 | if (walker(stmt->lockingClause, context)) |
3503 | return true; |
3504 | if (walker(stmt->withClause, context)) |
3505 | return true; |
3506 | if (walker(stmt->larg, context)) |
3507 | return true; |
3508 | if (walker(stmt->rarg, context)) |
3509 | return true; |
3510 | } |
3511 | break; |
3512 | case T_A_Expr: |
3513 | { |
3514 | A_Expr *expr = (A_Expr *) node; |
3515 | |
3516 | if (walker(expr->lexpr, context)) |
3517 | return true; |
3518 | if (walker(expr->rexpr, context)) |
3519 | return true; |
3520 | /* operator name is deemed uninteresting */ |
3521 | } |
3522 | break; |
3523 | case T_BoolExpr: |
3524 | { |
3525 | BoolExpr *expr = (BoolExpr *) node; |
3526 | |
3527 | if (walker(expr->args, context)) |
3528 | return true; |
3529 | } |
3530 | break; |
3531 | case T_ColumnRef: |
3532 | /* we assume the fields contain nothing interesting */ |
3533 | break; |
3534 | case T_FuncCall: |
3535 | { |
3536 | FuncCall *fcall = (FuncCall *) node; |
3537 | |
3538 | if (walker(fcall->args, context)) |
3539 | return true; |
3540 | if (walker(fcall->agg_order, context)) |
3541 | return true; |
3542 | if (walker(fcall->agg_filter, context)) |
3543 | return true; |
3544 | if (walker(fcall->over, context)) |
3545 | return true; |
3546 | /* function name is deemed uninteresting */ |
3547 | } |
3548 | break; |
3549 | case T_NamedArgExpr: |
3550 | return walker(((NamedArgExpr *) node)->arg, context); |
3551 | case T_A_Indices: |
3552 | { |
3553 | A_Indices *indices = (A_Indices *) node; |
3554 | |
3555 | if (walker(indices->lidx, context)) |
3556 | return true; |
3557 | if (walker(indices->uidx, context)) |
3558 | return true; |
3559 | } |
3560 | break; |
3561 | case T_A_Indirection: |
3562 | { |
3563 | A_Indirection *indir = (A_Indirection *) node; |
3564 | |
3565 | if (walker(indir->arg, context)) |
3566 | return true; |
3567 | if (walker(indir->indirection, context)) |
3568 | return true; |
3569 | } |
3570 | break; |
3571 | case T_A_ArrayExpr: |
3572 | return walker(((A_ArrayExpr *) node)->elements, context); |
3573 | case T_ResTarget: |
3574 | { |
3575 | ResTarget *rt = (ResTarget *) node; |
3576 | |
3577 | if (walker(rt->indirection, context)) |
3578 | return true; |
3579 | if (walker(rt->val, context)) |
3580 | return true; |
3581 | } |
3582 | break; |
3583 | case T_MultiAssignRef: |
3584 | return walker(((MultiAssignRef *) node)->source, context); |
3585 | case T_TypeCast: |
3586 | { |
3587 | TypeCast *tc = (TypeCast *) node; |
3588 | |
3589 | if (walker(tc->arg, context)) |
3590 | return true; |
3591 | if (walker(tc->typeName, context)) |
3592 | return true; |
3593 | } |
3594 | break; |
3595 | case T_CollateClause: |
3596 | return walker(((CollateClause *) node)->arg, context); |
3597 | case T_SortBy: |
3598 | return walker(((SortBy *) node)->node, context); |
3599 | case T_WindowDef: |
3600 | { |
3601 | WindowDef *wd = (WindowDef *) node; |
3602 | |
3603 | if (walker(wd->partitionClause, context)) |
3604 | return true; |
3605 | if (walker(wd->orderClause, context)) |
3606 | return true; |
3607 | if (walker(wd->startOffset, context)) |
3608 | return true; |
3609 | if (walker(wd->endOffset, context)) |
3610 | return true; |
3611 | } |
3612 | break; |
3613 | case T_RangeSubselect: |
3614 | { |
3615 | RangeSubselect *rs = (RangeSubselect *) node; |
3616 | |
3617 | if (walker(rs->subquery, context)) |
3618 | return true; |
3619 | if (walker(rs->alias, context)) |
3620 | return true; |
3621 | } |
3622 | break; |
3623 | case T_RangeFunction: |
3624 | { |
3625 | RangeFunction *rf = (RangeFunction *) node; |
3626 | |
3627 | if (walker(rf->functions, context)) |
3628 | return true; |
3629 | if (walker(rf->alias, context)) |
3630 | return true; |
3631 | if (walker(rf->coldeflist, context)) |
3632 | return true; |
3633 | } |
3634 | break; |
3635 | case T_RangeTableSample: |
3636 | { |
3637 | RangeTableSample *rts = (RangeTableSample *) node; |
3638 | |
3639 | if (walker(rts->relation, context)) |
3640 | return true; |
3641 | /* method name is deemed uninteresting */ |
3642 | if (walker(rts->args, context)) |
3643 | return true; |
3644 | if (walker(rts->repeatable, context)) |
3645 | return true; |
3646 | } |
3647 | break; |
3648 | case T_RangeTableFunc: |
3649 | { |
3650 | RangeTableFunc *rtf = (RangeTableFunc *) node; |
3651 | |
3652 | if (walker(rtf->docexpr, context)) |
3653 | return true; |
3654 | if (walker(rtf->rowexpr, context)) |
3655 | return true; |
3656 | if (walker(rtf->namespaces, context)) |
3657 | return true; |
3658 | if (walker(rtf->columns, context)) |
3659 | return true; |
3660 | if (walker(rtf->alias, context)) |
3661 | return true; |
3662 | } |
3663 | break; |
3664 | case T_RangeTableFuncCol: |
3665 | { |
3666 | RangeTableFuncCol *rtfc = (RangeTableFuncCol *) node; |
3667 | |
3668 | if (walker(rtfc->colexpr, context)) |
3669 | return true; |
3670 | if (walker(rtfc->coldefexpr, context)) |
3671 | return true; |
3672 | } |
3673 | break; |
3674 | case T_TypeName: |
3675 | { |
3676 | TypeName *tn = (TypeName *) node; |
3677 | |
3678 | if (walker(tn->typmods, context)) |
3679 | return true; |
3680 | if (walker(tn->arrayBounds, context)) |
3681 | return true; |
3682 | /* type name itself is deemed uninteresting */ |
3683 | } |
3684 | break; |
3685 | case T_ColumnDef: |
3686 | { |
3687 | ColumnDef *coldef = (ColumnDef *) node; |
3688 | |
3689 | if (walker(coldef->typeName, context)) |
3690 | return true; |
3691 | if (walker(coldef->raw_default, context)) |
3692 | return true; |
3693 | if (walker(coldef->collClause, context)) |
3694 | return true; |
3695 | /* for now, constraints are ignored */ |
3696 | } |
3697 | break; |
3698 | case T_IndexElem: |
3699 | { |
3700 | IndexElem *indelem = (IndexElem *) node; |
3701 | |
3702 | if (walker(indelem->expr, context)) |
3703 | return true; |
3704 | /* collation and opclass names are deemed uninteresting */ |
3705 | } |
3706 | break; |
3707 | case T_GroupingSet: |
3708 | return walker(((GroupingSet *) node)->content, context); |
3709 | case T_LockingClause: |
3710 | return walker(((LockingClause *) node)->lockedRels, context); |
3711 | case T_XmlSerialize: |
3712 | { |
3713 | XmlSerialize *xs = (XmlSerialize *) node; |
3714 | |
3715 | if (walker(xs->expr, context)) |
3716 | return true; |
3717 | if (walker(xs->typeName, context)) |
3718 | return true; |
3719 | } |
3720 | break; |
3721 | case T_WithClause: |
3722 | return walker(((WithClause *) node)->ctes, context); |
3723 | case T_InferClause: |
3724 | { |
3725 | InferClause *stmt = (InferClause *) node; |
3726 | |
3727 | if (walker(stmt->indexElems, context)) |
3728 | return true; |
3729 | if (walker(stmt->whereClause, context)) |
3730 | return true; |
3731 | } |
3732 | break; |
3733 | case T_OnConflictClause: |
3734 | { |
3735 | OnConflictClause *stmt = (OnConflictClause *) node; |
3736 | |
3737 | if (walker(stmt->infer, context)) |
3738 | return true; |
3739 | if (walker(stmt->targetList, context)) |
3740 | return true; |
3741 | if (walker(stmt->whereClause, context)) |
3742 | return true; |
3743 | } |
3744 | break; |
3745 | case T_CommonTableExpr: |
3746 | return walker(((CommonTableExpr *) node)->ctequery, context); |
3747 | default: |
3748 | elog(ERROR, "unrecognized node type: %d" , |
3749 | (int) nodeTag(node)); |
3750 | break; |
3751 | } |
3752 | return false; |
3753 | } |
3754 | |
3755 | /* |
3756 | * planstate_tree_walker --- walk plan state trees |
3757 | * |
3758 | * The walker has already visited the current node, and so we need only |
3759 | * recurse into any sub-nodes it has. |
3760 | */ |
3761 | bool |
3762 | planstate_tree_walker(PlanState *planstate, |
3763 | bool (*walker) (), |
3764 | void *context) |
3765 | { |
3766 | Plan *plan = planstate->plan; |
3767 | ListCell *lc; |
3768 | |
3769 | /* Guard against stack overflow due to overly complex plan trees */ |
3770 | check_stack_depth(); |
3771 | |
3772 | /* initPlan-s */ |
3773 | if (planstate_walk_subplans(planstate->initPlan, walker, context)) |
3774 | return true; |
3775 | |
3776 | /* lefttree */ |
3777 | if (outerPlanState(planstate)) |
3778 | { |
3779 | if (walker(outerPlanState(planstate), context)) |
3780 | return true; |
3781 | } |
3782 | |
3783 | /* righttree */ |
3784 | if (innerPlanState(planstate)) |
3785 | { |
3786 | if (walker(innerPlanState(planstate), context)) |
3787 | return true; |
3788 | } |
3789 | |
3790 | /* special child plans */ |
3791 | switch (nodeTag(plan)) |
3792 | { |
3793 | case T_ModifyTable: |
3794 | if (planstate_walk_members(((ModifyTableState *) planstate)->mt_plans, |
3795 | ((ModifyTableState *) planstate)->mt_nplans, |
3796 | walker, context)) |
3797 | return true; |
3798 | break; |
3799 | case T_Append: |
3800 | if (planstate_walk_members(((AppendState *) planstate)->appendplans, |
3801 | ((AppendState *) planstate)->as_nplans, |
3802 | walker, context)) |
3803 | return true; |
3804 | break; |
3805 | case T_MergeAppend: |
3806 | if (planstate_walk_members(((MergeAppendState *) planstate)->mergeplans, |
3807 | ((MergeAppendState *) planstate)->ms_nplans, |
3808 | walker, context)) |
3809 | return true; |
3810 | break; |
3811 | case T_BitmapAnd: |
3812 | if (planstate_walk_members(((BitmapAndState *) planstate)->bitmapplans, |
3813 | ((BitmapAndState *) planstate)->nplans, |
3814 | walker, context)) |
3815 | return true; |
3816 | break; |
3817 | case T_BitmapOr: |
3818 | if (planstate_walk_members(((BitmapOrState *) planstate)->bitmapplans, |
3819 | ((BitmapOrState *) planstate)->nplans, |
3820 | walker, context)) |
3821 | return true; |
3822 | break; |
3823 | case T_SubqueryScan: |
3824 | if (walker(((SubqueryScanState *) planstate)->subplan, context)) |
3825 | return true; |
3826 | break; |
3827 | case T_CustomScan: |
3828 | foreach(lc, ((CustomScanState *) planstate)->custom_ps) |
3829 | { |
3830 | if (walker((PlanState *) lfirst(lc), context)) |
3831 | return true; |
3832 | } |
3833 | break; |
3834 | default: |
3835 | break; |
3836 | } |
3837 | |
3838 | /* subPlan-s */ |
3839 | if (planstate_walk_subplans(planstate->subPlan, walker, context)) |
3840 | return true; |
3841 | |
3842 | return false; |
3843 | } |
3844 | |
3845 | /* |
3846 | * Walk a list of SubPlans (or initPlans, which also use SubPlan nodes). |
3847 | */ |
3848 | static bool |
3849 | planstate_walk_subplans(List *plans, |
3850 | bool (*walker) (), |
3851 | void *context) |
3852 | { |
3853 | ListCell *lc; |
3854 | |
3855 | foreach(lc, plans) |
3856 | { |
3857 | SubPlanState *sps = lfirst_node(SubPlanState, lc); |
3858 | |
3859 | if (walker(sps->planstate, context)) |
3860 | return true; |
3861 | } |
3862 | |
3863 | return false; |
3864 | } |
3865 | |
3866 | /* |
3867 | * Walk the constituent plans of a ModifyTable, Append, MergeAppend, |
3868 | * BitmapAnd, or BitmapOr node. |
3869 | */ |
3870 | static bool |
3871 | planstate_walk_members(PlanState **planstates, int nplans, |
3872 | bool (*walker) (), void *context) |
3873 | { |
3874 | int j; |
3875 | |
3876 | for (j = 0; j < nplans; j++) |
3877 | { |
3878 | if (walker(planstates[j], context)) |
3879 | return true; |
3880 | } |
3881 | |
3882 | return false; |
3883 | } |
3884 | |