| 1 | /*------------------------------------------------------------------------ |
| 2 | * |
| 3 | * geqo_main.c |
| 4 | * solution to the query optimization problem |
| 5 | * by means of a Genetic Algorithm (GA) |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * src/backend/optimizer/geqo/geqo_main.c |
| 11 | * |
| 12 | *------------------------------------------------------------------------- |
| 13 | */ |
| 14 | |
| 15 | /* contributed by: |
| 16 | =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= |
| 17 | * Martin Utesch * Institute of Automatic Control * |
| 18 | = = University of Mining and Technology = |
| 19 | * utesch@aut.tu-freiberg.de * Freiberg, Germany * |
| 20 | =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= |
| 21 | */ |
| 22 | |
| 23 | /* -- parts of this are adapted from D. Whitley's Genitor algorithm -- */ |
| 24 | |
| 25 | #include "postgres.h" |
| 26 | |
| 27 | #include <math.h> |
| 28 | |
| 29 | #include "optimizer/geqo_misc.h" |
| 30 | #include "optimizer/geqo_mutation.h" |
| 31 | #include "optimizer/geqo_pool.h" |
| 32 | #include "optimizer/geqo_random.h" |
| 33 | #include "optimizer/geqo_selection.h" |
| 34 | |
| 35 | |
| 36 | /* |
| 37 | * Configuration options |
| 38 | */ |
| 39 | int Geqo_effort; |
| 40 | int Geqo_pool_size; |
| 41 | int Geqo_generations; |
| 42 | double Geqo_selection_bias; |
| 43 | double Geqo_seed; |
| 44 | |
| 45 | |
| 46 | static int gimme_pool_size(int nr_rel); |
| 47 | static int gimme_number_generations(int pool_size); |
| 48 | |
| 49 | /* complain if no recombination mechanism is #define'd */ |
| 50 | #if !defined(ERX) && \ |
| 51 | !defined(PMX) && \ |
| 52 | !defined(CX) && \ |
| 53 | !defined(PX) && \ |
| 54 | !defined(OX1) && \ |
| 55 | !defined(OX2) |
| 56 | #error "must choose one GEQO recombination mechanism in geqo.h" |
| 57 | #endif |
| 58 | |
| 59 | |
| 60 | /* |
| 61 | * geqo |
| 62 | * solution of the query optimization problem |
| 63 | * similar to a constrained Traveling Salesman Problem (TSP) |
| 64 | */ |
| 65 | |
| 66 | RelOptInfo * |
| 67 | geqo(PlannerInfo *root, int number_of_rels, List *initial_rels) |
| 68 | { |
| 69 | GeqoPrivateData private; |
| 70 | int generation; |
| 71 | Chromosome *momma; |
| 72 | Chromosome *daddy; |
| 73 | Chromosome *kid; |
| 74 | Pool *pool; |
| 75 | int pool_size, |
| 76 | number_generations; |
| 77 | |
| 78 | #ifdef GEQO_DEBUG |
| 79 | int status_interval; |
| 80 | #endif |
| 81 | Gene *best_tour; |
| 82 | RelOptInfo *best_rel; |
| 83 | |
| 84 | #if defined(ERX) |
| 85 | Edge *edge_table; /* list of edges */ |
| 86 | int edge_failures = 0; |
| 87 | #endif |
| 88 | #if defined(CX) || defined(PX) || defined(OX1) || defined(OX2) |
| 89 | City *city_table; /* list of cities */ |
| 90 | #endif |
| 91 | #if defined(CX) |
| 92 | int cycle_diffs = 0; |
| 93 | int mutations = 0; |
| 94 | #endif |
| 95 | |
| 96 | /* set up private information */ |
| 97 | root->join_search_private = (void *) &private; |
| 98 | private.initial_rels = initial_rels; |
| 99 | |
| 100 | /* initialize private number generator */ |
| 101 | geqo_set_seed(root, Geqo_seed); |
| 102 | |
| 103 | /* set GA parameters */ |
| 104 | pool_size = gimme_pool_size(number_of_rels); |
| 105 | number_generations = gimme_number_generations(pool_size); |
| 106 | #ifdef GEQO_DEBUG |
| 107 | status_interval = 10; |
| 108 | #endif |
| 109 | |
| 110 | /* allocate genetic pool memory */ |
| 111 | pool = alloc_pool(root, pool_size, number_of_rels); |
| 112 | |
| 113 | /* random initialization of the pool */ |
| 114 | random_init_pool(root, pool); |
| 115 | |
| 116 | /* sort the pool according to cheapest path as fitness */ |
| 117 | sort_pool(root, pool); /* we have to do it only one time, since all |
| 118 | * kids replace the worst individuals in |
| 119 | * future (-> geqo_pool.c:spread_chromo ) */ |
| 120 | |
| 121 | #ifdef GEQO_DEBUG |
| 122 | elog(DEBUG1, "GEQO selected %d pool entries, best %.2f, worst %.2f" , |
| 123 | pool_size, |
| 124 | pool->data[0].worth, |
| 125 | pool->data[pool_size - 1].worth); |
| 126 | #endif |
| 127 | |
| 128 | /* allocate chromosome momma and daddy memory */ |
| 129 | momma = alloc_chromo(root, pool->string_length); |
| 130 | daddy = alloc_chromo(root, pool->string_length); |
| 131 | |
| 132 | #if defined (ERX) |
| 133 | #ifdef GEQO_DEBUG |
| 134 | elog(DEBUG2, "using edge recombination crossover [ERX]" ); |
| 135 | #endif |
| 136 | /* allocate edge table memory */ |
| 137 | edge_table = alloc_edge_table(root, pool->string_length); |
| 138 | #elif defined(PMX) |
| 139 | #ifdef GEQO_DEBUG |
| 140 | elog(DEBUG2, "using partially matched crossover [PMX]" ); |
| 141 | #endif |
| 142 | /* allocate chromosome kid memory */ |
| 143 | kid = alloc_chromo(root, pool->string_length); |
| 144 | #elif defined(CX) |
| 145 | #ifdef GEQO_DEBUG |
| 146 | elog(DEBUG2, "using cycle crossover [CX]" ); |
| 147 | #endif |
| 148 | /* allocate city table memory */ |
| 149 | kid = alloc_chromo(root, pool->string_length); |
| 150 | city_table = alloc_city_table(root, pool->string_length); |
| 151 | #elif defined(PX) |
| 152 | #ifdef GEQO_DEBUG |
| 153 | elog(DEBUG2, "using position crossover [PX]" ); |
| 154 | #endif |
| 155 | /* allocate city table memory */ |
| 156 | kid = alloc_chromo(root, pool->string_length); |
| 157 | city_table = alloc_city_table(root, pool->string_length); |
| 158 | #elif defined(OX1) |
| 159 | #ifdef GEQO_DEBUG |
| 160 | elog(DEBUG2, "using order crossover [OX1]" ); |
| 161 | #endif |
| 162 | /* allocate city table memory */ |
| 163 | kid = alloc_chromo(root, pool->string_length); |
| 164 | city_table = alloc_city_table(root, pool->string_length); |
| 165 | #elif defined(OX2) |
| 166 | #ifdef GEQO_DEBUG |
| 167 | elog(DEBUG2, "using order crossover [OX2]" ); |
| 168 | #endif |
| 169 | /* allocate city table memory */ |
| 170 | kid = alloc_chromo(root, pool->string_length); |
| 171 | city_table = alloc_city_table(root, pool->string_length); |
| 172 | #endif |
| 173 | |
| 174 | |
| 175 | /* my pain main part: */ |
| 176 | /* iterative optimization */ |
| 177 | |
| 178 | for (generation = 0; generation < number_generations; generation++) |
| 179 | { |
| 180 | /* SELECTION: using linear bias function */ |
| 181 | geqo_selection(root, momma, daddy, pool, Geqo_selection_bias); |
| 182 | |
| 183 | #if defined (ERX) |
| 184 | /* EDGE RECOMBINATION CROSSOVER */ |
| 185 | gimme_edge_table(root, momma->string, daddy->string, pool->string_length, edge_table); |
| 186 | |
| 187 | kid = momma; |
| 188 | |
| 189 | /* are there any edge failures ? */ |
| 190 | edge_failures += gimme_tour(root, edge_table, kid->string, pool->string_length); |
| 191 | #elif defined(PMX) |
| 192 | /* PARTIALLY MATCHED CROSSOVER */ |
| 193 | pmx(root, momma->string, daddy->string, kid->string, pool->string_length); |
| 194 | #elif defined(CX) |
| 195 | /* CYCLE CROSSOVER */ |
| 196 | cycle_diffs = cx(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); |
| 197 | /* mutate the child */ |
| 198 | if (cycle_diffs == 0) |
| 199 | { |
| 200 | mutations++; |
| 201 | geqo_mutation(root, kid->string, pool->string_length); |
| 202 | } |
| 203 | #elif defined(PX) |
| 204 | /* POSITION CROSSOVER */ |
| 205 | px(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); |
| 206 | #elif defined(OX1) |
| 207 | /* ORDER CROSSOVER */ |
| 208 | ox1(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); |
| 209 | #elif defined(OX2) |
| 210 | /* ORDER CROSSOVER */ |
| 211 | ox2(root, momma->string, daddy->string, kid->string, pool->string_length, city_table); |
| 212 | #endif |
| 213 | |
| 214 | |
| 215 | /* EVALUATE FITNESS */ |
| 216 | kid->worth = geqo_eval(root, kid->string, pool->string_length); |
| 217 | |
| 218 | /* push the kid into the wilderness of life according to its worth */ |
| 219 | spread_chromo(root, kid, pool); |
| 220 | |
| 221 | |
| 222 | #ifdef GEQO_DEBUG |
| 223 | if (status_interval && !(generation % status_interval)) |
| 224 | print_gen(stdout, pool, generation); |
| 225 | #endif |
| 226 | |
| 227 | } |
| 228 | |
| 229 | |
| 230 | #if defined(ERX) && defined(GEQO_DEBUG) |
| 231 | if (edge_failures != 0) |
| 232 | elog(LOG, "[GEQO] failures: %d, average: %d" , |
| 233 | edge_failures, (int) number_generations / edge_failures); |
| 234 | else |
| 235 | elog(LOG, "[GEQO] no edge failures detected" ); |
| 236 | #endif |
| 237 | |
| 238 | #if defined(CX) && defined(GEQO_DEBUG) |
| 239 | if (mutations != 0) |
| 240 | elog(LOG, "[GEQO] mutations: %d, generations: %d" , |
| 241 | mutations, number_generations); |
| 242 | else |
| 243 | elog(LOG, "[GEQO] no mutations processed" ); |
| 244 | #endif |
| 245 | |
| 246 | #ifdef GEQO_DEBUG |
| 247 | print_pool(stdout, pool, 0, pool_size - 1); |
| 248 | #endif |
| 249 | |
| 250 | #ifdef GEQO_DEBUG |
| 251 | elog(DEBUG1, "GEQO best is %.2f after %d generations" , |
| 252 | pool->data[0].worth, number_generations); |
| 253 | #endif |
| 254 | |
| 255 | |
| 256 | /* |
| 257 | * got the cheapest query tree processed by geqo; first element of the |
| 258 | * population indicates the best query tree |
| 259 | */ |
| 260 | best_tour = (Gene *) pool->data[0].string; |
| 261 | |
| 262 | best_rel = gimme_tree(root, best_tour, pool->string_length); |
| 263 | |
| 264 | if (best_rel == NULL) |
| 265 | elog(ERROR, "geqo failed to make a valid plan" ); |
| 266 | |
| 267 | /* DBG: show the query plan */ |
| 268 | #ifdef NOT_USED |
| 269 | print_plan(best_plan, root); |
| 270 | #endif |
| 271 | |
| 272 | /* ... free memory stuff */ |
| 273 | free_chromo(root, momma); |
| 274 | free_chromo(root, daddy); |
| 275 | |
| 276 | #if defined (ERX) |
| 277 | free_edge_table(root, edge_table); |
| 278 | #elif defined(PMX) |
| 279 | free_chromo(root, kid); |
| 280 | #elif defined(CX) |
| 281 | free_chromo(root, kid); |
| 282 | free_city_table(root, city_table); |
| 283 | #elif defined(PX) |
| 284 | free_chromo(root, kid); |
| 285 | free_city_table(root, city_table); |
| 286 | #elif defined(OX1) |
| 287 | free_chromo(root, kid); |
| 288 | free_city_table(root, city_table); |
| 289 | #elif defined(OX2) |
| 290 | free_chromo(root, kid); |
| 291 | free_city_table(root, city_table); |
| 292 | #endif |
| 293 | |
| 294 | free_pool(root, pool); |
| 295 | |
| 296 | /* ... clear root pointer to our private storage */ |
| 297 | root->join_search_private = NULL; |
| 298 | |
| 299 | return best_rel; |
| 300 | } |
| 301 | |
| 302 | |
| 303 | /* |
| 304 | * Return either configured pool size or a good default |
| 305 | * |
| 306 | * The default is based on query size (no. of relations) = 2^(QS+1), |
| 307 | * but constrained to a range based on the effort value. |
| 308 | */ |
| 309 | static int |
| 310 | gimme_pool_size(int nr_rel) |
| 311 | { |
| 312 | double size; |
| 313 | int minsize; |
| 314 | int maxsize; |
| 315 | |
| 316 | /* Legal pool size *must* be at least 2, so ignore attempt to select 1 */ |
| 317 | if (Geqo_pool_size >= 2) |
| 318 | return Geqo_pool_size; |
| 319 | |
| 320 | size = pow(2.0, nr_rel + 1.0); |
| 321 | |
| 322 | maxsize = 50 * Geqo_effort; /* 50 to 500 individuals */ |
| 323 | if (size > maxsize) |
| 324 | return maxsize; |
| 325 | |
| 326 | minsize = 10 * Geqo_effort; /* 10 to 100 individuals */ |
| 327 | if (size < minsize) |
| 328 | return minsize; |
| 329 | |
| 330 | return (int) ceil(size); |
| 331 | } |
| 332 | |
| 333 | |
| 334 | /* |
| 335 | * Return either configured number of generations or a good default |
| 336 | * |
| 337 | * The default is the same as the pool size, which allows us to be |
| 338 | * sure that less-fit individuals get pushed out of the breeding |
| 339 | * population before the run finishes. |
| 340 | */ |
| 341 | static int |
| 342 | gimme_number_generations(int pool_size) |
| 343 | { |
| 344 | if (Geqo_generations > 0) |
| 345 | return Geqo_generations; |
| 346 | |
| 347 | return pool_size; |
| 348 | } |
| 349 | |