| 1 | /*------------------------------------------------------------------------ |
| 2 | * |
| 3 | * geqo_recombination.c |
| 4 | * misc recombination procedures |
| 5 | * |
| 6 | * src/backend/optimizer/geqo/geqo_recombination.c |
| 7 | * |
| 8 | *------------------------------------------------------------------------- |
| 9 | */ |
| 10 | |
| 11 | /* contributed by: |
| 12 | =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= |
| 13 | * Martin Utesch * Institute of Automatic Control * |
| 14 | = = University of Mining and Technology = |
| 15 | * utesch@aut.tu-freiberg.de * Freiberg, Germany * |
| 16 | =*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*= |
| 17 | */ |
| 18 | |
| 19 | /* -- parts of this are adapted from D. Whitley's Genitor algorithm -- */ |
| 20 | |
| 21 | #include "postgres.h" |
| 22 | |
| 23 | #include "optimizer/geqo_random.h" |
| 24 | #include "optimizer/geqo_recombination.h" |
| 25 | |
| 26 | |
| 27 | /* |
| 28 | * init_tour |
| 29 | * |
| 30 | * Randomly generates a legal "traveling salesman" tour |
| 31 | * (i.e. where each point is visited only once.) |
| 32 | */ |
| 33 | void |
| 34 | init_tour(PlannerInfo *root, Gene *tour, int num_gene) |
| 35 | { |
| 36 | int i, |
| 37 | j; |
| 38 | |
| 39 | /* |
| 40 | * We must fill the tour[] array with a random permutation of the numbers |
| 41 | * 1 .. num_gene. We can do that in one pass using the "inside-out" |
| 42 | * variant of the Fisher-Yates shuffle algorithm. Notionally, we append |
| 43 | * each new value to the array and then swap it with a randomly-chosen |
| 44 | * array element (possibly including itself, else we fail to generate |
| 45 | * permutations with the last city last). The swap step can be optimized |
| 46 | * by combining it with the insertion. |
| 47 | */ |
| 48 | if (num_gene > 0) |
| 49 | tour[0] = (Gene) 1; |
| 50 | |
| 51 | for (i = 1; i < num_gene; i++) |
| 52 | { |
| 53 | j = geqo_randint(root, i, 0); |
| 54 | /* i != j check avoids fetching uninitialized array element */ |
| 55 | if (i != j) |
| 56 | tour[i] = tour[j]; |
| 57 | tour[j] = (Gene) (i + 1); |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /* city table is used in these recombination methods: */ |
| 62 | #if defined(CX) || defined(PX) || defined(OX1) || defined(OX2) |
| 63 | |
| 64 | /* alloc_city_table |
| 65 | * |
| 66 | * allocate memory for city table |
| 67 | */ |
| 68 | City * |
| 69 | alloc_city_table(PlannerInfo *root, int num_gene) |
| 70 | { |
| 71 | City *city_table; |
| 72 | |
| 73 | /* |
| 74 | * palloc one extra location so that nodes numbered 1..n can be indexed |
| 75 | * directly; 0 will not be used |
| 76 | */ |
| 77 | city_table = (City *) palloc((num_gene + 1) * sizeof(City)); |
| 78 | |
| 79 | return city_table; |
| 80 | } |
| 81 | |
| 82 | /* free_city_table |
| 83 | * |
| 84 | * deallocate memory of city table |
| 85 | */ |
| 86 | void |
| 87 | free_city_table(PlannerInfo *root, City * city_table) |
| 88 | { |
| 89 | pfree(city_table); |
| 90 | } |
| 91 | |
| 92 | #endif /* CX || PX || OX1 || OX2 */ |
| 93 | |