| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * allpaths.c |
| 4 | * Routines to find possible search paths for processing a query |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/optimizer/path/allpaths.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include <limits.h> |
| 19 | #include <math.h> |
| 20 | |
| 21 | #include "access/sysattr.h" |
| 22 | #include "access/tsmapi.h" |
| 23 | #include "catalog/pg_class.h" |
| 24 | #include "catalog/pg_operator.h" |
| 25 | #include "catalog/pg_proc.h" |
| 26 | #include "foreign/fdwapi.h" |
| 27 | #include "miscadmin.h" |
| 28 | #include "nodes/makefuncs.h" |
| 29 | #include "nodes/nodeFuncs.h" |
| 30 | #ifdef OPTIMIZER_DEBUG |
| 31 | #include "nodes/print.h" |
| 32 | #endif |
| 33 | #include "optimizer/appendinfo.h" |
| 34 | #include "optimizer/clauses.h" |
| 35 | #include "optimizer/cost.h" |
| 36 | #include "optimizer/geqo.h" |
| 37 | #include "optimizer/inherit.h" |
| 38 | #include "optimizer/optimizer.h" |
| 39 | #include "optimizer/pathnode.h" |
| 40 | #include "optimizer/paths.h" |
| 41 | #include "optimizer/plancat.h" |
| 42 | #include "optimizer/planner.h" |
| 43 | #include "optimizer/restrictinfo.h" |
| 44 | #include "optimizer/tlist.h" |
| 45 | #include "parser/parse_clause.h" |
| 46 | #include "parser/parsetree.h" |
| 47 | #include "partitioning/partbounds.h" |
| 48 | #include "partitioning/partprune.h" |
| 49 | #include "rewrite/rewriteManip.h" |
| 50 | #include "utils/lsyscache.h" |
| 51 | |
| 52 | |
| 53 | /* results of subquery_is_pushdown_safe */ |
| 54 | typedef struct pushdown_safety_info |
| 55 | { |
| 56 | bool *unsafeColumns; /* which output columns are unsafe to use */ |
| 57 | bool unsafeVolatile; /* don't push down volatile quals */ |
| 58 | bool unsafeLeaky; /* don't push down leaky quals */ |
| 59 | } pushdown_safety_info; |
| 60 | |
| 61 | /* These parameters are set by GUC */ |
| 62 | bool enable_geqo = false; /* just in case GUC doesn't set it */ |
| 63 | int geqo_threshold; |
| 64 | int min_parallel_table_scan_size; |
| 65 | int min_parallel_index_scan_size; |
| 66 | |
| 67 | /* Hook for plugins to get control in set_rel_pathlist() */ |
| 68 | set_rel_pathlist_hook_type set_rel_pathlist_hook = NULL; |
| 69 | |
| 70 | /* Hook for plugins to replace standard_join_search() */ |
| 71 | join_search_hook_type join_search_hook = NULL; |
| 72 | |
| 73 | |
| 74 | static void set_base_rel_consider_startup(PlannerInfo *root); |
| 75 | static void set_base_rel_sizes(PlannerInfo *root); |
| 76 | static void set_base_rel_pathlists(PlannerInfo *root); |
| 77 | static void set_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 78 | Index rti, RangeTblEntry *rte); |
| 79 | static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 80 | Index rti, RangeTblEntry *rte); |
| 81 | static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 82 | RangeTblEntry *rte); |
| 83 | static void create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel); |
| 84 | static void set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel, |
| 85 | RangeTblEntry *rte); |
| 86 | static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 87 | RangeTblEntry *rte); |
| 88 | static void set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 89 | RangeTblEntry *rte); |
| 90 | static void set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 91 | RangeTblEntry *rte); |
| 92 | static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel, |
| 93 | RangeTblEntry *rte); |
| 94 | static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 95 | RangeTblEntry *rte); |
| 96 | static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 97 | Index rti, RangeTblEntry *rte); |
| 98 | static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 99 | Index rti, RangeTblEntry *rte); |
| 100 | static void generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel, |
| 101 | List *live_childrels, |
| 102 | List *all_child_pathkeys, |
| 103 | List *partitioned_rels); |
| 104 | static Path *get_cheapest_parameterized_child_path(PlannerInfo *root, |
| 105 | RelOptInfo *rel, |
| 106 | Relids required_outer); |
| 107 | static void accumulate_append_subpath(Path *path, |
| 108 | List **subpaths, List **special_subpaths); |
| 109 | static Path *get_singleton_append_subpath(Path *path); |
| 110 | static void set_dummy_rel_pathlist(RelOptInfo *rel); |
| 111 | static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 112 | Index rti, RangeTblEntry *rte); |
| 113 | static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 114 | RangeTblEntry *rte); |
| 115 | static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 116 | RangeTblEntry *rte); |
| 117 | static void set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 118 | RangeTblEntry *rte); |
| 119 | static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 120 | RangeTblEntry *rte); |
| 121 | static void set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 122 | RangeTblEntry *rte); |
| 123 | static void set_result_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 124 | RangeTblEntry *rte); |
| 125 | static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 126 | RangeTblEntry *rte); |
| 127 | static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist); |
| 128 | static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery, |
| 129 | pushdown_safety_info *safetyInfo); |
| 130 | static bool recurse_pushdown_safe(Node *setOp, Query *topquery, |
| 131 | pushdown_safety_info *safetyInfo); |
| 132 | static void check_output_expressions(Query *subquery, |
| 133 | pushdown_safety_info *safetyInfo); |
| 134 | static void compare_tlist_datatypes(List *tlist, List *colTypes, |
| 135 | pushdown_safety_info *safetyInfo); |
| 136 | static bool targetIsInAllPartitionLists(TargetEntry *tle, Query *query); |
| 137 | static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual, |
| 138 | pushdown_safety_info *safetyInfo); |
| 139 | static void subquery_push_qual(Query *subquery, |
| 140 | RangeTblEntry *rte, Index rti, Node *qual); |
| 141 | static void recurse_push_qual(Node *setOp, Query *topquery, |
| 142 | RangeTblEntry *rte, Index rti, Node *qual); |
| 143 | static void remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel); |
| 144 | |
| 145 | |
| 146 | /* |
| 147 | * make_one_rel |
| 148 | * Finds all possible access paths for executing a query, returning a |
| 149 | * single rel that represents the join of all base rels in the query. |
| 150 | */ |
| 151 | RelOptInfo * |
| 152 | make_one_rel(PlannerInfo *root, List *joinlist) |
| 153 | { |
| 154 | RelOptInfo *rel; |
| 155 | Index rti; |
| 156 | double total_pages; |
| 157 | |
| 158 | /* |
| 159 | * Construct the all_baserels Relids set. |
| 160 | */ |
| 161 | root->all_baserels = NULL; |
| 162 | for (rti = 1; rti < root->simple_rel_array_size; rti++) |
| 163 | { |
| 164 | RelOptInfo *brel = root->simple_rel_array[rti]; |
| 165 | |
| 166 | /* there may be empty slots corresponding to non-baserel RTEs */ |
| 167 | if (brel == NULL) |
| 168 | continue; |
| 169 | |
| 170 | Assert(brel->relid == rti); /* sanity check on array */ |
| 171 | |
| 172 | /* ignore RTEs that are "other rels" */ |
| 173 | if (brel->reloptkind != RELOPT_BASEREL) |
| 174 | continue; |
| 175 | |
| 176 | root->all_baserels = bms_add_member(root->all_baserels, brel->relid); |
| 177 | } |
| 178 | |
| 179 | /* Mark base rels as to whether we care about fast-start plans */ |
| 180 | set_base_rel_consider_startup(root); |
| 181 | |
| 182 | /* |
| 183 | * Compute size estimates and consider_parallel flags for each base rel. |
| 184 | */ |
| 185 | set_base_rel_sizes(root); |
| 186 | |
| 187 | /* |
| 188 | * We should now have size estimates for every actual table involved in |
| 189 | * the query, and we also know which if any have been deleted from the |
| 190 | * query by join removal, pruned by partition pruning, or eliminated by |
| 191 | * constraint exclusion. So we can now compute total_table_pages. |
| 192 | * |
| 193 | * Note that appendrels are not double-counted here, even though we don't |
| 194 | * bother to distinguish RelOptInfos for appendrel parents, because the |
| 195 | * parents will have pages = 0. |
| 196 | * |
| 197 | * XXX if a table is self-joined, we will count it once per appearance, |
| 198 | * which perhaps is the wrong thing ... but that's not completely clear, |
| 199 | * and detecting self-joins here is difficult, so ignore it for now. |
| 200 | */ |
| 201 | total_pages = 0; |
| 202 | for (rti = 1; rti < root->simple_rel_array_size; rti++) |
| 203 | { |
| 204 | RelOptInfo *brel = root->simple_rel_array[rti]; |
| 205 | |
| 206 | if (brel == NULL) |
| 207 | continue; |
| 208 | |
| 209 | Assert(brel->relid == rti); /* sanity check on array */ |
| 210 | |
| 211 | if (IS_DUMMY_REL(brel)) |
| 212 | continue; |
| 213 | |
| 214 | if (IS_SIMPLE_REL(brel)) |
| 215 | total_pages += (double) brel->pages; |
| 216 | } |
| 217 | root->total_table_pages = total_pages; |
| 218 | |
| 219 | /* |
| 220 | * Generate access paths for each base rel. |
| 221 | */ |
| 222 | set_base_rel_pathlists(root); |
| 223 | |
| 224 | /* |
| 225 | * Generate access paths for the entire join tree. |
| 226 | */ |
| 227 | rel = make_rel_from_joinlist(root, joinlist); |
| 228 | |
| 229 | /* |
| 230 | * The result should join all and only the query's base rels. |
| 231 | */ |
| 232 | Assert(bms_equal(rel->relids, root->all_baserels)); |
| 233 | |
| 234 | return rel; |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * set_base_rel_consider_startup |
| 239 | * Set the consider_[param_]startup flags for each base-relation entry. |
| 240 | * |
| 241 | * For the moment, we only deal with consider_param_startup here; because the |
| 242 | * logic for consider_startup is pretty trivial and is the same for every base |
| 243 | * relation, we just let build_simple_rel() initialize that flag correctly to |
| 244 | * start with. If that logic ever gets more complicated it would probably |
| 245 | * be better to move it here. |
| 246 | */ |
| 247 | static void |
| 248 | set_base_rel_consider_startup(PlannerInfo *root) |
| 249 | { |
| 250 | /* |
| 251 | * Since parameterized paths can only be used on the inside of a nestloop |
| 252 | * join plan, there is usually little value in considering fast-start |
| 253 | * plans for them. However, for relations that are on the RHS of a SEMI |
| 254 | * or ANTI join, a fast-start plan can be useful because we're only going |
| 255 | * to care about fetching one tuple anyway. |
| 256 | * |
| 257 | * To minimize growth of planning time, we currently restrict this to |
| 258 | * cases where the RHS is a single base relation, not a join; there is no |
| 259 | * provision for consider_param_startup to get set at all on joinrels. |
| 260 | * Also we don't worry about appendrels. costsize.c's costing rules for |
| 261 | * nestloop semi/antijoins don't consider such cases either. |
| 262 | */ |
| 263 | ListCell *lc; |
| 264 | |
| 265 | foreach(lc, root->join_info_list) |
| 266 | { |
| 267 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc); |
| 268 | int varno; |
| 269 | |
| 270 | if ((sjinfo->jointype == JOIN_SEMI || sjinfo->jointype == JOIN_ANTI) && |
| 271 | bms_get_singleton_member(sjinfo->syn_righthand, &varno)) |
| 272 | { |
| 273 | RelOptInfo *rel = find_base_rel(root, varno); |
| 274 | |
| 275 | rel->consider_param_startup = true; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /* |
| 281 | * set_base_rel_sizes |
| 282 | * Set the size estimates (rows and widths) for each base-relation entry. |
| 283 | * Also determine whether to consider parallel paths for base relations. |
| 284 | * |
| 285 | * We do this in a separate pass over the base rels so that rowcount |
| 286 | * estimates are available for parameterized path generation, and also so |
| 287 | * that each rel's consider_parallel flag is set correctly before we begin to |
| 288 | * generate paths. |
| 289 | */ |
| 290 | static void |
| 291 | set_base_rel_sizes(PlannerInfo *root) |
| 292 | { |
| 293 | Index rti; |
| 294 | |
| 295 | for (rti = 1; rti < root->simple_rel_array_size; rti++) |
| 296 | { |
| 297 | RelOptInfo *rel = root->simple_rel_array[rti]; |
| 298 | RangeTblEntry *rte; |
| 299 | |
| 300 | /* there may be empty slots corresponding to non-baserel RTEs */ |
| 301 | if (rel == NULL) |
| 302 | continue; |
| 303 | |
| 304 | Assert(rel->relid == rti); /* sanity check on array */ |
| 305 | |
| 306 | /* ignore RTEs that are "other rels" */ |
| 307 | if (rel->reloptkind != RELOPT_BASEREL) |
| 308 | continue; |
| 309 | |
| 310 | rte = root->simple_rte_array[rti]; |
| 311 | |
| 312 | /* |
| 313 | * If parallelism is allowable for this query in general, see whether |
| 314 | * it's allowable for this rel in particular. We have to do this |
| 315 | * before set_rel_size(), because (a) if this rel is an inheritance |
| 316 | * parent, set_append_rel_size() will use and perhaps change the rel's |
| 317 | * consider_parallel flag, and (b) for some RTE types, set_rel_size() |
| 318 | * goes ahead and makes paths immediately. |
| 319 | */ |
| 320 | if (root->glob->parallelModeOK) |
| 321 | set_rel_consider_parallel(root, rel, rte); |
| 322 | |
| 323 | set_rel_size(root, rel, rti, rte); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * set_base_rel_pathlists |
| 329 | * Finds all paths available for scanning each base-relation entry. |
| 330 | * Sequential scan and any available indices are considered. |
| 331 | * Each useful path is attached to its relation's 'pathlist' field. |
| 332 | */ |
| 333 | static void |
| 334 | set_base_rel_pathlists(PlannerInfo *root) |
| 335 | { |
| 336 | Index rti; |
| 337 | |
| 338 | for (rti = 1; rti < root->simple_rel_array_size; rti++) |
| 339 | { |
| 340 | RelOptInfo *rel = root->simple_rel_array[rti]; |
| 341 | |
| 342 | /* there may be empty slots corresponding to non-baserel RTEs */ |
| 343 | if (rel == NULL) |
| 344 | continue; |
| 345 | |
| 346 | Assert(rel->relid == rti); /* sanity check on array */ |
| 347 | |
| 348 | /* ignore RTEs that are "other rels" */ |
| 349 | if (rel->reloptkind != RELOPT_BASEREL) |
| 350 | continue; |
| 351 | |
| 352 | set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * set_rel_size |
| 358 | * Set size estimates for a base relation |
| 359 | */ |
| 360 | static void |
| 361 | set_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 362 | Index rti, RangeTblEntry *rte) |
| 363 | { |
| 364 | if (rel->reloptkind == RELOPT_BASEREL && |
| 365 | relation_excluded_by_constraints(root, rel, rte)) |
| 366 | { |
| 367 | /* |
| 368 | * We proved we don't need to scan the rel via constraint exclusion, |
| 369 | * so set up a single dummy path for it. Here we only check this for |
| 370 | * regular baserels; if it's an otherrel, CE was already checked in |
| 371 | * set_append_rel_size(). |
| 372 | * |
| 373 | * In this case, we go ahead and set up the relation's path right away |
| 374 | * instead of leaving it for set_rel_pathlist to do. This is because |
| 375 | * we don't have a convention for marking a rel as dummy except by |
| 376 | * assigning a dummy path to it. |
| 377 | */ |
| 378 | set_dummy_rel_pathlist(rel); |
| 379 | } |
| 380 | else if (rte->inh) |
| 381 | { |
| 382 | /* It's an "append relation", process accordingly */ |
| 383 | set_append_rel_size(root, rel, rti, rte); |
| 384 | } |
| 385 | else |
| 386 | { |
| 387 | switch (rel->rtekind) |
| 388 | { |
| 389 | case RTE_RELATION: |
| 390 | if (rte->relkind == RELKIND_FOREIGN_TABLE) |
| 391 | { |
| 392 | /* Foreign table */ |
| 393 | set_foreign_size(root, rel, rte); |
| 394 | } |
| 395 | else if (rte->relkind == RELKIND_PARTITIONED_TABLE) |
| 396 | { |
| 397 | /* |
| 398 | * We could get here if asked to scan a partitioned table |
| 399 | * with ONLY. In that case we shouldn't scan any of the |
| 400 | * partitions, so mark it as a dummy rel. |
| 401 | */ |
| 402 | set_dummy_rel_pathlist(rel); |
| 403 | } |
| 404 | else if (rte->tablesample != NULL) |
| 405 | { |
| 406 | /* Sampled relation */ |
| 407 | set_tablesample_rel_size(root, rel, rte); |
| 408 | } |
| 409 | else |
| 410 | { |
| 411 | /* Plain relation */ |
| 412 | set_plain_rel_size(root, rel, rte); |
| 413 | } |
| 414 | break; |
| 415 | case RTE_SUBQUERY: |
| 416 | |
| 417 | /* |
| 418 | * Subqueries don't support making a choice between |
| 419 | * parameterized and unparameterized paths, so just go ahead |
| 420 | * and build their paths immediately. |
| 421 | */ |
| 422 | set_subquery_pathlist(root, rel, rti, rte); |
| 423 | break; |
| 424 | case RTE_FUNCTION: |
| 425 | set_function_size_estimates(root, rel); |
| 426 | break; |
| 427 | case RTE_TABLEFUNC: |
| 428 | set_tablefunc_size_estimates(root, rel); |
| 429 | break; |
| 430 | case RTE_VALUES: |
| 431 | set_values_size_estimates(root, rel); |
| 432 | break; |
| 433 | case RTE_CTE: |
| 434 | |
| 435 | /* |
| 436 | * CTEs don't support making a choice between parameterized |
| 437 | * and unparameterized paths, so just go ahead and build their |
| 438 | * paths immediately. |
| 439 | */ |
| 440 | if (rte->self_reference) |
| 441 | set_worktable_pathlist(root, rel, rte); |
| 442 | else |
| 443 | set_cte_pathlist(root, rel, rte); |
| 444 | break; |
| 445 | case RTE_NAMEDTUPLESTORE: |
| 446 | /* Might as well just build the path immediately */ |
| 447 | set_namedtuplestore_pathlist(root, rel, rte); |
| 448 | break; |
| 449 | case RTE_RESULT: |
| 450 | /* Might as well just build the path immediately */ |
| 451 | set_result_pathlist(root, rel, rte); |
| 452 | break; |
| 453 | default: |
| 454 | elog(ERROR, "unexpected rtekind: %d" , (int) rel->rtekind); |
| 455 | break; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * We insist that all non-dummy rels have a nonzero rowcount estimate. |
| 461 | */ |
| 462 | Assert(rel->rows > 0 || IS_DUMMY_REL(rel)); |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * set_rel_pathlist |
| 467 | * Build access paths for a base relation |
| 468 | */ |
| 469 | static void |
| 470 | set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 471 | Index rti, RangeTblEntry *rte) |
| 472 | { |
| 473 | if (IS_DUMMY_REL(rel)) |
| 474 | { |
| 475 | /* We already proved the relation empty, so nothing more to do */ |
| 476 | } |
| 477 | else if (rte->inh) |
| 478 | { |
| 479 | /* It's an "append relation", process accordingly */ |
| 480 | set_append_rel_pathlist(root, rel, rti, rte); |
| 481 | } |
| 482 | else |
| 483 | { |
| 484 | switch (rel->rtekind) |
| 485 | { |
| 486 | case RTE_RELATION: |
| 487 | if (rte->relkind == RELKIND_FOREIGN_TABLE) |
| 488 | { |
| 489 | /* Foreign table */ |
| 490 | set_foreign_pathlist(root, rel, rte); |
| 491 | } |
| 492 | else if (rte->tablesample != NULL) |
| 493 | { |
| 494 | /* Sampled relation */ |
| 495 | set_tablesample_rel_pathlist(root, rel, rte); |
| 496 | } |
| 497 | else |
| 498 | { |
| 499 | /* Plain relation */ |
| 500 | set_plain_rel_pathlist(root, rel, rte); |
| 501 | } |
| 502 | break; |
| 503 | case RTE_SUBQUERY: |
| 504 | /* Subquery --- fully handled during set_rel_size */ |
| 505 | break; |
| 506 | case RTE_FUNCTION: |
| 507 | /* RangeFunction */ |
| 508 | set_function_pathlist(root, rel, rte); |
| 509 | break; |
| 510 | case RTE_TABLEFUNC: |
| 511 | /* Table Function */ |
| 512 | set_tablefunc_pathlist(root, rel, rte); |
| 513 | break; |
| 514 | case RTE_VALUES: |
| 515 | /* Values list */ |
| 516 | set_values_pathlist(root, rel, rte); |
| 517 | break; |
| 518 | case RTE_CTE: |
| 519 | /* CTE reference --- fully handled during set_rel_size */ |
| 520 | break; |
| 521 | case RTE_NAMEDTUPLESTORE: |
| 522 | /* tuplestore reference --- fully handled during set_rel_size */ |
| 523 | break; |
| 524 | case RTE_RESULT: |
| 525 | /* simple Result --- fully handled during set_rel_size */ |
| 526 | break; |
| 527 | default: |
| 528 | elog(ERROR, "unexpected rtekind: %d" , (int) rel->rtekind); |
| 529 | break; |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * Allow a plugin to editorialize on the set of Paths for this base |
| 535 | * relation. It could add new paths (such as CustomPaths) by calling |
| 536 | * add_path(), or add_partial_path() if parallel aware. It could also |
| 537 | * delete or modify paths added by the core code. |
| 538 | */ |
| 539 | if (set_rel_pathlist_hook) |
| 540 | (*set_rel_pathlist_hook) (root, rel, rti, rte); |
| 541 | |
| 542 | /* |
| 543 | * If this is a baserel, we should normally consider gathering any partial |
| 544 | * paths we may have created for it. We have to do this after calling the |
| 545 | * set_rel_pathlist_hook, else it cannot add partial paths to be included |
| 546 | * here. |
| 547 | * |
| 548 | * However, if this is an inheritance child, skip it. Otherwise, we could |
| 549 | * end up with a very large number of gather nodes, each trying to grab |
| 550 | * its own pool of workers. Instead, we'll consider gathering partial |
| 551 | * paths for the parent appendrel. |
| 552 | * |
| 553 | * Also, if this is the topmost scan/join rel (that is, the only baserel), |
| 554 | * we postpone gathering until the final scan/join targetlist is available |
| 555 | * (see grouping_planner). |
| 556 | */ |
| 557 | if (rel->reloptkind == RELOPT_BASEREL && |
| 558 | bms_membership(root->all_baserels) != BMS_SINGLETON) |
| 559 | generate_gather_paths(root, rel, false); |
| 560 | |
| 561 | /* Now find the cheapest of the paths for this rel */ |
| 562 | set_cheapest(rel); |
| 563 | |
| 564 | #ifdef OPTIMIZER_DEBUG |
| 565 | debug_print_rel(root, rel); |
| 566 | #endif |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * set_plain_rel_size |
| 571 | * Set size estimates for a plain relation (no subquery, no inheritance) |
| 572 | */ |
| 573 | static void |
| 574 | set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 575 | { |
| 576 | /* |
| 577 | * Test any partial indexes of rel for applicability. We must do this |
| 578 | * first since partial unique indexes can affect size estimates. |
| 579 | */ |
| 580 | check_index_predicates(root, rel); |
| 581 | |
| 582 | /* Mark rel with estimated output rows, width, etc */ |
| 583 | set_baserel_size_estimates(root, rel); |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * If this relation could possibly be scanned from within a worker, then set |
| 588 | * its consider_parallel flag. |
| 589 | */ |
| 590 | static void |
| 591 | set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel, |
| 592 | RangeTblEntry *rte) |
| 593 | { |
| 594 | /* |
| 595 | * The flag has previously been initialized to false, so we can just |
| 596 | * return if it becomes clear that we can't safely set it. |
| 597 | */ |
| 598 | Assert(!rel->consider_parallel); |
| 599 | |
| 600 | /* Don't call this if parallelism is disallowed for the entire query. */ |
| 601 | Assert(root->glob->parallelModeOK); |
| 602 | |
| 603 | /* This should only be called for baserels and appendrel children. */ |
| 604 | Assert(IS_SIMPLE_REL(rel)); |
| 605 | |
| 606 | /* Assorted checks based on rtekind. */ |
| 607 | switch (rte->rtekind) |
| 608 | { |
| 609 | case RTE_RELATION: |
| 610 | |
| 611 | /* |
| 612 | * Currently, parallel workers can't access the leader's temporary |
| 613 | * tables. We could possibly relax this if the wrote all of its |
| 614 | * local buffers at the start of the query and made no changes |
| 615 | * thereafter (maybe we could allow hint bit changes), and if we |
| 616 | * taught the workers to read them. Writing a large number of |
| 617 | * temporary buffers could be expensive, though, and we don't have |
| 618 | * the rest of the necessary infrastructure right now anyway. So |
| 619 | * for now, bail out if we see a temporary table. |
| 620 | */ |
| 621 | if (get_rel_persistence(rte->relid) == RELPERSISTENCE_TEMP) |
| 622 | return; |
| 623 | |
| 624 | /* |
| 625 | * Table sampling can be pushed down to workers if the sample |
| 626 | * function and its arguments are safe. |
| 627 | */ |
| 628 | if (rte->tablesample != NULL) |
| 629 | { |
| 630 | char proparallel = func_parallel(rte->tablesample->tsmhandler); |
| 631 | |
| 632 | if (proparallel != PROPARALLEL_SAFE) |
| 633 | return; |
| 634 | if (!is_parallel_safe(root, (Node *) rte->tablesample->args)) |
| 635 | return; |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Ask FDWs whether they can support performing a ForeignScan |
| 640 | * within a worker. Most often, the answer will be no. For |
| 641 | * example, if the nature of the FDW is such that it opens a TCP |
| 642 | * connection with a remote server, each parallel worker would end |
| 643 | * up with a separate connection, and these connections might not |
| 644 | * be appropriately coordinated between workers and the leader. |
| 645 | */ |
| 646 | if (rte->relkind == RELKIND_FOREIGN_TABLE) |
| 647 | { |
| 648 | Assert(rel->fdwroutine); |
| 649 | if (!rel->fdwroutine->IsForeignScanParallelSafe) |
| 650 | return; |
| 651 | if (!rel->fdwroutine->IsForeignScanParallelSafe(root, rel, rte)) |
| 652 | return; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * There are additional considerations for appendrels, which we'll |
| 657 | * deal with in set_append_rel_size and set_append_rel_pathlist. |
| 658 | * For now, just set consider_parallel based on the rel's own |
| 659 | * quals and targetlist. |
| 660 | */ |
| 661 | break; |
| 662 | |
| 663 | case RTE_SUBQUERY: |
| 664 | |
| 665 | /* |
| 666 | * There's no intrinsic problem with scanning a subquery-in-FROM |
| 667 | * (as distinct from a SubPlan or InitPlan) in a parallel worker. |
| 668 | * If the subquery doesn't happen to have any parallel-safe paths, |
| 669 | * then flagging it as consider_parallel won't change anything, |
| 670 | * but that's true for plain tables, too. We must set |
| 671 | * consider_parallel based on the rel's own quals and targetlist, |
| 672 | * so that if a subquery path is parallel-safe but the quals and |
| 673 | * projection we're sticking onto it are not, we correctly mark |
| 674 | * the SubqueryScanPath as not parallel-safe. (Note that |
| 675 | * set_subquery_pathlist() might push some of these quals down |
| 676 | * into the subquery itself, but that doesn't change anything.) |
| 677 | * |
| 678 | * We can't push sub-select containing LIMIT/OFFSET to workers as |
| 679 | * there is no guarantee that the row order will be fully |
| 680 | * deterministic, and applying LIMIT/OFFSET will lead to |
| 681 | * inconsistent results at the top-level. (In some cases, where |
| 682 | * the result is ordered, we could relax this restriction. But it |
| 683 | * doesn't currently seem worth expending extra effort to do so.) |
| 684 | */ |
| 685 | { |
| 686 | Query *subquery = castNode(Query, rte->subquery); |
| 687 | |
| 688 | if (limit_needed(subquery)) |
| 689 | return; |
| 690 | } |
| 691 | break; |
| 692 | |
| 693 | case RTE_JOIN: |
| 694 | /* Shouldn't happen; we're only considering baserels here. */ |
| 695 | Assert(false); |
| 696 | return; |
| 697 | |
| 698 | case RTE_FUNCTION: |
| 699 | /* Check for parallel-restricted functions. */ |
| 700 | if (!is_parallel_safe(root, (Node *) rte->functions)) |
| 701 | return; |
| 702 | break; |
| 703 | |
| 704 | case RTE_TABLEFUNC: |
| 705 | /* not parallel safe */ |
| 706 | return; |
| 707 | |
| 708 | case RTE_VALUES: |
| 709 | /* Check for parallel-restricted functions. */ |
| 710 | if (!is_parallel_safe(root, (Node *) rte->values_lists)) |
| 711 | return; |
| 712 | break; |
| 713 | |
| 714 | case RTE_CTE: |
| 715 | |
| 716 | /* |
| 717 | * CTE tuplestores aren't shared among parallel workers, so we |
| 718 | * force all CTE scans to happen in the leader. Also, populating |
| 719 | * the CTE would require executing a subplan that's not available |
| 720 | * in the worker, might be parallel-restricted, and must get |
| 721 | * executed only once. |
| 722 | */ |
| 723 | return; |
| 724 | |
| 725 | case RTE_NAMEDTUPLESTORE: |
| 726 | |
| 727 | /* |
| 728 | * tuplestore cannot be shared, at least without more |
| 729 | * infrastructure to support that. |
| 730 | */ |
| 731 | return; |
| 732 | |
| 733 | case RTE_RESULT: |
| 734 | /* RESULT RTEs, in themselves, are no problem. */ |
| 735 | break; |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * If there's anything in baserestrictinfo that's parallel-restricted, we |
| 740 | * give up on parallelizing access to this relation. We could consider |
| 741 | * instead postponing application of the restricted quals until we're |
| 742 | * above all the parallelism in the plan tree, but it's not clear that |
| 743 | * that would be a win in very many cases, and it might be tricky to make |
| 744 | * outer join clauses work correctly. It would likely break equivalence |
| 745 | * classes, too. |
| 746 | */ |
| 747 | if (!is_parallel_safe(root, (Node *) rel->baserestrictinfo)) |
| 748 | return; |
| 749 | |
| 750 | /* |
| 751 | * Likewise, if the relation's outputs are not parallel-safe, give up. |
| 752 | * (Usually, they're just Vars, but sometimes they're not.) |
| 753 | */ |
| 754 | if (!is_parallel_safe(root, (Node *) rel->reltarget->exprs)) |
| 755 | return; |
| 756 | |
| 757 | /* We have a winner. */ |
| 758 | rel->consider_parallel = true; |
| 759 | } |
| 760 | |
| 761 | /* |
| 762 | * set_plain_rel_pathlist |
| 763 | * Build access paths for a plain relation (no subquery, no inheritance) |
| 764 | */ |
| 765 | static void |
| 766 | set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 767 | { |
| 768 | Relids required_outer; |
| 769 | |
| 770 | /* |
| 771 | * We don't support pushing join clauses into the quals of a seqscan, but |
| 772 | * it could still have required parameterization due to LATERAL refs in |
| 773 | * its tlist. |
| 774 | */ |
| 775 | required_outer = rel->lateral_relids; |
| 776 | |
| 777 | /* Consider sequential scan */ |
| 778 | add_path(rel, create_seqscan_path(root, rel, required_outer, 0)); |
| 779 | |
| 780 | /* If appropriate, consider parallel sequential scan */ |
| 781 | if (rel->consider_parallel && required_outer == NULL) |
| 782 | create_plain_partial_paths(root, rel); |
| 783 | |
| 784 | /* Consider index scans */ |
| 785 | create_index_paths(root, rel); |
| 786 | |
| 787 | /* Consider TID scans */ |
| 788 | create_tidscan_paths(root, rel); |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * create_plain_partial_paths |
| 793 | * Build partial access paths for parallel scan of a plain relation |
| 794 | */ |
| 795 | static void |
| 796 | create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel) |
| 797 | { |
| 798 | int parallel_workers; |
| 799 | |
| 800 | parallel_workers = compute_parallel_worker(rel, rel->pages, -1, |
| 801 | max_parallel_workers_per_gather); |
| 802 | |
| 803 | /* If any limit was set to zero, the user doesn't want a parallel scan. */ |
| 804 | if (parallel_workers <= 0) |
| 805 | return; |
| 806 | |
| 807 | /* Add an unordered partial path based on a parallel sequential scan. */ |
| 808 | add_partial_path(rel, create_seqscan_path(root, rel, NULL, parallel_workers)); |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * set_tablesample_rel_size |
| 813 | * Set size estimates for a sampled relation |
| 814 | */ |
| 815 | static void |
| 816 | set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 817 | { |
| 818 | TableSampleClause *tsc = rte->tablesample; |
| 819 | TsmRoutine *tsm; |
| 820 | BlockNumber pages; |
| 821 | double tuples; |
| 822 | |
| 823 | /* |
| 824 | * Test any partial indexes of rel for applicability. We must do this |
| 825 | * first since partial unique indexes can affect size estimates. |
| 826 | */ |
| 827 | check_index_predicates(root, rel); |
| 828 | |
| 829 | /* |
| 830 | * Call the sampling method's estimation function to estimate the number |
| 831 | * of pages it will read and the number of tuples it will return. (Note: |
| 832 | * we assume the function returns sane values.) |
| 833 | */ |
| 834 | tsm = GetTsmRoutine(tsc->tsmhandler); |
| 835 | tsm->SampleScanGetSampleSize(root, rel, tsc->args, |
| 836 | &pages, &tuples); |
| 837 | |
| 838 | /* |
| 839 | * For the moment, because we will only consider a SampleScan path for the |
| 840 | * rel, it's okay to just overwrite the pages and tuples estimates for the |
| 841 | * whole relation. If we ever consider multiple path types for sampled |
| 842 | * rels, we'll need more complication. |
| 843 | */ |
| 844 | rel->pages = pages; |
| 845 | rel->tuples = tuples; |
| 846 | |
| 847 | /* Mark rel with estimated output rows, width, etc */ |
| 848 | set_baserel_size_estimates(root, rel); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * set_tablesample_rel_pathlist |
| 853 | * Build access paths for a sampled relation |
| 854 | */ |
| 855 | static void |
| 856 | set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 857 | { |
| 858 | Relids required_outer; |
| 859 | Path *path; |
| 860 | |
| 861 | /* |
| 862 | * We don't support pushing join clauses into the quals of a samplescan, |
| 863 | * but it could still have required parameterization due to LATERAL refs |
| 864 | * in its tlist or TABLESAMPLE arguments. |
| 865 | */ |
| 866 | required_outer = rel->lateral_relids; |
| 867 | |
| 868 | /* Consider sampled scan */ |
| 869 | path = create_samplescan_path(root, rel, required_outer); |
| 870 | |
| 871 | /* |
| 872 | * If the sampling method does not support repeatable scans, we must avoid |
| 873 | * plans that would scan the rel multiple times. Ideally, we'd simply |
| 874 | * avoid putting the rel on the inside of a nestloop join; but adding such |
| 875 | * a consideration to the planner seems like a great deal of complication |
| 876 | * to support an uncommon usage of second-rate sampling methods. Instead, |
| 877 | * if there is a risk that the query might perform an unsafe join, just |
| 878 | * wrap the SampleScan in a Materialize node. We can check for joins by |
| 879 | * counting the membership of all_baserels (note that this correctly |
| 880 | * counts inheritance trees as single rels). If we're inside a subquery, |
| 881 | * we can't easily check whether a join might occur in the outer query, so |
| 882 | * just assume one is possible. |
| 883 | * |
| 884 | * GetTsmRoutine is relatively expensive compared to the other tests here, |
| 885 | * so check repeatable_across_scans last, even though that's a bit odd. |
| 886 | */ |
| 887 | if ((root->query_level > 1 || |
| 888 | bms_membership(root->all_baserels) != BMS_SINGLETON) && |
| 889 | !(GetTsmRoutine(rte->tablesample->tsmhandler)->repeatable_across_scans)) |
| 890 | { |
| 891 | path = (Path *) create_material_path(rel, path); |
| 892 | } |
| 893 | |
| 894 | add_path(rel, path); |
| 895 | |
| 896 | /* For the moment, at least, there are no other paths to consider */ |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * set_foreign_size |
| 901 | * Set size estimates for a foreign table RTE |
| 902 | */ |
| 903 | static void |
| 904 | set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 905 | { |
| 906 | /* Mark rel with estimated output rows, width, etc */ |
| 907 | set_foreign_size_estimates(root, rel); |
| 908 | |
| 909 | /* Let FDW adjust the size estimates, if it can */ |
| 910 | rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid); |
| 911 | |
| 912 | /* ... but do not let it set the rows estimate to zero */ |
| 913 | rel->rows = clamp_row_est(rel->rows); |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * set_foreign_pathlist |
| 918 | * Build access paths for a foreign table RTE |
| 919 | */ |
| 920 | static void |
| 921 | set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 922 | { |
| 923 | /* Call the FDW's GetForeignPaths function to generate path(s) */ |
| 924 | rel->fdwroutine->GetForeignPaths(root, rel, rte->relid); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * set_append_rel_size |
| 929 | * Set size estimates for a simple "append relation" |
| 930 | * |
| 931 | * The passed-in rel and RTE represent the entire append relation. The |
| 932 | * relation's contents are computed by appending together the output of the |
| 933 | * individual member relations. Note that in the non-partitioned inheritance |
| 934 | * case, the first member relation is actually the same table as is mentioned |
| 935 | * in the parent RTE ... but it has a different RTE and RelOptInfo. This is |
| 936 | * a good thing because their outputs are not the same size. |
| 937 | */ |
| 938 | static void |
| 939 | set_append_rel_size(PlannerInfo *root, RelOptInfo *rel, |
| 940 | Index rti, RangeTblEntry *rte) |
| 941 | { |
| 942 | int parentRTindex = rti; |
| 943 | bool has_live_children; |
| 944 | double parent_rows; |
| 945 | double parent_size; |
| 946 | double *parent_attrsizes; |
| 947 | int nattrs; |
| 948 | ListCell *l; |
| 949 | |
| 950 | /* Guard against stack overflow due to overly deep inheritance tree. */ |
| 951 | check_stack_depth(); |
| 952 | |
| 953 | Assert(IS_SIMPLE_REL(rel)); |
| 954 | |
| 955 | /* |
| 956 | * Initialize partitioned_child_rels to contain this RT index. |
| 957 | * |
| 958 | * Note that during the set_append_rel_pathlist() phase, we will bubble up |
| 959 | * the indexes of partitioned relations that appear down in the tree, so |
| 960 | * that when we've created Paths for all the children, the root |
| 961 | * partitioned table's list will contain all such indexes. |
| 962 | */ |
| 963 | if (rte->relkind == RELKIND_PARTITIONED_TABLE) |
| 964 | rel->partitioned_child_rels = list_make1_int(rti); |
| 965 | |
| 966 | /* |
| 967 | * If this is a partitioned baserel, set the consider_partitionwise_join |
| 968 | * flag; currently, we only consider partitionwise joins with the baserel |
| 969 | * if its targetlist doesn't contain a whole-row Var. |
| 970 | */ |
| 971 | if (enable_partitionwise_join && |
| 972 | rel->reloptkind == RELOPT_BASEREL && |
| 973 | rte->relkind == RELKIND_PARTITIONED_TABLE && |
| 974 | rel->attr_needed[InvalidAttrNumber - rel->min_attr] == NULL) |
| 975 | rel->consider_partitionwise_join = true; |
| 976 | |
| 977 | /* |
| 978 | * Initialize to compute size estimates for whole append relation. |
| 979 | * |
| 980 | * We handle width estimates by weighting the widths of different child |
| 981 | * rels proportionally to their number of rows. This is sensible because |
| 982 | * the use of width estimates is mainly to compute the total relation |
| 983 | * "footprint" if we have to sort or hash it. To do this, we sum the |
| 984 | * total equivalent size (in "double" arithmetic) and then divide by the |
| 985 | * total rowcount estimate. This is done separately for the total rel |
| 986 | * width and each attribute. |
| 987 | * |
| 988 | * Note: if you consider changing this logic, beware that child rels could |
| 989 | * have zero rows and/or width, if they were excluded by constraints. |
| 990 | */ |
| 991 | has_live_children = false; |
| 992 | parent_rows = 0; |
| 993 | parent_size = 0; |
| 994 | nattrs = rel->max_attr - rel->min_attr + 1; |
| 995 | parent_attrsizes = (double *) palloc0(nattrs * sizeof(double)); |
| 996 | |
| 997 | foreach(l, root->append_rel_list) |
| 998 | { |
| 999 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); |
| 1000 | int childRTindex; |
| 1001 | RangeTblEntry *childRTE; |
| 1002 | RelOptInfo *childrel; |
| 1003 | ListCell *parentvars; |
| 1004 | ListCell *childvars; |
| 1005 | |
| 1006 | /* append_rel_list contains all append rels; ignore others */ |
| 1007 | if (appinfo->parent_relid != parentRTindex) |
| 1008 | continue; |
| 1009 | |
| 1010 | childRTindex = appinfo->child_relid; |
| 1011 | childRTE = root->simple_rte_array[childRTindex]; |
| 1012 | |
| 1013 | /* |
| 1014 | * The child rel's RelOptInfo was already created during |
| 1015 | * add_other_rels_to_query. |
| 1016 | */ |
| 1017 | childrel = find_base_rel(root, childRTindex); |
| 1018 | Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL); |
| 1019 | |
| 1020 | /* We may have already proven the child to be dummy. */ |
| 1021 | if (IS_DUMMY_REL(childrel)) |
| 1022 | continue; |
| 1023 | |
| 1024 | /* |
| 1025 | * We have to copy the parent's targetlist and quals to the child, |
| 1026 | * with appropriate substitution of variables. However, the |
| 1027 | * baserestrictinfo quals were already copied/substituted when the |
| 1028 | * child RelOptInfo was built. So we don't need any additional setup |
| 1029 | * before applying constraint exclusion. |
| 1030 | */ |
| 1031 | if (relation_excluded_by_constraints(root, childrel, childRTE)) |
| 1032 | { |
| 1033 | /* |
| 1034 | * This child need not be scanned, so we can omit it from the |
| 1035 | * appendrel. |
| 1036 | */ |
| 1037 | set_dummy_rel_pathlist(childrel); |
| 1038 | continue; |
| 1039 | } |
| 1040 | |
| 1041 | /* |
| 1042 | * Constraint exclusion failed, so copy the parent's join quals and |
| 1043 | * targetlist to the child, with appropriate variable substitutions. |
| 1044 | * |
| 1045 | * NB: the resulting childrel->reltarget->exprs may contain arbitrary |
| 1046 | * expressions, which otherwise would not occur in a rel's targetlist. |
| 1047 | * Code that might be looking at an appendrel child must cope with |
| 1048 | * such. (Normally, a rel's targetlist would only include Vars and |
| 1049 | * PlaceHolderVars.) XXX we do not bother to update the cost or width |
| 1050 | * fields of childrel->reltarget; not clear if that would be useful. |
| 1051 | */ |
| 1052 | childrel->joininfo = (List *) |
| 1053 | adjust_appendrel_attrs(root, |
| 1054 | (Node *) rel->joininfo, |
| 1055 | 1, &appinfo); |
| 1056 | childrel->reltarget->exprs = (List *) |
| 1057 | adjust_appendrel_attrs(root, |
| 1058 | (Node *) rel->reltarget->exprs, |
| 1059 | 1, &appinfo); |
| 1060 | |
| 1061 | /* |
| 1062 | * We have to make child entries in the EquivalenceClass data |
| 1063 | * structures as well. This is needed either if the parent |
| 1064 | * participates in some eclass joins (because we will want to consider |
| 1065 | * inner-indexscan joins on the individual children) or if the parent |
| 1066 | * has useful pathkeys (because we should try to build MergeAppend |
| 1067 | * paths that produce those sort orderings). |
| 1068 | */ |
| 1069 | if (rel->has_eclass_joins || has_useful_pathkeys(root, rel)) |
| 1070 | add_child_rel_equivalences(root, appinfo, rel, childrel); |
| 1071 | childrel->has_eclass_joins = rel->has_eclass_joins; |
| 1072 | |
| 1073 | /* |
| 1074 | * Note: we could compute appropriate attr_needed data for the child's |
| 1075 | * variables, by transforming the parent's attr_needed through the |
| 1076 | * translated_vars mapping. However, currently there's no need |
| 1077 | * because attr_needed is only examined for base relations not |
| 1078 | * otherrels. So we just leave the child's attr_needed empty. |
| 1079 | */ |
| 1080 | |
| 1081 | /* |
| 1082 | * If we consider partitionwise joins with the parent rel, do the same |
| 1083 | * for partitioned child rels. |
| 1084 | * |
| 1085 | * Note: here we abuse the consider_partitionwise_join flag by setting |
| 1086 | * it for child rels that are not themselves partitioned. We do so to |
| 1087 | * tell try_partitionwise_join() that the child rel is sufficiently |
| 1088 | * valid to be used as a per-partition input, even if it later gets |
| 1089 | * proven to be dummy. (It's not usable until we've set up the |
| 1090 | * reltarget and EC entries, which we just did.) |
| 1091 | */ |
| 1092 | if (rel->consider_partitionwise_join) |
| 1093 | childrel->consider_partitionwise_join = true; |
| 1094 | |
| 1095 | /* |
| 1096 | * If parallelism is allowable for this query in general, see whether |
| 1097 | * it's allowable for this childrel in particular. But if we've |
| 1098 | * already decided the appendrel is not parallel-safe as a whole, |
| 1099 | * there's no point in considering parallelism for this child. For |
| 1100 | * consistency, do this before calling set_rel_size() for the child. |
| 1101 | */ |
| 1102 | if (root->glob->parallelModeOK && rel->consider_parallel) |
| 1103 | set_rel_consider_parallel(root, childrel, childRTE); |
| 1104 | |
| 1105 | /* |
| 1106 | * Compute the child's size. |
| 1107 | */ |
| 1108 | set_rel_size(root, childrel, childRTindex, childRTE); |
| 1109 | |
| 1110 | /* |
| 1111 | * It is possible that constraint exclusion detected a contradiction |
| 1112 | * within a child subquery, even though we didn't prove one above. If |
| 1113 | * so, we can skip this child. |
| 1114 | */ |
| 1115 | if (IS_DUMMY_REL(childrel)) |
| 1116 | continue; |
| 1117 | |
| 1118 | /* We have at least one live child. */ |
| 1119 | has_live_children = true; |
| 1120 | |
| 1121 | /* |
| 1122 | * If any live child is not parallel-safe, treat the whole appendrel |
| 1123 | * as not parallel-safe. In future we might be able to generate plans |
| 1124 | * in which some children are farmed out to workers while others are |
| 1125 | * not; but we don't have that today, so it's a waste to consider |
| 1126 | * partial paths anywhere in the appendrel unless it's all safe. |
| 1127 | * (Child rels visited before this one will be unmarked in |
| 1128 | * set_append_rel_pathlist().) |
| 1129 | */ |
| 1130 | if (!childrel->consider_parallel) |
| 1131 | rel->consider_parallel = false; |
| 1132 | |
| 1133 | /* |
| 1134 | * Accumulate size information from each live child. |
| 1135 | */ |
| 1136 | Assert(childrel->rows > 0); |
| 1137 | |
| 1138 | parent_rows += childrel->rows; |
| 1139 | parent_size += childrel->reltarget->width * childrel->rows; |
| 1140 | |
| 1141 | /* |
| 1142 | * Accumulate per-column estimates too. We need not do anything for |
| 1143 | * PlaceHolderVars in the parent list. If child expression isn't a |
| 1144 | * Var, or we didn't record a width estimate for it, we have to fall |
| 1145 | * back on a datatype-based estimate. |
| 1146 | * |
| 1147 | * By construction, child's targetlist is 1-to-1 with parent's. |
| 1148 | */ |
| 1149 | forboth(parentvars, rel->reltarget->exprs, |
| 1150 | childvars, childrel->reltarget->exprs) |
| 1151 | { |
| 1152 | Var *parentvar = (Var *) lfirst(parentvars); |
| 1153 | Node *childvar = (Node *) lfirst(childvars); |
| 1154 | |
| 1155 | if (IsA(parentvar, Var)) |
| 1156 | { |
| 1157 | int pndx = parentvar->varattno - rel->min_attr; |
| 1158 | int32 child_width = 0; |
| 1159 | |
| 1160 | if (IsA(childvar, Var) && |
| 1161 | ((Var *) childvar)->varno == childrel->relid) |
| 1162 | { |
| 1163 | int cndx = ((Var *) childvar)->varattno - childrel->min_attr; |
| 1164 | |
| 1165 | child_width = childrel->attr_widths[cndx]; |
| 1166 | } |
| 1167 | if (child_width <= 0) |
| 1168 | child_width = get_typavgwidth(exprType(childvar), |
| 1169 | exprTypmod(childvar)); |
| 1170 | Assert(child_width > 0); |
| 1171 | parent_attrsizes[pndx] += child_width * childrel->rows; |
| 1172 | } |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | if (has_live_children) |
| 1177 | { |
| 1178 | /* |
| 1179 | * Save the finished size estimates. |
| 1180 | */ |
| 1181 | int i; |
| 1182 | |
| 1183 | Assert(parent_rows > 0); |
| 1184 | rel->rows = parent_rows; |
| 1185 | rel->reltarget->width = rint(parent_size / parent_rows); |
| 1186 | for (i = 0; i < nattrs; i++) |
| 1187 | rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows); |
| 1188 | |
| 1189 | /* |
| 1190 | * Set "raw tuples" count equal to "rows" for the appendrel; needed |
| 1191 | * because some places assume rel->tuples is valid for any baserel. |
| 1192 | */ |
| 1193 | rel->tuples = parent_rows; |
| 1194 | |
| 1195 | /* |
| 1196 | * Note that we leave rel->pages as zero; this is important to avoid |
| 1197 | * double-counting the appendrel tree in total_table_pages. |
| 1198 | */ |
| 1199 | } |
| 1200 | else |
| 1201 | { |
| 1202 | /* |
| 1203 | * All children were excluded by constraints, so mark the whole |
| 1204 | * appendrel dummy. We must do this in this phase so that the rel's |
| 1205 | * dummy-ness is visible when we generate paths for other rels. |
| 1206 | */ |
| 1207 | set_dummy_rel_pathlist(rel); |
| 1208 | } |
| 1209 | |
| 1210 | pfree(parent_attrsizes); |
| 1211 | } |
| 1212 | |
| 1213 | /* |
| 1214 | * set_append_rel_pathlist |
| 1215 | * Build access paths for an "append relation" |
| 1216 | */ |
| 1217 | static void |
| 1218 | set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 1219 | Index rti, RangeTblEntry *rte) |
| 1220 | { |
| 1221 | int parentRTindex = rti; |
| 1222 | List *live_childrels = NIL; |
| 1223 | ListCell *l; |
| 1224 | |
| 1225 | /* |
| 1226 | * Generate access paths for each member relation, and remember the |
| 1227 | * non-dummy children. |
| 1228 | */ |
| 1229 | foreach(l, root->append_rel_list) |
| 1230 | { |
| 1231 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); |
| 1232 | int childRTindex; |
| 1233 | RangeTblEntry *childRTE; |
| 1234 | RelOptInfo *childrel; |
| 1235 | |
| 1236 | /* append_rel_list contains all append rels; ignore others */ |
| 1237 | if (appinfo->parent_relid != parentRTindex) |
| 1238 | continue; |
| 1239 | |
| 1240 | /* Re-locate the child RTE and RelOptInfo */ |
| 1241 | childRTindex = appinfo->child_relid; |
| 1242 | childRTE = root->simple_rte_array[childRTindex]; |
| 1243 | childrel = root->simple_rel_array[childRTindex]; |
| 1244 | |
| 1245 | /* |
| 1246 | * If set_append_rel_size() decided the parent appendrel was |
| 1247 | * parallel-unsafe at some point after visiting this child rel, we |
| 1248 | * need to propagate the unsafety marking down to the child, so that |
| 1249 | * we don't generate useless partial paths for it. |
| 1250 | */ |
| 1251 | if (!rel->consider_parallel) |
| 1252 | childrel->consider_parallel = false; |
| 1253 | |
| 1254 | /* |
| 1255 | * Compute the child's access paths. |
| 1256 | */ |
| 1257 | set_rel_pathlist(root, childrel, childRTindex, childRTE); |
| 1258 | |
| 1259 | /* |
| 1260 | * If child is dummy, ignore it. |
| 1261 | */ |
| 1262 | if (IS_DUMMY_REL(childrel)) |
| 1263 | continue; |
| 1264 | |
| 1265 | /* Bubble up childrel's partitioned children. */ |
| 1266 | if (rel->part_scheme) |
| 1267 | rel->partitioned_child_rels = |
| 1268 | list_concat(rel->partitioned_child_rels, |
| 1269 | list_copy(childrel->partitioned_child_rels)); |
| 1270 | |
| 1271 | /* |
| 1272 | * Child is live, so add it to the live_childrels list for use below. |
| 1273 | */ |
| 1274 | live_childrels = lappend(live_childrels, childrel); |
| 1275 | } |
| 1276 | |
| 1277 | /* Add paths to the append relation. */ |
| 1278 | add_paths_to_append_rel(root, rel, live_childrels); |
| 1279 | } |
| 1280 | |
| 1281 | |
| 1282 | /* |
| 1283 | * add_paths_to_append_rel |
| 1284 | * Generate paths for the given append relation given the set of non-dummy |
| 1285 | * child rels. |
| 1286 | * |
| 1287 | * The function collects all parameterizations and orderings supported by the |
| 1288 | * non-dummy children. For every such parameterization or ordering, it creates |
| 1289 | * an append path collecting one path from each non-dummy child with given |
| 1290 | * parameterization or ordering. Similarly it collects partial paths from |
| 1291 | * non-dummy children to create partial append paths. |
| 1292 | */ |
| 1293 | void |
| 1294 | add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel, |
| 1295 | List *live_childrels) |
| 1296 | { |
| 1297 | List *subpaths = NIL; |
| 1298 | bool subpaths_valid = true; |
| 1299 | List *partial_subpaths = NIL; |
| 1300 | List *pa_partial_subpaths = NIL; |
| 1301 | List *pa_nonpartial_subpaths = NIL; |
| 1302 | bool partial_subpaths_valid = true; |
| 1303 | bool pa_subpaths_valid; |
| 1304 | List *all_child_pathkeys = NIL; |
| 1305 | List *all_child_outers = NIL; |
| 1306 | ListCell *l; |
| 1307 | List *partitioned_rels = NIL; |
| 1308 | double partial_rows = -1; |
| 1309 | |
| 1310 | /* If appropriate, consider parallel append */ |
| 1311 | pa_subpaths_valid = enable_parallel_append && rel->consider_parallel; |
| 1312 | |
| 1313 | /* |
| 1314 | * AppendPath generated for partitioned tables must record the RT indexes |
| 1315 | * of partitioned tables that are direct or indirect children of this |
| 1316 | * Append rel. |
| 1317 | * |
| 1318 | * AppendPath may be for a sub-query RTE (UNION ALL), in which case, 'rel' |
| 1319 | * itself does not represent a partitioned relation, but the child sub- |
| 1320 | * queries may contain references to partitioned relations. The loop |
| 1321 | * below will look for such children and collect them in a list to be |
| 1322 | * passed to the path creation function. (This assumes that we don't need |
| 1323 | * to look through multiple levels of subquery RTEs; if we ever do, we |
| 1324 | * could consider stuffing the list we generate here into sub-query RTE's |
| 1325 | * RelOptInfo, just like we do for partitioned rels, which would be used |
| 1326 | * when populating our parent rel with paths. For the present, that |
| 1327 | * appears to be unnecessary.) |
| 1328 | */ |
| 1329 | if (rel->part_scheme != NULL) |
| 1330 | { |
| 1331 | if (IS_SIMPLE_REL(rel)) |
| 1332 | partitioned_rels = list_make1(rel->partitioned_child_rels); |
| 1333 | else if (IS_JOIN_REL(rel)) |
| 1334 | { |
| 1335 | int relid = -1; |
| 1336 | List *partrels = NIL; |
| 1337 | |
| 1338 | /* |
| 1339 | * For a partitioned joinrel, concatenate the component rels' |
| 1340 | * partitioned_child_rels lists. |
| 1341 | */ |
| 1342 | while ((relid = bms_next_member(rel->relids, relid)) >= 0) |
| 1343 | { |
| 1344 | RelOptInfo *component; |
| 1345 | |
| 1346 | Assert(relid >= 1 && relid < root->simple_rel_array_size); |
| 1347 | component = root->simple_rel_array[relid]; |
| 1348 | Assert(component->part_scheme != NULL); |
| 1349 | Assert(list_length(component->partitioned_child_rels) >= 1); |
| 1350 | partrels = |
| 1351 | list_concat(partrels, |
| 1352 | list_copy(component->partitioned_child_rels)); |
| 1353 | } |
| 1354 | |
| 1355 | partitioned_rels = list_make1(partrels); |
| 1356 | } |
| 1357 | |
| 1358 | Assert(list_length(partitioned_rels) >= 1); |
| 1359 | } |
| 1360 | |
| 1361 | /* |
| 1362 | * For every non-dummy child, remember the cheapest path. Also, identify |
| 1363 | * all pathkeys (orderings) and parameterizations (required_outer sets) |
| 1364 | * available for the non-dummy member relations. |
| 1365 | */ |
| 1366 | foreach(l, live_childrels) |
| 1367 | { |
| 1368 | RelOptInfo *childrel = lfirst(l); |
| 1369 | ListCell *lcp; |
| 1370 | Path *cheapest_partial_path = NULL; |
| 1371 | |
| 1372 | /* |
| 1373 | * For UNION ALLs with non-empty partitioned_child_rels, accumulate |
| 1374 | * the Lists of child relations. |
| 1375 | */ |
| 1376 | if (rel->rtekind == RTE_SUBQUERY && childrel->partitioned_child_rels != NIL) |
| 1377 | partitioned_rels = lappend(partitioned_rels, |
| 1378 | childrel->partitioned_child_rels); |
| 1379 | |
| 1380 | /* |
| 1381 | * If child has an unparameterized cheapest-total path, add that to |
| 1382 | * the unparameterized Append path we are constructing for the parent. |
| 1383 | * If not, there's no workable unparameterized path. |
| 1384 | * |
| 1385 | * With partitionwise aggregates, the child rel's pathlist may be |
| 1386 | * empty, so don't assume that a path exists here. |
| 1387 | */ |
| 1388 | if (childrel->pathlist != NIL && |
| 1389 | childrel->cheapest_total_path->param_info == NULL) |
| 1390 | accumulate_append_subpath(childrel->cheapest_total_path, |
| 1391 | &subpaths, NULL); |
| 1392 | else |
| 1393 | subpaths_valid = false; |
| 1394 | |
| 1395 | /* Same idea, but for a partial plan. */ |
| 1396 | if (childrel->partial_pathlist != NIL) |
| 1397 | { |
| 1398 | cheapest_partial_path = linitial(childrel->partial_pathlist); |
| 1399 | accumulate_append_subpath(cheapest_partial_path, |
| 1400 | &partial_subpaths, NULL); |
| 1401 | } |
| 1402 | else |
| 1403 | partial_subpaths_valid = false; |
| 1404 | |
| 1405 | /* |
| 1406 | * Same idea, but for a parallel append mixing partial and non-partial |
| 1407 | * paths. |
| 1408 | */ |
| 1409 | if (pa_subpaths_valid) |
| 1410 | { |
| 1411 | Path *nppath = NULL; |
| 1412 | |
| 1413 | nppath = |
| 1414 | get_cheapest_parallel_safe_total_inner(childrel->pathlist); |
| 1415 | |
| 1416 | if (cheapest_partial_path == NULL && nppath == NULL) |
| 1417 | { |
| 1418 | /* Neither a partial nor a parallel-safe path? Forget it. */ |
| 1419 | pa_subpaths_valid = false; |
| 1420 | } |
| 1421 | else if (nppath == NULL || |
| 1422 | (cheapest_partial_path != NULL && |
| 1423 | cheapest_partial_path->total_cost < nppath->total_cost)) |
| 1424 | { |
| 1425 | /* Partial path is cheaper or the only option. */ |
| 1426 | Assert(cheapest_partial_path != NULL); |
| 1427 | accumulate_append_subpath(cheapest_partial_path, |
| 1428 | &pa_partial_subpaths, |
| 1429 | &pa_nonpartial_subpaths); |
| 1430 | |
| 1431 | } |
| 1432 | else |
| 1433 | { |
| 1434 | /* |
| 1435 | * Either we've got only a non-partial path, or we think that |
| 1436 | * a single backend can execute the best non-partial path |
| 1437 | * faster than all the parallel backends working together can |
| 1438 | * execute the best partial path. |
| 1439 | * |
| 1440 | * It might make sense to be more aggressive here. Even if |
| 1441 | * the best non-partial path is more expensive than the best |
| 1442 | * partial path, it could still be better to choose the |
| 1443 | * non-partial path if there are several such paths that can |
| 1444 | * be given to different workers. For now, we don't try to |
| 1445 | * figure that out. |
| 1446 | */ |
| 1447 | accumulate_append_subpath(nppath, |
| 1448 | &pa_nonpartial_subpaths, |
| 1449 | NULL); |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | /* |
| 1454 | * Collect lists of all the available path orderings and |
| 1455 | * parameterizations for all the children. We use these as a |
| 1456 | * heuristic to indicate which sort orderings and parameterizations we |
| 1457 | * should build Append and MergeAppend paths for. |
| 1458 | */ |
| 1459 | foreach(lcp, childrel->pathlist) |
| 1460 | { |
| 1461 | Path *childpath = (Path *) lfirst(lcp); |
| 1462 | List *childkeys = childpath->pathkeys; |
| 1463 | Relids childouter = PATH_REQ_OUTER(childpath); |
| 1464 | |
| 1465 | /* Unsorted paths don't contribute to pathkey list */ |
| 1466 | if (childkeys != NIL) |
| 1467 | { |
| 1468 | ListCell *lpk; |
| 1469 | bool found = false; |
| 1470 | |
| 1471 | /* Have we already seen this ordering? */ |
| 1472 | foreach(lpk, all_child_pathkeys) |
| 1473 | { |
| 1474 | List *existing_pathkeys = (List *) lfirst(lpk); |
| 1475 | |
| 1476 | if (compare_pathkeys(existing_pathkeys, |
| 1477 | childkeys) == PATHKEYS_EQUAL) |
| 1478 | { |
| 1479 | found = true; |
| 1480 | break; |
| 1481 | } |
| 1482 | } |
| 1483 | if (!found) |
| 1484 | { |
| 1485 | /* No, so add it to all_child_pathkeys */ |
| 1486 | all_child_pathkeys = lappend(all_child_pathkeys, |
| 1487 | childkeys); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | /* Unparameterized paths don't contribute to param-set list */ |
| 1492 | if (childouter) |
| 1493 | { |
| 1494 | ListCell *lco; |
| 1495 | bool found = false; |
| 1496 | |
| 1497 | /* Have we already seen this param set? */ |
| 1498 | foreach(lco, all_child_outers) |
| 1499 | { |
| 1500 | Relids existing_outers = (Relids) lfirst(lco); |
| 1501 | |
| 1502 | if (bms_equal(existing_outers, childouter)) |
| 1503 | { |
| 1504 | found = true; |
| 1505 | break; |
| 1506 | } |
| 1507 | } |
| 1508 | if (!found) |
| 1509 | { |
| 1510 | /* No, so add it to all_child_outers */ |
| 1511 | all_child_outers = lappend(all_child_outers, |
| 1512 | childouter); |
| 1513 | } |
| 1514 | } |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * If we found unparameterized paths for all children, build an unordered, |
| 1520 | * unparameterized Append path for the rel. (Note: this is correct even |
| 1521 | * if we have zero or one live subpath due to constraint exclusion.) |
| 1522 | */ |
| 1523 | if (subpaths_valid) |
| 1524 | add_path(rel, (Path *) create_append_path(root, rel, subpaths, NIL, |
| 1525 | NIL, NULL, 0, false, |
| 1526 | partitioned_rels, -1)); |
| 1527 | |
| 1528 | /* |
| 1529 | * Consider an append of unordered, unparameterized partial paths. Make |
| 1530 | * it parallel-aware if possible. |
| 1531 | */ |
| 1532 | if (partial_subpaths_valid && partial_subpaths != NIL) |
| 1533 | { |
| 1534 | AppendPath *appendpath; |
| 1535 | ListCell *lc; |
| 1536 | int parallel_workers = 0; |
| 1537 | |
| 1538 | /* Find the highest number of workers requested for any subpath. */ |
| 1539 | foreach(lc, partial_subpaths) |
| 1540 | { |
| 1541 | Path *path = lfirst(lc); |
| 1542 | |
| 1543 | parallel_workers = Max(parallel_workers, path->parallel_workers); |
| 1544 | } |
| 1545 | Assert(parallel_workers > 0); |
| 1546 | |
| 1547 | /* |
| 1548 | * If the use of parallel append is permitted, always request at least |
| 1549 | * log2(# of children) workers. We assume it can be useful to have |
| 1550 | * extra workers in this case because they will be spread out across |
| 1551 | * the children. The precise formula is just a guess, but we don't |
| 1552 | * want to end up with a radically different answer for a table with N |
| 1553 | * partitions vs. an unpartitioned table with the same data, so the |
| 1554 | * use of some kind of log-scaling here seems to make some sense. |
| 1555 | */ |
| 1556 | if (enable_parallel_append) |
| 1557 | { |
| 1558 | parallel_workers = Max(parallel_workers, |
| 1559 | fls(list_length(live_childrels))); |
| 1560 | parallel_workers = Min(parallel_workers, |
| 1561 | max_parallel_workers_per_gather); |
| 1562 | } |
| 1563 | Assert(parallel_workers > 0); |
| 1564 | |
| 1565 | /* Generate a partial append path. */ |
| 1566 | appendpath = create_append_path(root, rel, NIL, partial_subpaths, |
| 1567 | NIL, NULL, parallel_workers, |
| 1568 | enable_parallel_append, |
| 1569 | partitioned_rels, -1); |
| 1570 | |
| 1571 | /* |
| 1572 | * Make sure any subsequent partial paths use the same row count |
| 1573 | * estimate. |
| 1574 | */ |
| 1575 | partial_rows = appendpath->path.rows; |
| 1576 | |
| 1577 | /* Add the path. */ |
| 1578 | add_partial_path(rel, (Path *) appendpath); |
| 1579 | } |
| 1580 | |
| 1581 | /* |
| 1582 | * Consider a parallel-aware append using a mix of partial and non-partial |
| 1583 | * paths. (This only makes sense if there's at least one child which has |
| 1584 | * a non-partial path that is substantially cheaper than any partial path; |
| 1585 | * otherwise, we should use the append path added in the previous step.) |
| 1586 | */ |
| 1587 | if (pa_subpaths_valid && pa_nonpartial_subpaths != NIL) |
| 1588 | { |
| 1589 | AppendPath *appendpath; |
| 1590 | ListCell *lc; |
| 1591 | int parallel_workers = 0; |
| 1592 | |
| 1593 | /* |
| 1594 | * Find the highest number of workers requested for any partial |
| 1595 | * subpath. |
| 1596 | */ |
| 1597 | foreach(lc, pa_partial_subpaths) |
| 1598 | { |
| 1599 | Path *path = lfirst(lc); |
| 1600 | |
| 1601 | parallel_workers = Max(parallel_workers, path->parallel_workers); |
| 1602 | } |
| 1603 | |
| 1604 | /* |
| 1605 | * Same formula here as above. It's even more important in this |
| 1606 | * instance because the non-partial paths won't contribute anything to |
| 1607 | * the planned number of parallel workers. |
| 1608 | */ |
| 1609 | parallel_workers = Max(parallel_workers, |
| 1610 | fls(list_length(live_childrels))); |
| 1611 | parallel_workers = Min(parallel_workers, |
| 1612 | max_parallel_workers_per_gather); |
| 1613 | Assert(parallel_workers > 0); |
| 1614 | |
| 1615 | appendpath = create_append_path(root, rel, pa_nonpartial_subpaths, |
| 1616 | pa_partial_subpaths, |
| 1617 | NIL, NULL, parallel_workers, true, |
| 1618 | partitioned_rels, partial_rows); |
| 1619 | add_partial_path(rel, (Path *) appendpath); |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | * Also build unparameterized ordered append paths based on the collected |
| 1624 | * list of child pathkeys. |
| 1625 | */ |
| 1626 | if (subpaths_valid) |
| 1627 | generate_orderedappend_paths(root, rel, live_childrels, |
| 1628 | all_child_pathkeys, |
| 1629 | partitioned_rels); |
| 1630 | |
| 1631 | /* |
| 1632 | * Build Append paths for each parameterization seen among the child rels. |
| 1633 | * (This may look pretty expensive, but in most cases of practical |
| 1634 | * interest, the child rels will expose mostly the same parameterizations, |
| 1635 | * so that not that many cases actually get considered here.) |
| 1636 | * |
| 1637 | * The Append node itself cannot enforce quals, so all qual checking must |
| 1638 | * be done in the child paths. This means that to have a parameterized |
| 1639 | * Append path, we must have the exact same parameterization for each |
| 1640 | * child path; otherwise some children might be failing to check the |
| 1641 | * moved-down quals. To make them match up, we can try to increase the |
| 1642 | * parameterization of lesser-parameterized paths. |
| 1643 | */ |
| 1644 | foreach(l, all_child_outers) |
| 1645 | { |
| 1646 | Relids required_outer = (Relids) lfirst(l); |
| 1647 | ListCell *lcr; |
| 1648 | |
| 1649 | /* Select the child paths for an Append with this parameterization */ |
| 1650 | subpaths = NIL; |
| 1651 | subpaths_valid = true; |
| 1652 | foreach(lcr, live_childrels) |
| 1653 | { |
| 1654 | RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); |
| 1655 | Path *subpath; |
| 1656 | |
| 1657 | if (childrel->pathlist == NIL) |
| 1658 | { |
| 1659 | /* failed to make a suitable path for this child */ |
| 1660 | subpaths_valid = false; |
| 1661 | break; |
| 1662 | } |
| 1663 | |
| 1664 | subpath = get_cheapest_parameterized_child_path(root, |
| 1665 | childrel, |
| 1666 | required_outer); |
| 1667 | if (subpath == NULL) |
| 1668 | { |
| 1669 | /* failed to make a suitable path for this child */ |
| 1670 | subpaths_valid = false; |
| 1671 | break; |
| 1672 | } |
| 1673 | accumulate_append_subpath(subpath, &subpaths, NULL); |
| 1674 | } |
| 1675 | |
| 1676 | if (subpaths_valid) |
| 1677 | add_path(rel, (Path *) |
| 1678 | create_append_path(root, rel, subpaths, NIL, |
| 1679 | NIL, required_outer, 0, false, |
| 1680 | partitioned_rels, -1)); |
| 1681 | } |
| 1682 | |
| 1683 | /* |
| 1684 | * When there is only a single child relation, the Append path can inherit |
| 1685 | * any ordering available for the child rel's path, so that it's useful to |
| 1686 | * consider ordered partial paths. Above we only considered the cheapest |
| 1687 | * partial path for each child, but let's also make paths using any |
| 1688 | * partial paths that have pathkeys. |
| 1689 | */ |
| 1690 | if (list_length(live_childrels) == 1) |
| 1691 | { |
| 1692 | RelOptInfo *childrel = (RelOptInfo *) linitial(live_childrels); |
| 1693 | |
| 1694 | foreach(l, childrel->partial_pathlist) |
| 1695 | { |
| 1696 | Path *path = (Path *) lfirst(l); |
| 1697 | AppendPath *appendpath; |
| 1698 | |
| 1699 | /* |
| 1700 | * Skip paths with no pathkeys. Also skip the cheapest partial |
| 1701 | * path, since we already used that above. |
| 1702 | */ |
| 1703 | if (path->pathkeys == NIL || |
| 1704 | path == linitial(childrel->partial_pathlist)) |
| 1705 | continue; |
| 1706 | |
| 1707 | appendpath = create_append_path(root, rel, NIL, list_make1(path), |
| 1708 | NIL, NULL, |
| 1709 | path->parallel_workers, true, |
| 1710 | partitioned_rels, partial_rows); |
| 1711 | add_partial_path(rel, (Path *) appendpath); |
| 1712 | } |
| 1713 | } |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * generate_orderedappend_paths |
| 1718 | * Generate ordered append paths for an append relation |
| 1719 | * |
| 1720 | * Usually we generate MergeAppend paths here, but there are some special |
| 1721 | * cases where we can generate simple Append paths, because the subpaths |
| 1722 | * can provide tuples in the required order already. |
| 1723 | * |
| 1724 | * We generate a path for each ordering (pathkey list) appearing in |
| 1725 | * all_child_pathkeys. |
| 1726 | * |
| 1727 | * We consider both cheapest-startup and cheapest-total cases, ie, for each |
| 1728 | * interesting ordering, collect all the cheapest startup subpaths and all the |
| 1729 | * cheapest total paths, and build a suitable path for each case. |
| 1730 | * |
| 1731 | * We don't currently generate any parameterized ordered paths here. While |
| 1732 | * it would not take much more code here to do so, it's very unclear that it |
| 1733 | * is worth the planning cycles to investigate such paths: there's little |
| 1734 | * use for an ordered path on the inside of a nestloop. In fact, it's likely |
| 1735 | * that the current coding of add_path would reject such paths out of hand, |
| 1736 | * because add_path gives no credit for sort ordering of parameterized paths, |
| 1737 | * and a parameterized MergeAppend is going to be more expensive than the |
| 1738 | * corresponding parameterized Append path. If we ever try harder to support |
| 1739 | * parameterized mergejoin plans, it might be worth adding support for |
| 1740 | * parameterized paths here to feed such joins. (See notes in |
| 1741 | * optimizer/README for why that might not ever happen, though.) |
| 1742 | */ |
| 1743 | static void |
| 1744 | generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel, |
| 1745 | List *live_childrels, |
| 1746 | List *all_child_pathkeys, |
| 1747 | List *partitioned_rels) |
| 1748 | { |
| 1749 | ListCell *lcp; |
| 1750 | List *partition_pathkeys = NIL; |
| 1751 | List *partition_pathkeys_desc = NIL; |
| 1752 | bool partition_pathkeys_partial = true; |
| 1753 | bool partition_pathkeys_desc_partial = true; |
| 1754 | |
| 1755 | /* |
| 1756 | * Some partitioned table setups may allow us to use an Append node |
| 1757 | * instead of a MergeAppend. This is possible in cases such as RANGE |
| 1758 | * partitioned tables where it's guaranteed that an earlier partition must |
| 1759 | * contain rows which come earlier in the sort order. To detect whether |
| 1760 | * this is relevant, build pathkey descriptions of the partition ordering, |
| 1761 | * for both forward and reverse scans. |
| 1762 | */ |
| 1763 | if (rel->part_scheme != NULL && IS_SIMPLE_REL(rel) && |
| 1764 | partitions_are_ordered(rel->boundinfo, rel->nparts)) |
| 1765 | { |
| 1766 | partition_pathkeys = build_partition_pathkeys(root, rel, |
| 1767 | ForwardScanDirection, |
| 1768 | &partition_pathkeys_partial); |
| 1769 | |
| 1770 | partition_pathkeys_desc = build_partition_pathkeys(root, rel, |
| 1771 | BackwardScanDirection, |
| 1772 | &partition_pathkeys_desc_partial); |
| 1773 | |
| 1774 | /* |
| 1775 | * You might think we should truncate_useless_pathkeys here, but |
| 1776 | * allowing partition keys which are a subset of the query's pathkeys |
| 1777 | * can often be useful. For example, consider a table partitioned by |
| 1778 | * RANGE (a, b), and a query with ORDER BY a, b, c. If we have child |
| 1779 | * paths that can produce the a, b, c ordering (perhaps via indexes on |
| 1780 | * (a, b, c)) then it works to consider the appendrel output as |
| 1781 | * ordered by a, b, c. |
| 1782 | */ |
| 1783 | } |
| 1784 | |
| 1785 | /* Now consider each interesting sort ordering */ |
| 1786 | foreach(lcp, all_child_pathkeys) |
| 1787 | { |
| 1788 | List *pathkeys = (List *) lfirst(lcp); |
| 1789 | List *startup_subpaths = NIL; |
| 1790 | List *total_subpaths = NIL; |
| 1791 | bool startup_neq_total = false; |
| 1792 | ListCell *lcr; |
| 1793 | bool match_partition_order; |
| 1794 | bool match_partition_order_desc; |
| 1795 | |
| 1796 | /* |
| 1797 | * Determine if this sort ordering matches any partition pathkeys we |
| 1798 | * have, for both ascending and descending partition order. If the |
| 1799 | * partition pathkeys happen to be contained in pathkeys then it still |
| 1800 | * works, as described above, providing that the partition pathkeys |
| 1801 | * are complete and not just a prefix of the partition keys. (In such |
| 1802 | * cases we'll be relying on the child paths to have sorted the |
| 1803 | * lower-order columns of the required pathkeys.) |
| 1804 | */ |
| 1805 | match_partition_order = |
| 1806 | pathkeys_contained_in(pathkeys, partition_pathkeys) || |
| 1807 | (!partition_pathkeys_partial && |
| 1808 | pathkeys_contained_in(partition_pathkeys, pathkeys)); |
| 1809 | |
| 1810 | match_partition_order_desc = !match_partition_order && |
| 1811 | (pathkeys_contained_in(pathkeys, partition_pathkeys_desc) || |
| 1812 | (!partition_pathkeys_desc_partial && |
| 1813 | pathkeys_contained_in(partition_pathkeys_desc, pathkeys))); |
| 1814 | |
| 1815 | /* Select the child paths for this ordering... */ |
| 1816 | foreach(lcr, live_childrels) |
| 1817 | { |
| 1818 | RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); |
| 1819 | Path *cheapest_startup, |
| 1820 | *cheapest_total; |
| 1821 | |
| 1822 | /* Locate the right paths, if they are available. */ |
| 1823 | cheapest_startup = |
| 1824 | get_cheapest_path_for_pathkeys(childrel->pathlist, |
| 1825 | pathkeys, |
| 1826 | NULL, |
| 1827 | STARTUP_COST, |
| 1828 | false); |
| 1829 | cheapest_total = |
| 1830 | get_cheapest_path_for_pathkeys(childrel->pathlist, |
| 1831 | pathkeys, |
| 1832 | NULL, |
| 1833 | TOTAL_COST, |
| 1834 | false); |
| 1835 | |
| 1836 | /* |
| 1837 | * If we can't find any paths with the right order just use the |
| 1838 | * cheapest-total path; we'll have to sort it later. |
| 1839 | */ |
| 1840 | if (cheapest_startup == NULL || cheapest_total == NULL) |
| 1841 | { |
| 1842 | cheapest_startup = cheapest_total = |
| 1843 | childrel->cheapest_total_path; |
| 1844 | /* Assert we do have an unparameterized path for this child */ |
| 1845 | Assert(cheapest_total->param_info == NULL); |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * Notice whether we actually have different paths for the |
| 1850 | * "cheapest" and "total" cases; frequently there will be no point |
| 1851 | * in two create_merge_append_path() calls. |
| 1852 | */ |
| 1853 | if (cheapest_startup != cheapest_total) |
| 1854 | startup_neq_total = true; |
| 1855 | |
| 1856 | /* |
| 1857 | * Collect the appropriate child paths. The required logic varies |
| 1858 | * for the Append and MergeAppend cases. |
| 1859 | */ |
| 1860 | if (match_partition_order) |
| 1861 | { |
| 1862 | /* |
| 1863 | * We're going to make a plain Append path. We don't need |
| 1864 | * most of what accumulate_append_subpath would do, but we do |
| 1865 | * want to cut out child Appends or MergeAppends if they have |
| 1866 | * just a single subpath (and hence aren't doing anything |
| 1867 | * useful). |
| 1868 | */ |
| 1869 | cheapest_startup = get_singleton_append_subpath(cheapest_startup); |
| 1870 | cheapest_total = get_singleton_append_subpath(cheapest_total); |
| 1871 | |
| 1872 | startup_subpaths = lappend(startup_subpaths, cheapest_startup); |
| 1873 | total_subpaths = lappend(total_subpaths, cheapest_total); |
| 1874 | } |
| 1875 | else if (match_partition_order_desc) |
| 1876 | { |
| 1877 | /* |
| 1878 | * As above, but we need to reverse the order of the children, |
| 1879 | * because nodeAppend.c doesn't know anything about reverse |
| 1880 | * ordering and will scan the children in the order presented. |
| 1881 | */ |
| 1882 | cheapest_startup = get_singleton_append_subpath(cheapest_startup); |
| 1883 | cheapest_total = get_singleton_append_subpath(cheapest_total); |
| 1884 | |
| 1885 | startup_subpaths = lcons(cheapest_startup, startup_subpaths); |
| 1886 | total_subpaths = lcons(cheapest_total, total_subpaths); |
| 1887 | } |
| 1888 | else |
| 1889 | { |
| 1890 | /* |
| 1891 | * Otherwise, rely on accumulate_append_subpath to collect the |
| 1892 | * child paths for the MergeAppend. |
| 1893 | */ |
| 1894 | accumulate_append_subpath(cheapest_startup, |
| 1895 | &startup_subpaths, NULL); |
| 1896 | accumulate_append_subpath(cheapest_total, |
| 1897 | &total_subpaths, NULL); |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | /* ... and build the Append or MergeAppend paths */ |
| 1902 | if (match_partition_order || match_partition_order_desc) |
| 1903 | { |
| 1904 | /* We only need Append */ |
| 1905 | add_path(rel, (Path *) create_append_path(root, |
| 1906 | rel, |
| 1907 | startup_subpaths, |
| 1908 | NIL, |
| 1909 | pathkeys, |
| 1910 | NULL, |
| 1911 | 0, |
| 1912 | false, |
| 1913 | partitioned_rels, |
| 1914 | -1)); |
| 1915 | if (startup_neq_total) |
| 1916 | add_path(rel, (Path *) create_append_path(root, |
| 1917 | rel, |
| 1918 | total_subpaths, |
| 1919 | NIL, |
| 1920 | pathkeys, |
| 1921 | NULL, |
| 1922 | 0, |
| 1923 | false, |
| 1924 | partitioned_rels, |
| 1925 | -1)); |
| 1926 | } |
| 1927 | else |
| 1928 | { |
| 1929 | /* We need MergeAppend */ |
| 1930 | add_path(rel, (Path *) create_merge_append_path(root, |
| 1931 | rel, |
| 1932 | startup_subpaths, |
| 1933 | pathkeys, |
| 1934 | NULL, |
| 1935 | partitioned_rels)); |
| 1936 | if (startup_neq_total) |
| 1937 | add_path(rel, (Path *) create_merge_append_path(root, |
| 1938 | rel, |
| 1939 | total_subpaths, |
| 1940 | pathkeys, |
| 1941 | NULL, |
| 1942 | partitioned_rels)); |
| 1943 | } |
| 1944 | } |
| 1945 | } |
| 1946 | |
| 1947 | /* |
| 1948 | * get_cheapest_parameterized_child_path |
| 1949 | * Get cheapest path for this relation that has exactly the requested |
| 1950 | * parameterization. |
| 1951 | * |
| 1952 | * Returns NULL if unable to create such a path. |
| 1953 | */ |
| 1954 | static Path * |
| 1955 | get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel, |
| 1956 | Relids required_outer) |
| 1957 | { |
| 1958 | Path *cheapest; |
| 1959 | ListCell *lc; |
| 1960 | |
| 1961 | /* |
| 1962 | * Look up the cheapest existing path with no more than the needed |
| 1963 | * parameterization. If it has exactly the needed parameterization, we're |
| 1964 | * done. |
| 1965 | */ |
| 1966 | cheapest = get_cheapest_path_for_pathkeys(rel->pathlist, |
| 1967 | NIL, |
| 1968 | required_outer, |
| 1969 | TOTAL_COST, |
| 1970 | false); |
| 1971 | Assert(cheapest != NULL); |
| 1972 | if (bms_equal(PATH_REQ_OUTER(cheapest), required_outer)) |
| 1973 | return cheapest; |
| 1974 | |
| 1975 | /* |
| 1976 | * Otherwise, we can "reparameterize" an existing path to match the given |
| 1977 | * parameterization, which effectively means pushing down additional |
| 1978 | * joinquals to be checked within the path's scan. However, some existing |
| 1979 | * paths might check the available joinquals already while others don't; |
| 1980 | * therefore, it's not clear which existing path will be cheapest after |
| 1981 | * reparameterization. We have to go through them all and find out. |
| 1982 | */ |
| 1983 | cheapest = NULL; |
| 1984 | foreach(lc, rel->pathlist) |
| 1985 | { |
| 1986 | Path *path = (Path *) lfirst(lc); |
| 1987 | |
| 1988 | /* Can't use it if it needs more than requested parameterization */ |
| 1989 | if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer)) |
| 1990 | continue; |
| 1991 | |
| 1992 | /* |
| 1993 | * Reparameterization can only increase the path's cost, so if it's |
| 1994 | * already more expensive than the current cheapest, forget it. |
| 1995 | */ |
| 1996 | if (cheapest != NULL && |
| 1997 | compare_path_costs(cheapest, path, TOTAL_COST) <= 0) |
| 1998 | continue; |
| 1999 | |
| 2000 | /* Reparameterize if needed, then recheck cost */ |
| 2001 | if (!bms_equal(PATH_REQ_OUTER(path), required_outer)) |
| 2002 | { |
| 2003 | path = reparameterize_path(root, path, required_outer, 1.0); |
| 2004 | if (path == NULL) |
| 2005 | continue; /* failed to reparameterize this one */ |
| 2006 | Assert(bms_equal(PATH_REQ_OUTER(path), required_outer)); |
| 2007 | |
| 2008 | if (cheapest != NULL && |
| 2009 | compare_path_costs(cheapest, path, TOTAL_COST) <= 0) |
| 2010 | continue; |
| 2011 | } |
| 2012 | |
| 2013 | /* We have a new best path */ |
| 2014 | cheapest = path; |
| 2015 | } |
| 2016 | |
| 2017 | /* Return the best path, or NULL if we found no suitable candidate */ |
| 2018 | return cheapest; |
| 2019 | } |
| 2020 | |
| 2021 | /* |
| 2022 | * accumulate_append_subpath |
| 2023 | * Add a subpath to the list being built for an Append or MergeAppend. |
| 2024 | * |
| 2025 | * It's possible that the child is itself an Append or MergeAppend path, in |
| 2026 | * which case we can "cut out the middleman" and just add its child paths to |
| 2027 | * our own list. (We don't try to do this earlier because we need to apply |
| 2028 | * both levels of transformation to the quals.) |
| 2029 | * |
| 2030 | * Note that if we omit a child MergeAppend in this way, we are effectively |
| 2031 | * omitting a sort step, which seems fine: if the parent is to be an Append, |
| 2032 | * its result would be unsorted anyway, while if the parent is to be a |
| 2033 | * MergeAppend, there's no point in a separate sort on a child. |
| 2034 | * |
| 2035 | * Normally, either path is a partial path and subpaths is a list of partial |
| 2036 | * paths, or else path is a non-partial plan and subpaths is a list of those. |
| 2037 | * However, if path is a parallel-aware Append, then we add its partial path |
| 2038 | * children to subpaths and the rest to special_subpaths. If the latter is |
| 2039 | * NULL, we don't flatten the path at all (unless it contains only partial |
| 2040 | * paths). |
| 2041 | */ |
| 2042 | static void |
| 2043 | accumulate_append_subpath(Path *path, List **subpaths, List **special_subpaths) |
| 2044 | { |
| 2045 | if (IsA(path, AppendPath)) |
| 2046 | { |
| 2047 | AppendPath *apath = (AppendPath *) path; |
| 2048 | |
| 2049 | if (!apath->path.parallel_aware || apath->first_partial_path == 0) |
| 2050 | { |
| 2051 | /* list_copy is important here to avoid sharing list substructure */ |
| 2052 | *subpaths = list_concat(*subpaths, list_copy(apath->subpaths)); |
| 2053 | return; |
| 2054 | } |
| 2055 | else if (special_subpaths != NULL) |
| 2056 | { |
| 2057 | List *new_special_subpaths; |
| 2058 | |
| 2059 | /* Split Parallel Append into partial and non-partial subpaths */ |
| 2060 | *subpaths = list_concat(*subpaths, |
| 2061 | list_copy_tail(apath->subpaths, |
| 2062 | apath->first_partial_path)); |
| 2063 | new_special_subpaths = |
| 2064 | list_truncate(list_copy(apath->subpaths), |
| 2065 | apath->first_partial_path); |
| 2066 | *special_subpaths = list_concat(*special_subpaths, |
| 2067 | new_special_subpaths); |
| 2068 | return; |
| 2069 | } |
| 2070 | } |
| 2071 | else if (IsA(path, MergeAppendPath)) |
| 2072 | { |
| 2073 | MergeAppendPath *mpath = (MergeAppendPath *) path; |
| 2074 | |
| 2075 | /* list_copy is important here to avoid sharing list substructure */ |
| 2076 | *subpaths = list_concat(*subpaths, list_copy(mpath->subpaths)); |
| 2077 | return; |
| 2078 | } |
| 2079 | |
| 2080 | *subpaths = lappend(*subpaths, path); |
| 2081 | } |
| 2082 | |
| 2083 | /* |
| 2084 | * get_singleton_append_subpath |
| 2085 | * Returns the single subpath of an Append/MergeAppend, or just |
| 2086 | * return 'path' if it's not a single sub-path Append/MergeAppend. |
| 2087 | * |
| 2088 | * Note: 'path' must not be a parallel-aware path. |
| 2089 | */ |
| 2090 | static Path * |
| 2091 | get_singleton_append_subpath(Path *path) |
| 2092 | { |
| 2093 | Assert(!path->parallel_aware); |
| 2094 | |
| 2095 | if (IsA(path, AppendPath)) |
| 2096 | { |
| 2097 | AppendPath *apath = (AppendPath *) path; |
| 2098 | |
| 2099 | if (list_length(apath->subpaths) == 1) |
| 2100 | return (Path *) linitial(apath->subpaths); |
| 2101 | } |
| 2102 | else if (IsA(path, MergeAppendPath)) |
| 2103 | { |
| 2104 | MergeAppendPath *mpath = (MergeAppendPath *) path; |
| 2105 | |
| 2106 | if (list_length(mpath->subpaths) == 1) |
| 2107 | return (Path *) linitial(mpath->subpaths); |
| 2108 | } |
| 2109 | |
| 2110 | return path; |
| 2111 | } |
| 2112 | |
| 2113 | /* |
| 2114 | * set_dummy_rel_pathlist |
| 2115 | * Build a dummy path for a relation that's been excluded by constraints |
| 2116 | * |
| 2117 | * Rather than inventing a special "dummy" path type, we represent this as an |
| 2118 | * AppendPath with no members (see also IS_DUMMY_APPEND/IS_DUMMY_REL macros). |
| 2119 | * |
| 2120 | * (See also mark_dummy_rel, which does basically the same thing, but is |
| 2121 | * typically used to change a rel into dummy state after we already made |
| 2122 | * paths for it.) |
| 2123 | */ |
| 2124 | static void |
| 2125 | set_dummy_rel_pathlist(RelOptInfo *rel) |
| 2126 | { |
| 2127 | /* Set dummy size estimates --- we leave attr_widths[] as zeroes */ |
| 2128 | rel->rows = 0; |
| 2129 | rel->reltarget->width = 0; |
| 2130 | |
| 2131 | /* Discard any pre-existing paths; no further need for them */ |
| 2132 | rel->pathlist = NIL; |
| 2133 | rel->partial_pathlist = NIL; |
| 2134 | |
| 2135 | /* Set up the dummy path */ |
| 2136 | add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL, |
| 2137 | NIL, rel->lateral_relids, |
| 2138 | 0, false, NIL, -1)); |
| 2139 | |
| 2140 | /* |
| 2141 | * We set the cheapest-path fields immediately, just in case they were |
| 2142 | * pointing at some discarded path. This is redundant when we're called |
| 2143 | * from set_rel_size(), but not when called from elsewhere, and doing it |
| 2144 | * twice is harmless anyway. |
| 2145 | */ |
| 2146 | set_cheapest(rel); |
| 2147 | } |
| 2148 | |
| 2149 | /* quick-and-dirty test to see if any joining is needed */ |
| 2150 | static bool |
| 2151 | has_multiple_baserels(PlannerInfo *root) |
| 2152 | { |
| 2153 | int num_base_rels = 0; |
| 2154 | Index rti; |
| 2155 | |
| 2156 | for (rti = 1; rti < root->simple_rel_array_size; rti++) |
| 2157 | { |
| 2158 | RelOptInfo *brel = root->simple_rel_array[rti]; |
| 2159 | |
| 2160 | if (brel == NULL) |
| 2161 | continue; |
| 2162 | |
| 2163 | /* ignore RTEs that are "other rels" */ |
| 2164 | if (brel->reloptkind == RELOPT_BASEREL) |
| 2165 | if (++num_base_rels > 1) |
| 2166 | return true; |
| 2167 | } |
| 2168 | return false; |
| 2169 | } |
| 2170 | |
| 2171 | /* |
| 2172 | * set_subquery_pathlist |
| 2173 | * Generate SubqueryScan access paths for a subquery RTE |
| 2174 | * |
| 2175 | * We don't currently support generating parameterized paths for subqueries |
| 2176 | * by pushing join clauses down into them; it seems too expensive to re-plan |
| 2177 | * the subquery multiple times to consider different alternatives. |
| 2178 | * (XXX that could stand to be reconsidered, now that we use Paths.) |
| 2179 | * So the paths made here will be parameterized if the subquery contains |
| 2180 | * LATERAL references, otherwise not. As long as that's true, there's no need |
| 2181 | * for a separate set_subquery_size phase: just make the paths right away. |
| 2182 | */ |
| 2183 | static void |
| 2184 | set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 2185 | Index rti, RangeTblEntry *rte) |
| 2186 | { |
| 2187 | Query *parse = root->parse; |
| 2188 | Query *subquery = rte->subquery; |
| 2189 | Relids required_outer; |
| 2190 | pushdown_safety_info safetyInfo; |
| 2191 | double tuple_fraction; |
| 2192 | RelOptInfo *sub_final_rel; |
| 2193 | ListCell *lc; |
| 2194 | |
| 2195 | /* |
| 2196 | * Must copy the Query so that planning doesn't mess up the RTE contents |
| 2197 | * (really really need to fix the planner to not scribble on its input, |
| 2198 | * someday ... but see remove_unused_subquery_outputs to start with). |
| 2199 | */ |
| 2200 | subquery = copyObject(subquery); |
| 2201 | |
| 2202 | /* |
| 2203 | * If it's a LATERAL subquery, it might contain some Vars of the current |
| 2204 | * query level, requiring it to be treated as parameterized, even though |
| 2205 | * we don't support pushing down join quals into subqueries. |
| 2206 | */ |
| 2207 | required_outer = rel->lateral_relids; |
| 2208 | |
| 2209 | /* |
| 2210 | * Zero out result area for subquery_is_pushdown_safe, so that it can set |
| 2211 | * flags as needed while recursing. In particular, we need a workspace |
| 2212 | * for keeping track of unsafe-to-reference columns. unsafeColumns[i] |
| 2213 | * will be set true if we find that output column i of the subquery is |
| 2214 | * unsafe to use in a pushed-down qual. |
| 2215 | */ |
| 2216 | memset(&safetyInfo, 0, sizeof(safetyInfo)); |
| 2217 | safetyInfo.unsafeColumns = (bool *) |
| 2218 | palloc0((list_length(subquery->targetList) + 1) * sizeof(bool)); |
| 2219 | |
| 2220 | /* |
| 2221 | * If the subquery has the "security_barrier" flag, it means the subquery |
| 2222 | * originated from a view that must enforce row level security. Then we |
| 2223 | * must not push down quals that contain leaky functions. (Ideally this |
| 2224 | * would be checked inside subquery_is_pushdown_safe, but since we don't |
| 2225 | * currently pass the RTE to that function, we must do it here.) |
| 2226 | */ |
| 2227 | safetyInfo.unsafeLeaky = rte->security_barrier; |
| 2228 | |
| 2229 | /* |
| 2230 | * If there are any restriction clauses that have been attached to the |
| 2231 | * subquery relation, consider pushing them down to become WHERE or HAVING |
| 2232 | * quals of the subquery itself. This transformation is useful because it |
| 2233 | * may allow us to generate a better plan for the subquery than evaluating |
| 2234 | * all the subquery output rows and then filtering them. |
| 2235 | * |
| 2236 | * There are several cases where we cannot push down clauses. Restrictions |
| 2237 | * involving the subquery are checked by subquery_is_pushdown_safe(). |
| 2238 | * Restrictions on individual clauses are checked by |
| 2239 | * qual_is_pushdown_safe(). Also, we don't want to push down |
| 2240 | * pseudoconstant clauses; better to have the gating node above the |
| 2241 | * subquery. |
| 2242 | * |
| 2243 | * Non-pushed-down clauses will get evaluated as qpquals of the |
| 2244 | * SubqueryScan node. |
| 2245 | * |
| 2246 | * XXX Are there any cases where we want to make a policy decision not to |
| 2247 | * push down a pushable qual, because it'd result in a worse plan? |
| 2248 | */ |
| 2249 | if (rel->baserestrictinfo != NIL && |
| 2250 | subquery_is_pushdown_safe(subquery, subquery, &safetyInfo)) |
| 2251 | { |
| 2252 | /* OK to consider pushing down individual quals */ |
| 2253 | List *upperrestrictlist = NIL; |
| 2254 | ListCell *l; |
| 2255 | |
| 2256 | foreach(l, rel->baserestrictinfo) |
| 2257 | { |
| 2258 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); |
| 2259 | Node *clause = (Node *) rinfo->clause; |
| 2260 | |
| 2261 | if (!rinfo->pseudoconstant && |
| 2262 | qual_is_pushdown_safe(subquery, rti, clause, &safetyInfo)) |
| 2263 | { |
| 2264 | /* Push it down */ |
| 2265 | subquery_push_qual(subquery, rte, rti, clause); |
| 2266 | } |
| 2267 | else |
| 2268 | { |
| 2269 | /* Keep it in the upper query */ |
| 2270 | upperrestrictlist = lappend(upperrestrictlist, rinfo); |
| 2271 | } |
| 2272 | } |
| 2273 | rel->baserestrictinfo = upperrestrictlist; |
| 2274 | /* We don't bother recomputing baserestrict_min_security */ |
| 2275 | } |
| 2276 | |
| 2277 | pfree(safetyInfo.unsafeColumns); |
| 2278 | |
| 2279 | /* |
| 2280 | * The upper query might not use all the subquery's output columns; if |
| 2281 | * not, we can simplify. |
| 2282 | */ |
| 2283 | remove_unused_subquery_outputs(subquery, rel); |
| 2284 | |
| 2285 | /* |
| 2286 | * We can safely pass the outer tuple_fraction down to the subquery if the |
| 2287 | * outer level has no joining, aggregation, or sorting to do. Otherwise |
| 2288 | * we'd better tell the subquery to plan for full retrieval. (XXX This |
| 2289 | * could probably be made more intelligent ...) |
| 2290 | */ |
| 2291 | if (parse->hasAggs || |
| 2292 | parse->groupClause || |
| 2293 | parse->groupingSets || |
| 2294 | parse->havingQual || |
| 2295 | parse->distinctClause || |
| 2296 | parse->sortClause || |
| 2297 | has_multiple_baserels(root)) |
| 2298 | tuple_fraction = 0.0; /* default case */ |
| 2299 | else |
| 2300 | tuple_fraction = root->tuple_fraction; |
| 2301 | |
| 2302 | /* plan_params should not be in use in current query level */ |
| 2303 | Assert(root->plan_params == NIL); |
| 2304 | |
| 2305 | /* Generate a subroot and Paths for the subquery */ |
| 2306 | rel->subroot = subquery_planner(root->glob, subquery, |
| 2307 | root, |
| 2308 | false, tuple_fraction); |
| 2309 | |
| 2310 | /* Isolate the params needed by this specific subplan */ |
| 2311 | rel->subplan_params = root->plan_params; |
| 2312 | root->plan_params = NIL; |
| 2313 | |
| 2314 | /* |
| 2315 | * It's possible that constraint exclusion proved the subquery empty. If |
| 2316 | * so, it's desirable to produce an unadorned dummy path so that we will |
| 2317 | * recognize appropriate optimizations at this query level. |
| 2318 | */ |
| 2319 | sub_final_rel = fetch_upper_rel(rel->subroot, UPPERREL_FINAL, NULL); |
| 2320 | |
| 2321 | if (IS_DUMMY_REL(sub_final_rel)) |
| 2322 | { |
| 2323 | set_dummy_rel_pathlist(rel); |
| 2324 | return; |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * Mark rel with estimated output rows, width, etc. Note that we have to |
| 2329 | * do this before generating outer-query paths, else cost_subqueryscan is |
| 2330 | * not happy. |
| 2331 | */ |
| 2332 | set_subquery_size_estimates(root, rel); |
| 2333 | |
| 2334 | /* |
| 2335 | * For each Path that subquery_planner produced, make a SubqueryScanPath |
| 2336 | * in the outer query. |
| 2337 | */ |
| 2338 | foreach(lc, sub_final_rel->pathlist) |
| 2339 | { |
| 2340 | Path *subpath = (Path *) lfirst(lc); |
| 2341 | List *pathkeys; |
| 2342 | |
| 2343 | /* Convert subpath's pathkeys to outer representation */ |
| 2344 | pathkeys = convert_subquery_pathkeys(root, |
| 2345 | rel, |
| 2346 | subpath->pathkeys, |
| 2347 | make_tlist_from_pathtarget(subpath->pathtarget)); |
| 2348 | |
| 2349 | /* Generate outer path using this subpath */ |
| 2350 | add_path(rel, (Path *) |
| 2351 | create_subqueryscan_path(root, rel, subpath, |
| 2352 | pathkeys, required_outer)); |
| 2353 | } |
| 2354 | |
| 2355 | /* If outer rel allows parallelism, do same for partial paths. */ |
| 2356 | if (rel->consider_parallel && bms_is_empty(required_outer)) |
| 2357 | { |
| 2358 | /* If consider_parallel is false, there should be no partial paths. */ |
| 2359 | Assert(sub_final_rel->consider_parallel || |
| 2360 | sub_final_rel->partial_pathlist == NIL); |
| 2361 | |
| 2362 | /* Same for partial paths. */ |
| 2363 | foreach(lc, sub_final_rel->partial_pathlist) |
| 2364 | { |
| 2365 | Path *subpath = (Path *) lfirst(lc); |
| 2366 | List *pathkeys; |
| 2367 | |
| 2368 | /* Convert subpath's pathkeys to outer representation */ |
| 2369 | pathkeys = convert_subquery_pathkeys(root, |
| 2370 | rel, |
| 2371 | subpath->pathkeys, |
| 2372 | make_tlist_from_pathtarget(subpath->pathtarget)); |
| 2373 | |
| 2374 | /* Generate outer path using this subpath */ |
| 2375 | add_partial_path(rel, (Path *) |
| 2376 | create_subqueryscan_path(root, rel, subpath, |
| 2377 | pathkeys, |
| 2378 | required_outer)); |
| 2379 | } |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | /* |
| 2384 | * set_function_pathlist |
| 2385 | * Build the (single) access path for a function RTE |
| 2386 | */ |
| 2387 | static void |
| 2388 | set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 2389 | { |
| 2390 | Relids required_outer; |
| 2391 | List *pathkeys = NIL; |
| 2392 | |
| 2393 | /* |
| 2394 | * We don't support pushing join clauses into the quals of a function |
| 2395 | * scan, but it could still have required parameterization due to LATERAL |
| 2396 | * refs in the function expression. |
| 2397 | */ |
| 2398 | required_outer = rel->lateral_relids; |
| 2399 | |
| 2400 | /* |
| 2401 | * The result is considered unordered unless ORDINALITY was used, in which |
| 2402 | * case it is ordered by the ordinal column (the last one). See if we |
| 2403 | * care, by checking for uses of that Var in equivalence classes. |
| 2404 | */ |
| 2405 | if (rte->funcordinality) |
| 2406 | { |
| 2407 | AttrNumber ordattno = rel->max_attr; |
| 2408 | Var *var = NULL; |
| 2409 | ListCell *lc; |
| 2410 | |
| 2411 | /* |
| 2412 | * Is there a Var for it in rel's targetlist? If not, the query did |
| 2413 | * not reference the ordinality column, or at least not in any way |
| 2414 | * that would be interesting for sorting. |
| 2415 | */ |
| 2416 | foreach(lc, rel->reltarget->exprs) |
| 2417 | { |
| 2418 | Var *node = (Var *) lfirst(lc); |
| 2419 | |
| 2420 | /* checking varno/varlevelsup is just paranoia */ |
| 2421 | if (IsA(node, Var) && |
| 2422 | node->varattno == ordattno && |
| 2423 | node->varno == rel->relid && |
| 2424 | node->varlevelsup == 0) |
| 2425 | { |
| 2426 | var = node; |
| 2427 | break; |
| 2428 | } |
| 2429 | } |
| 2430 | |
| 2431 | /* |
| 2432 | * Try to build pathkeys for this Var with int8 sorting. We tell |
| 2433 | * build_expression_pathkey not to build any new equivalence class; if |
| 2434 | * the Var isn't already mentioned in some EC, it means that nothing |
| 2435 | * cares about the ordering. |
| 2436 | */ |
| 2437 | if (var) |
| 2438 | pathkeys = build_expression_pathkey(root, |
| 2439 | (Expr *) var, |
| 2440 | NULL, /* below outer joins */ |
| 2441 | Int8LessOperator, |
| 2442 | rel->relids, |
| 2443 | false); |
| 2444 | } |
| 2445 | |
| 2446 | /* Generate appropriate path */ |
| 2447 | add_path(rel, create_functionscan_path(root, rel, |
| 2448 | pathkeys, required_outer)); |
| 2449 | } |
| 2450 | |
| 2451 | /* |
| 2452 | * set_values_pathlist |
| 2453 | * Build the (single) access path for a VALUES RTE |
| 2454 | */ |
| 2455 | static void |
| 2456 | set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 2457 | { |
| 2458 | Relids required_outer; |
| 2459 | |
| 2460 | /* |
| 2461 | * We don't support pushing join clauses into the quals of a values scan, |
| 2462 | * but it could still have required parameterization due to LATERAL refs |
| 2463 | * in the values expressions. |
| 2464 | */ |
| 2465 | required_outer = rel->lateral_relids; |
| 2466 | |
| 2467 | /* Generate appropriate path */ |
| 2468 | add_path(rel, create_valuesscan_path(root, rel, required_outer)); |
| 2469 | } |
| 2470 | |
| 2471 | /* |
| 2472 | * set_tablefunc_pathlist |
| 2473 | * Build the (single) access path for a table func RTE |
| 2474 | */ |
| 2475 | static void |
| 2476 | set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 2477 | { |
| 2478 | Relids required_outer; |
| 2479 | |
| 2480 | /* |
| 2481 | * We don't support pushing join clauses into the quals of a tablefunc |
| 2482 | * scan, but it could still have required parameterization due to LATERAL |
| 2483 | * refs in the function expression. |
| 2484 | */ |
| 2485 | required_outer = rel->lateral_relids; |
| 2486 | |
| 2487 | /* Generate appropriate path */ |
| 2488 | add_path(rel, create_tablefuncscan_path(root, rel, |
| 2489 | required_outer)); |
| 2490 | } |
| 2491 | |
| 2492 | /* |
| 2493 | * set_cte_pathlist |
| 2494 | * Build the (single) access path for a non-self-reference CTE RTE |
| 2495 | * |
| 2496 | * There's no need for a separate set_cte_size phase, since we don't |
| 2497 | * support join-qual-parameterized paths for CTEs. |
| 2498 | */ |
| 2499 | static void |
| 2500 | set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 2501 | { |
| 2502 | Plan *cteplan; |
| 2503 | PlannerInfo *cteroot; |
| 2504 | Index levelsup; |
| 2505 | int ndx; |
| 2506 | ListCell *lc; |
| 2507 | int plan_id; |
| 2508 | Relids required_outer; |
| 2509 | |
| 2510 | /* |
| 2511 | * Find the referenced CTE, and locate the plan previously made for it. |
| 2512 | */ |
| 2513 | levelsup = rte->ctelevelsup; |
| 2514 | cteroot = root; |
| 2515 | while (levelsup-- > 0) |
| 2516 | { |
| 2517 | cteroot = cteroot->parent_root; |
| 2518 | if (!cteroot) /* shouldn't happen */ |
| 2519 | elog(ERROR, "bad levelsup for CTE \"%s\"" , rte->ctename); |
| 2520 | } |
| 2521 | |
| 2522 | /* |
| 2523 | * Note: cte_plan_ids can be shorter than cteList, if we are still working |
| 2524 | * on planning the CTEs (ie, this is a side-reference from another CTE). |
| 2525 | * So we mustn't use forboth here. |
| 2526 | */ |
| 2527 | ndx = 0; |
| 2528 | foreach(lc, cteroot->parse->cteList) |
| 2529 | { |
| 2530 | CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc); |
| 2531 | |
| 2532 | if (strcmp(cte->ctename, rte->ctename) == 0) |
| 2533 | break; |
| 2534 | ndx++; |
| 2535 | } |
| 2536 | if (lc == NULL) /* shouldn't happen */ |
| 2537 | elog(ERROR, "could not find CTE \"%s\"" , rte->ctename); |
| 2538 | if (ndx >= list_length(cteroot->cte_plan_ids)) |
| 2539 | elog(ERROR, "could not find plan for CTE \"%s\"" , rte->ctename); |
| 2540 | plan_id = list_nth_int(cteroot->cte_plan_ids, ndx); |
| 2541 | Assert(plan_id > 0); |
| 2542 | cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1); |
| 2543 | |
| 2544 | /* Mark rel with estimated output rows, width, etc */ |
| 2545 | set_cte_size_estimates(root, rel, cteplan->plan_rows); |
| 2546 | |
| 2547 | /* |
| 2548 | * We don't support pushing join clauses into the quals of a CTE scan, but |
| 2549 | * it could still have required parameterization due to LATERAL refs in |
| 2550 | * its tlist. |
| 2551 | */ |
| 2552 | required_outer = rel->lateral_relids; |
| 2553 | |
| 2554 | /* Generate appropriate path */ |
| 2555 | add_path(rel, create_ctescan_path(root, rel, required_outer)); |
| 2556 | } |
| 2557 | |
| 2558 | /* |
| 2559 | * set_namedtuplestore_pathlist |
| 2560 | * Build the (single) access path for a named tuplestore RTE |
| 2561 | * |
| 2562 | * There's no need for a separate set_namedtuplestore_size phase, since we |
| 2563 | * don't support join-qual-parameterized paths for tuplestores. |
| 2564 | */ |
| 2565 | static void |
| 2566 | set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 2567 | RangeTblEntry *rte) |
| 2568 | { |
| 2569 | Relids required_outer; |
| 2570 | |
| 2571 | /* Mark rel with estimated output rows, width, etc */ |
| 2572 | set_namedtuplestore_size_estimates(root, rel); |
| 2573 | |
| 2574 | /* |
| 2575 | * We don't support pushing join clauses into the quals of a tuplestore |
| 2576 | * scan, but it could still have required parameterization due to LATERAL |
| 2577 | * refs in its tlist. |
| 2578 | */ |
| 2579 | required_outer = rel->lateral_relids; |
| 2580 | |
| 2581 | /* Generate appropriate path */ |
| 2582 | add_path(rel, create_namedtuplestorescan_path(root, rel, required_outer)); |
| 2583 | |
| 2584 | /* Select cheapest path (pretty easy in this case...) */ |
| 2585 | set_cheapest(rel); |
| 2586 | } |
| 2587 | |
| 2588 | /* |
| 2589 | * set_result_pathlist |
| 2590 | * Build the (single) access path for an RTE_RESULT RTE |
| 2591 | * |
| 2592 | * There's no need for a separate set_result_size phase, since we |
| 2593 | * don't support join-qual-parameterized paths for these RTEs. |
| 2594 | */ |
| 2595 | static void |
| 2596 | set_result_pathlist(PlannerInfo *root, RelOptInfo *rel, |
| 2597 | RangeTblEntry *rte) |
| 2598 | { |
| 2599 | Relids required_outer; |
| 2600 | |
| 2601 | /* Mark rel with estimated output rows, width, etc */ |
| 2602 | set_result_size_estimates(root, rel); |
| 2603 | |
| 2604 | /* |
| 2605 | * We don't support pushing join clauses into the quals of a Result scan, |
| 2606 | * but it could still have required parameterization due to LATERAL refs |
| 2607 | * in its tlist. |
| 2608 | */ |
| 2609 | required_outer = rel->lateral_relids; |
| 2610 | |
| 2611 | /* Generate appropriate path */ |
| 2612 | add_path(rel, create_resultscan_path(root, rel, required_outer)); |
| 2613 | |
| 2614 | /* Select cheapest path (pretty easy in this case...) */ |
| 2615 | set_cheapest(rel); |
| 2616 | } |
| 2617 | |
| 2618 | /* |
| 2619 | * set_worktable_pathlist |
| 2620 | * Build the (single) access path for a self-reference CTE RTE |
| 2621 | * |
| 2622 | * There's no need for a separate set_worktable_size phase, since we don't |
| 2623 | * support join-qual-parameterized paths for CTEs. |
| 2624 | */ |
| 2625 | static void |
| 2626 | set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte) |
| 2627 | { |
| 2628 | Path *ctepath; |
| 2629 | PlannerInfo *cteroot; |
| 2630 | Index levelsup; |
| 2631 | Relids required_outer; |
| 2632 | |
| 2633 | /* |
| 2634 | * We need to find the non-recursive term's path, which is in the plan |
| 2635 | * level that's processing the recursive UNION, which is one level *below* |
| 2636 | * where the CTE comes from. |
| 2637 | */ |
| 2638 | levelsup = rte->ctelevelsup; |
| 2639 | if (levelsup == 0) /* shouldn't happen */ |
| 2640 | elog(ERROR, "bad levelsup for CTE \"%s\"" , rte->ctename); |
| 2641 | levelsup--; |
| 2642 | cteroot = root; |
| 2643 | while (levelsup-- > 0) |
| 2644 | { |
| 2645 | cteroot = cteroot->parent_root; |
| 2646 | if (!cteroot) /* shouldn't happen */ |
| 2647 | elog(ERROR, "bad levelsup for CTE \"%s\"" , rte->ctename); |
| 2648 | } |
| 2649 | ctepath = cteroot->non_recursive_path; |
| 2650 | if (!ctepath) /* shouldn't happen */ |
| 2651 | elog(ERROR, "could not find path for CTE \"%s\"" , rte->ctename); |
| 2652 | |
| 2653 | /* Mark rel with estimated output rows, width, etc */ |
| 2654 | set_cte_size_estimates(root, rel, ctepath->rows); |
| 2655 | |
| 2656 | /* |
| 2657 | * We don't support pushing join clauses into the quals of a worktable |
| 2658 | * scan, but it could still have required parameterization due to LATERAL |
| 2659 | * refs in its tlist. (I'm not sure this is actually possible given the |
| 2660 | * restrictions on recursive references, but it's easy enough to support.) |
| 2661 | */ |
| 2662 | required_outer = rel->lateral_relids; |
| 2663 | |
| 2664 | /* Generate appropriate path */ |
| 2665 | add_path(rel, create_worktablescan_path(root, rel, required_outer)); |
| 2666 | } |
| 2667 | |
| 2668 | /* |
| 2669 | * generate_gather_paths |
| 2670 | * Generate parallel access paths for a relation by pushing a Gather or |
| 2671 | * Gather Merge on top of a partial path. |
| 2672 | * |
| 2673 | * This must not be called until after we're done creating all partial paths |
| 2674 | * for the specified relation. (Otherwise, add_partial_path might delete a |
| 2675 | * path that some GatherPath or GatherMergePath has a reference to.) |
| 2676 | * |
| 2677 | * If we're generating paths for a scan or join relation, override_rows will |
| 2678 | * be false, and we'll just use the relation's size estimate. When we're |
| 2679 | * being called for a partially-grouped path, though, we need to override |
| 2680 | * the rowcount estimate. (It's not clear that the particular value we're |
| 2681 | * using here is actually best, but the underlying rel has no estimate so |
| 2682 | * we must do something.) |
| 2683 | */ |
| 2684 | void |
| 2685 | generate_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows) |
| 2686 | { |
| 2687 | Path *cheapest_partial_path; |
| 2688 | Path *simple_gather_path; |
| 2689 | ListCell *lc; |
| 2690 | double rows; |
| 2691 | double *rowsp = NULL; |
| 2692 | |
| 2693 | /* If there are no partial paths, there's nothing to do here. */ |
| 2694 | if (rel->partial_pathlist == NIL) |
| 2695 | return; |
| 2696 | |
| 2697 | /* Should we override the rel's rowcount estimate? */ |
| 2698 | if (override_rows) |
| 2699 | rowsp = &rows; |
| 2700 | |
| 2701 | /* |
| 2702 | * The output of Gather is always unsorted, so there's only one partial |
| 2703 | * path of interest: the cheapest one. That will be the one at the front |
| 2704 | * of partial_pathlist because of the way add_partial_path works. |
| 2705 | */ |
| 2706 | cheapest_partial_path = linitial(rel->partial_pathlist); |
| 2707 | rows = |
| 2708 | cheapest_partial_path->rows * cheapest_partial_path->parallel_workers; |
| 2709 | simple_gather_path = (Path *) |
| 2710 | create_gather_path(root, rel, cheapest_partial_path, rel->reltarget, |
| 2711 | NULL, rowsp); |
| 2712 | add_path(rel, simple_gather_path); |
| 2713 | |
| 2714 | /* |
| 2715 | * For each useful ordering, we can consider an order-preserving Gather |
| 2716 | * Merge. |
| 2717 | */ |
| 2718 | foreach(lc, rel->partial_pathlist) |
| 2719 | { |
| 2720 | Path *subpath = (Path *) lfirst(lc); |
| 2721 | GatherMergePath *path; |
| 2722 | |
| 2723 | if (subpath->pathkeys == NIL) |
| 2724 | continue; |
| 2725 | |
| 2726 | rows = subpath->rows * subpath->parallel_workers; |
| 2727 | path = create_gather_merge_path(root, rel, subpath, rel->reltarget, |
| 2728 | subpath->pathkeys, NULL, rowsp); |
| 2729 | add_path(rel, &path->path); |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | /* |
| 2734 | * make_rel_from_joinlist |
| 2735 | * Build access paths using a "joinlist" to guide the join path search. |
| 2736 | * |
| 2737 | * See comments for deconstruct_jointree() for definition of the joinlist |
| 2738 | * data structure. |
| 2739 | */ |
| 2740 | static RelOptInfo * |
| 2741 | make_rel_from_joinlist(PlannerInfo *root, List *joinlist) |
| 2742 | { |
| 2743 | int levels_needed; |
| 2744 | List *initial_rels; |
| 2745 | ListCell *jl; |
| 2746 | |
| 2747 | /* |
| 2748 | * Count the number of child joinlist nodes. This is the depth of the |
| 2749 | * dynamic-programming algorithm we must employ to consider all ways of |
| 2750 | * joining the child nodes. |
| 2751 | */ |
| 2752 | levels_needed = list_length(joinlist); |
| 2753 | |
| 2754 | if (levels_needed <= 0) |
| 2755 | return NULL; /* nothing to do? */ |
| 2756 | |
| 2757 | /* |
| 2758 | * Construct a list of rels corresponding to the child joinlist nodes. |
| 2759 | * This may contain both base rels and rels constructed according to |
| 2760 | * sub-joinlists. |
| 2761 | */ |
| 2762 | initial_rels = NIL; |
| 2763 | foreach(jl, joinlist) |
| 2764 | { |
| 2765 | Node *jlnode = (Node *) lfirst(jl); |
| 2766 | RelOptInfo *thisrel; |
| 2767 | |
| 2768 | if (IsA(jlnode, RangeTblRef)) |
| 2769 | { |
| 2770 | int varno = ((RangeTblRef *) jlnode)->rtindex; |
| 2771 | |
| 2772 | thisrel = find_base_rel(root, varno); |
| 2773 | } |
| 2774 | else if (IsA(jlnode, List)) |
| 2775 | { |
| 2776 | /* Recurse to handle subproblem */ |
| 2777 | thisrel = make_rel_from_joinlist(root, (List *) jlnode); |
| 2778 | } |
| 2779 | else |
| 2780 | { |
| 2781 | elog(ERROR, "unrecognized joinlist node type: %d" , |
| 2782 | (int) nodeTag(jlnode)); |
| 2783 | thisrel = NULL; /* keep compiler quiet */ |
| 2784 | } |
| 2785 | |
| 2786 | initial_rels = lappend(initial_rels, thisrel); |
| 2787 | } |
| 2788 | |
| 2789 | if (levels_needed == 1) |
| 2790 | { |
| 2791 | /* |
| 2792 | * Single joinlist node, so we're done. |
| 2793 | */ |
| 2794 | return (RelOptInfo *) linitial(initial_rels); |
| 2795 | } |
| 2796 | else |
| 2797 | { |
| 2798 | /* |
| 2799 | * Consider the different orders in which we could join the rels, |
| 2800 | * using a plugin, GEQO, or the regular join search code. |
| 2801 | * |
| 2802 | * We put the initial_rels list into a PlannerInfo field because |
| 2803 | * has_legal_joinclause() needs to look at it (ugly :-(). |
| 2804 | */ |
| 2805 | root->initial_rels = initial_rels; |
| 2806 | |
| 2807 | if (join_search_hook) |
| 2808 | return (*join_search_hook) (root, levels_needed, initial_rels); |
| 2809 | else if (enable_geqo && levels_needed >= geqo_threshold) |
| 2810 | return geqo(root, levels_needed, initial_rels); |
| 2811 | else |
| 2812 | return standard_join_search(root, levels_needed, initial_rels); |
| 2813 | } |
| 2814 | } |
| 2815 | |
| 2816 | /* |
| 2817 | * standard_join_search |
| 2818 | * Find possible joinpaths for a query by successively finding ways |
| 2819 | * to join component relations into join relations. |
| 2820 | * |
| 2821 | * 'levels_needed' is the number of iterations needed, ie, the number of |
| 2822 | * independent jointree items in the query. This is > 1. |
| 2823 | * |
| 2824 | * 'initial_rels' is a list of RelOptInfo nodes for each independent |
| 2825 | * jointree item. These are the components to be joined together. |
| 2826 | * Note that levels_needed == list_length(initial_rels). |
| 2827 | * |
| 2828 | * Returns the final level of join relations, i.e., the relation that is |
| 2829 | * the result of joining all the original relations together. |
| 2830 | * At least one implementation path must be provided for this relation and |
| 2831 | * all required sub-relations. |
| 2832 | * |
| 2833 | * To support loadable plugins that modify planner behavior by changing the |
| 2834 | * join searching algorithm, we provide a hook variable that lets a plugin |
| 2835 | * replace or supplement this function. Any such hook must return the same |
| 2836 | * final join relation as the standard code would, but it might have a |
| 2837 | * different set of implementation paths attached, and only the sub-joinrels |
| 2838 | * needed for these paths need have been instantiated. |
| 2839 | * |
| 2840 | * Note to plugin authors: the functions invoked during standard_join_search() |
| 2841 | * modify root->join_rel_list and root->join_rel_hash. If you want to do more |
| 2842 | * than one join-order search, you'll probably need to save and restore the |
| 2843 | * original states of those data structures. See geqo_eval() for an example. |
| 2844 | */ |
| 2845 | RelOptInfo * |
| 2846 | standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels) |
| 2847 | { |
| 2848 | int lev; |
| 2849 | RelOptInfo *rel; |
| 2850 | |
| 2851 | /* |
| 2852 | * This function cannot be invoked recursively within any one planning |
| 2853 | * problem, so join_rel_level[] can't be in use already. |
| 2854 | */ |
| 2855 | Assert(root->join_rel_level == NULL); |
| 2856 | |
| 2857 | /* |
| 2858 | * We employ a simple "dynamic programming" algorithm: we first find all |
| 2859 | * ways to build joins of two jointree items, then all ways to build joins |
| 2860 | * of three items (from two-item joins and single items), then four-item |
| 2861 | * joins, and so on until we have considered all ways to join all the |
| 2862 | * items into one rel. |
| 2863 | * |
| 2864 | * root->join_rel_level[j] is a list of all the j-item rels. Initially we |
| 2865 | * set root->join_rel_level[1] to represent all the single-jointree-item |
| 2866 | * relations. |
| 2867 | */ |
| 2868 | root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); |
| 2869 | |
| 2870 | root->join_rel_level[1] = initial_rels; |
| 2871 | |
| 2872 | for (lev = 2; lev <= levels_needed; lev++) |
| 2873 | { |
| 2874 | ListCell *lc; |
| 2875 | |
| 2876 | /* |
| 2877 | * Determine all possible pairs of relations to be joined at this |
| 2878 | * level, and build paths for making each one from every available |
| 2879 | * pair of lower-level relations. |
| 2880 | */ |
| 2881 | join_search_one_level(root, lev); |
| 2882 | |
| 2883 | /* |
| 2884 | * Run generate_partitionwise_join_paths() and generate_gather_paths() |
| 2885 | * for each just-processed joinrel. We could not do this earlier |
| 2886 | * because both regular and partial paths can get added to a |
| 2887 | * particular joinrel at multiple times within join_search_one_level. |
| 2888 | * |
| 2889 | * After that, we're done creating paths for the joinrel, so run |
| 2890 | * set_cheapest(). |
| 2891 | */ |
| 2892 | foreach(lc, root->join_rel_level[lev]) |
| 2893 | { |
| 2894 | rel = (RelOptInfo *) lfirst(lc); |
| 2895 | |
| 2896 | /* Create paths for partitionwise joins. */ |
| 2897 | generate_partitionwise_join_paths(root, rel); |
| 2898 | |
| 2899 | /* |
| 2900 | * Except for the topmost scan/join rel, consider gathering |
| 2901 | * partial paths. We'll do the same for the topmost scan/join rel |
| 2902 | * once we know the final targetlist (see grouping_planner). |
| 2903 | */ |
| 2904 | if (lev < levels_needed) |
| 2905 | generate_gather_paths(root, rel, false); |
| 2906 | |
| 2907 | /* Find and save the cheapest paths for this rel */ |
| 2908 | set_cheapest(rel); |
| 2909 | |
| 2910 | #ifdef OPTIMIZER_DEBUG |
| 2911 | debug_print_rel(root, rel); |
| 2912 | #endif |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | /* |
| 2917 | * We should have a single rel at the final level. |
| 2918 | */ |
| 2919 | if (root->join_rel_level[levels_needed] == NIL) |
| 2920 | elog(ERROR, "failed to build any %d-way joins" , levels_needed); |
| 2921 | Assert(list_length(root->join_rel_level[levels_needed]) == 1); |
| 2922 | |
| 2923 | rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); |
| 2924 | |
| 2925 | root->join_rel_level = NULL; |
| 2926 | |
| 2927 | return rel; |
| 2928 | } |
| 2929 | |
| 2930 | /***************************************************************************** |
| 2931 | * PUSHING QUALS DOWN INTO SUBQUERIES |
| 2932 | *****************************************************************************/ |
| 2933 | |
| 2934 | /* |
| 2935 | * subquery_is_pushdown_safe - is a subquery safe for pushing down quals? |
| 2936 | * |
| 2937 | * subquery is the particular component query being checked. topquery |
| 2938 | * is the top component of a set-operations tree (the same Query if no |
| 2939 | * set-op is involved). |
| 2940 | * |
| 2941 | * Conditions checked here: |
| 2942 | * |
| 2943 | * 1. If the subquery has a LIMIT clause, we must not push down any quals, |
| 2944 | * since that could change the set of rows returned. |
| 2945 | * |
| 2946 | * 2. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push |
| 2947 | * quals into it, because that could change the results. |
| 2948 | * |
| 2949 | * 3. If the subquery uses DISTINCT, we cannot push volatile quals into it. |
| 2950 | * This is because upper-level quals should semantically be evaluated only |
| 2951 | * once per distinct row, not once per original row, and if the qual is |
| 2952 | * volatile then extra evaluations could change the results. (This issue |
| 2953 | * does not apply to other forms of aggregation such as GROUP BY, because |
| 2954 | * when those are present we push into HAVING not WHERE, so that the quals |
| 2955 | * are still applied after aggregation.) |
| 2956 | * |
| 2957 | * 4. If the subquery contains window functions, we cannot push volatile quals |
| 2958 | * into it. The issue here is a bit different from DISTINCT: a volatile qual |
| 2959 | * might succeed for some rows of a window partition and fail for others, |
| 2960 | * thereby changing the partition contents and thus the window functions' |
| 2961 | * results for rows that remain. |
| 2962 | * |
| 2963 | * 5. If the subquery contains any set-returning functions in its targetlist, |
| 2964 | * we cannot push volatile quals into it. That would push them below the SRFs |
| 2965 | * and thereby change the number of times they are evaluated. Also, a |
| 2966 | * volatile qual could succeed for some SRF output rows and fail for others, |
| 2967 | * a behavior that cannot occur if it's evaluated before SRF expansion. |
| 2968 | * |
| 2969 | * In addition, we make several checks on the subquery's output columns to see |
| 2970 | * if it is safe to reference them in pushed-down quals. If output column k |
| 2971 | * is found to be unsafe to reference, we set safetyInfo->unsafeColumns[k] |
| 2972 | * to true, but we don't reject the subquery overall since column k might not |
| 2973 | * be referenced by some/all quals. The unsafeColumns[] array will be |
| 2974 | * consulted later by qual_is_pushdown_safe(). It's better to do it this way |
| 2975 | * than to make the checks directly in qual_is_pushdown_safe(), because when |
| 2976 | * the subquery involves set operations we have to check the output |
| 2977 | * expressions in each arm of the set op. |
| 2978 | * |
| 2979 | * Note: pushing quals into a DISTINCT subquery is theoretically dubious: |
| 2980 | * we're effectively assuming that the quals cannot distinguish values that |
| 2981 | * the DISTINCT's equality operator sees as equal, yet there are many |
| 2982 | * counterexamples to that assumption. However use of such a qual with a |
| 2983 | * DISTINCT subquery would be unsafe anyway, since there's no guarantee which |
| 2984 | * "equal" value will be chosen as the output value by the DISTINCT operation. |
| 2985 | * So we don't worry too much about that. Another objection is that if the |
| 2986 | * qual is expensive to evaluate, running it for each original row might cost |
| 2987 | * more than we save by eliminating rows before the DISTINCT step. But it |
| 2988 | * would be very hard to estimate that at this stage, and in practice pushdown |
| 2989 | * seldom seems to make things worse, so we ignore that problem too. |
| 2990 | * |
| 2991 | * Note: likewise, pushing quals into a subquery with window functions is a |
| 2992 | * bit dubious: the quals might remove some rows of a window partition while |
| 2993 | * leaving others, causing changes in the window functions' results for the |
| 2994 | * surviving rows. We insist that such a qual reference only partitioning |
| 2995 | * columns, but again that only protects us if the qual does not distinguish |
| 2996 | * values that the partitioning equality operator sees as equal. The risks |
| 2997 | * here are perhaps larger than for DISTINCT, since no de-duplication of rows |
| 2998 | * occurs and thus there is no theoretical problem with such a qual. But |
| 2999 | * we'll do this anyway because the potential performance benefits are very |
| 3000 | * large, and we've seen no field complaints about the longstanding comparable |
| 3001 | * behavior with DISTINCT. |
| 3002 | */ |
| 3003 | static bool |
| 3004 | subquery_is_pushdown_safe(Query *subquery, Query *topquery, |
| 3005 | pushdown_safety_info *safetyInfo) |
| 3006 | { |
| 3007 | SetOperationStmt *topop; |
| 3008 | |
| 3009 | /* Check point 1 */ |
| 3010 | if (subquery->limitOffset != NULL || subquery->limitCount != NULL) |
| 3011 | return false; |
| 3012 | |
| 3013 | /* Check points 3, 4, and 5 */ |
| 3014 | if (subquery->distinctClause || |
| 3015 | subquery->hasWindowFuncs || |
| 3016 | subquery->hasTargetSRFs) |
| 3017 | safetyInfo->unsafeVolatile = true; |
| 3018 | |
| 3019 | /* |
| 3020 | * If we're at a leaf query, check for unsafe expressions in its target |
| 3021 | * list, and mark any unsafe ones in unsafeColumns[]. (Non-leaf nodes in |
| 3022 | * setop trees have only simple Vars in their tlists, so no need to check |
| 3023 | * them.) |
| 3024 | */ |
| 3025 | if (subquery->setOperations == NULL) |
| 3026 | check_output_expressions(subquery, safetyInfo); |
| 3027 | |
| 3028 | /* Are we at top level, or looking at a setop component? */ |
| 3029 | if (subquery == topquery) |
| 3030 | { |
| 3031 | /* Top level, so check any component queries */ |
| 3032 | if (subquery->setOperations != NULL) |
| 3033 | if (!recurse_pushdown_safe(subquery->setOperations, topquery, |
| 3034 | safetyInfo)) |
| 3035 | return false; |
| 3036 | } |
| 3037 | else |
| 3038 | { |
| 3039 | /* Setop component must not have more components (too weird) */ |
| 3040 | if (subquery->setOperations != NULL) |
| 3041 | return false; |
| 3042 | /* Check whether setop component output types match top level */ |
| 3043 | topop = castNode(SetOperationStmt, topquery->setOperations); |
| 3044 | Assert(topop); |
| 3045 | compare_tlist_datatypes(subquery->targetList, |
| 3046 | topop->colTypes, |
| 3047 | safetyInfo); |
| 3048 | } |
| 3049 | return true; |
| 3050 | } |
| 3051 | |
| 3052 | /* |
| 3053 | * Helper routine to recurse through setOperations tree |
| 3054 | */ |
| 3055 | static bool |
| 3056 | recurse_pushdown_safe(Node *setOp, Query *topquery, |
| 3057 | pushdown_safety_info *safetyInfo) |
| 3058 | { |
| 3059 | if (IsA(setOp, RangeTblRef)) |
| 3060 | { |
| 3061 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
| 3062 | RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable); |
| 3063 | Query *subquery = rte->subquery; |
| 3064 | |
| 3065 | Assert(subquery != NULL); |
| 3066 | return subquery_is_pushdown_safe(subquery, topquery, safetyInfo); |
| 3067 | } |
| 3068 | else if (IsA(setOp, SetOperationStmt)) |
| 3069 | { |
| 3070 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 3071 | |
| 3072 | /* EXCEPT is no good (point 2 for subquery_is_pushdown_safe) */ |
| 3073 | if (op->op == SETOP_EXCEPT) |
| 3074 | return false; |
| 3075 | /* Else recurse */ |
| 3076 | if (!recurse_pushdown_safe(op->larg, topquery, safetyInfo)) |
| 3077 | return false; |
| 3078 | if (!recurse_pushdown_safe(op->rarg, topquery, safetyInfo)) |
| 3079 | return false; |
| 3080 | } |
| 3081 | else |
| 3082 | { |
| 3083 | elog(ERROR, "unrecognized node type: %d" , |
| 3084 | (int) nodeTag(setOp)); |
| 3085 | } |
| 3086 | return true; |
| 3087 | } |
| 3088 | |
| 3089 | /* |
| 3090 | * check_output_expressions - check subquery's output expressions for safety |
| 3091 | * |
| 3092 | * There are several cases in which it's unsafe to push down an upper-level |
| 3093 | * qual if it references a particular output column of a subquery. We check |
| 3094 | * each output column of the subquery and set unsafeColumns[k] to true if |
| 3095 | * that column is unsafe for a pushed-down qual to reference. The conditions |
| 3096 | * checked here are: |
| 3097 | * |
| 3098 | * 1. We must not push down any quals that refer to subselect outputs that |
| 3099 | * return sets, else we'd introduce functions-returning-sets into the |
| 3100 | * subquery's WHERE/HAVING quals. |
| 3101 | * |
| 3102 | * 2. We must not push down any quals that refer to subselect outputs that |
| 3103 | * contain volatile functions, for fear of introducing strange results due |
| 3104 | * to multiple evaluation of a volatile function. |
| 3105 | * |
| 3106 | * 3. If the subquery uses DISTINCT ON, we must not push down any quals that |
| 3107 | * refer to non-DISTINCT output columns, because that could change the set |
| 3108 | * of rows returned. (This condition is vacuous for DISTINCT, because then |
| 3109 | * there are no non-DISTINCT output columns, so we needn't check. Note that |
| 3110 | * subquery_is_pushdown_safe already reported that we can't use volatile |
| 3111 | * quals if there's DISTINCT or DISTINCT ON.) |
| 3112 | * |
| 3113 | * 4. If the subquery has any window functions, we must not push down quals |
| 3114 | * that reference any output columns that are not listed in all the subquery's |
| 3115 | * window PARTITION BY clauses. We can push down quals that use only |
| 3116 | * partitioning columns because they should succeed or fail identically for |
| 3117 | * every row of any one window partition, and totally excluding some |
| 3118 | * partitions will not change a window function's results for remaining |
| 3119 | * partitions. (Again, this also requires nonvolatile quals, but |
| 3120 | * subquery_is_pushdown_safe handles that.) |
| 3121 | */ |
| 3122 | static void |
| 3123 | check_output_expressions(Query *subquery, pushdown_safety_info *safetyInfo) |
| 3124 | { |
| 3125 | ListCell *lc; |
| 3126 | |
| 3127 | foreach(lc, subquery->targetList) |
| 3128 | { |
| 3129 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
| 3130 | |
| 3131 | if (tle->resjunk) |
| 3132 | continue; /* ignore resjunk columns */ |
| 3133 | |
| 3134 | /* We need not check further if output col is already known unsafe */ |
| 3135 | if (safetyInfo->unsafeColumns[tle->resno]) |
| 3136 | continue; |
| 3137 | |
| 3138 | /* Functions returning sets are unsafe (point 1) */ |
| 3139 | if (subquery->hasTargetSRFs && |
| 3140 | expression_returns_set((Node *) tle->expr)) |
| 3141 | { |
| 3142 | safetyInfo->unsafeColumns[tle->resno] = true; |
| 3143 | continue; |
| 3144 | } |
| 3145 | |
| 3146 | /* Volatile functions are unsafe (point 2) */ |
| 3147 | if (contain_volatile_functions((Node *) tle->expr)) |
| 3148 | { |
| 3149 | safetyInfo->unsafeColumns[tle->resno] = true; |
| 3150 | continue; |
| 3151 | } |
| 3152 | |
| 3153 | /* If subquery uses DISTINCT ON, check point 3 */ |
| 3154 | if (subquery->hasDistinctOn && |
| 3155 | !targetIsInSortList(tle, InvalidOid, subquery->distinctClause)) |
| 3156 | { |
| 3157 | /* non-DISTINCT column, so mark it unsafe */ |
| 3158 | safetyInfo->unsafeColumns[tle->resno] = true; |
| 3159 | continue; |
| 3160 | } |
| 3161 | |
| 3162 | /* If subquery uses window functions, check point 4 */ |
| 3163 | if (subquery->hasWindowFuncs && |
| 3164 | !targetIsInAllPartitionLists(tle, subquery)) |
| 3165 | { |
| 3166 | /* not present in all PARTITION BY clauses, so mark it unsafe */ |
| 3167 | safetyInfo->unsafeColumns[tle->resno] = true; |
| 3168 | continue; |
| 3169 | } |
| 3170 | } |
| 3171 | } |
| 3172 | |
| 3173 | /* |
| 3174 | * For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can |
| 3175 | * push quals into each component query, but the quals can only reference |
| 3176 | * subquery columns that suffer no type coercions in the set operation. |
| 3177 | * Otherwise there are possible semantic gotchas. So, we check the |
| 3178 | * component queries to see if any of them have output types different from |
| 3179 | * the top-level setop outputs. unsafeColumns[k] is set true if column k |
| 3180 | * has different type in any component. |
| 3181 | * |
| 3182 | * We don't have to care about typmods here: the only allowed difference |
| 3183 | * between set-op input and output typmods is input is a specific typmod |
| 3184 | * and output is -1, and that does not require a coercion. |
| 3185 | * |
| 3186 | * tlist is a subquery tlist. |
| 3187 | * colTypes is an OID list of the top-level setop's output column types. |
| 3188 | * safetyInfo->unsafeColumns[] is the result array. |
| 3189 | */ |
| 3190 | static void |
| 3191 | compare_tlist_datatypes(List *tlist, List *colTypes, |
| 3192 | pushdown_safety_info *safetyInfo) |
| 3193 | { |
| 3194 | ListCell *l; |
| 3195 | ListCell *colType = list_head(colTypes); |
| 3196 | |
| 3197 | foreach(l, tlist) |
| 3198 | { |
| 3199 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 3200 | |
| 3201 | if (tle->resjunk) |
| 3202 | continue; /* ignore resjunk columns */ |
| 3203 | if (colType == NULL) |
| 3204 | elog(ERROR, "wrong number of tlist entries" ); |
| 3205 | if (exprType((Node *) tle->expr) != lfirst_oid(colType)) |
| 3206 | safetyInfo->unsafeColumns[tle->resno] = true; |
| 3207 | colType = lnext(colType); |
| 3208 | } |
| 3209 | if (colType != NULL) |
| 3210 | elog(ERROR, "wrong number of tlist entries" ); |
| 3211 | } |
| 3212 | |
| 3213 | /* |
| 3214 | * targetIsInAllPartitionLists |
| 3215 | * True if the TargetEntry is listed in the PARTITION BY clause |
| 3216 | * of every window defined in the query. |
| 3217 | * |
| 3218 | * It would be safe to ignore windows not actually used by any window |
| 3219 | * function, but it's not easy to get that info at this stage; and it's |
| 3220 | * unlikely to be useful to spend any extra cycles getting it, since |
| 3221 | * unreferenced window definitions are probably infrequent in practice. |
| 3222 | */ |
| 3223 | static bool |
| 3224 | targetIsInAllPartitionLists(TargetEntry *tle, Query *query) |
| 3225 | { |
| 3226 | ListCell *lc; |
| 3227 | |
| 3228 | foreach(lc, query->windowClause) |
| 3229 | { |
| 3230 | WindowClause *wc = (WindowClause *) lfirst(lc); |
| 3231 | |
| 3232 | if (!targetIsInSortList(tle, InvalidOid, wc->partitionClause)) |
| 3233 | return false; |
| 3234 | } |
| 3235 | return true; |
| 3236 | } |
| 3237 | |
| 3238 | /* |
| 3239 | * qual_is_pushdown_safe - is a particular qual safe to push down? |
| 3240 | * |
| 3241 | * qual is a restriction clause applying to the given subquery (whose RTE |
| 3242 | * has index rti in the parent query). |
| 3243 | * |
| 3244 | * Conditions checked here: |
| 3245 | * |
| 3246 | * 1. The qual must not contain any SubPlans (mainly because I'm not sure |
| 3247 | * it will work correctly: SubLinks will already have been transformed into |
| 3248 | * SubPlans in the qual, but not in the subquery). Note that SubLinks that |
| 3249 | * transform to initplans are safe, and will be accepted here because what |
| 3250 | * we'll see in the qual is just a Param referencing the initplan output. |
| 3251 | * |
| 3252 | * 2. If unsafeVolatile is set, the qual must not contain any volatile |
| 3253 | * functions. |
| 3254 | * |
| 3255 | * 3. If unsafeLeaky is set, the qual must not contain any leaky functions |
| 3256 | * that are passed Var nodes, and therefore might reveal values from the |
| 3257 | * subquery as side effects. |
| 3258 | * |
| 3259 | * 4. The qual must not refer to the whole-row output of the subquery |
| 3260 | * (since there is no easy way to name that within the subquery itself). |
| 3261 | * |
| 3262 | * 5. The qual must not refer to any subquery output columns that were |
| 3263 | * found to be unsafe to reference by subquery_is_pushdown_safe(). |
| 3264 | */ |
| 3265 | static bool |
| 3266 | qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual, |
| 3267 | pushdown_safety_info *safetyInfo) |
| 3268 | { |
| 3269 | bool safe = true; |
| 3270 | List *vars; |
| 3271 | ListCell *vl; |
| 3272 | |
| 3273 | /* Refuse subselects (point 1) */ |
| 3274 | if (contain_subplans(qual)) |
| 3275 | return false; |
| 3276 | |
| 3277 | /* Refuse volatile quals if we found they'd be unsafe (point 2) */ |
| 3278 | if (safetyInfo->unsafeVolatile && |
| 3279 | contain_volatile_functions(qual)) |
| 3280 | return false; |
| 3281 | |
| 3282 | /* Refuse leaky quals if told to (point 3) */ |
| 3283 | if (safetyInfo->unsafeLeaky && |
| 3284 | contain_leaked_vars(qual)) |
| 3285 | return false; |
| 3286 | |
| 3287 | /* |
| 3288 | * It would be unsafe to push down window function calls, but at least for |
| 3289 | * the moment we could never see any in a qual anyhow. (The same applies |
| 3290 | * to aggregates, which we check for in pull_var_clause below.) |
| 3291 | */ |
| 3292 | Assert(!contain_window_function(qual)); |
| 3293 | |
| 3294 | /* |
| 3295 | * Examine all Vars used in clause; since it's a restriction clause, all |
| 3296 | * such Vars must refer to subselect output columns. |
| 3297 | */ |
| 3298 | vars = pull_var_clause(qual, PVC_INCLUDE_PLACEHOLDERS); |
| 3299 | foreach(vl, vars) |
| 3300 | { |
| 3301 | Var *var = (Var *) lfirst(vl); |
| 3302 | |
| 3303 | /* |
| 3304 | * XXX Punt if we find any PlaceHolderVars in the restriction clause. |
| 3305 | * It's not clear whether a PHV could safely be pushed down, and even |
| 3306 | * less clear whether such a situation could arise in any cases of |
| 3307 | * practical interest anyway. So for the moment, just refuse to push |
| 3308 | * down. |
| 3309 | */ |
| 3310 | if (!IsA(var, Var)) |
| 3311 | { |
| 3312 | safe = false; |
| 3313 | break; |
| 3314 | } |
| 3315 | |
| 3316 | Assert(var->varno == rti); |
| 3317 | Assert(var->varattno >= 0); |
| 3318 | |
| 3319 | /* Check point 4 */ |
| 3320 | if (var->varattno == 0) |
| 3321 | { |
| 3322 | safe = false; |
| 3323 | break; |
| 3324 | } |
| 3325 | |
| 3326 | /* Check point 5 */ |
| 3327 | if (safetyInfo->unsafeColumns[var->varattno]) |
| 3328 | { |
| 3329 | safe = false; |
| 3330 | break; |
| 3331 | } |
| 3332 | } |
| 3333 | |
| 3334 | list_free(vars); |
| 3335 | |
| 3336 | return safe; |
| 3337 | } |
| 3338 | |
| 3339 | /* |
| 3340 | * subquery_push_qual - push down a qual that we have determined is safe |
| 3341 | */ |
| 3342 | static void |
| 3343 | subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual) |
| 3344 | { |
| 3345 | if (subquery->setOperations != NULL) |
| 3346 | { |
| 3347 | /* Recurse to push it separately to each component query */ |
| 3348 | recurse_push_qual(subquery->setOperations, subquery, |
| 3349 | rte, rti, qual); |
| 3350 | } |
| 3351 | else |
| 3352 | { |
| 3353 | /* |
| 3354 | * We need to replace Vars in the qual (which must refer to outputs of |
| 3355 | * the subquery) with copies of the subquery's targetlist expressions. |
| 3356 | * Note that at this point, any uplevel Vars in the qual should have |
| 3357 | * been replaced with Params, so they need no work. |
| 3358 | * |
| 3359 | * This step also ensures that when we are pushing into a setop tree, |
| 3360 | * each component query gets its own copy of the qual. |
| 3361 | */ |
| 3362 | qual = ReplaceVarsFromTargetList(qual, rti, 0, rte, |
| 3363 | subquery->targetList, |
| 3364 | REPLACEVARS_REPORT_ERROR, 0, |
| 3365 | &subquery->hasSubLinks); |
| 3366 | |
| 3367 | /* |
| 3368 | * Now attach the qual to the proper place: normally WHERE, but if the |
| 3369 | * subquery uses grouping or aggregation, put it in HAVING (since the |
| 3370 | * qual really refers to the group-result rows). |
| 3371 | */ |
| 3372 | if (subquery->hasAggs || subquery->groupClause || subquery->groupingSets || subquery->havingQual) |
| 3373 | subquery->havingQual = make_and_qual(subquery->havingQual, qual); |
| 3374 | else |
| 3375 | subquery->jointree->quals = |
| 3376 | make_and_qual(subquery->jointree->quals, qual); |
| 3377 | |
| 3378 | /* |
| 3379 | * We need not change the subquery's hasAggs or hasSubLinks flags, |
| 3380 | * since we can't be pushing down any aggregates that weren't there |
| 3381 | * before, and we don't push down subselects at all. |
| 3382 | */ |
| 3383 | } |
| 3384 | } |
| 3385 | |
| 3386 | /* |
| 3387 | * Helper routine to recurse through setOperations tree |
| 3388 | */ |
| 3389 | static void |
| 3390 | recurse_push_qual(Node *setOp, Query *topquery, |
| 3391 | RangeTblEntry *rte, Index rti, Node *qual) |
| 3392 | { |
| 3393 | if (IsA(setOp, RangeTblRef)) |
| 3394 | { |
| 3395 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
| 3396 | RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable); |
| 3397 | Query *subquery = subrte->subquery; |
| 3398 | |
| 3399 | Assert(subquery != NULL); |
| 3400 | subquery_push_qual(subquery, rte, rti, qual); |
| 3401 | } |
| 3402 | else if (IsA(setOp, SetOperationStmt)) |
| 3403 | { |
| 3404 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 3405 | |
| 3406 | recurse_push_qual(op->larg, topquery, rte, rti, qual); |
| 3407 | recurse_push_qual(op->rarg, topquery, rte, rti, qual); |
| 3408 | } |
| 3409 | else |
| 3410 | { |
| 3411 | elog(ERROR, "unrecognized node type: %d" , |
| 3412 | (int) nodeTag(setOp)); |
| 3413 | } |
| 3414 | } |
| 3415 | |
| 3416 | /***************************************************************************** |
| 3417 | * SIMPLIFYING SUBQUERY TARGETLISTS |
| 3418 | *****************************************************************************/ |
| 3419 | |
| 3420 | /* |
| 3421 | * remove_unused_subquery_outputs |
| 3422 | * Remove subquery targetlist items we don't need |
| 3423 | * |
| 3424 | * It's possible, even likely, that the upper query does not read all the |
| 3425 | * output columns of the subquery. We can remove any such outputs that are |
| 3426 | * not needed by the subquery itself (e.g., as sort/group columns) and do not |
| 3427 | * affect semantics otherwise (e.g., volatile functions can't be removed). |
| 3428 | * This is useful not only because we might be able to remove expensive-to- |
| 3429 | * compute expressions, but because deletion of output columns might allow |
| 3430 | * optimizations such as join removal to occur within the subquery. |
| 3431 | * |
| 3432 | * To avoid affecting column numbering in the targetlist, we don't physically |
| 3433 | * remove unused tlist entries, but rather replace their expressions with NULL |
| 3434 | * constants. This is implemented by modifying subquery->targetList. |
| 3435 | */ |
| 3436 | static void |
| 3437 | remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel) |
| 3438 | { |
| 3439 | Bitmapset *attrs_used = NULL; |
| 3440 | ListCell *lc; |
| 3441 | |
| 3442 | /* |
| 3443 | * Do nothing if subquery has UNION/INTERSECT/EXCEPT: in principle we |
| 3444 | * could update all the child SELECTs' tlists, but it seems not worth the |
| 3445 | * trouble presently. |
| 3446 | */ |
| 3447 | if (subquery->setOperations) |
| 3448 | return; |
| 3449 | |
| 3450 | /* |
| 3451 | * If subquery has regular DISTINCT (not DISTINCT ON), we're wasting our |
| 3452 | * time: all its output columns must be used in the distinctClause. |
| 3453 | */ |
| 3454 | if (subquery->distinctClause && !subquery->hasDistinctOn) |
| 3455 | return; |
| 3456 | |
| 3457 | /* |
| 3458 | * Collect a bitmap of all the output column numbers used by the upper |
| 3459 | * query. |
| 3460 | * |
| 3461 | * Add all the attributes needed for joins or final output. Note: we must |
| 3462 | * look at rel's targetlist, not the attr_needed data, because attr_needed |
| 3463 | * isn't computed for inheritance child rels, cf set_append_rel_size(). |
| 3464 | * (XXX might be worth changing that sometime.) |
| 3465 | */ |
| 3466 | pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used); |
| 3467 | |
| 3468 | /* Add all the attributes used by un-pushed-down restriction clauses. */ |
| 3469 | foreach(lc, rel->baserestrictinfo) |
| 3470 | { |
| 3471 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 3472 | |
| 3473 | pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used); |
| 3474 | } |
| 3475 | |
| 3476 | /* |
| 3477 | * If there's a whole-row reference to the subquery, we can't remove |
| 3478 | * anything. |
| 3479 | */ |
| 3480 | if (bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used)) |
| 3481 | return; |
| 3482 | |
| 3483 | /* |
| 3484 | * Run through the tlist and zap entries we don't need. It's okay to |
| 3485 | * modify the tlist items in-place because set_subquery_pathlist made a |
| 3486 | * copy of the subquery. |
| 3487 | */ |
| 3488 | foreach(lc, subquery->targetList) |
| 3489 | { |
| 3490 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
| 3491 | Node *texpr = (Node *) tle->expr; |
| 3492 | |
| 3493 | /* |
| 3494 | * If it has a sortgroupref number, it's used in some sort/group |
| 3495 | * clause so we'd better not remove it. Also, don't remove any |
| 3496 | * resjunk columns, since their reason for being has nothing to do |
| 3497 | * with anybody reading the subquery's output. (It's likely that |
| 3498 | * resjunk columns in a sub-SELECT would always have ressortgroupref |
| 3499 | * set, but even if they don't, it seems imprudent to remove them.) |
| 3500 | */ |
| 3501 | if (tle->ressortgroupref || tle->resjunk) |
| 3502 | continue; |
| 3503 | |
| 3504 | /* |
| 3505 | * If it's used by the upper query, we can't remove it. |
| 3506 | */ |
| 3507 | if (bms_is_member(tle->resno - FirstLowInvalidHeapAttributeNumber, |
| 3508 | attrs_used)) |
| 3509 | continue; |
| 3510 | |
| 3511 | /* |
| 3512 | * If it contains a set-returning function, we can't remove it since |
| 3513 | * that could change the number of rows returned by the subquery. |
| 3514 | */ |
| 3515 | if (subquery->hasTargetSRFs && |
| 3516 | expression_returns_set(texpr)) |
| 3517 | continue; |
| 3518 | |
| 3519 | /* |
| 3520 | * If it contains volatile functions, we daren't remove it for fear |
| 3521 | * that the user is expecting their side-effects to happen. |
| 3522 | */ |
| 3523 | if (contain_volatile_functions(texpr)) |
| 3524 | continue; |
| 3525 | |
| 3526 | /* |
| 3527 | * OK, we don't need it. Replace the expression with a NULL constant. |
| 3528 | * Preserve the exposed type of the expression, in case something |
| 3529 | * looks at the rowtype of the subquery's result. |
| 3530 | */ |
| 3531 | tle->expr = (Expr *) makeNullConst(exprType(texpr), |
| 3532 | exprTypmod(texpr), |
| 3533 | exprCollation(texpr)); |
| 3534 | } |
| 3535 | } |
| 3536 | |
| 3537 | /* |
| 3538 | * create_partial_bitmap_paths |
| 3539 | * Build partial bitmap heap path for the relation |
| 3540 | */ |
| 3541 | void |
| 3542 | create_partial_bitmap_paths(PlannerInfo *root, RelOptInfo *rel, |
| 3543 | Path *bitmapqual) |
| 3544 | { |
| 3545 | int parallel_workers; |
| 3546 | double pages_fetched; |
| 3547 | |
| 3548 | /* Compute heap pages for bitmap heap scan */ |
| 3549 | pages_fetched = compute_bitmap_pages(root, rel, bitmapqual, 1.0, |
| 3550 | NULL, NULL); |
| 3551 | |
| 3552 | parallel_workers = compute_parallel_worker(rel, pages_fetched, -1, |
| 3553 | max_parallel_workers_per_gather); |
| 3554 | |
| 3555 | if (parallel_workers <= 0) |
| 3556 | return; |
| 3557 | |
| 3558 | add_partial_path(rel, (Path *) create_bitmap_heap_path(root, rel, |
| 3559 | bitmapqual, rel->lateral_relids, 1.0, parallel_workers)); |
| 3560 | } |
| 3561 | |
| 3562 | /* |
| 3563 | * Compute the number of parallel workers that should be used to scan a |
| 3564 | * relation. We compute the parallel workers based on the size of the heap to |
| 3565 | * be scanned and the size of the index to be scanned, then choose a minimum |
| 3566 | * of those. |
| 3567 | * |
| 3568 | * "heap_pages" is the number of pages from the table that we expect to scan, or |
| 3569 | * -1 if we don't expect to scan any. |
| 3570 | * |
| 3571 | * "index_pages" is the number of pages from the index that we expect to scan, or |
| 3572 | * -1 if we don't expect to scan any. |
| 3573 | * |
| 3574 | * "max_workers" is caller's limit on the number of workers. This typically |
| 3575 | * comes from a GUC. |
| 3576 | */ |
| 3577 | int |
| 3578 | compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages, |
| 3579 | int max_workers) |
| 3580 | { |
| 3581 | int parallel_workers = 0; |
| 3582 | |
| 3583 | /* |
| 3584 | * If the user has set the parallel_workers reloption, use that; otherwise |
| 3585 | * select a default number of workers. |
| 3586 | */ |
| 3587 | if (rel->rel_parallel_workers != -1) |
| 3588 | parallel_workers = rel->rel_parallel_workers; |
| 3589 | else |
| 3590 | { |
| 3591 | /* |
| 3592 | * If the number of pages being scanned is insufficient to justify a |
| 3593 | * parallel scan, just return zero ... unless it's an inheritance |
| 3594 | * child. In that case, we want to generate a parallel path here |
| 3595 | * anyway. It might not be worthwhile just for this relation, but |
| 3596 | * when combined with all of its inheritance siblings it may well pay |
| 3597 | * off. |
| 3598 | */ |
| 3599 | if (rel->reloptkind == RELOPT_BASEREL && |
| 3600 | ((heap_pages >= 0 && heap_pages < min_parallel_table_scan_size) || |
| 3601 | (index_pages >= 0 && index_pages < min_parallel_index_scan_size))) |
| 3602 | return 0; |
| 3603 | |
| 3604 | if (heap_pages >= 0) |
| 3605 | { |
| 3606 | int heap_parallel_threshold; |
| 3607 | int heap_parallel_workers = 1; |
| 3608 | |
| 3609 | /* |
| 3610 | * Select the number of workers based on the log of the size of |
| 3611 | * the relation. This probably needs to be a good deal more |
| 3612 | * sophisticated, but we need something here for now. Note that |
| 3613 | * the upper limit of the min_parallel_table_scan_size GUC is |
| 3614 | * chosen to prevent overflow here. |
| 3615 | */ |
| 3616 | heap_parallel_threshold = Max(min_parallel_table_scan_size, 1); |
| 3617 | while (heap_pages >= (BlockNumber) (heap_parallel_threshold * 3)) |
| 3618 | { |
| 3619 | heap_parallel_workers++; |
| 3620 | heap_parallel_threshold *= 3; |
| 3621 | if (heap_parallel_threshold > INT_MAX / 3) |
| 3622 | break; /* avoid overflow */ |
| 3623 | } |
| 3624 | |
| 3625 | parallel_workers = heap_parallel_workers; |
| 3626 | } |
| 3627 | |
| 3628 | if (index_pages >= 0) |
| 3629 | { |
| 3630 | int index_parallel_workers = 1; |
| 3631 | int index_parallel_threshold; |
| 3632 | |
| 3633 | /* same calculation as for heap_pages above */ |
| 3634 | index_parallel_threshold = Max(min_parallel_index_scan_size, 1); |
| 3635 | while (index_pages >= (BlockNumber) (index_parallel_threshold * 3)) |
| 3636 | { |
| 3637 | index_parallel_workers++; |
| 3638 | index_parallel_threshold *= 3; |
| 3639 | if (index_parallel_threshold > INT_MAX / 3) |
| 3640 | break; /* avoid overflow */ |
| 3641 | } |
| 3642 | |
| 3643 | if (parallel_workers > 0) |
| 3644 | parallel_workers = Min(parallel_workers, index_parallel_workers); |
| 3645 | else |
| 3646 | parallel_workers = index_parallel_workers; |
| 3647 | } |
| 3648 | } |
| 3649 | |
| 3650 | /* In no case use more than caller supplied maximum number of workers */ |
| 3651 | parallel_workers = Min(parallel_workers, max_workers); |
| 3652 | |
| 3653 | return parallel_workers; |
| 3654 | } |
| 3655 | |
| 3656 | /* |
| 3657 | * generate_partitionwise_join_paths |
| 3658 | * Create paths representing partitionwise join for given partitioned |
| 3659 | * join relation. |
| 3660 | * |
| 3661 | * This must not be called until after we are done adding paths for all |
| 3662 | * child-joins. Otherwise, add_path might delete a path to which some path |
| 3663 | * generated here has a reference. |
| 3664 | */ |
| 3665 | void |
| 3666 | generate_partitionwise_join_paths(PlannerInfo *root, RelOptInfo *rel) |
| 3667 | { |
| 3668 | List *live_children = NIL; |
| 3669 | int cnt_parts; |
| 3670 | int num_parts; |
| 3671 | RelOptInfo **part_rels; |
| 3672 | |
| 3673 | /* Handle only join relations here. */ |
| 3674 | if (!IS_JOIN_REL(rel)) |
| 3675 | return; |
| 3676 | |
| 3677 | /* We've nothing to do if the relation is not partitioned. */ |
| 3678 | if (!IS_PARTITIONED_REL(rel)) |
| 3679 | return; |
| 3680 | |
| 3681 | /* The relation should have consider_partitionwise_join set. */ |
| 3682 | Assert(rel->consider_partitionwise_join); |
| 3683 | |
| 3684 | /* Guard against stack overflow due to overly deep partition hierarchy. */ |
| 3685 | check_stack_depth(); |
| 3686 | |
| 3687 | num_parts = rel->nparts; |
| 3688 | part_rels = rel->part_rels; |
| 3689 | |
| 3690 | /* Collect non-dummy child-joins. */ |
| 3691 | for (cnt_parts = 0; cnt_parts < num_parts; cnt_parts++) |
| 3692 | { |
| 3693 | RelOptInfo *child_rel = part_rels[cnt_parts]; |
| 3694 | |
| 3695 | /* If it's been pruned entirely, it's certainly dummy. */ |
| 3696 | if (child_rel == NULL) |
| 3697 | continue; |
| 3698 | |
| 3699 | /* Add partitionwise join paths for partitioned child-joins. */ |
| 3700 | generate_partitionwise_join_paths(root, child_rel); |
| 3701 | |
| 3702 | set_cheapest(child_rel); |
| 3703 | |
| 3704 | /* Dummy children will not be scanned, so ignore those. */ |
| 3705 | if (IS_DUMMY_REL(child_rel)) |
| 3706 | continue; |
| 3707 | |
| 3708 | #ifdef OPTIMIZER_DEBUG |
| 3709 | debug_print_rel(root, child_rel); |
| 3710 | #endif |
| 3711 | |
| 3712 | live_children = lappend(live_children, child_rel); |
| 3713 | } |
| 3714 | |
| 3715 | /* If all child-joins are dummy, parent join is also dummy. */ |
| 3716 | if (!live_children) |
| 3717 | { |
| 3718 | mark_dummy_rel(rel); |
| 3719 | return; |
| 3720 | } |
| 3721 | |
| 3722 | /* Build additional paths for this rel from child-join paths. */ |
| 3723 | add_paths_to_append_rel(root, rel, live_children); |
| 3724 | list_free(live_children); |
| 3725 | } |
| 3726 | |
| 3727 | |
| 3728 | /***************************************************************************** |
| 3729 | * DEBUG SUPPORT |
| 3730 | *****************************************************************************/ |
| 3731 | |
| 3732 | #ifdef OPTIMIZER_DEBUG |
| 3733 | |
| 3734 | static void |
| 3735 | print_relids(PlannerInfo *root, Relids relids) |
| 3736 | { |
| 3737 | int x; |
| 3738 | bool first = true; |
| 3739 | |
| 3740 | x = -1; |
| 3741 | while ((x = bms_next_member(relids, x)) >= 0) |
| 3742 | { |
| 3743 | if (!first) |
| 3744 | printf(" " ); |
| 3745 | if (x < root->simple_rel_array_size && |
| 3746 | root->simple_rte_array[x]) |
| 3747 | printf("%s" , root->simple_rte_array[x]->eref->aliasname); |
| 3748 | else |
| 3749 | printf("%d" , x); |
| 3750 | first = false; |
| 3751 | } |
| 3752 | } |
| 3753 | |
| 3754 | static void |
| 3755 | print_restrictclauses(PlannerInfo *root, List *clauses) |
| 3756 | { |
| 3757 | ListCell *l; |
| 3758 | |
| 3759 | foreach(l, clauses) |
| 3760 | { |
| 3761 | RestrictInfo *c = lfirst(l); |
| 3762 | |
| 3763 | print_expr((Node *) c->clause, root->parse->rtable); |
| 3764 | if (lnext(l)) |
| 3765 | printf(", " ); |
| 3766 | } |
| 3767 | } |
| 3768 | |
| 3769 | static void |
| 3770 | print_path(PlannerInfo *root, Path *path, int indent) |
| 3771 | { |
| 3772 | const char *ptype; |
| 3773 | bool join = false; |
| 3774 | Path *subpath = NULL; |
| 3775 | int i; |
| 3776 | |
| 3777 | switch (nodeTag(path)) |
| 3778 | { |
| 3779 | case T_Path: |
| 3780 | switch (path->pathtype) |
| 3781 | { |
| 3782 | case T_SeqScan: |
| 3783 | ptype = "SeqScan" ; |
| 3784 | break; |
| 3785 | case T_SampleScan: |
| 3786 | ptype = "SampleScan" ; |
| 3787 | break; |
| 3788 | case T_FunctionScan: |
| 3789 | ptype = "FunctionScan" ; |
| 3790 | break; |
| 3791 | case T_TableFuncScan: |
| 3792 | ptype = "TableFuncScan" ; |
| 3793 | break; |
| 3794 | case T_ValuesScan: |
| 3795 | ptype = "ValuesScan" ; |
| 3796 | break; |
| 3797 | case T_CteScan: |
| 3798 | ptype = "CteScan" ; |
| 3799 | break; |
| 3800 | case T_NamedTuplestoreScan: |
| 3801 | ptype = "NamedTuplestoreScan" ; |
| 3802 | break; |
| 3803 | case T_Result: |
| 3804 | ptype = "Result" ; |
| 3805 | break; |
| 3806 | case T_WorkTableScan: |
| 3807 | ptype = "WorkTableScan" ; |
| 3808 | break; |
| 3809 | default: |
| 3810 | ptype = "???Path" ; |
| 3811 | break; |
| 3812 | } |
| 3813 | break; |
| 3814 | case T_IndexPath: |
| 3815 | ptype = "IdxScan" ; |
| 3816 | break; |
| 3817 | case T_BitmapHeapPath: |
| 3818 | ptype = "BitmapHeapScan" ; |
| 3819 | break; |
| 3820 | case T_BitmapAndPath: |
| 3821 | ptype = "BitmapAndPath" ; |
| 3822 | break; |
| 3823 | case T_BitmapOrPath: |
| 3824 | ptype = "BitmapOrPath" ; |
| 3825 | break; |
| 3826 | case T_TidPath: |
| 3827 | ptype = "TidScan" ; |
| 3828 | break; |
| 3829 | case T_SubqueryScanPath: |
| 3830 | ptype = "SubqueryScan" ; |
| 3831 | break; |
| 3832 | case T_ForeignPath: |
| 3833 | ptype = "ForeignScan" ; |
| 3834 | break; |
| 3835 | case T_CustomPath: |
| 3836 | ptype = "CustomScan" ; |
| 3837 | break; |
| 3838 | case T_NestPath: |
| 3839 | ptype = "NestLoop" ; |
| 3840 | join = true; |
| 3841 | break; |
| 3842 | case T_MergePath: |
| 3843 | ptype = "MergeJoin" ; |
| 3844 | join = true; |
| 3845 | break; |
| 3846 | case T_HashPath: |
| 3847 | ptype = "HashJoin" ; |
| 3848 | join = true; |
| 3849 | break; |
| 3850 | case T_AppendPath: |
| 3851 | ptype = "Append" ; |
| 3852 | break; |
| 3853 | case T_MergeAppendPath: |
| 3854 | ptype = "MergeAppend" ; |
| 3855 | break; |
| 3856 | case T_GroupResultPath: |
| 3857 | ptype = "GroupResult" ; |
| 3858 | break; |
| 3859 | case T_MaterialPath: |
| 3860 | ptype = "Material" ; |
| 3861 | subpath = ((MaterialPath *) path)->subpath; |
| 3862 | break; |
| 3863 | case T_UniquePath: |
| 3864 | ptype = "Unique" ; |
| 3865 | subpath = ((UniquePath *) path)->subpath; |
| 3866 | break; |
| 3867 | case T_GatherPath: |
| 3868 | ptype = "Gather" ; |
| 3869 | subpath = ((GatherPath *) path)->subpath; |
| 3870 | break; |
| 3871 | case T_GatherMergePath: |
| 3872 | ptype = "GatherMerge" ; |
| 3873 | subpath = ((GatherMergePath *) path)->subpath; |
| 3874 | break; |
| 3875 | case T_ProjectionPath: |
| 3876 | ptype = "Projection" ; |
| 3877 | subpath = ((ProjectionPath *) path)->subpath; |
| 3878 | break; |
| 3879 | case T_ProjectSetPath: |
| 3880 | ptype = "ProjectSet" ; |
| 3881 | subpath = ((ProjectSetPath *) path)->subpath; |
| 3882 | break; |
| 3883 | case T_SortPath: |
| 3884 | ptype = "Sort" ; |
| 3885 | subpath = ((SortPath *) path)->subpath; |
| 3886 | break; |
| 3887 | case T_GroupPath: |
| 3888 | ptype = "Group" ; |
| 3889 | subpath = ((GroupPath *) path)->subpath; |
| 3890 | break; |
| 3891 | case T_UpperUniquePath: |
| 3892 | ptype = "UpperUnique" ; |
| 3893 | subpath = ((UpperUniquePath *) path)->subpath; |
| 3894 | break; |
| 3895 | case T_AggPath: |
| 3896 | ptype = "Agg" ; |
| 3897 | subpath = ((AggPath *) path)->subpath; |
| 3898 | break; |
| 3899 | case T_GroupingSetsPath: |
| 3900 | ptype = "GroupingSets" ; |
| 3901 | subpath = ((GroupingSetsPath *) path)->subpath; |
| 3902 | break; |
| 3903 | case T_MinMaxAggPath: |
| 3904 | ptype = "MinMaxAgg" ; |
| 3905 | break; |
| 3906 | case T_WindowAggPath: |
| 3907 | ptype = "WindowAgg" ; |
| 3908 | subpath = ((WindowAggPath *) path)->subpath; |
| 3909 | break; |
| 3910 | case T_SetOpPath: |
| 3911 | ptype = "SetOp" ; |
| 3912 | subpath = ((SetOpPath *) path)->subpath; |
| 3913 | break; |
| 3914 | case T_RecursiveUnionPath: |
| 3915 | ptype = "RecursiveUnion" ; |
| 3916 | break; |
| 3917 | case T_LockRowsPath: |
| 3918 | ptype = "LockRows" ; |
| 3919 | subpath = ((LockRowsPath *) path)->subpath; |
| 3920 | break; |
| 3921 | case T_ModifyTablePath: |
| 3922 | ptype = "ModifyTable" ; |
| 3923 | break; |
| 3924 | case T_LimitPath: |
| 3925 | ptype = "Limit" ; |
| 3926 | subpath = ((LimitPath *) path)->subpath; |
| 3927 | break; |
| 3928 | default: |
| 3929 | ptype = "???Path" ; |
| 3930 | break; |
| 3931 | } |
| 3932 | |
| 3933 | for (i = 0; i < indent; i++) |
| 3934 | printf("\t" ); |
| 3935 | printf("%s" , ptype); |
| 3936 | |
| 3937 | if (path->parent) |
| 3938 | { |
| 3939 | printf("(" ); |
| 3940 | print_relids(root, path->parent->relids); |
| 3941 | printf(")" ); |
| 3942 | } |
| 3943 | if (path->param_info) |
| 3944 | { |
| 3945 | printf(" required_outer (" ); |
| 3946 | print_relids(root, path->param_info->ppi_req_outer); |
| 3947 | printf(")" ); |
| 3948 | } |
| 3949 | printf(" rows=%.0f cost=%.2f..%.2f\n" , |
| 3950 | path->rows, path->startup_cost, path->total_cost); |
| 3951 | |
| 3952 | if (path->pathkeys) |
| 3953 | { |
| 3954 | for (i = 0; i < indent; i++) |
| 3955 | printf("\t" ); |
| 3956 | printf(" pathkeys: " ); |
| 3957 | print_pathkeys(path->pathkeys, root->parse->rtable); |
| 3958 | } |
| 3959 | |
| 3960 | if (join) |
| 3961 | { |
| 3962 | JoinPath *jp = (JoinPath *) path; |
| 3963 | |
| 3964 | for (i = 0; i < indent; i++) |
| 3965 | printf("\t" ); |
| 3966 | printf(" clauses: " ); |
| 3967 | print_restrictclauses(root, jp->joinrestrictinfo); |
| 3968 | printf("\n" ); |
| 3969 | |
| 3970 | if (IsA(path, MergePath)) |
| 3971 | { |
| 3972 | MergePath *mp = (MergePath *) path; |
| 3973 | |
| 3974 | for (i = 0; i < indent; i++) |
| 3975 | printf("\t" ); |
| 3976 | printf(" sortouter=%d sortinner=%d materializeinner=%d\n" , |
| 3977 | ((mp->outersortkeys) ? 1 : 0), |
| 3978 | ((mp->innersortkeys) ? 1 : 0), |
| 3979 | ((mp->materialize_inner) ? 1 : 0)); |
| 3980 | } |
| 3981 | |
| 3982 | print_path(root, jp->outerjoinpath, indent + 1); |
| 3983 | print_path(root, jp->innerjoinpath, indent + 1); |
| 3984 | } |
| 3985 | |
| 3986 | if (subpath) |
| 3987 | print_path(root, subpath, indent + 1); |
| 3988 | } |
| 3989 | |
| 3990 | void |
| 3991 | debug_print_rel(PlannerInfo *root, RelOptInfo *rel) |
| 3992 | { |
| 3993 | ListCell *l; |
| 3994 | |
| 3995 | printf("RELOPTINFO (" ); |
| 3996 | print_relids(root, rel->relids); |
| 3997 | printf("): rows=%.0f width=%d\n" , rel->rows, rel->reltarget->width); |
| 3998 | |
| 3999 | if (rel->baserestrictinfo) |
| 4000 | { |
| 4001 | printf("\tbaserestrictinfo: " ); |
| 4002 | print_restrictclauses(root, rel->baserestrictinfo); |
| 4003 | printf("\n" ); |
| 4004 | } |
| 4005 | |
| 4006 | if (rel->joininfo) |
| 4007 | { |
| 4008 | printf("\tjoininfo: " ); |
| 4009 | print_restrictclauses(root, rel->joininfo); |
| 4010 | printf("\n" ); |
| 4011 | } |
| 4012 | |
| 4013 | printf("\tpath list:\n" ); |
| 4014 | foreach(l, rel->pathlist) |
| 4015 | print_path(root, lfirst(l), 1); |
| 4016 | if (rel->cheapest_parameterized_paths) |
| 4017 | { |
| 4018 | printf("\n\tcheapest parameterized paths:\n" ); |
| 4019 | foreach(l, rel->cheapest_parameterized_paths) |
| 4020 | print_path(root, lfirst(l), 1); |
| 4021 | } |
| 4022 | if (rel->cheapest_startup_path) |
| 4023 | { |
| 4024 | printf("\n\tcheapest startup path:\n" ); |
| 4025 | print_path(root, rel->cheapest_startup_path, 1); |
| 4026 | } |
| 4027 | if (rel->cheapest_total_path) |
| 4028 | { |
| 4029 | printf("\n\tcheapest total path:\n" ); |
| 4030 | print_path(root, rel->cheapest_total_path, 1); |
| 4031 | } |
| 4032 | printf("\n" ); |
| 4033 | fflush(stdout); |
| 4034 | } |
| 4035 | |
| 4036 | #endif /* OPTIMIZER_DEBUG */ |
| 4037 | |