1/*-------------------------------------------------------------------------
2 *
3 * allpaths.c
4 * Routines to find possible search paths for processing a query
5 *
6 * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/path/allpaths.c
12 *
13 *-------------------------------------------------------------------------
14 */
15
16#include "postgres.h"
17
18#include <limits.h>
19#include <math.h>
20
21#include "access/sysattr.h"
22#include "access/tsmapi.h"
23#include "catalog/pg_class.h"
24#include "catalog/pg_operator.h"
25#include "catalog/pg_proc.h"
26#include "foreign/fdwapi.h"
27#include "miscadmin.h"
28#include "nodes/makefuncs.h"
29#include "nodes/nodeFuncs.h"
30#ifdef OPTIMIZER_DEBUG
31#include "nodes/print.h"
32#endif
33#include "optimizer/appendinfo.h"
34#include "optimizer/clauses.h"
35#include "optimizer/cost.h"
36#include "optimizer/geqo.h"
37#include "optimizer/inherit.h"
38#include "optimizer/optimizer.h"
39#include "optimizer/pathnode.h"
40#include "optimizer/paths.h"
41#include "optimizer/plancat.h"
42#include "optimizer/planner.h"
43#include "optimizer/restrictinfo.h"
44#include "optimizer/tlist.h"
45#include "parser/parse_clause.h"
46#include "parser/parsetree.h"
47#include "partitioning/partbounds.h"
48#include "partitioning/partprune.h"
49#include "rewrite/rewriteManip.h"
50#include "utils/lsyscache.h"
51
52
53/* results of subquery_is_pushdown_safe */
54typedef struct pushdown_safety_info
55{
56 bool *unsafeColumns; /* which output columns are unsafe to use */
57 bool unsafeVolatile; /* don't push down volatile quals */
58 bool unsafeLeaky; /* don't push down leaky quals */
59} pushdown_safety_info;
60
61/* These parameters are set by GUC */
62bool enable_geqo = false; /* just in case GUC doesn't set it */
63int geqo_threshold;
64int min_parallel_table_scan_size;
65int min_parallel_index_scan_size;
66
67/* Hook for plugins to get control in set_rel_pathlist() */
68set_rel_pathlist_hook_type set_rel_pathlist_hook = NULL;
69
70/* Hook for plugins to replace standard_join_search() */
71join_search_hook_type join_search_hook = NULL;
72
73
74static void set_base_rel_consider_startup(PlannerInfo *root);
75static void set_base_rel_sizes(PlannerInfo *root);
76static void set_base_rel_pathlists(PlannerInfo *root);
77static void set_rel_size(PlannerInfo *root, RelOptInfo *rel,
78 Index rti, RangeTblEntry *rte);
79static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
80 Index rti, RangeTblEntry *rte);
81static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel,
82 RangeTblEntry *rte);
83static void create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel);
84static void set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel,
85 RangeTblEntry *rte);
86static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
87 RangeTblEntry *rte);
88static void set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel,
89 RangeTblEntry *rte);
90static void set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
91 RangeTblEntry *rte);
92static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel,
93 RangeTblEntry *rte);
94static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel,
95 RangeTblEntry *rte);
96static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
97 Index rti, RangeTblEntry *rte);
98static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
99 Index rti, RangeTblEntry *rte);
100static void generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel,
101 List *live_childrels,
102 List *all_child_pathkeys,
103 List *partitioned_rels);
104static Path *get_cheapest_parameterized_child_path(PlannerInfo *root,
105 RelOptInfo *rel,
106 Relids required_outer);
107static void accumulate_append_subpath(Path *path,
108 List **subpaths, List **special_subpaths);
109static Path *get_singleton_append_subpath(Path *path);
110static void set_dummy_rel_pathlist(RelOptInfo *rel);
111static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
112 Index rti, RangeTblEntry *rte);
113static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel,
114 RangeTblEntry *rte);
115static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel,
116 RangeTblEntry *rte);
117static void set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel,
118 RangeTblEntry *rte);
119static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel,
120 RangeTblEntry *rte);
121static void set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel,
122 RangeTblEntry *rte);
123static void set_result_pathlist(PlannerInfo *root, RelOptInfo *rel,
124 RangeTblEntry *rte);
125static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel,
126 RangeTblEntry *rte);
127static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist);
128static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery,
129 pushdown_safety_info *safetyInfo);
130static bool recurse_pushdown_safe(Node *setOp, Query *topquery,
131 pushdown_safety_info *safetyInfo);
132static void check_output_expressions(Query *subquery,
133 pushdown_safety_info *safetyInfo);
134static void compare_tlist_datatypes(List *tlist, List *colTypes,
135 pushdown_safety_info *safetyInfo);
136static bool targetIsInAllPartitionLists(TargetEntry *tle, Query *query);
137static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
138 pushdown_safety_info *safetyInfo);
139static void subquery_push_qual(Query *subquery,
140 RangeTblEntry *rte, Index rti, Node *qual);
141static void recurse_push_qual(Node *setOp, Query *topquery,
142 RangeTblEntry *rte, Index rti, Node *qual);
143static void remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel);
144
145
146/*
147 * make_one_rel
148 * Finds all possible access paths for executing a query, returning a
149 * single rel that represents the join of all base rels in the query.
150 */
151RelOptInfo *
152make_one_rel(PlannerInfo *root, List *joinlist)
153{
154 RelOptInfo *rel;
155 Index rti;
156 double total_pages;
157
158 /*
159 * Construct the all_baserels Relids set.
160 */
161 root->all_baserels = NULL;
162 for (rti = 1; rti < root->simple_rel_array_size; rti++)
163 {
164 RelOptInfo *brel = root->simple_rel_array[rti];
165
166 /* there may be empty slots corresponding to non-baserel RTEs */
167 if (brel == NULL)
168 continue;
169
170 Assert(brel->relid == rti); /* sanity check on array */
171
172 /* ignore RTEs that are "other rels" */
173 if (brel->reloptkind != RELOPT_BASEREL)
174 continue;
175
176 root->all_baserels = bms_add_member(root->all_baserels, brel->relid);
177 }
178
179 /* Mark base rels as to whether we care about fast-start plans */
180 set_base_rel_consider_startup(root);
181
182 /*
183 * Compute size estimates and consider_parallel flags for each base rel.
184 */
185 set_base_rel_sizes(root);
186
187 /*
188 * We should now have size estimates for every actual table involved in
189 * the query, and we also know which if any have been deleted from the
190 * query by join removal, pruned by partition pruning, or eliminated by
191 * constraint exclusion. So we can now compute total_table_pages.
192 *
193 * Note that appendrels are not double-counted here, even though we don't
194 * bother to distinguish RelOptInfos for appendrel parents, because the
195 * parents will have pages = 0.
196 *
197 * XXX if a table is self-joined, we will count it once per appearance,
198 * which perhaps is the wrong thing ... but that's not completely clear,
199 * and detecting self-joins here is difficult, so ignore it for now.
200 */
201 total_pages = 0;
202 for (rti = 1; rti < root->simple_rel_array_size; rti++)
203 {
204 RelOptInfo *brel = root->simple_rel_array[rti];
205
206 if (brel == NULL)
207 continue;
208
209 Assert(brel->relid == rti); /* sanity check on array */
210
211 if (IS_DUMMY_REL(brel))
212 continue;
213
214 if (IS_SIMPLE_REL(brel))
215 total_pages += (double) brel->pages;
216 }
217 root->total_table_pages = total_pages;
218
219 /*
220 * Generate access paths for each base rel.
221 */
222 set_base_rel_pathlists(root);
223
224 /*
225 * Generate access paths for the entire join tree.
226 */
227 rel = make_rel_from_joinlist(root, joinlist);
228
229 /*
230 * The result should join all and only the query's base rels.
231 */
232 Assert(bms_equal(rel->relids, root->all_baserels));
233
234 return rel;
235}
236
237/*
238 * set_base_rel_consider_startup
239 * Set the consider_[param_]startup flags for each base-relation entry.
240 *
241 * For the moment, we only deal with consider_param_startup here; because the
242 * logic for consider_startup is pretty trivial and is the same for every base
243 * relation, we just let build_simple_rel() initialize that flag correctly to
244 * start with. If that logic ever gets more complicated it would probably
245 * be better to move it here.
246 */
247static void
248set_base_rel_consider_startup(PlannerInfo *root)
249{
250 /*
251 * Since parameterized paths can only be used on the inside of a nestloop
252 * join plan, there is usually little value in considering fast-start
253 * plans for them. However, for relations that are on the RHS of a SEMI
254 * or ANTI join, a fast-start plan can be useful because we're only going
255 * to care about fetching one tuple anyway.
256 *
257 * To minimize growth of planning time, we currently restrict this to
258 * cases where the RHS is a single base relation, not a join; there is no
259 * provision for consider_param_startup to get set at all on joinrels.
260 * Also we don't worry about appendrels. costsize.c's costing rules for
261 * nestloop semi/antijoins don't consider such cases either.
262 */
263 ListCell *lc;
264
265 foreach(lc, root->join_info_list)
266 {
267 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
268 int varno;
269
270 if ((sjinfo->jointype == JOIN_SEMI || sjinfo->jointype == JOIN_ANTI) &&
271 bms_get_singleton_member(sjinfo->syn_righthand, &varno))
272 {
273 RelOptInfo *rel = find_base_rel(root, varno);
274
275 rel->consider_param_startup = true;
276 }
277 }
278}
279
280/*
281 * set_base_rel_sizes
282 * Set the size estimates (rows and widths) for each base-relation entry.
283 * Also determine whether to consider parallel paths for base relations.
284 *
285 * We do this in a separate pass over the base rels so that rowcount
286 * estimates are available for parameterized path generation, and also so
287 * that each rel's consider_parallel flag is set correctly before we begin to
288 * generate paths.
289 */
290static void
291set_base_rel_sizes(PlannerInfo *root)
292{
293 Index rti;
294
295 for (rti = 1; rti < root->simple_rel_array_size; rti++)
296 {
297 RelOptInfo *rel = root->simple_rel_array[rti];
298 RangeTblEntry *rte;
299
300 /* there may be empty slots corresponding to non-baserel RTEs */
301 if (rel == NULL)
302 continue;
303
304 Assert(rel->relid == rti); /* sanity check on array */
305
306 /* ignore RTEs that are "other rels" */
307 if (rel->reloptkind != RELOPT_BASEREL)
308 continue;
309
310 rte = root->simple_rte_array[rti];
311
312 /*
313 * If parallelism is allowable for this query in general, see whether
314 * it's allowable for this rel in particular. We have to do this
315 * before set_rel_size(), because (a) if this rel is an inheritance
316 * parent, set_append_rel_size() will use and perhaps change the rel's
317 * consider_parallel flag, and (b) for some RTE types, set_rel_size()
318 * goes ahead and makes paths immediately.
319 */
320 if (root->glob->parallelModeOK)
321 set_rel_consider_parallel(root, rel, rte);
322
323 set_rel_size(root, rel, rti, rte);
324 }
325}
326
327/*
328 * set_base_rel_pathlists
329 * Finds all paths available for scanning each base-relation entry.
330 * Sequential scan and any available indices are considered.
331 * Each useful path is attached to its relation's 'pathlist' field.
332 */
333static void
334set_base_rel_pathlists(PlannerInfo *root)
335{
336 Index rti;
337
338 for (rti = 1; rti < root->simple_rel_array_size; rti++)
339 {
340 RelOptInfo *rel = root->simple_rel_array[rti];
341
342 /* there may be empty slots corresponding to non-baserel RTEs */
343 if (rel == NULL)
344 continue;
345
346 Assert(rel->relid == rti); /* sanity check on array */
347
348 /* ignore RTEs that are "other rels" */
349 if (rel->reloptkind != RELOPT_BASEREL)
350 continue;
351
352 set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]);
353 }
354}
355
356/*
357 * set_rel_size
358 * Set size estimates for a base relation
359 */
360static void
361set_rel_size(PlannerInfo *root, RelOptInfo *rel,
362 Index rti, RangeTblEntry *rte)
363{
364 if (rel->reloptkind == RELOPT_BASEREL &&
365 relation_excluded_by_constraints(root, rel, rte))
366 {
367 /*
368 * We proved we don't need to scan the rel via constraint exclusion,
369 * so set up a single dummy path for it. Here we only check this for
370 * regular baserels; if it's an otherrel, CE was already checked in
371 * set_append_rel_size().
372 *
373 * In this case, we go ahead and set up the relation's path right away
374 * instead of leaving it for set_rel_pathlist to do. This is because
375 * we don't have a convention for marking a rel as dummy except by
376 * assigning a dummy path to it.
377 */
378 set_dummy_rel_pathlist(rel);
379 }
380 else if (rte->inh)
381 {
382 /* It's an "append relation", process accordingly */
383 set_append_rel_size(root, rel, rti, rte);
384 }
385 else
386 {
387 switch (rel->rtekind)
388 {
389 case RTE_RELATION:
390 if (rte->relkind == RELKIND_FOREIGN_TABLE)
391 {
392 /* Foreign table */
393 set_foreign_size(root, rel, rte);
394 }
395 else if (rte->relkind == RELKIND_PARTITIONED_TABLE)
396 {
397 /*
398 * We could get here if asked to scan a partitioned table
399 * with ONLY. In that case we shouldn't scan any of the
400 * partitions, so mark it as a dummy rel.
401 */
402 set_dummy_rel_pathlist(rel);
403 }
404 else if (rte->tablesample != NULL)
405 {
406 /* Sampled relation */
407 set_tablesample_rel_size(root, rel, rte);
408 }
409 else
410 {
411 /* Plain relation */
412 set_plain_rel_size(root, rel, rte);
413 }
414 break;
415 case RTE_SUBQUERY:
416
417 /*
418 * Subqueries don't support making a choice between
419 * parameterized and unparameterized paths, so just go ahead
420 * and build their paths immediately.
421 */
422 set_subquery_pathlist(root, rel, rti, rte);
423 break;
424 case RTE_FUNCTION:
425 set_function_size_estimates(root, rel);
426 break;
427 case RTE_TABLEFUNC:
428 set_tablefunc_size_estimates(root, rel);
429 break;
430 case RTE_VALUES:
431 set_values_size_estimates(root, rel);
432 break;
433 case RTE_CTE:
434
435 /*
436 * CTEs don't support making a choice between parameterized
437 * and unparameterized paths, so just go ahead and build their
438 * paths immediately.
439 */
440 if (rte->self_reference)
441 set_worktable_pathlist(root, rel, rte);
442 else
443 set_cte_pathlist(root, rel, rte);
444 break;
445 case RTE_NAMEDTUPLESTORE:
446 /* Might as well just build the path immediately */
447 set_namedtuplestore_pathlist(root, rel, rte);
448 break;
449 case RTE_RESULT:
450 /* Might as well just build the path immediately */
451 set_result_pathlist(root, rel, rte);
452 break;
453 default:
454 elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
455 break;
456 }
457 }
458
459 /*
460 * We insist that all non-dummy rels have a nonzero rowcount estimate.
461 */
462 Assert(rel->rows > 0 || IS_DUMMY_REL(rel));
463}
464
465/*
466 * set_rel_pathlist
467 * Build access paths for a base relation
468 */
469static void
470set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
471 Index rti, RangeTblEntry *rte)
472{
473 if (IS_DUMMY_REL(rel))
474 {
475 /* We already proved the relation empty, so nothing more to do */
476 }
477 else if (rte->inh)
478 {
479 /* It's an "append relation", process accordingly */
480 set_append_rel_pathlist(root, rel, rti, rte);
481 }
482 else
483 {
484 switch (rel->rtekind)
485 {
486 case RTE_RELATION:
487 if (rte->relkind == RELKIND_FOREIGN_TABLE)
488 {
489 /* Foreign table */
490 set_foreign_pathlist(root, rel, rte);
491 }
492 else if (rte->tablesample != NULL)
493 {
494 /* Sampled relation */
495 set_tablesample_rel_pathlist(root, rel, rte);
496 }
497 else
498 {
499 /* Plain relation */
500 set_plain_rel_pathlist(root, rel, rte);
501 }
502 break;
503 case RTE_SUBQUERY:
504 /* Subquery --- fully handled during set_rel_size */
505 break;
506 case RTE_FUNCTION:
507 /* RangeFunction */
508 set_function_pathlist(root, rel, rte);
509 break;
510 case RTE_TABLEFUNC:
511 /* Table Function */
512 set_tablefunc_pathlist(root, rel, rte);
513 break;
514 case RTE_VALUES:
515 /* Values list */
516 set_values_pathlist(root, rel, rte);
517 break;
518 case RTE_CTE:
519 /* CTE reference --- fully handled during set_rel_size */
520 break;
521 case RTE_NAMEDTUPLESTORE:
522 /* tuplestore reference --- fully handled during set_rel_size */
523 break;
524 case RTE_RESULT:
525 /* simple Result --- fully handled during set_rel_size */
526 break;
527 default:
528 elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
529 break;
530 }
531 }
532
533 /*
534 * Allow a plugin to editorialize on the set of Paths for this base
535 * relation. It could add new paths (such as CustomPaths) by calling
536 * add_path(), or add_partial_path() if parallel aware. It could also
537 * delete or modify paths added by the core code.
538 */
539 if (set_rel_pathlist_hook)
540 (*set_rel_pathlist_hook) (root, rel, rti, rte);
541
542 /*
543 * If this is a baserel, we should normally consider gathering any partial
544 * paths we may have created for it. We have to do this after calling the
545 * set_rel_pathlist_hook, else it cannot add partial paths to be included
546 * here.
547 *
548 * However, if this is an inheritance child, skip it. Otherwise, we could
549 * end up with a very large number of gather nodes, each trying to grab
550 * its own pool of workers. Instead, we'll consider gathering partial
551 * paths for the parent appendrel.
552 *
553 * Also, if this is the topmost scan/join rel (that is, the only baserel),
554 * we postpone gathering until the final scan/join targetlist is available
555 * (see grouping_planner).
556 */
557 if (rel->reloptkind == RELOPT_BASEREL &&
558 bms_membership(root->all_baserels) != BMS_SINGLETON)
559 generate_gather_paths(root, rel, false);
560
561 /* Now find the cheapest of the paths for this rel */
562 set_cheapest(rel);
563
564#ifdef OPTIMIZER_DEBUG
565 debug_print_rel(root, rel);
566#endif
567}
568
569/*
570 * set_plain_rel_size
571 * Set size estimates for a plain relation (no subquery, no inheritance)
572 */
573static void
574set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
575{
576 /*
577 * Test any partial indexes of rel for applicability. We must do this
578 * first since partial unique indexes can affect size estimates.
579 */
580 check_index_predicates(root, rel);
581
582 /* Mark rel with estimated output rows, width, etc */
583 set_baserel_size_estimates(root, rel);
584}
585
586/*
587 * If this relation could possibly be scanned from within a worker, then set
588 * its consider_parallel flag.
589 */
590static void
591set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel,
592 RangeTblEntry *rte)
593{
594 /*
595 * The flag has previously been initialized to false, so we can just
596 * return if it becomes clear that we can't safely set it.
597 */
598 Assert(!rel->consider_parallel);
599
600 /* Don't call this if parallelism is disallowed for the entire query. */
601 Assert(root->glob->parallelModeOK);
602
603 /* This should only be called for baserels and appendrel children. */
604 Assert(IS_SIMPLE_REL(rel));
605
606 /* Assorted checks based on rtekind. */
607 switch (rte->rtekind)
608 {
609 case RTE_RELATION:
610
611 /*
612 * Currently, parallel workers can't access the leader's temporary
613 * tables. We could possibly relax this if the wrote all of its
614 * local buffers at the start of the query and made no changes
615 * thereafter (maybe we could allow hint bit changes), and if we
616 * taught the workers to read them. Writing a large number of
617 * temporary buffers could be expensive, though, and we don't have
618 * the rest of the necessary infrastructure right now anyway. So
619 * for now, bail out if we see a temporary table.
620 */
621 if (get_rel_persistence(rte->relid) == RELPERSISTENCE_TEMP)
622 return;
623
624 /*
625 * Table sampling can be pushed down to workers if the sample
626 * function and its arguments are safe.
627 */
628 if (rte->tablesample != NULL)
629 {
630 char proparallel = func_parallel(rte->tablesample->tsmhandler);
631
632 if (proparallel != PROPARALLEL_SAFE)
633 return;
634 if (!is_parallel_safe(root, (Node *) rte->tablesample->args))
635 return;
636 }
637
638 /*
639 * Ask FDWs whether they can support performing a ForeignScan
640 * within a worker. Most often, the answer will be no. For
641 * example, if the nature of the FDW is such that it opens a TCP
642 * connection with a remote server, each parallel worker would end
643 * up with a separate connection, and these connections might not
644 * be appropriately coordinated between workers and the leader.
645 */
646 if (rte->relkind == RELKIND_FOREIGN_TABLE)
647 {
648 Assert(rel->fdwroutine);
649 if (!rel->fdwroutine->IsForeignScanParallelSafe)
650 return;
651 if (!rel->fdwroutine->IsForeignScanParallelSafe(root, rel, rte))
652 return;
653 }
654
655 /*
656 * There are additional considerations for appendrels, which we'll
657 * deal with in set_append_rel_size and set_append_rel_pathlist.
658 * For now, just set consider_parallel based on the rel's own
659 * quals and targetlist.
660 */
661 break;
662
663 case RTE_SUBQUERY:
664
665 /*
666 * There's no intrinsic problem with scanning a subquery-in-FROM
667 * (as distinct from a SubPlan or InitPlan) in a parallel worker.
668 * If the subquery doesn't happen to have any parallel-safe paths,
669 * then flagging it as consider_parallel won't change anything,
670 * but that's true for plain tables, too. We must set
671 * consider_parallel based on the rel's own quals and targetlist,
672 * so that if a subquery path is parallel-safe but the quals and
673 * projection we're sticking onto it are not, we correctly mark
674 * the SubqueryScanPath as not parallel-safe. (Note that
675 * set_subquery_pathlist() might push some of these quals down
676 * into the subquery itself, but that doesn't change anything.)
677 *
678 * We can't push sub-select containing LIMIT/OFFSET to workers as
679 * there is no guarantee that the row order will be fully
680 * deterministic, and applying LIMIT/OFFSET will lead to
681 * inconsistent results at the top-level. (In some cases, where
682 * the result is ordered, we could relax this restriction. But it
683 * doesn't currently seem worth expending extra effort to do so.)
684 */
685 {
686 Query *subquery = castNode(Query, rte->subquery);
687
688 if (limit_needed(subquery))
689 return;
690 }
691 break;
692
693 case RTE_JOIN:
694 /* Shouldn't happen; we're only considering baserels here. */
695 Assert(false);
696 return;
697
698 case RTE_FUNCTION:
699 /* Check for parallel-restricted functions. */
700 if (!is_parallel_safe(root, (Node *) rte->functions))
701 return;
702 break;
703
704 case RTE_TABLEFUNC:
705 /* not parallel safe */
706 return;
707
708 case RTE_VALUES:
709 /* Check for parallel-restricted functions. */
710 if (!is_parallel_safe(root, (Node *) rte->values_lists))
711 return;
712 break;
713
714 case RTE_CTE:
715
716 /*
717 * CTE tuplestores aren't shared among parallel workers, so we
718 * force all CTE scans to happen in the leader. Also, populating
719 * the CTE would require executing a subplan that's not available
720 * in the worker, might be parallel-restricted, and must get
721 * executed only once.
722 */
723 return;
724
725 case RTE_NAMEDTUPLESTORE:
726
727 /*
728 * tuplestore cannot be shared, at least without more
729 * infrastructure to support that.
730 */
731 return;
732
733 case RTE_RESULT:
734 /* RESULT RTEs, in themselves, are no problem. */
735 break;
736 }
737
738 /*
739 * If there's anything in baserestrictinfo that's parallel-restricted, we
740 * give up on parallelizing access to this relation. We could consider
741 * instead postponing application of the restricted quals until we're
742 * above all the parallelism in the plan tree, but it's not clear that
743 * that would be a win in very many cases, and it might be tricky to make
744 * outer join clauses work correctly. It would likely break equivalence
745 * classes, too.
746 */
747 if (!is_parallel_safe(root, (Node *) rel->baserestrictinfo))
748 return;
749
750 /*
751 * Likewise, if the relation's outputs are not parallel-safe, give up.
752 * (Usually, they're just Vars, but sometimes they're not.)
753 */
754 if (!is_parallel_safe(root, (Node *) rel->reltarget->exprs))
755 return;
756
757 /* We have a winner. */
758 rel->consider_parallel = true;
759}
760
761/*
762 * set_plain_rel_pathlist
763 * Build access paths for a plain relation (no subquery, no inheritance)
764 */
765static void
766set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
767{
768 Relids required_outer;
769
770 /*
771 * We don't support pushing join clauses into the quals of a seqscan, but
772 * it could still have required parameterization due to LATERAL refs in
773 * its tlist.
774 */
775 required_outer = rel->lateral_relids;
776
777 /* Consider sequential scan */
778 add_path(rel, create_seqscan_path(root, rel, required_outer, 0));
779
780 /* If appropriate, consider parallel sequential scan */
781 if (rel->consider_parallel && required_outer == NULL)
782 create_plain_partial_paths(root, rel);
783
784 /* Consider index scans */
785 create_index_paths(root, rel);
786
787 /* Consider TID scans */
788 create_tidscan_paths(root, rel);
789}
790
791/*
792 * create_plain_partial_paths
793 * Build partial access paths for parallel scan of a plain relation
794 */
795static void
796create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel)
797{
798 int parallel_workers;
799
800 parallel_workers = compute_parallel_worker(rel, rel->pages, -1,
801 max_parallel_workers_per_gather);
802
803 /* If any limit was set to zero, the user doesn't want a parallel scan. */
804 if (parallel_workers <= 0)
805 return;
806
807 /* Add an unordered partial path based on a parallel sequential scan. */
808 add_partial_path(rel, create_seqscan_path(root, rel, NULL, parallel_workers));
809}
810
811/*
812 * set_tablesample_rel_size
813 * Set size estimates for a sampled relation
814 */
815static void
816set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
817{
818 TableSampleClause *tsc = rte->tablesample;
819 TsmRoutine *tsm;
820 BlockNumber pages;
821 double tuples;
822
823 /*
824 * Test any partial indexes of rel for applicability. We must do this
825 * first since partial unique indexes can affect size estimates.
826 */
827 check_index_predicates(root, rel);
828
829 /*
830 * Call the sampling method's estimation function to estimate the number
831 * of pages it will read and the number of tuples it will return. (Note:
832 * we assume the function returns sane values.)
833 */
834 tsm = GetTsmRoutine(tsc->tsmhandler);
835 tsm->SampleScanGetSampleSize(root, rel, tsc->args,
836 &pages, &tuples);
837
838 /*
839 * For the moment, because we will only consider a SampleScan path for the
840 * rel, it's okay to just overwrite the pages and tuples estimates for the
841 * whole relation. If we ever consider multiple path types for sampled
842 * rels, we'll need more complication.
843 */
844 rel->pages = pages;
845 rel->tuples = tuples;
846
847 /* Mark rel with estimated output rows, width, etc */
848 set_baserel_size_estimates(root, rel);
849}
850
851/*
852 * set_tablesample_rel_pathlist
853 * Build access paths for a sampled relation
854 */
855static void
856set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
857{
858 Relids required_outer;
859 Path *path;
860
861 /*
862 * We don't support pushing join clauses into the quals of a samplescan,
863 * but it could still have required parameterization due to LATERAL refs
864 * in its tlist or TABLESAMPLE arguments.
865 */
866 required_outer = rel->lateral_relids;
867
868 /* Consider sampled scan */
869 path = create_samplescan_path(root, rel, required_outer);
870
871 /*
872 * If the sampling method does not support repeatable scans, we must avoid
873 * plans that would scan the rel multiple times. Ideally, we'd simply
874 * avoid putting the rel on the inside of a nestloop join; but adding such
875 * a consideration to the planner seems like a great deal of complication
876 * to support an uncommon usage of second-rate sampling methods. Instead,
877 * if there is a risk that the query might perform an unsafe join, just
878 * wrap the SampleScan in a Materialize node. We can check for joins by
879 * counting the membership of all_baserels (note that this correctly
880 * counts inheritance trees as single rels). If we're inside a subquery,
881 * we can't easily check whether a join might occur in the outer query, so
882 * just assume one is possible.
883 *
884 * GetTsmRoutine is relatively expensive compared to the other tests here,
885 * so check repeatable_across_scans last, even though that's a bit odd.
886 */
887 if ((root->query_level > 1 ||
888 bms_membership(root->all_baserels) != BMS_SINGLETON) &&
889 !(GetTsmRoutine(rte->tablesample->tsmhandler)->repeatable_across_scans))
890 {
891 path = (Path *) create_material_path(rel, path);
892 }
893
894 add_path(rel, path);
895
896 /* For the moment, at least, there are no other paths to consider */
897}
898
899/*
900 * set_foreign_size
901 * Set size estimates for a foreign table RTE
902 */
903static void
904set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
905{
906 /* Mark rel with estimated output rows, width, etc */
907 set_foreign_size_estimates(root, rel);
908
909 /* Let FDW adjust the size estimates, if it can */
910 rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid);
911
912 /* ... but do not let it set the rows estimate to zero */
913 rel->rows = clamp_row_est(rel->rows);
914}
915
916/*
917 * set_foreign_pathlist
918 * Build access paths for a foreign table RTE
919 */
920static void
921set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
922{
923 /* Call the FDW's GetForeignPaths function to generate path(s) */
924 rel->fdwroutine->GetForeignPaths(root, rel, rte->relid);
925}
926
927/*
928 * set_append_rel_size
929 * Set size estimates for a simple "append relation"
930 *
931 * The passed-in rel and RTE represent the entire append relation. The
932 * relation's contents are computed by appending together the output of the
933 * individual member relations. Note that in the non-partitioned inheritance
934 * case, the first member relation is actually the same table as is mentioned
935 * in the parent RTE ... but it has a different RTE and RelOptInfo. This is
936 * a good thing because their outputs are not the same size.
937 */
938static void
939set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
940 Index rti, RangeTblEntry *rte)
941{
942 int parentRTindex = rti;
943 bool has_live_children;
944 double parent_rows;
945 double parent_size;
946 double *parent_attrsizes;
947 int nattrs;
948 ListCell *l;
949
950 /* Guard against stack overflow due to overly deep inheritance tree. */
951 check_stack_depth();
952
953 Assert(IS_SIMPLE_REL(rel));
954
955 /*
956 * Initialize partitioned_child_rels to contain this RT index.
957 *
958 * Note that during the set_append_rel_pathlist() phase, we will bubble up
959 * the indexes of partitioned relations that appear down in the tree, so
960 * that when we've created Paths for all the children, the root
961 * partitioned table's list will contain all such indexes.
962 */
963 if (rte->relkind == RELKIND_PARTITIONED_TABLE)
964 rel->partitioned_child_rels = list_make1_int(rti);
965
966 /*
967 * If this is a partitioned baserel, set the consider_partitionwise_join
968 * flag; currently, we only consider partitionwise joins with the baserel
969 * if its targetlist doesn't contain a whole-row Var.
970 */
971 if (enable_partitionwise_join &&
972 rel->reloptkind == RELOPT_BASEREL &&
973 rte->relkind == RELKIND_PARTITIONED_TABLE &&
974 rel->attr_needed[InvalidAttrNumber - rel->min_attr] == NULL)
975 rel->consider_partitionwise_join = true;
976
977 /*
978 * Initialize to compute size estimates for whole append relation.
979 *
980 * We handle width estimates by weighting the widths of different child
981 * rels proportionally to their number of rows. This is sensible because
982 * the use of width estimates is mainly to compute the total relation
983 * "footprint" if we have to sort or hash it. To do this, we sum the
984 * total equivalent size (in "double" arithmetic) and then divide by the
985 * total rowcount estimate. This is done separately for the total rel
986 * width and each attribute.
987 *
988 * Note: if you consider changing this logic, beware that child rels could
989 * have zero rows and/or width, if they were excluded by constraints.
990 */
991 has_live_children = false;
992 parent_rows = 0;
993 parent_size = 0;
994 nattrs = rel->max_attr - rel->min_attr + 1;
995 parent_attrsizes = (double *) palloc0(nattrs * sizeof(double));
996
997 foreach(l, root->append_rel_list)
998 {
999 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
1000 int childRTindex;
1001 RangeTblEntry *childRTE;
1002 RelOptInfo *childrel;
1003 ListCell *parentvars;
1004 ListCell *childvars;
1005
1006 /* append_rel_list contains all append rels; ignore others */
1007 if (appinfo->parent_relid != parentRTindex)
1008 continue;
1009
1010 childRTindex = appinfo->child_relid;
1011 childRTE = root->simple_rte_array[childRTindex];
1012
1013 /*
1014 * The child rel's RelOptInfo was already created during
1015 * add_other_rels_to_query.
1016 */
1017 childrel = find_base_rel(root, childRTindex);
1018 Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL);
1019
1020 /* We may have already proven the child to be dummy. */
1021 if (IS_DUMMY_REL(childrel))
1022 continue;
1023
1024 /*
1025 * We have to copy the parent's targetlist and quals to the child,
1026 * with appropriate substitution of variables. However, the
1027 * baserestrictinfo quals were already copied/substituted when the
1028 * child RelOptInfo was built. So we don't need any additional setup
1029 * before applying constraint exclusion.
1030 */
1031 if (relation_excluded_by_constraints(root, childrel, childRTE))
1032 {
1033 /*
1034 * This child need not be scanned, so we can omit it from the
1035 * appendrel.
1036 */
1037 set_dummy_rel_pathlist(childrel);
1038 continue;
1039 }
1040
1041 /*
1042 * Constraint exclusion failed, so copy the parent's join quals and
1043 * targetlist to the child, with appropriate variable substitutions.
1044 *
1045 * NB: the resulting childrel->reltarget->exprs may contain arbitrary
1046 * expressions, which otherwise would not occur in a rel's targetlist.
1047 * Code that might be looking at an appendrel child must cope with
1048 * such. (Normally, a rel's targetlist would only include Vars and
1049 * PlaceHolderVars.) XXX we do not bother to update the cost or width
1050 * fields of childrel->reltarget; not clear if that would be useful.
1051 */
1052 childrel->joininfo = (List *)
1053 adjust_appendrel_attrs(root,
1054 (Node *) rel->joininfo,
1055 1, &appinfo);
1056 childrel->reltarget->exprs = (List *)
1057 adjust_appendrel_attrs(root,
1058 (Node *) rel->reltarget->exprs,
1059 1, &appinfo);
1060
1061 /*
1062 * We have to make child entries in the EquivalenceClass data
1063 * structures as well. This is needed either if the parent
1064 * participates in some eclass joins (because we will want to consider
1065 * inner-indexscan joins on the individual children) or if the parent
1066 * has useful pathkeys (because we should try to build MergeAppend
1067 * paths that produce those sort orderings).
1068 */
1069 if (rel->has_eclass_joins || has_useful_pathkeys(root, rel))
1070 add_child_rel_equivalences(root, appinfo, rel, childrel);
1071 childrel->has_eclass_joins = rel->has_eclass_joins;
1072
1073 /*
1074 * Note: we could compute appropriate attr_needed data for the child's
1075 * variables, by transforming the parent's attr_needed through the
1076 * translated_vars mapping. However, currently there's no need
1077 * because attr_needed is only examined for base relations not
1078 * otherrels. So we just leave the child's attr_needed empty.
1079 */
1080
1081 /*
1082 * If we consider partitionwise joins with the parent rel, do the same
1083 * for partitioned child rels.
1084 *
1085 * Note: here we abuse the consider_partitionwise_join flag by setting
1086 * it for child rels that are not themselves partitioned. We do so to
1087 * tell try_partitionwise_join() that the child rel is sufficiently
1088 * valid to be used as a per-partition input, even if it later gets
1089 * proven to be dummy. (It's not usable until we've set up the
1090 * reltarget and EC entries, which we just did.)
1091 */
1092 if (rel->consider_partitionwise_join)
1093 childrel->consider_partitionwise_join = true;
1094
1095 /*
1096 * If parallelism is allowable for this query in general, see whether
1097 * it's allowable for this childrel in particular. But if we've
1098 * already decided the appendrel is not parallel-safe as a whole,
1099 * there's no point in considering parallelism for this child. For
1100 * consistency, do this before calling set_rel_size() for the child.
1101 */
1102 if (root->glob->parallelModeOK && rel->consider_parallel)
1103 set_rel_consider_parallel(root, childrel, childRTE);
1104
1105 /*
1106 * Compute the child's size.
1107 */
1108 set_rel_size(root, childrel, childRTindex, childRTE);
1109
1110 /*
1111 * It is possible that constraint exclusion detected a contradiction
1112 * within a child subquery, even though we didn't prove one above. If
1113 * so, we can skip this child.
1114 */
1115 if (IS_DUMMY_REL(childrel))
1116 continue;
1117
1118 /* We have at least one live child. */
1119 has_live_children = true;
1120
1121 /*
1122 * If any live child is not parallel-safe, treat the whole appendrel
1123 * as not parallel-safe. In future we might be able to generate plans
1124 * in which some children are farmed out to workers while others are
1125 * not; but we don't have that today, so it's a waste to consider
1126 * partial paths anywhere in the appendrel unless it's all safe.
1127 * (Child rels visited before this one will be unmarked in
1128 * set_append_rel_pathlist().)
1129 */
1130 if (!childrel->consider_parallel)
1131 rel->consider_parallel = false;
1132
1133 /*
1134 * Accumulate size information from each live child.
1135 */
1136 Assert(childrel->rows > 0);
1137
1138 parent_rows += childrel->rows;
1139 parent_size += childrel->reltarget->width * childrel->rows;
1140
1141 /*
1142 * Accumulate per-column estimates too. We need not do anything for
1143 * PlaceHolderVars in the parent list. If child expression isn't a
1144 * Var, or we didn't record a width estimate for it, we have to fall
1145 * back on a datatype-based estimate.
1146 *
1147 * By construction, child's targetlist is 1-to-1 with parent's.
1148 */
1149 forboth(parentvars, rel->reltarget->exprs,
1150 childvars, childrel->reltarget->exprs)
1151 {
1152 Var *parentvar = (Var *) lfirst(parentvars);
1153 Node *childvar = (Node *) lfirst(childvars);
1154
1155 if (IsA(parentvar, Var))
1156 {
1157 int pndx = parentvar->varattno - rel->min_attr;
1158 int32 child_width = 0;
1159
1160 if (IsA(childvar, Var) &&
1161 ((Var *) childvar)->varno == childrel->relid)
1162 {
1163 int cndx = ((Var *) childvar)->varattno - childrel->min_attr;
1164
1165 child_width = childrel->attr_widths[cndx];
1166 }
1167 if (child_width <= 0)
1168 child_width = get_typavgwidth(exprType(childvar),
1169 exprTypmod(childvar));
1170 Assert(child_width > 0);
1171 parent_attrsizes[pndx] += child_width * childrel->rows;
1172 }
1173 }
1174 }
1175
1176 if (has_live_children)
1177 {
1178 /*
1179 * Save the finished size estimates.
1180 */
1181 int i;
1182
1183 Assert(parent_rows > 0);
1184 rel->rows = parent_rows;
1185 rel->reltarget->width = rint(parent_size / parent_rows);
1186 for (i = 0; i < nattrs; i++)
1187 rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows);
1188
1189 /*
1190 * Set "raw tuples" count equal to "rows" for the appendrel; needed
1191 * because some places assume rel->tuples is valid for any baserel.
1192 */
1193 rel->tuples = parent_rows;
1194
1195 /*
1196 * Note that we leave rel->pages as zero; this is important to avoid
1197 * double-counting the appendrel tree in total_table_pages.
1198 */
1199 }
1200 else
1201 {
1202 /*
1203 * All children were excluded by constraints, so mark the whole
1204 * appendrel dummy. We must do this in this phase so that the rel's
1205 * dummy-ness is visible when we generate paths for other rels.
1206 */
1207 set_dummy_rel_pathlist(rel);
1208 }
1209
1210 pfree(parent_attrsizes);
1211}
1212
1213/*
1214 * set_append_rel_pathlist
1215 * Build access paths for an "append relation"
1216 */
1217static void
1218set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
1219 Index rti, RangeTblEntry *rte)
1220{
1221 int parentRTindex = rti;
1222 List *live_childrels = NIL;
1223 ListCell *l;
1224
1225 /*
1226 * Generate access paths for each member relation, and remember the
1227 * non-dummy children.
1228 */
1229 foreach(l, root->append_rel_list)
1230 {
1231 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
1232 int childRTindex;
1233 RangeTblEntry *childRTE;
1234 RelOptInfo *childrel;
1235
1236 /* append_rel_list contains all append rels; ignore others */
1237 if (appinfo->parent_relid != parentRTindex)
1238 continue;
1239
1240 /* Re-locate the child RTE and RelOptInfo */
1241 childRTindex = appinfo->child_relid;
1242 childRTE = root->simple_rte_array[childRTindex];
1243 childrel = root->simple_rel_array[childRTindex];
1244
1245 /*
1246 * If set_append_rel_size() decided the parent appendrel was
1247 * parallel-unsafe at some point after visiting this child rel, we
1248 * need to propagate the unsafety marking down to the child, so that
1249 * we don't generate useless partial paths for it.
1250 */
1251 if (!rel->consider_parallel)
1252 childrel->consider_parallel = false;
1253
1254 /*
1255 * Compute the child's access paths.
1256 */
1257 set_rel_pathlist(root, childrel, childRTindex, childRTE);
1258
1259 /*
1260 * If child is dummy, ignore it.
1261 */
1262 if (IS_DUMMY_REL(childrel))
1263 continue;
1264
1265 /* Bubble up childrel's partitioned children. */
1266 if (rel->part_scheme)
1267 rel->partitioned_child_rels =
1268 list_concat(rel->partitioned_child_rels,
1269 list_copy(childrel->partitioned_child_rels));
1270
1271 /*
1272 * Child is live, so add it to the live_childrels list for use below.
1273 */
1274 live_childrels = lappend(live_childrels, childrel);
1275 }
1276
1277 /* Add paths to the append relation. */
1278 add_paths_to_append_rel(root, rel, live_childrels);
1279}
1280
1281
1282/*
1283 * add_paths_to_append_rel
1284 * Generate paths for the given append relation given the set of non-dummy
1285 * child rels.
1286 *
1287 * The function collects all parameterizations and orderings supported by the
1288 * non-dummy children. For every such parameterization or ordering, it creates
1289 * an append path collecting one path from each non-dummy child with given
1290 * parameterization or ordering. Similarly it collects partial paths from
1291 * non-dummy children to create partial append paths.
1292 */
1293void
1294add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel,
1295 List *live_childrels)
1296{
1297 List *subpaths = NIL;
1298 bool subpaths_valid = true;
1299 List *partial_subpaths = NIL;
1300 List *pa_partial_subpaths = NIL;
1301 List *pa_nonpartial_subpaths = NIL;
1302 bool partial_subpaths_valid = true;
1303 bool pa_subpaths_valid;
1304 List *all_child_pathkeys = NIL;
1305 List *all_child_outers = NIL;
1306 ListCell *l;
1307 List *partitioned_rels = NIL;
1308 double partial_rows = -1;
1309
1310 /* If appropriate, consider parallel append */
1311 pa_subpaths_valid = enable_parallel_append && rel->consider_parallel;
1312
1313 /*
1314 * AppendPath generated for partitioned tables must record the RT indexes
1315 * of partitioned tables that are direct or indirect children of this
1316 * Append rel.
1317 *
1318 * AppendPath may be for a sub-query RTE (UNION ALL), in which case, 'rel'
1319 * itself does not represent a partitioned relation, but the child sub-
1320 * queries may contain references to partitioned relations. The loop
1321 * below will look for such children and collect them in a list to be
1322 * passed to the path creation function. (This assumes that we don't need
1323 * to look through multiple levels of subquery RTEs; if we ever do, we
1324 * could consider stuffing the list we generate here into sub-query RTE's
1325 * RelOptInfo, just like we do for partitioned rels, which would be used
1326 * when populating our parent rel with paths. For the present, that
1327 * appears to be unnecessary.)
1328 */
1329 if (rel->part_scheme != NULL)
1330 {
1331 if (IS_SIMPLE_REL(rel))
1332 partitioned_rels = list_make1(rel->partitioned_child_rels);
1333 else if (IS_JOIN_REL(rel))
1334 {
1335 int relid = -1;
1336 List *partrels = NIL;
1337
1338 /*
1339 * For a partitioned joinrel, concatenate the component rels'
1340 * partitioned_child_rels lists.
1341 */
1342 while ((relid = bms_next_member(rel->relids, relid)) >= 0)
1343 {
1344 RelOptInfo *component;
1345
1346 Assert(relid >= 1 && relid < root->simple_rel_array_size);
1347 component = root->simple_rel_array[relid];
1348 Assert(component->part_scheme != NULL);
1349 Assert(list_length(component->partitioned_child_rels) >= 1);
1350 partrels =
1351 list_concat(partrels,
1352 list_copy(component->partitioned_child_rels));
1353 }
1354
1355 partitioned_rels = list_make1(partrels);
1356 }
1357
1358 Assert(list_length(partitioned_rels) >= 1);
1359 }
1360
1361 /*
1362 * For every non-dummy child, remember the cheapest path. Also, identify
1363 * all pathkeys (orderings) and parameterizations (required_outer sets)
1364 * available for the non-dummy member relations.
1365 */
1366 foreach(l, live_childrels)
1367 {
1368 RelOptInfo *childrel = lfirst(l);
1369 ListCell *lcp;
1370 Path *cheapest_partial_path = NULL;
1371
1372 /*
1373 * For UNION ALLs with non-empty partitioned_child_rels, accumulate
1374 * the Lists of child relations.
1375 */
1376 if (rel->rtekind == RTE_SUBQUERY && childrel->partitioned_child_rels != NIL)
1377 partitioned_rels = lappend(partitioned_rels,
1378 childrel->partitioned_child_rels);
1379
1380 /*
1381 * If child has an unparameterized cheapest-total path, add that to
1382 * the unparameterized Append path we are constructing for the parent.
1383 * If not, there's no workable unparameterized path.
1384 *
1385 * With partitionwise aggregates, the child rel's pathlist may be
1386 * empty, so don't assume that a path exists here.
1387 */
1388 if (childrel->pathlist != NIL &&
1389 childrel->cheapest_total_path->param_info == NULL)
1390 accumulate_append_subpath(childrel->cheapest_total_path,
1391 &subpaths, NULL);
1392 else
1393 subpaths_valid = false;
1394
1395 /* Same idea, but for a partial plan. */
1396 if (childrel->partial_pathlist != NIL)
1397 {
1398 cheapest_partial_path = linitial(childrel->partial_pathlist);
1399 accumulate_append_subpath(cheapest_partial_path,
1400 &partial_subpaths, NULL);
1401 }
1402 else
1403 partial_subpaths_valid = false;
1404
1405 /*
1406 * Same idea, but for a parallel append mixing partial and non-partial
1407 * paths.
1408 */
1409 if (pa_subpaths_valid)
1410 {
1411 Path *nppath = NULL;
1412
1413 nppath =
1414 get_cheapest_parallel_safe_total_inner(childrel->pathlist);
1415
1416 if (cheapest_partial_path == NULL && nppath == NULL)
1417 {
1418 /* Neither a partial nor a parallel-safe path? Forget it. */
1419 pa_subpaths_valid = false;
1420 }
1421 else if (nppath == NULL ||
1422 (cheapest_partial_path != NULL &&
1423 cheapest_partial_path->total_cost < nppath->total_cost))
1424 {
1425 /* Partial path is cheaper or the only option. */
1426 Assert(cheapest_partial_path != NULL);
1427 accumulate_append_subpath(cheapest_partial_path,
1428 &pa_partial_subpaths,
1429 &pa_nonpartial_subpaths);
1430
1431 }
1432 else
1433 {
1434 /*
1435 * Either we've got only a non-partial path, or we think that
1436 * a single backend can execute the best non-partial path
1437 * faster than all the parallel backends working together can
1438 * execute the best partial path.
1439 *
1440 * It might make sense to be more aggressive here. Even if
1441 * the best non-partial path is more expensive than the best
1442 * partial path, it could still be better to choose the
1443 * non-partial path if there are several such paths that can
1444 * be given to different workers. For now, we don't try to
1445 * figure that out.
1446 */
1447 accumulate_append_subpath(nppath,
1448 &pa_nonpartial_subpaths,
1449 NULL);
1450 }
1451 }
1452
1453 /*
1454 * Collect lists of all the available path orderings and
1455 * parameterizations for all the children. We use these as a
1456 * heuristic to indicate which sort orderings and parameterizations we
1457 * should build Append and MergeAppend paths for.
1458 */
1459 foreach(lcp, childrel->pathlist)
1460 {
1461 Path *childpath = (Path *) lfirst(lcp);
1462 List *childkeys = childpath->pathkeys;
1463 Relids childouter = PATH_REQ_OUTER(childpath);
1464
1465 /* Unsorted paths don't contribute to pathkey list */
1466 if (childkeys != NIL)
1467 {
1468 ListCell *lpk;
1469 bool found = false;
1470
1471 /* Have we already seen this ordering? */
1472 foreach(lpk, all_child_pathkeys)
1473 {
1474 List *existing_pathkeys = (List *) lfirst(lpk);
1475
1476 if (compare_pathkeys(existing_pathkeys,
1477 childkeys) == PATHKEYS_EQUAL)
1478 {
1479 found = true;
1480 break;
1481 }
1482 }
1483 if (!found)
1484 {
1485 /* No, so add it to all_child_pathkeys */
1486 all_child_pathkeys = lappend(all_child_pathkeys,
1487 childkeys);
1488 }
1489 }
1490
1491 /* Unparameterized paths don't contribute to param-set list */
1492 if (childouter)
1493 {
1494 ListCell *lco;
1495 bool found = false;
1496
1497 /* Have we already seen this param set? */
1498 foreach(lco, all_child_outers)
1499 {
1500 Relids existing_outers = (Relids) lfirst(lco);
1501
1502 if (bms_equal(existing_outers, childouter))
1503 {
1504 found = true;
1505 break;
1506 }
1507 }
1508 if (!found)
1509 {
1510 /* No, so add it to all_child_outers */
1511 all_child_outers = lappend(all_child_outers,
1512 childouter);
1513 }
1514 }
1515 }
1516 }
1517
1518 /*
1519 * If we found unparameterized paths for all children, build an unordered,
1520 * unparameterized Append path for the rel. (Note: this is correct even
1521 * if we have zero or one live subpath due to constraint exclusion.)
1522 */
1523 if (subpaths_valid)
1524 add_path(rel, (Path *) create_append_path(root, rel, subpaths, NIL,
1525 NIL, NULL, 0, false,
1526 partitioned_rels, -1));
1527
1528 /*
1529 * Consider an append of unordered, unparameterized partial paths. Make
1530 * it parallel-aware if possible.
1531 */
1532 if (partial_subpaths_valid && partial_subpaths != NIL)
1533 {
1534 AppendPath *appendpath;
1535 ListCell *lc;
1536 int parallel_workers = 0;
1537
1538 /* Find the highest number of workers requested for any subpath. */
1539 foreach(lc, partial_subpaths)
1540 {
1541 Path *path = lfirst(lc);
1542
1543 parallel_workers = Max(parallel_workers, path->parallel_workers);
1544 }
1545 Assert(parallel_workers > 0);
1546
1547 /*
1548 * If the use of parallel append is permitted, always request at least
1549 * log2(# of children) workers. We assume it can be useful to have
1550 * extra workers in this case because they will be spread out across
1551 * the children. The precise formula is just a guess, but we don't
1552 * want to end up with a radically different answer for a table with N
1553 * partitions vs. an unpartitioned table with the same data, so the
1554 * use of some kind of log-scaling here seems to make some sense.
1555 */
1556 if (enable_parallel_append)
1557 {
1558 parallel_workers = Max(parallel_workers,
1559 fls(list_length(live_childrels)));
1560 parallel_workers = Min(parallel_workers,
1561 max_parallel_workers_per_gather);
1562 }
1563 Assert(parallel_workers > 0);
1564
1565 /* Generate a partial append path. */
1566 appendpath = create_append_path(root, rel, NIL, partial_subpaths,
1567 NIL, NULL, parallel_workers,
1568 enable_parallel_append,
1569 partitioned_rels, -1);
1570
1571 /*
1572 * Make sure any subsequent partial paths use the same row count
1573 * estimate.
1574 */
1575 partial_rows = appendpath->path.rows;
1576
1577 /* Add the path. */
1578 add_partial_path(rel, (Path *) appendpath);
1579 }
1580
1581 /*
1582 * Consider a parallel-aware append using a mix of partial and non-partial
1583 * paths. (This only makes sense if there's at least one child which has
1584 * a non-partial path that is substantially cheaper than any partial path;
1585 * otherwise, we should use the append path added in the previous step.)
1586 */
1587 if (pa_subpaths_valid && pa_nonpartial_subpaths != NIL)
1588 {
1589 AppendPath *appendpath;
1590 ListCell *lc;
1591 int parallel_workers = 0;
1592
1593 /*
1594 * Find the highest number of workers requested for any partial
1595 * subpath.
1596 */
1597 foreach(lc, pa_partial_subpaths)
1598 {
1599 Path *path = lfirst(lc);
1600
1601 parallel_workers = Max(parallel_workers, path->parallel_workers);
1602 }
1603
1604 /*
1605 * Same formula here as above. It's even more important in this
1606 * instance because the non-partial paths won't contribute anything to
1607 * the planned number of parallel workers.
1608 */
1609 parallel_workers = Max(parallel_workers,
1610 fls(list_length(live_childrels)));
1611 parallel_workers = Min(parallel_workers,
1612 max_parallel_workers_per_gather);
1613 Assert(parallel_workers > 0);
1614
1615 appendpath = create_append_path(root, rel, pa_nonpartial_subpaths,
1616 pa_partial_subpaths,
1617 NIL, NULL, parallel_workers, true,
1618 partitioned_rels, partial_rows);
1619 add_partial_path(rel, (Path *) appendpath);
1620 }
1621
1622 /*
1623 * Also build unparameterized ordered append paths based on the collected
1624 * list of child pathkeys.
1625 */
1626 if (subpaths_valid)
1627 generate_orderedappend_paths(root, rel, live_childrels,
1628 all_child_pathkeys,
1629 partitioned_rels);
1630
1631 /*
1632 * Build Append paths for each parameterization seen among the child rels.
1633 * (This may look pretty expensive, but in most cases of practical
1634 * interest, the child rels will expose mostly the same parameterizations,
1635 * so that not that many cases actually get considered here.)
1636 *
1637 * The Append node itself cannot enforce quals, so all qual checking must
1638 * be done in the child paths. This means that to have a parameterized
1639 * Append path, we must have the exact same parameterization for each
1640 * child path; otherwise some children might be failing to check the
1641 * moved-down quals. To make them match up, we can try to increase the
1642 * parameterization of lesser-parameterized paths.
1643 */
1644 foreach(l, all_child_outers)
1645 {
1646 Relids required_outer = (Relids) lfirst(l);
1647 ListCell *lcr;
1648
1649 /* Select the child paths for an Append with this parameterization */
1650 subpaths = NIL;
1651 subpaths_valid = true;
1652 foreach(lcr, live_childrels)
1653 {
1654 RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
1655 Path *subpath;
1656
1657 if (childrel->pathlist == NIL)
1658 {
1659 /* failed to make a suitable path for this child */
1660 subpaths_valid = false;
1661 break;
1662 }
1663
1664 subpath = get_cheapest_parameterized_child_path(root,
1665 childrel,
1666 required_outer);
1667 if (subpath == NULL)
1668 {
1669 /* failed to make a suitable path for this child */
1670 subpaths_valid = false;
1671 break;
1672 }
1673 accumulate_append_subpath(subpath, &subpaths, NULL);
1674 }
1675
1676 if (subpaths_valid)
1677 add_path(rel, (Path *)
1678 create_append_path(root, rel, subpaths, NIL,
1679 NIL, required_outer, 0, false,
1680 partitioned_rels, -1));
1681 }
1682
1683 /*
1684 * When there is only a single child relation, the Append path can inherit
1685 * any ordering available for the child rel's path, so that it's useful to
1686 * consider ordered partial paths. Above we only considered the cheapest
1687 * partial path for each child, but let's also make paths using any
1688 * partial paths that have pathkeys.
1689 */
1690 if (list_length(live_childrels) == 1)
1691 {
1692 RelOptInfo *childrel = (RelOptInfo *) linitial(live_childrels);
1693
1694 foreach(l, childrel->partial_pathlist)
1695 {
1696 Path *path = (Path *) lfirst(l);
1697 AppendPath *appendpath;
1698
1699 /*
1700 * Skip paths with no pathkeys. Also skip the cheapest partial
1701 * path, since we already used that above.
1702 */
1703 if (path->pathkeys == NIL ||
1704 path == linitial(childrel->partial_pathlist))
1705 continue;
1706
1707 appendpath = create_append_path(root, rel, NIL, list_make1(path),
1708 NIL, NULL,
1709 path->parallel_workers, true,
1710 partitioned_rels, partial_rows);
1711 add_partial_path(rel, (Path *) appendpath);
1712 }
1713 }
1714}
1715
1716/*
1717 * generate_orderedappend_paths
1718 * Generate ordered append paths for an append relation
1719 *
1720 * Usually we generate MergeAppend paths here, but there are some special
1721 * cases where we can generate simple Append paths, because the subpaths
1722 * can provide tuples in the required order already.
1723 *
1724 * We generate a path for each ordering (pathkey list) appearing in
1725 * all_child_pathkeys.
1726 *
1727 * We consider both cheapest-startup and cheapest-total cases, ie, for each
1728 * interesting ordering, collect all the cheapest startup subpaths and all the
1729 * cheapest total paths, and build a suitable path for each case.
1730 *
1731 * We don't currently generate any parameterized ordered paths here. While
1732 * it would not take much more code here to do so, it's very unclear that it
1733 * is worth the planning cycles to investigate such paths: there's little
1734 * use for an ordered path on the inside of a nestloop. In fact, it's likely
1735 * that the current coding of add_path would reject such paths out of hand,
1736 * because add_path gives no credit for sort ordering of parameterized paths,
1737 * and a parameterized MergeAppend is going to be more expensive than the
1738 * corresponding parameterized Append path. If we ever try harder to support
1739 * parameterized mergejoin plans, it might be worth adding support for
1740 * parameterized paths here to feed such joins. (See notes in
1741 * optimizer/README for why that might not ever happen, though.)
1742 */
1743static void
1744generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel,
1745 List *live_childrels,
1746 List *all_child_pathkeys,
1747 List *partitioned_rels)
1748{
1749 ListCell *lcp;
1750 List *partition_pathkeys = NIL;
1751 List *partition_pathkeys_desc = NIL;
1752 bool partition_pathkeys_partial = true;
1753 bool partition_pathkeys_desc_partial = true;
1754
1755 /*
1756 * Some partitioned table setups may allow us to use an Append node
1757 * instead of a MergeAppend. This is possible in cases such as RANGE
1758 * partitioned tables where it's guaranteed that an earlier partition must
1759 * contain rows which come earlier in the sort order. To detect whether
1760 * this is relevant, build pathkey descriptions of the partition ordering,
1761 * for both forward and reverse scans.
1762 */
1763 if (rel->part_scheme != NULL && IS_SIMPLE_REL(rel) &&
1764 partitions_are_ordered(rel->boundinfo, rel->nparts))
1765 {
1766 partition_pathkeys = build_partition_pathkeys(root, rel,
1767 ForwardScanDirection,
1768 &partition_pathkeys_partial);
1769
1770 partition_pathkeys_desc = build_partition_pathkeys(root, rel,
1771 BackwardScanDirection,
1772 &partition_pathkeys_desc_partial);
1773
1774 /*
1775 * You might think we should truncate_useless_pathkeys here, but
1776 * allowing partition keys which are a subset of the query's pathkeys
1777 * can often be useful. For example, consider a table partitioned by
1778 * RANGE (a, b), and a query with ORDER BY a, b, c. If we have child
1779 * paths that can produce the a, b, c ordering (perhaps via indexes on
1780 * (a, b, c)) then it works to consider the appendrel output as
1781 * ordered by a, b, c.
1782 */
1783 }
1784
1785 /* Now consider each interesting sort ordering */
1786 foreach(lcp, all_child_pathkeys)
1787 {
1788 List *pathkeys = (List *) lfirst(lcp);
1789 List *startup_subpaths = NIL;
1790 List *total_subpaths = NIL;
1791 bool startup_neq_total = false;
1792 ListCell *lcr;
1793 bool match_partition_order;
1794 bool match_partition_order_desc;
1795
1796 /*
1797 * Determine if this sort ordering matches any partition pathkeys we
1798 * have, for both ascending and descending partition order. If the
1799 * partition pathkeys happen to be contained in pathkeys then it still
1800 * works, as described above, providing that the partition pathkeys
1801 * are complete and not just a prefix of the partition keys. (In such
1802 * cases we'll be relying on the child paths to have sorted the
1803 * lower-order columns of the required pathkeys.)
1804 */
1805 match_partition_order =
1806 pathkeys_contained_in(pathkeys, partition_pathkeys) ||
1807 (!partition_pathkeys_partial &&
1808 pathkeys_contained_in(partition_pathkeys, pathkeys));
1809
1810 match_partition_order_desc = !match_partition_order &&
1811 (pathkeys_contained_in(pathkeys, partition_pathkeys_desc) ||
1812 (!partition_pathkeys_desc_partial &&
1813 pathkeys_contained_in(partition_pathkeys_desc, pathkeys)));
1814
1815 /* Select the child paths for this ordering... */
1816 foreach(lcr, live_childrels)
1817 {
1818 RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
1819 Path *cheapest_startup,
1820 *cheapest_total;
1821
1822 /* Locate the right paths, if they are available. */
1823 cheapest_startup =
1824 get_cheapest_path_for_pathkeys(childrel->pathlist,
1825 pathkeys,
1826 NULL,
1827 STARTUP_COST,
1828 false);
1829 cheapest_total =
1830 get_cheapest_path_for_pathkeys(childrel->pathlist,
1831 pathkeys,
1832 NULL,
1833 TOTAL_COST,
1834 false);
1835
1836 /*
1837 * If we can't find any paths with the right order just use the
1838 * cheapest-total path; we'll have to sort it later.
1839 */
1840 if (cheapest_startup == NULL || cheapest_total == NULL)
1841 {
1842 cheapest_startup = cheapest_total =
1843 childrel->cheapest_total_path;
1844 /* Assert we do have an unparameterized path for this child */
1845 Assert(cheapest_total->param_info == NULL);
1846 }
1847
1848 /*
1849 * Notice whether we actually have different paths for the
1850 * "cheapest" and "total" cases; frequently there will be no point
1851 * in two create_merge_append_path() calls.
1852 */
1853 if (cheapest_startup != cheapest_total)
1854 startup_neq_total = true;
1855
1856 /*
1857 * Collect the appropriate child paths. The required logic varies
1858 * for the Append and MergeAppend cases.
1859 */
1860 if (match_partition_order)
1861 {
1862 /*
1863 * We're going to make a plain Append path. We don't need
1864 * most of what accumulate_append_subpath would do, but we do
1865 * want to cut out child Appends or MergeAppends if they have
1866 * just a single subpath (and hence aren't doing anything
1867 * useful).
1868 */
1869 cheapest_startup = get_singleton_append_subpath(cheapest_startup);
1870 cheapest_total = get_singleton_append_subpath(cheapest_total);
1871
1872 startup_subpaths = lappend(startup_subpaths, cheapest_startup);
1873 total_subpaths = lappend(total_subpaths, cheapest_total);
1874 }
1875 else if (match_partition_order_desc)
1876 {
1877 /*
1878 * As above, but we need to reverse the order of the children,
1879 * because nodeAppend.c doesn't know anything about reverse
1880 * ordering and will scan the children in the order presented.
1881 */
1882 cheapest_startup = get_singleton_append_subpath(cheapest_startup);
1883 cheapest_total = get_singleton_append_subpath(cheapest_total);
1884
1885 startup_subpaths = lcons(cheapest_startup, startup_subpaths);
1886 total_subpaths = lcons(cheapest_total, total_subpaths);
1887 }
1888 else
1889 {
1890 /*
1891 * Otherwise, rely on accumulate_append_subpath to collect the
1892 * child paths for the MergeAppend.
1893 */
1894 accumulate_append_subpath(cheapest_startup,
1895 &startup_subpaths, NULL);
1896 accumulate_append_subpath(cheapest_total,
1897 &total_subpaths, NULL);
1898 }
1899 }
1900
1901 /* ... and build the Append or MergeAppend paths */
1902 if (match_partition_order || match_partition_order_desc)
1903 {
1904 /* We only need Append */
1905 add_path(rel, (Path *) create_append_path(root,
1906 rel,
1907 startup_subpaths,
1908 NIL,
1909 pathkeys,
1910 NULL,
1911 0,
1912 false,
1913 partitioned_rels,
1914 -1));
1915 if (startup_neq_total)
1916 add_path(rel, (Path *) create_append_path(root,
1917 rel,
1918 total_subpaths,
1919 NIL,
1920 pathkeys,
1921 NULL,
1922 0,
1923 false,
1924 partitioned_rels,
1925 -1));
1926 }
1927 else
1928 {
1929 /* We need MergeAppend */
1930 add_path(rel, (Path *) create_merge_append_path(root,
1931 rel,
1932 startup_subpaths,
1933 pathkeys,
1934 NULL,
1935 partitioned_rels));
1936 if (startup_neq_total)
1937 add_path(rel, (Path *) create_merge_append_path(root,
1938 rel,
1939 total_subpaths,
1940 pathkeys,
1941 NULL,
1942 partitioned_rels));
1943 }
1944 }
1945}
1946
1947/*
1948 * get_cheapest_parameterized_child_path
1949 * Get cheapest path for this relation that has exactly the requested
1950 * parameterization.
1951 *
1952 * Returns NULL if unable to create such a path.
1953 */
1954static Path *
1955get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel,
1956 Relids required_outer)
1957{
1958 Path *cheapest;
1959 ListCell *lc;
1960
1961 /*
1962 * Look up the cheapest existing path with no more than the needed
1963 * parameterization. If it has exactly the needed parameterization, we're
1964 * done.
1965 */
1966 cheapest = get_cheapest_path_for_pathkeys(rel->pathlist,
1967 NIL,
1968 required_outer,
1969 TOTAL_COST,
1970 false);
1971 Assert(cheapest != NULL);
1972 if (bms_equal(PATH_REQ_OUTER(cheapest), required_outer))
1973 return cheapest;
1974
1975 /*
1976 * Otherwise, we can "reparameterize" an existing path to match the given
1977 * parameterization, which effectively means pushing down additional
1978 * joinquals to be checked within the path's scan. However, some existing
1979 * paths might check the available joinquals already while others don't;
1980 * therefore, it's not clear which existing path will be cheapest after
1981 * reparameterization. We have to go through them all and find out.
1982 */
1983 cheapest = NULL;
1984 foreach(lc, rel->pathlist)
1985 {
1986 Path *path = (Path *) lfirst(lc);
1987
1988 /* Can't use it if it needs more than requested parameterization */
1989 if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
1990 continue;
1991
1992 /*
1993 * Reparameterization can only increase the path's cost, so if it's
1994 * already more expensive than the current cheapest, forget it.
1995 */
1996 if (cheapest != NULL &&
1997 compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
1998 continue;
1999
2000 /* Reparameterize if needed, then recheck cost */
2001 if (!bms_equal(PATH_REQ_OUTER(path), required_outer))
2002 {
2003 path = reparameterize_path(root, path, required_outer, 1.0);
2004 if (path == NULL)
2005 continue; /* failed to reparameterize this one */
2006 Assert(bms_equal(PATH_REQ_OUTER(path), required_outer));
2007
2008 if (cheapest != NULL &&
2009 compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
2010 continue;
2011 }
2012
2013 /* We have a new best path */
2014 cheapest = path;
2015 }
2016
2017 /* Return the best path, or NULL if we found no suitable candidate */
2018 return cheapest;
2019}
2020
2021/*
2022 * accumulate_append_subpath
2023 * Add a subpath to the list being built for an Append or MergeAppend.
2024 *
2025 * It's possible that the child is itself an Append or MergeAppend path, in
2026 * which case we can "cut out the middleman" and just add its child paths to
2027 * our own list. (We don't try to do this earlier because we need to apply
2028 * both levels of transformation to the quals.)
2029 *
2030 * Note that if we omit a child MergeAppend in this way, we are effectively
2031 * omitting a sort step, which seems fine: if the parent is to be an Append,
2032 * its result would be unsorted anyway, while if the parent is to be a
2033 * MergeAppend, there's no point in a separate sort on a child.
2034 *
2035 * Normally, either path is a partial path and subpaths is a list of partial
2036 * paths, or else path is a non-partial plan and subpaths is a list of those.
2037 * However, if path is a parallel-aware Append, then we add its partial path
2038 * children to subpaths and the rest to special_subpaths. If the latter is
2039 * NULL, we don't flatten the path at all (unless it contains only partial
2040 * paths).
2041 */
2042static void
2043accumulate_append_subpath(Path *path, List **subpaths, List **special_subpaths)
2044{
2045 if (IsA(path, AppendPath))
2046 {
2047 AppendPath *apath = (AppendPath *) path;
2048
2049 if (!apath->path.parallel_aware || apath->first_partial_path == 0)
2050 {
2051 /* list_copy is important here to avoid sharing list substructure */
2052 *subpaths = list_concat(*subpaths, list_copy(apath->subpaths));
2053 return;
2054 }
2055 else if (special_subpaths != NULL)
2056 {
2057 List *new_special_subpaths;
2058
2059 /* Split Parallel Append into partial and non-partial subpaths */
2060 *subpaths = list_concat(*subpaths,
2061 list_copy_tail(apath->subpaths,
2062 apath->first_partial_path));
2063 new_special_subpaths =
2064 list_truncate(list_copy(apath->subpaths),
2065 apath->first_partial_path);
2066 *special_subpaths = list_concat(*special_subpaths,
2067 new_special_subpaths);
2068 return;
2069 }
2070 }
2071 else if (IsA(path, MergeAppendPath))
2072 {
2073 MergeAppendPath *mpath = (MergeAppendPath *) path;
2074
2075 /* list_copy is important here to avoid sharing list substructure */
2076 *subpaths = list_concat(*subpaths, list_copy(mpath->subpaths));
2077 return;
2078 }
2079
2080 *subpaths = lappend(*subpaths, path);
2081}
2082
2083/*
2084 * get_singleton_append_subpath
2085 * Returns the single subpath of an Append/MergeAppend, or just
2086 * return 'path' if it's not a single sub-path Append/MergeAppend.
2087 *
2088 * Note: 'path' must not be a parallel-aware path.
2089 */
2090static Path *
2091get_singleton_append_subpath(Path *path)
2092{
2093 Assert(!path->parallel_aware);
2094
2095 if (IsA(path, AppendPath))
2096 {
2097 AppendPath *apath = (AppendPath *) path;
2098
2099 if (list_length(apath->subpaths) == 1)
2100 return (Path *) linitial(apath->subpaths);
2101 }
2102 else if (IsA(path, MergeAppendPath))
2103 {
2104 MergeAppendPath *mpath = (MergeAppendPath *) path;
2105
2106 if (list_length(mpath->subpaths) == 1)
2107 return (Path *) linitial(mpath->subpaths);
2108 }
2109
2110 return path;
2111}
2112
2113/*
2114 * set_dummy_rel_pathlist
2115 * Build a dummy path for a relation that's been excluded by constraints
2116 *
2117 * Rather than inventing a special "dummy" path type, we represent this as an
2118 * AppendPath with no members (see also IS_DUMMY_APPEND/IS_DUMMY_REL macros).
2119 *
2120 * (See also mark_dummy_rel, which does basically the same thing, but is
2121 * typically used to change a rel into dummy state after we already made
2122 * paths for it.)
2123 */
2124static void
2125set_dummy_rel_pathlist(RelOptInfo *rel)
2126{
2127 /* Set dummy size estimates --- we leave attr_widths[] as zeroes */
2128 rel->rows = 0;
2129 rel->reltarget->width = 0;
2130
2131 /* Discard any pre-existing paths; no further need for them */
2132 rel->pathlist = NIL;
2133 rel->partial_pathlist = NIL;
2134
2135 /* Set up the dummy path */
2136 add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
2137 NIL, rel->lateral_relids,
2138 0, false, NIL, -1));
2139
2140 /*
2141 * We set the cheapest-path fields immediately, just in case they were
2142 * pointing at some discarded path. This is redundant when we're called
2143 * from set_rel_size(), but not when called from elsewhere, and doing it
2144 * twice is harmless anyway.
2145 */
2146 set_cheapest(rel);
2147}
2148
2149/* quick-and-dirty test to see if any joining is needed */
2150static bool
2151has_multiple_baserels(PlannerInfo *root)
2152{
2153 int num_base_rels = 0;
2154 Index rti;
2155
2156 for (rti = 1; rti < root->simple_rel_array_size; rti++)
2157 {
2158 RelOptInfo *brel = root->simple_rel_array[rti];
2159
2160 if (brel == NULL)
2161 continue;
2162
2163 /* ignore RTEs that are "other rels" */
2164 if (brel->reloptkind == RELOPT_BASEREL)
2165 if (++num_base_rels > 1)
2166 return true;
2167 }
2168 return false;
2169}
2170
2171/*
2172 * set_subquery_pathlist
2173 * Generate SubqueryScan access paths for a subquery RTE
2174 *
2175 * We don't currently support generating parameterized paths for subqueries
2176 * by pushing join clauses down into them; it seems too expensive to re-plan
2177 * the subquery multiple times to consider different alternatives.
2178 * (XXX that could stand to be reconsidered, now that we use Paths.)
2179 * So the paths made here will be parameterized if the subquery contains
2180 * LATERAL references, otherwise not. As long as that's true, there's no need
2181 * for a separate set_subquery_size phase: just make the paths right away.
2182 */
2183static void
2184set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
2185 Index rti, RangeTblEntry *rte)
2186{
2187 Query *parse = root->parse;
2188 Query *subquery = rte->subquery;
2189 Relids required_outer;
2190 pushdown_safety_info safetyInfo;
2191 double tuple_fraction;
2192 RelOptInfo *sub_final_rel;
2193 ListCell *lc;
2194
2195 /*
2196 * Must copy the Query so that planning doesn't mess up the RTE contents
2197 * (really really need to fix the planner to not scribble on its input,
2198 * someday ... but see remove_unused_subquery_outputs to start with).
2199 */
2200 subquery = copyObject(subquery);
2201
2202 /*
2203 * If it's a LATERAL subquery, it might contain some Vars of the current
2204 * query level, requiring it to be treated as parameterized, even though
2205 * we don't support pushing down join quals into subqueries.
2206 */
2207 required_outer = rel->lateral_relids;
2208
2209 /*
2210 * Zero out result area for subquery_is_pushdown_safe, so that it can set
2211 * flags as needed while recursing. In particular, we need a workspace
2212 * for keeping track of unsafe-to-reference columns. unsafeColumns[i]
2213 * will be set true if we find that output column i of the subquery is
2214 * unsafe to use in a pushed-down qual.
2215 */
2216 memset(&safetyInfo, 0, sizeof(safetyInfo));
2217 safetyInfo.unsafeColumns = (bool *)
2218 palloc0((list_length(subquery->targetList) + 1) * sizeof(bool));
2219
2220 /*
2221 * If the subquery has the "security_barrier" flag, it means the subquery
2222 * originated from a view that must enforce row level security. Then we
2223 * must not push down quals that contain leaky functions. (Ideally this
2224 * would be checked inside subquery_is_pushdown_safe, but since we don't
2225 * currently pass the RTE to that function, we must do it here.)
2226 */
2227 safetyInfo.unsafeLeaky = rte->security_barrier;
2228
2229 /*
2230 * If there are any restriction clauses that have been attached to the
2231 * subquery relation, consider pushing them down to become WHERE or HAVING
2232 * quals of the subquery itself. This transformation is useful because it
2233 * may allow us to generate a better plan for the subquery than evaluating
2234 * all the subquery output rows and then filtering them.
2235 *
2236 * There are several cases where we cannot push down clauses. Restrictions
2237 * involving the subquery are checked by subquery_is_pushdown_safe().
2238 * Restrictions on individual clauses are checked by
2239 * qual_is_pushdown_safe(). Also, we don't want to push down
2240 * pseudoconstant clauses; better to have the gating node above the
2241 * subquery.
2242 *
2243 * Non-pushed-down clauses will get evaluated as qpquals of the
2244 * SubqueryScan node.
2245 *
2246 * XXX Are there any cases where we want to make a policy decision not to
2247 * push down a pushable qual, because it'd result in a worse plan?
2248 */
2249 if (rel->baserestrictinfo != NIL &&
2250 subquery_is_pushdown_safe(subquery, subquery, &safetyInfo))
2251 {
2252 /* OK to consider pushing down individual quals */
2253 List *upperrestrictlist = NIL;
2254 ListCell *l;
2255
2256 foreach(l, rel->baserestrictinfo)
2257 {
2258 RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
2259 Node *clause = (Node *) rinfo->clause;
2260
2261 if (!rinfo->pseudoconstant &&
2262 qual_is_pushdown_safe(subquery, rti, clause, &safetyInfo))
2263 {
2264 /* Push it down */
2265 subquery_push_qual(subquery, rte, rti, clause);
2266 }
2267 else
2268 {
2269 /* Keep it in the upper query */
2270 upperrestrictlist = lappend(upperrestrictlist, rinfo);
2271 }
2272 }
2273 rel->baserestrictinfo = upperrestrictlist;
2274 /* We don't bother recomputing baserestrict_min_security */
2275 }
2276
2277 pfree(safetyInfo.unsafeColumns);
2278
2279 /*
2280 * The upper query might not use all the subquery's output columns; if
2281 * not, we can simplify.
2282 */
2283 remove_unused_subquery_outputs(subquery, rel);
2284
2285 /*
2286 * We can safely pass the outer tuple_fraction down to the subquery if the
2287 * outer level has no joining, aggregation, or sorting to do. Otherwise
2288 * we'd better tell the subquery to plan for full retrieval. (XXX This
2289 * could probably be made more intelligent ...)
2290 */
2291 if (parse->hasAggs ||
2292 parse->groupClause ||
2293 parse->groupingSets ||
2294 parse->havingQual ||
2295 parse->distinctClause ||
2296 parse->sortClause ||
2297 has_multiple_baserels(root))
2298 tuple_fraction = 0.0; /* default case */
2299 else
2300 tuple_fraction = root->tuple_fraction;
2301
2302 /* plan_params should not be in use in current query level */
2303 Assert(root->plan_params == NIL);
2304
2305 /* Generate a subroot and Paths for the subquery */
2306 rel->subroot = subquery_planner(root->glob, subquery,
2307 root,
2308 false, tuple_fraction);
2309
2310 /* Isolate the params needed by this specific subplan */
2311 rel->subplan_params = root->plan_params;
2312 root->plan_params = NIL;
2313
2314 /*
2315 * It's possible that constraint exclusion proved the subquery empty. If
2316 * so, it's desirable to produce an unadorned dummy path so that we will
2317 * recognize appropriate optimizations at this query level.
2318 */
2319 sub_final_rel = fetch_upper_rel(rel->subroot, UPPERREL_FINAL, NULL);
2320
2321 if (IS_DUMMY_REL(sub_final_rel))
2322 {
2323 set_dummy_rel_pathlist(rel);
2324 return;
2325 }
2326
2327 /*
2328 * Mark rel with estimated output rows, width, etc. Note that we have to
2329 * do this before generating outer-query paths, else cost_subqueryscan is
2330 * not happy.
2331 */
2332 set_subquery_size_estimates(root, rel);
2333
2334 /*
2335 * For each Path that subquery_planner produced, make a SubqueryScanPath
2336 * in the outer query.
2337 */
2338 foreach(lc, sub_final_rel->pathlist)
2339 {
2340 Path *subpath = (Path *) lfirst(lc);
2341 List *pathkeys;
2342
2343 /* Convert subpath's pathkeys to outer representation */
2344 pathkeys = convert_subquery_pathkeys(root,
2345 rel,
2346 subpath->pathkeys,
2347 make_tlist_from_pathtarget(subpath->pathtarget));
2348
2349 /* Generate outer path using this subpath */
2350 add_path(rel, (Path *)
2351 create_subqueryscan_path(root, rel, subpath,
2352 pathkeys, required_outer));
2353 }
2354
2355 /* If outer rel allows parallelism, do same for partial paths. */
2356 if (rel->consider_parallel && bms_is_empty(required_outer))
2357 {
2358 /* If consider_parallel is false, there should be no partial paths. */
2359 Assert(sub_final_rel->consider_parallel ||
2360 sub_final_rel->partial_pathlist == NIL);
2361
2362 /* Same for partial paths. */
2363 foreach(lc, sub_final_rel->partial_pathlist)
2364 {
2365 Path *subpath = (Path *) lfirst(lc);
2366 List *pathkeys;
2367
2368 /* Convert subpath's pathkeys to outer representation */
2369 pathkeys = convert_subquery_pathkeys(root,
2370 rel,
2371 subpath->pathkeys,
2372 make_tlist_from_pathtarget(subpath->pathtarget));
2373
2374 /* Generate outer path using this subpath */
2375 add_partial_path(rel, (Path *)
2376 create_subqueryscan_path(root, rel, subpath,
2377 pathkeys,
2378 required_outer));
2379 }
2380 }
2381}
2382
2383/*
2384 * set_function_pathlist
2385 * Build the (single) access path for a function RTE
2386 */
2387static void
2388set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
2389{
2390 Relids required_outer;
2391 List *pathkeys = NIL;
2392
2393 /*
2394 * We don't support pushing join clauses into the quals of a function
2395 * scan, but it could still have required parameterization due to LATERAL
2396 * refs in the function expression.
2397 */
2398 required_outer = rel->lateral_relids;
2399
2400 /*
2401 * The result is considered unordered unless ORDINALITY was used, in which
2402 * case it is ordered by the ordinal column (the last one). See if we
2403 * care, by checking for uses of that Var in equivalence classes.
2404 */
2405 if (rte->funcordinality)
2406 {
2407 AttrNumber ordattno = rel->max_attr;
2408 Var *var = NULL;
2409 ListCell *lc;
2410
2411 /*
2412 * Is there a Var for it in rel's targetlist? If not, the query did
2413 * not reference the ordinality column, or at least not in any way
2414 * that would be interesting for sorting.
2415 */
2416 foreach(lc, rel->reltarget->exprs)
2417 {
2418 Var *node = (Var *) lfirst(lc);
2419
2420 /* checking varno/varlevelsup is just paranoia */
2421 if (IsA(node, Var) &&
2422 node->varattno == ordattno &&
2423 node->varno == rel->relid &&
2424 node->varlevelsup == 0)
2425 {
2426 var = node;
2427 break;
2428 }
2429 }
2430
2431 /*
2432 * Try to build pathkeys for this Var with int8 sorting. We tell
2433 * build_expression_pathkey not to build any new equivalence class; if
2434 * the Var isn't already mentioned in some EC, it means that nothing
2435 * cares about the ordering.
2436 */
2437 if (var)
2438 pathkeys = build_expression_pathkey(root,
2439 (Expr *) var,
2440 NULL, /* below outer joins */
2441 Int8LessOperator,
2442 rel->relids,
2443 false);
2444 }
2445
2446 /* Generate appropriate path */
2447 add_path(rel, create_functionscan_path(root, rel,
2448 pathkeys, required_outer));
2449}
2450
2451/*
2452 * set_values_pathlist
2453 * Build the (single) access path for a VALUES RTE
2454 */
2455static void
2456set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
2457{
2458 Relids required_outer;
2459
2460 /*
2461 * We don't support pushing join clauses into the quals of a values scan,
2462 * but it could still have required parameterization due to LATERAL refs
2463 * in the values expressions.
2464 */
2465 required_outer = rel->lateral_relids;
2466
2467 /* Generate appropriate path */
2468 add_path(rel, create_valuesscan_path(root, rel, required_outer));
2469}
2470
2471/*
2472 * set_tablefunc_pathlist
2473 * Build the (single) access path for a table func RTE
2474 */
2475static void
2476set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
2477{
2478 Relids required_outer;
2479
2480 /*
2481 * We don't support pushing join clauses into the quals of a tablefunc
2482 * scan, but it could still have required parameterization due to LATERAL
2483 * refs in the function expression.
2484 */
2485 required_outer = rel->lateral_relids;
2486
2487 /* Generate appropriate path */
2488 add_path(rel, create_tablefuncscan_path(root, rel,
2489 required_outer));
2490}
2491
2492/*
2493 * set_cte_pathlist
2494 * Build the (single) access path for a non-self-reference CTE RTE
2495 *
2496 * There's no need for a separate set_cte_size phase, since we don't
2497 * support join-qual-parameterized paths for CTEs.
2498 */
2499static void
2500set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
2501{
2502 Plan *cteplan;
2503 PlannerInfo *cteroot;
2504 Index levelsup;
2505 int ndx;
2506 ListCell *lc;
2507 int plan_id;
2508 Relids required_outer;
2509
2510 /*
2511 * Find the referenced CTE, and locate the plan previously made for it.
2512 */
2513 levelsup = rte->ctelevelsup;
2514 cteroot = root;
2515 while (levelsup-- > 0)
2516 {
2517 cteroot = cteroot->parent_root;
2518 if (!cteroot) /* shouldn't happen */
2519 elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
2520 }
2521
2522 /*
2523 * Note: cte_plan_ids can be shorter than cteList, if we are still working
2524 * on planning the CTEs (ie, this is a side-reference from another CTE).
2525 * So we mustn't use forboth here.
2526 */
2527 ndx = 0;
2528 foreach(lc, cteroot->parse->cteList)
2529 {
2530 CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
2531
2532 if (strcmp(cte->ctename, rte->ctename) == 0)
2533 break;
2534 ndx++;
2535 }
2536 if (lc == NULL) /* shouldn't happen */
2537 elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
2538 if (ndx >= list_length(cteroot->cte_plan_ids))
2539 elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
2540 plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
2541 Assert(plan_id > 0);
2542 cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
2543
2544 /* Mark rel with estimated output rows, width, etc */
2545 set_cte_size_estimates(root, rel, cteplan->plan_rows);
2546
2547 /*
2548 * We don't support pushing join clauses into the quals of a CTE scan, but
2549 * it could still have required parameterization due to LATERAL refs in
2550 * its tlist.
2551 */
2552 required_outer = rel->lateral_relids;
2553
2554 /* Generate appropriate path */
2555 add_path(rel, create_ctescan_path(root, rel, required_outer));
2556}
2557
2558/*
2559 * set_namedtuplestore_pathlist
2560 * Build the (single) access path for a named tuplestore RTE
2561 *
2562 * There's no need for a separate set_namedtuplestore_size phase, since we
2563 * don't support join-qual-parameterized paths for tuplestores.
2564 */
2565static void
2566set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel,
2567 RangeTblEntry *rte)
2568{
2569 Relids required_outer;
2570
2571 /* Mark rel with estimated output rows, width, etc */
2572 set_namedtuplestore_size_estimates(root, rel);
2573
2574 /*
2575 * We don't support pushing join clauses into the quals of a tuplestore
2576 * scan, but it could still have required parameterization due to LATERAL
2577 * refs in its tlist.
2578 */
2579 required_outer = rel->lateral_relids;
2580
2581 /* Generate appropriate path */
2582 add_path(rel, create_namedtuplestorescan_path(root, rel, required_outer));
2583
2584 /* Select cheapest path (pretty easy in this case...) */
2585 set_cheapest(rel);
2586}
2587
2588/*
2589 * set_result_pathlist
2590 * Build the (single) access path for an RTE_RESULT RTE
2591 *
2592 * There's no need for a separate set_result_size phase, since we
2593 * don't support join-qual-parameterized paths for these RTEs.
2594 */
2595static void
2596set_result_pathlist(PlannerInfo *root, RelOptInfo *rel,
2597 RangeTblEntry *rte)
2598{
2599 Relids required_outer;
2600
2601 /* Mark rel with estimated output rows, width, etc */
2602 set_result_size_estimates(root, rel);
2603
2604 /*
2605 * We don't support pushing join clauses into the quals of a Result scan,
2606 * but it could still have required parameterization due to LATERAL refs
2607 * in its tlist.
2608 */
2609 required_outer = rel->lateral_relids;
2610
2611 /* Generate appropriate path */
2612 add_path(rel, create_resultscan_path(root, rel, required_outer));
2613
2614 /* Select cheapest path (pretty easy in this case...) */
2615 set_cheapest(rel);
2616}
2617
2618/*
2619 * set_worktable_pathlist
2620 * Build the (single) access path for a self-reference CTE RTE
2621 *
2622 * There's no need for a separate set_worktable_size phase, since we don't
2623 * support join-qual-parameterized paths for CTEs.
2624 */
2625static void
2626set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
2627{
2628 Path *ctepath;
2629 PlannerInfo *cteroot;
2630 Index levelsup;
2631 Relids required_outer;
2632
2633 /*
2634 * We need to find the non-recursive term's path, which is in the plan
2635 * level that's processing the recursive UNION, which is one level *below*
2636 * where the CTE comes from.
2637 */
2638 levelsup = rte->ctelevelsup;
2639 if (levelsup == 0) /* shouldn't happen */
2640 elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
2641 levelsup--;
2642 cteroot = root;
2643 while (levelsup-- > 0)
2644 {
2645 cteroot = cteroot->parent_root;
2646 if (!cteroot) /* shouldn't happen */
2647 elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
2648 }
2649 ctepath = cteroot->non_recursive_path;
2650 if (!ctepath) /* shouldn't happen */
2651 elog(ERROR, "could not find path for CTE \"%s\"", rte->ctename);
2652
2653 /* Mark rel with estimated output rows, width, etc */
2654 set_cte_size_estimates(root, rel, ctepath->rows);
2655
2656 /*
2657 * We don't support pushing join clauses into the quals of a worktable
2658 * scan, but it could still have required parameterization due to LATERAL
2659 * refs in its tlist. (I'm not sure this is actually possible given the
2660 * restrictions on recursive references, but it's easy enough to support.)
2661 */
2662 required_outer = rel->lateral_relids;
2663
2664 /* Generate appropriate path */
2665 add_path(rel, create_worktablescan_path(root, rel, required_outer));
2666}
2667
2668/*
2669 * generate_gather_paths
2670 * Generate parallel access paths for a relation by pushing a Gather or
2671 * Gather Merge on top of a partial path.
2672 *
2673 * This must not be called until after we're done creating all partial paths
2674 * for the specified relation. (Otherwise, add_partial_path might delete a
2675 * path that some GatherPath or GatherMergePath has a reference to.)
2676 *
2677 * If we're generating paths for a scan or join relation, override_rows will
2678 * be false, and we'll just use the relation's size estimate. When we're
2679 * being called for a partially-grouped path, though, we need to override
2680 * the rowcount estimate. (It's not clear that the particular value we're
2681 * using here is actually best, but the underlying rel has no estimate so
2682 * we must do something.)
2683 */
2684void
2685generate_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
2686{
2687 Path *cheapest_partial_path;
2688 Path *simple_gather_path;
2689 ListCell *lc;
2690 double rows;
2691 double *rowsp = NULL;
2692
2693 /* If there are no partial paths, there's nothing to do here. */
2694 if (rel->partial_pathlist == NIL)
2695 return;
2696
2697 /* Should we override the rel's rowcount estimate? */
2698 if (override_rows)
2699 rowsp = &rows;
2700
2701 /*
2702 * The output of Gather is always unsorted, so there's only one partial
2703 * path of interest: the cheapest one. That will be the one at the front
2704 * of partial_pathlist because of the way add_partial_path works.
2705 */
2706 cheapest_partial_path = linitial(rel->partial_pathlist);
2707 rows =
2708 cheapest_partial_path->rows * cheapest_partial_path->parallel_workers;
2709 simple_gather_path = (Path *)
2710 create_gather_path(root, rel, cheapest_partial_path, rel->reltarget,
2711 NULL, rowsp);
2712 add_path(rel, simple_gather_path);
2713
2714 /*
2715 * For each useful ordering, we can consider an order-preserving Gather
2716 * Merge.
2717 */
2718 foreach(lc, rel->partial_pathlist)
2719 {
2720 Path *subpath = (Path *) lfirst(lc);
2721 GatherMergePath *path;
2722
2723 if (subpath->pathkeys == NIL)
2724 continue;
2725
2726 rows = subpath->rows * subpath->parallel_workers;
2727 path = create_gather_merge_path(root, rel, subpath, rel->reltarget,
2728 subpath->pathkeys, NULL, rowsp);
2729 add_path(rel, &path->path);
2730 }
2731}
2732
2733/*
2734 * make_rel_from_joinlist
2735 * Build access paths using a "joinlist" to guide the join path search.
2736 *
2737 * See comments for deconstruct_jointree() for definition of the joinlist
2738 * data structure.
2739 */
2740static RelOptInfo *
2741make_rel_from_joinlist(PlannerInfo *root, List *joinlist)
2742{
2743 int levels_needed;
2744 List *initial_rels;
2745 ListCell *jl;
2746
2747 /*
2748 * Count the number of child joinlist nodes. This is the depth of the
2749 * dynamic-programming algorithm we must employ to consider all ways of
2750 * joining the child nodes.
2751 */
2752 levels_needed = list_length(joinlist);
2753
2754 if (levels_needed <= 0)
2755 return NULL; /* nothing to do? */
2756
2757 /*
2758 * Construct a list of rels corresponding to the child joinlist nodes.
2759 * This may contain both base rels and rels constructed according to
2760 * sub-joinlists.
2761 */
2762 initial_rels = NIL;
2763 foreach(jl, joinlist)
2764 {
2765 Node *jlnode = (Node *) lfirst(jl);
2766 RelOptInfo *thisrel;
2767
2768 if (IsA(jlnode, RangeTblRef))
2769 {
2770 int varno = ((RangeTblRef *) jlnode)->rtindex;
2771
2772 thisrel = find_base_rel(root, varno);
2773 }
2774 else if (IsA(jlnode, List))
2775 {
2776 /* Recurse to handle subproblem */
2777 thisrel = make_rel_from_joinlist(root, (List *) jlnode);
2778 }
2779 else
2780 {
2781 elog(ERROR, "unrecognized joinlist node type: %d",
2782 (int) nodeTag(jlnode));
2783 thisrel = NULL; /* keep compiler quiet */
2784 }
2785
2786 initial_rels = lappend(initial_rels, thisrel);
2787 }
2788
2789 if (levels_needed == 1)
2790 {
2791 /*
2792 * Single joinlist node, so we're done.
2793 */
2794 return (RelOptInfo *) linitial(initial_rels);
2795 }
2796 else
2797 {
2798 /*
2799 * Consider the different orders in which we could join the rels,
2800 * using a plugin, GEQO, or the regular join search code.
2801 *
2802 * We put the initial_rels list into a PlannerInfo field because
2803 * has_legal_joinclause() needs to look at it (ugly :-().
2804 */
2805 root->initial_rels = initial_rels;
2806
2807 if (join_search_hook)
2808 return (*join_search_hook) (root, levels_needed, initial_rels);
2809 else if (enable_geqo && levels_needed >= geqo_threshold)
2810 return geqo(root, levels_needed, initial_rels);
2811 else
2812 return standard_join_search(root, levels_needed, initial_rels);
2813 }
2814}
2815
2816/*
2817 * standard_join_search
2818 * Find possible joinpaths for a query by successively finding ways
2819 * to join component relations into join relations.
2820 *
2821 * 'levels_needed' is the number of iterations needed, ie, the number of
2822 * independent jointree items in the query. This is > 1.
2823 *
2824 * 'initial_rels' is a list of RelOptInfo nodes for each independent
2825 * jointree item. These are the components to be joined together.
2826 * Note that levels_needed == list_length(initial_rels).
2827 *
2828 * Returns the final level of join relations, i.e., the relation that is
2829 * the result of joining all the original relations together.
2830 * At least one implementation path must be provided for this relation and
2831 * all required sub-relations.
2832 *
2833 * To support loadable plugins that modify planner behavior by changing the
2834 * join searching algorithm, we provide a hook variable that lets a plugin
2835 * replace or supplement this function. Any such hook must return the same
2836 * final join relation as the standard code would, but it might have a
2837 * different set of implementation paths attached, and only the sub-joinrels
2838 * needed for these paths need have been instantiated.
2839 *
2840 * Note to plugin authors: the functions invoked during standard_join_search()
2841 * modify root->join_rel_list and root->join_rel_hash. If you want to do more
2842 * than one join-order search, you'll probably need to save and restore the
2843 * original states of those data structures. See geqo_eval() for an example.
2844 */
2845RelOptInfo *
2846standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels)
2847{
2848 int lev;
2849 RelOptInfo *rel;
2850
2851 /*
2852 * This function cannot be invoked recursively within any one planning
2853 * problem, so join_rel_level[] can't be in use already.
2854 */
2855 Assert(root->join_rel_level == NULL);
2856
2857 /*
2858 * We employ a simple "dynamic programming" algorithm: we first find all
2859 * ways to build joins of two jointree items, then all ways to build joins
2860 * of three items (from two-item joins and single items), then four-item
2861 * joins, and so on until we have considered all ways to join all the
2862 * items into one rel.
2863 *
2864 * root->join_rel_level[j] is a list of all the j-item rels. Initially we
2865 * set root->join_rel_level[1] to represent all the single-jointree-item
2866 * relations.
2867 */
2868 root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));
2869
2870 root->join_rel_level[1] = initial_rels;
2871
2872 for (lev = 2; lev <= levels_needed; lev++)
2873 {
2874 ListCell *lc;
2875
2876 /*
2877 * Determine all possible pairs of relations to be joined at this
2878 * level, and build paths for making each one from every available
2879 * pair of lower-level relations.
2880 */
2881 join_search_one_level(root, lev);
2882
2883 /*
2884 * Run generate_partitionwise_join_paths() and generate_gather_paths()
2885 * for each just-processed joinrel. We could not do this earlier
2886 * because both regular and partial paths can get added to a
2887 * particular joinrel at multiple times within join_search_one_level.
2888 *
2889 * After that, we're done creating paths for the joinrel, so run
2890 * set_cheapest().
2891 */
2892 foreach(lc, root->join_rel_level[lev])
2893 {
2894 rel = (RelOptInfo *) lfirst(lc);
2895
2896 /* Create paths for partitionwise joins. */
2897 generate_partitionwise_join_paths(root, rel);
2898
2899 /*
2900 * Except for the topmost scan/join rel, consider gathering
2901 * partial paths. We'll do the same for the topmost scan/join rel
2902 * once we know the final targetlist (see grouping_planner).
2903 */
2904 if (lev < levels_needed)
2905 generate_gather_paths(root, rel, false);
2906
2907 /* Find and save the cheapest paths for this rel */
2908 set_cheapest(rel);
2909
2910#ifdef OPTIMIZER_DEBUG
2911 debug_print_rel(root, rel);
2912#endif
2913 }
2914 }
2915
2916 /*
2917 * We should have a single rel at the final level.
2918 */
2919 if (root->join_rel_level[levels_needed] == NIL)
2920 elog(ERROR, "failed to build any %d-way joins", levels_needed);
2921 Assert(list_length(root->join_rel_level[levels_needed]) == 1);
2922
2923 rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);
2924
2925 root->join_rel_level = NULL;
2926
2927 return rel;
2928}
2929
2930/*****************************************************************************
2931 * PUSHING QUALS DOWN INTO SUBQUERIES
2932 *****************************************************************************/
2933
2934/*
2935 * subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
2936 *
2937 * subquery is the particular component query being checked. topquery
2938 * is the top component of a set-operations tree (the same Query if no
2939 * set-op is involved).
2940 *
2941 * Conditions checked here:
2942 *
2943 * 1. If the subquery has a LIMIT clause, we must not push down any quals,
2944 * since that could change the set of rows returned.
2945 *
2946 * 2. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
2947 * quals into it, because that could change the results.
2948 *
2949 * 3. If the subquery uses DISTINCT, we cannot push volatile quals into it.
2950 * This is because upper-level quals should semantically be evaluated only
2951 * once per distinct row, not once per original row, and if the qual is
2952 * volatile then extra evaluations could change the results. (This issue
2953 * does not apply to other forms of aggregation such as GROUP BY, because
2954 * when those are present we push into HAVING not WHERE, so that the quals
2955 * are still applied after aggregation.)
2956 *
2957 * 4. If the subquery contains window functions, we cannot push volatile quals
2958 * into it. The issue here is a bit different from DISTINCT: a volatile qual
2959 * might succeed for some rows of a window partition and fail for others,
2960 * thereby changing the partition contents and thus the window functions'
2961 * results for rows that remain.
2962 *
2963 * 5. If the subquery contains any set-returning functions in its targetlist,
2964 * we cannot push volatile quals into it. That would push them below the SRFs
2965 * and thereby change the number of times they are evaluated. Also, a
2966 * volatile qual could succeed for some SRF output rows and fail for others,
2967 * a behavior that cannot occur if it's evaluated before SRF expansion.
2968 *
2969 * In addition, we make several checks on the subquery's output columns to see
2970 * if it is safe to reference them in pushed-down quals. If output column k
2971 * is found to be unsafe to reference, we set safetyInfo->unsafeColumns[k]
2972 * to true, but we don't reject the subquery overall since column k might not
2973 * be referenced by some/all quals. The unsafeColumns[] array will be
2974 * consulted later by qual_is_pushdown_safe(). It's better to do it this way
2975 * than to make the checks directly in qual_is_pushdown_safe(), because when
2976 * the subquery involves set operations we have to check the output
2977 * expressions in each arm of the set op.
2978 *
2979 * Note: pushing quals into a DISTINCT subquery is theoretically dubious:
2980 * we're effectively assuming that the quals cannot distinguish values that
2981 * the DISTINCT's equality operator sees as equal, yet there are many
2982 * counterexamples to that assumption. However use of such a qual with a
2983 * DISTINCT subquery would be unsafe anyway, since there's no guarantee which
2984 * "equal" value will be chosen as the output value by the DISTINCT operation.
2985 * So we don't worry too much about that. Another objection is that if the
2986 * qual is expensive to evaluate, running it for each original row might cost
2987 * more than we save by eliminating rows before the DISTINCT step. But it
2988 * would be very hard to estimate that at this stage, and in practice pushdown
2989 * seldom seems to make things worse, so we ignore that problem too.
2990 *
2991 * Note: likewise, pushing quals into a subquery with window functions is a
2992 * bit dubious: the quals might remove some rows of a window partition while
2993 * leaving others, causing changes in the window functions' results for the
2994 * surviving rows. We insist that such a qual reference only partitioning
2995 * columns, but again that only protects us if the qual does not distinguish
2996 * values that the partitioning equality operator sees as equal. The risks
2997 * here are perhaps larger than for DISTINCT, since no de-duplication of rows
2998 * occurs and thus there is no theoretical problem with such a qual. But
2999 * we'll do this anyway because the potential performance benefits are very
3000 * large, and we've seen no field complaints about the longstanding comparable
3001 * behavior with DISTINCT.
3002 */
3003static bool
3004subquery_is_pushdown_safe(Query *subquery, Query *topquery,
3005 pushdown_safety_info *safetyInfo)
3006{
3007 SetOperationStmt *topop;
3008
3009 /* Check point 1 */
3010 if (subquery->limitOffset != NULL || subquery->limitCount != NULL)
3011 return false;
3012
3013 /* Check points 3, 4, and 5 */
3014 if (subquery->distinctClause ||
3015 subquery->hasWindowFuncs ||
3016 subquery->hasTargetSRFs)
3017 safetyInfo->unsafeVolatile = true;
3018
3019 /*
3020 * If we're at a leaf query, check for unsafe expressions in its target
3021 * list, and mark any unsafe ones in unsafeColumns[]. (Non-leaf nodes in
3022 * setop trees have only simple Vars in their tlists, so no need to check
3023 * them.)
3024 */
3025 if (subquery->setOperations == NULL)
3026 check_output_expressions(subquery, safetyInfo);
3027
3028 /* Are we at top level, or looking at a setop component? */
3029 if (subquery == topquery)
3030 {
3031 /* Top level, so check any component queries */
3032 if (subquery->setOperations != NULL)
3033 if (!recurse_pushdown_safe(subquery->setOperations, topquery,
3034 safetyInfo))
3035 return false;
3036 }
3037 else
3038 {
3039 /* Setop component must not have more components (too weird) */
3040 if (subquery->setOperations != NULL)
3041 return false;
3042 /* Check whether setop component output types match top level */
3043 topop = castNode(SetOperationStmt, topquery->setOperations);
3044 Assert(topop);
3045 compare_tlist_datatypes(subquery->targetList,
3046 topop->colTypes,
3047 safetyInfo);
3048 }
3049 return true;
3050}
3051
3052/*
3053 * Helper routine to recurse through setOperations tree
3054 */
3055static bool
3056recurse_pushdown_safe(Node *setOp, Query *topquery,
3057 pushdown_safety_info *safetyInfo)
3058{
3059 if (IsA(setOp, RangeTblRef))
3060 {
3061 RangeTblRef *rtr = (RangeTblRef *) setOp;
3062 RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable);
3063 Query *subquery = rte->subquery;
3064
3065 Assert(subquery != NULL);
3066 return subquery_is_pushdown_safe(subquery, topquery, safetyInfo);
3067 }
3068 else if (IsA(setOp, SetOperationStmt))
3069 {
3070 SetOperationStmt *op = (SetOperationStmt *) setOp;
3071
3072 /* EXCEPT is no good (point 2 for subquery_is_pushdown_safe) */
3073 if (op->op == SETOP_EXCEPT)
3074 return false;
3075 /* Else recurse */
3076 if (!recurse_pushdown_safe(op->larg, topquery, safetyInfo))
3077 return false;
3078 if (!recurse_pushdown_safe(op->rarg, topquery, safetyInfo))
3079 return false;
3080 }
3081 else
3082 {
3083 elog(ERROR, "unrecognized node type: %d",
3084 (int) nodeTag(setOp));
3085 }
3086 return true;
3087}
3088
3089/*
3090 * check_output_expressions - check subquery's output expressions for safety
3091 *
3092 * There are several cases in which it's unsafe to push down an upper-level
3093 * qual if it references a particular output column of a subquery. We check
3094 * each output column of the subquery and set unsafeColumns[k] to true if
3095 * that column is unsafe for a pushed-down qual to reference. The conditions
3096 * checked here are:
3097 *
3098 * 1. We must not push down any quals that refer to subselect outputs that
3099 * return sets, else we'd introduce functions-returning-sets into the
3100 * subquery's WHERE/HAVING quals.
3101 *
3102 * 2. We must not push down any quals that refer to subselect outputs that
3103 * contain volatile functions, for fear of introducing strange results due
3104 * to multiple evaluation of a volatile function.
3105 *
3106 * 3. If the subquery uses DISTINCT ON, we must not push down any quals that
3107 * refer to non-DISTINCT output columns, because that could change the set
3108 * of rows returned. (This condition is vacuous for DISTINCT, because then
3109 * there are no non-DISTINCT output columns, so we needn't check. Note that
3110 * subquery_is_pushdown_safe already reported that we can't use volatile
3111 * quals if there's DISTINCT or DISTINCT ON.)
3112 *
3113 * 4. If the subquery has any window functions, we must not push down quals
3114 * that reference any output columns that are not listed in all the subquery's
3115 * window PARTITION BY clauses. We can push down quals that use only
3116 * partitioning columns because they should succeed or fail identically for
3117 * every row of any one window partition, and totally excluding some
3118 * partitions will not change a window function's results for remaining
3119 * partitions. (Again, this also requires nonvolatile quals, but
3120 * subquery_is_pushdown_safe handles that.)
3121 */
3122static void
3123check_output_expressions(Query *subquery, pushdown_safety_info *safetyInfo)
3124{
3125 ListCell *lc;
3126
3127 foreach(lc, subquery->targetList)
3128 {
3129 TargetEntry *tle = (TargetEntry *) lfirst(lc);
3130
3131 if (tle->resjunk)
3132 continue; /* ignore resjunk columns */
3133
3134 /* We need not check further if output col is already known unsafe */
3135 if (safetyInfo->unsafeColumns[tle->resno])
3136 continue;
3137
3138 /* Functions returning sets are unsafe (point 1) */
3139 if (subquery->hasTargetSRFs &&
3140 expression_returns_set((Node *) tle->expr))
3141 {
3142 safetyInfo->unsafeColumns[tle->resno] = true;
3143 continue;
3144 }
3145
3146 /* Volatile functions are unsafe (point 2) */
3147 if (contain_volatile_functions((Node *) tle->expr))
3148 {
3149 safetyInfo->unsafeColumns[tle->resno] = true;
3150 continue;
3151 }
3152
3153 /* If subquery uses DISTINCT ON, check point 3 */
3154 if (subquery->hasDistinctOn &&
3155 !targetIsInSortList(tle, InvalidOid, subquery->distinctClause))
3156 {
3157 /* non-DISTINCT column, so mark it unsafe */
3158 safetyInfo->unsafeColumns[tle->resno] = true;
3159 continue;
3160 }
3161
3162 /* If subquery uses window functions, check point 4 */
3163 if (subquery->hasWindowFuncs &&
3164 !targetIsInAllPartitionLists(tle, subquery))
3165 {
3166 /* not present in all PARTITION BY clauses, so mark it unsafe */
3167 safetyInfo->unsafeColumns[tle->resno] = true;
3168 continue;
3169 }
3170 }
3171}
3172
3173/*
3174 * For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
3175 * push quals into each component query, but the quals can only reference
3176 * subquery columns that suffer no type coercions in the set operation.
3177 * Otherwise there are possible semantic gotchas. So, we check the
3178 * component queries to see if any of them have output types different from
3179 * the top-level setop outputs. unsafeColumns[k] is set true if column k
3180 * has different type in any component.
3181 *
3182 * We don't have to care about typmods here: the only allowed difference
3183 * between set-op input and output typmods is input is a specific typmod
3184 * and output is -1, and that does not require a coercion.
3185 *
3186 * tlist is a subquery tlist.
3187 * colTypes is an OID list of the top-level setop's output column types.
3188 * safetyInfo->unsafeColumns[] is the result array.
3189 */
3190static void
3191compare_tlist_datatypes(List *tlist, List *colTypes,
3192 pushdown_safety_info *safetyInfo)
3193{
3194 ListCell *l;
3195 ListCell *colType = list_head(colTypes);
3196
3197 foreach(l, tlist)
3198 {
3199 TargetEntry *tle = (TargetEntry *) lfirst(l);
3200
3201 if (tle->resjunk)
3202 continue; /* ignore resjunk columns */
3203 if (colType == NULL)
3204 elog(ERROR, "wrong number of tlist entries");
3205 if (exprType((Node *) tle->expr) != lfirst_oid(colType))
3206 safetyInfo->unsafeColumns[tle->resno] = true;
3207 colType = lnext(colType);
3208 }
3209 if (colType != NULL)
3210 elog(ERROR, "wrong number of tlist entries");
3211}
3212
3213/*
3214 * targetIsInAllPartitionLists
3215 * True if the TargetEntry is listed in the PARTITION BY clause
3216 * of every window defined in the query.
3217 *
3218 * It would be safe to ignore windows not actually used by any window
3219 * function, but it's not easy to get that info at this stage; and it's
3220 * unlikely to be useful to spend any extra cycles getting it, since
3221 * unreferenced window definitions are probably infrequent in practice.
3222 */
3223static bool
3224targetIsInAllPartitionLists(TargetEntry *tle, Query *query)
3225{
3226 ListCell *lc;
3227
3228 foreach(lc, query->windowClause)
3229 {
3230 WindowClause *wc = (WindowClause *) lfirst(lc);
3231
3232 if (!targetIsInSortList(tle, InvalidOid, wc->partitionClause))
3233 return false;
3234 }
3235 return true;
3236}
3237
3238/*
3239 * qual_is_pushdown_safe - is a particular qual safe to push down?
3240 *
3241 * qual is a restriction clause applying to the given subquery (whose RTE
3242 * has index rti in the parent query).
3243 *
3244 * Conditions checked here:
3245 *
3246 * 1. The qual must not contain any SubPlans (mainly because I'm not sure
3247 * it will work correctly: SubLinks will already have been transformed into
3248 * SubPlans in the qual, but not in the subquery). Note that SubLinks that
3249 * transform to initplans are safe, and will be accepted here because what
3250 * we'll see in the qual is just a Param referencing the initplan output.
3251 *
3252 * 2. If unsafeVolatile is set, the qual must not contain any volatile
3253 * functions.
3254 *
3255 * 3. If unsafeLeaky is set, the qual must not contain any leaky functions
3256 * that are passed Var nodes, and therefore might reveal values from the
3257 * subquery as side effects.
3258 *
3259 * 4. The qual must not refer to the whole-row output of the subquery
3260 * (since there is no easy way to name that within the subquery itself).
3261 *
3262 * 5. The qual must not refer to any subquery output columns that were
3263 * found to be unsafe to reference by subquery_is_pushdown_safe().
3264 */
3265static bool
3266qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
3267 pushdown_safety_info *safetyInfo)
3268{
3269 bool safe = true;
3270 List *vars;
3271 ListCell *vl;
3272
3273 /* Refuse subselects (point 1) */
3274 if (contain_subplans(qual))
3275 return false;
3276
3277 /* Refuse volatile quals if we found they'd be unsafe (point 2) */
3278 if (safetyInfo->unsafeVolatile &&
3279 contain_volatile_functions(qual))
3280 return false;
3281
3282 /* Refuse leaky quals if told to (point 3) */
3283 if (safetyInfo->unsafeLeaky &&
3284 contain_leaked_vars(qual))
3285 return false;
3286
3287 /*
3288 * It would be unsafe to push down window function calls, but at least for
3289 * the moment we could never see any in a qual anyhow. (The same applies
3290 * to aggregates, which we check for in pull_var_clause below.)
3291 */
3292 Assert(!contain_window_function(qual));
3293
3294 /*
3295 * Examine all Vars used in clause; since it's a restriction clause, all
3296 * such Vars must refer to subselect output columns.
3297 */
3298 vars = pull_var_clause(qual, PVC_INCLUDE_PLACEHOLDERS);
3299 foreach(vl, vars)
3300 {
3301 Var *var = (Var *) lfirst(vl);
3302
3303 /*
3304 * XXX Punt if we find any PlaceHolderVars in the restriction clause.
3305 * It's not clear whether a PHV could safely be pushed down, and even
3306 * less clear whether such a situation could arise in any cases of
3307 * practical interest anyway. So for the moment, just refuse to push
3308 * down.
3309 */
3310 if (!IsA(var, Var))
3311 {
3312 safe = false;
3313 break;
3314 }
3315
3316 Assert(var->varno == rti);
3317 Assert(var->varattno >= 0);
3318
3319 /* Check point 4 */
3320 if (var->varattno == 0)
3321 {
3322 safe = false;
3323 break;
3324 }
3325
3326 /* Check point 5 */
3327 if (safetyInfo->unsafeColumns[var->varattno])
3328 {
3329 safe = false;
3330 break;
3331 }
3332 }
3333
3334 list_free(vars);
3335
3336 return safe;
3337}
3338
3339/*
3340 * subquery_push_qual - push down a qual that we have determined is safe
3341 */
3342static void
3343subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual)
3344{
3345 if (subquery->setOperations != NULL)
3346 {
3347 /* Recurse to push it separately to each component query */
3348 recurse_push_qual(subquery->setOperations, subquery,
3349 rte, rti, qual);
3350 }
3351 else
3352 {
3353 /*
3354 * We need to replace Vars in the qual (which must refer to outputs of
3355 * the subquery) with copies of the subquery's targetlist expressions.
3356 * Note that at this point, any uplevel Vars in the qual should have
3357 * been replaced with Params, so they need no work.
3358 *
3359 * This step also ensures that when we are pushing into a setop tree,
3360 * each component query gets its own copy of the qual.
3361 */
3362 qual = ReplaceVarsFromTargetList(qual, rti, 0, rte,
3363 subquery->targetList,
3364 REPLACEVARS_REPORT_ERROR, 0,
3365 &subquery->hasSubLinks);
3366
3367 /*
3368 * Now attach the qual to the proper place: normally WHERE, but if the
3369 * subquery uses grouping or aggregation, put it in HAVING (since the
3370 * qual really refers to the group-result rows).
3371 */
3372 if (subquery->hasAggs || subquery->groupClause || subquery->groupingSets || subquery->havingQual)
3373 subquery->havingQual = make_and_qual(subquery->havingQual, qual);
3374 else
3375 subquery->jointree->quals =
3376 make_and_qual(subquery->jointree->quals, qual);
3377
3378 /*
3379 * We need not change the subquery's hasAggs or hasSubLinks flags,
3380 * since we can't be pushing down any aggregates that weren't there
3381 * before, and we don't push down subselects at all.
3382 */
3383 }
3384}
3385
3386/*
3387 * Helper routine to recurse through setOperations tree
3388 */
3389static void
3390recurse_push_qual(Node *setOp, Query *topquery,
3391 RangeTblEntry *rte, Index rti, Node *qual)
3392{
3393 if (IsA(setOp, RangeTblRef))
3394 {
3395 RangeTblRef *rtr = (RangeTblRef *) setOp;
3396 RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable);
3397 Query *subquery = subrte->subquery;
3398
3399 Assert(subquery != NULL);
3400 subquery_push_qual(subquery, rte, rti, qual);
3401 }
3402 else if (IsA(setOp, SetOperationStmt))
3403 {
3404 SetOperationStmt *op = (SetOperationStmt *) setOp;
3405
3406 recurse_push_qual(op->larg, topquery, rte, rti, qual);
3407 recurse_push_qual(op->rarg, topquery, rte, rti, qual);
3408 }
3409 else
3410 {
3411 elog(ERROR, "unrecognized node type: %d",
3412 (int) nodeTag(setOp));
3413 }
3414}
3415
3416/*****************************************************************************
3417 * SIMPLIFYING SUBQUERY TARGETLISTS
3418 *****************************************************************************/
3419
3420/*
3421 * remove_unused_subquery_outputs
3422 * Remove subquery targetlist items we don't need
3423 *
3424 * It's possible, even likely, that the upper query does not read all the
3425 * output columns of the subquery. We can remove any such outputs that are
3426 * not needed by the subquery itself (e.g., as sort/group columns) and do not
3427 * affect semantics otherwise (e.g., volatile functions can't be removed).
3428 * This is useful not only because we might be able to remove expensive-to-
3429 * compute expressions, but because deletion of output columns might allow
3430 * optimizations such as join removal to occur within the subquery.
3431 *
3432 * To avoid affecting column numbering in the targetlist, we don't physically
3433 * remove unused tlist entries, but rather replace their expressions with NULL
3434 * constants. This is implemented by modifying subquery->targetList.
3435 */
3436static void
3437remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel)
3438{
3439 Bitmapset *attrs_used = NULL;
3440 ListCell *lc;
3441
3442 /*
3443 * Do nothing if subquery has UNION/INTERSECT/EXCEPT: in principle we
3444 * could update all the child SELECTs' tlists, but it seems not worth the
3445 * trouble presently.
3446 */
3447 if (subquery->setOperations)
3448 return;
3449
3450 /*
3451 * If subquery has regular DISTINCT (not DISTINCT ON), we're wasting our
3452 * time: all its output columns must be used in the distinctClause.
3453 */
3454 if (subquery->distinctClause && !subquery->hasDistinctOn)
3455 return;
3456
3457 /*
3458 * Collect a bitmap of all the output column numbers used by the upper
3459 * query.
3460 *
3461 * Add all the attributes needed for joins or final output. Note: we must
3462 * look at rel's targetlist, not the attr_needed data, because attr_needed
3463 * isn't computed for inheritance child rels, cf set_append_rel_size().
3464 * (XXX might be worth changing that sometime.)
3465 */
3466 pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used);
3467
3468 /* Add all the attributes used by un-pushed-down restriction clauses. */
3469 foreach(lc, rel->baserestrictinfo)
3470 {
3471 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
3472
3473 pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
3474 }
3475
3476 /*
3477 * If there's a whole-row reference to the subquery, we can't remove
3478 * anything.
3479 */
3480 if (bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used))
3481 return;
3482
3483 /*
3484 * Run through the tlist and zap entries we don't need. It's okay to
3485 * modify the tlist items in-place because set_subquery_pathlist made a
3486 * copy of the subquery.
3487 */
3488 foreach(lc, subquery->targetList)
3489 {
3490 TargetEntry *tle = (TargetEntry *) lfirst(lc);
3491 Node *texpr = (Node *) tle->expr;
3492
3493 /*
3494 * If it has a sortgroupref number, it's used in some sort/group
3495 * clause so we'd better not remove it. Also, don't remove any
3496 * resjunk columns, since their reason for being has nothing to do
3497 * with anybody reading the subquery's output. (It's likely that
3498 * resjunk columns in a sub-SELECT would always have ressortgroupref
3499 * set, but even if they don't, it seems imprudent to remove them.)
3500 */
3501 if (tle->ressortgroupref || tle->resjunk)
3502 continue;
3503
3504 /*
3505 * If it's used by the upper query, we can't remove it.
3506 */
3507 if (bms_is_member(tle->resno - FirstLowInvalidHeapAttributeNumber,
3508 attrs_used))
3509 continue;
3510
3511 /*
3512 * If it contains a set-returning function, we can't remove it since
3513 * that could change the number of rows returned by the subquery.
3514 */
3515 if (subquery->hasTargetSRFs &&
3516 expression_returns_set(texpr))
3517 continue;
3518
3519 /*
3520 * If it contains volatile functions, we daren't remove it for fear
3521 * that the user is expecting their side-effects to happen.
3522 */
3523 if (contain_volatile_functions(texpr))
3524 continue;
3525
3526 /*
3527 * OK, we don't need it. Replace the expression with a NULL constant.
3528 * Preserve the exposed type of the expression, in case something
3529 * looks at the rowtype of the subquery's result.
3530 */
3531 tle->expr = (Expr *) makeNullConst(exprType(texpr),
3532 exprTypmod(texpr),
3533 exprCollation(texpr));
3534 }
3535}
3536
3537/*
3538 * create_partial_bitmap_paths
3539 * Build partial bitmap heap path for the relation
3540 */
3541void
3542create_partial_bitmap_paths(PlannerInfo *root, RelOptInfo *rel,
3543 Path *bitmapqual)
3544{
3545 int parallel_workers;
3546 double pages_fetched;
3547
3548 /* Compute heap pages for bitmap heap scan */
3549 pages_fetched = compute_bitmap_pages(root, rel, bitmapqual, 1.0,
3550 NULL, NULL);
3551
3552 parallel_workers = compute_parallel_worker(rel, pages_fetched, -1,
3553 max_parallel_workers_per_gather);
3554
3555 if (parallel_workers <= 0)
3556 return;
3557
3558 add_partial_path(rel, (Path *) create_bitmap_heap_path(root, rel,
3559 bitmapqual, rel->lateral_relids, 1.0, parallel_workers));
3560}
3561
3562/*
3563 * Compute the number of parallel workers that should be used to scan a
3564 * relation. We compute the parallel workers based on the size of the heap to
3565 * be scanned and the size of the index to be scanned, then choose a minimum
3566 * of those.
3567 *
3568 * "heap_pages" is the number of pages from the table that we expect to scan, or
3569 * -1 if we don't expect to scan any.
3570 *
3571 * "index_pages" is the number of pages from the index that we expect to scan, or
3572 * -1 if we don't expect to scan any.
3573 *
3574 * "max_workers" is caller's limit on the number of workers. This typically
3575 * comes from a GUC.
3576 */
3577int
3578compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages,
3579 int max_workers)
3580{
3581 int parallel_workers = 0;
3582
3583 /*
3584 * If the user has set the parallel_workers reloption, use that; otherwise
3585 * select a default number of workers.
3586 */
3587 if (rel->rel_parallel_workers != -1)
3588 parallel_workers = rel->rel_parallel_workers;
3589 else
3590 {
3591 /*
3592 * If the number of pages being scanned is insufficient to justify a
3593 * parallel scan, just return zero ... unless it's an inheritance
3594 * child. In that case, we want to generate a parallel path here
3595 * anyway. It might not be worthwhile just for this relation, but
3596 * when combined with all of its inheritance siblings it may well pay
3597 * off.
3598 */
3599 if (rel->reloptkind == RELOPT_BASEREL &&
3600 ((heap_pages >= 0 && heap_pages < min_parallel_table_scan_size) ||
3601 (index_pages >= 0 && index_pages < min_parallel_index_scan_size)))
3602 return 0;
3603
3604 if (heap_pages >= 0)
3605 {
3606 int heap_parallel_threshold;
3607 int heap_parallel_workers = 1;
3608
3609 /*
3610 * Select the number of workers based on the log of the size of
3611 * the relation. This probably needs to be a good deal more
3612 * sophisticated, but we need something here for now. Note that
3613 * the upper limit of the min_parallel_table_scan_size GUC is
3614 * chosen to prevent overflow here.
3615 */
3616 heap_parallel_threshold = Max(min_parallel_table_scan_size, 1);
3617 while (heap_pages >= (BlockNumber) (heap_parallel_threshold * 3))
3618 {
3619 heap_parallel_workers++;
3620 heap_parallel_threshold *= 3;
3621 if (heap_parallel_threshold > INT_MAX / 3)
3622 break; /* avoid overflow */
3623 }
3624
3625 parallel_workers = heap_parallel_workers;
3626 }
3627
3628 if (index_pages >= 0)
3629 {
3630 int index_parallel_workers = 1;
3631 int index_parallel_threshold;
3632
3633 /* same calculation as for heap_pages above */
3634 index_parallel_threshold = Max(min_parallel_index_scan_size, 1);
3635 while (index_pages >= (BlockNumber) (index_parallel_threshold * 3))
3636 {
3637 index_parallel_workers++;
3638 index_parallel_threshold *= 3;
3639 if (index_parallel_threshold > INT_MAX / 3)
3640 break; /* avoid overflow */
3641 }
3642
3643 if (parallel_workers > 0)
3644 parallel_workers = Min(parallel_workers, index_parallel_workers);
3645 else
3646 parallel_workers = index_parallel_workers;
3647 }
3648 }
3649
3650 /* In no case use more than caller supplied maximum number of workers */
3651 parallel_workers = Min(parallel_workers, max_workers);
3652
3653 return parallel_workers;
3654}
3655
3656/*
3657 * generate_partitionwise_join_paths
3658 * Create paths representing partitionwise join for given partitioned
3659 * join relation.
3660 *
3661 * This must not be called until after we are done adding paths for all
3662 * child-joins. Otherwise, add_path might delete a path to which some path
3663 * generated here has a reference.
3664 */
3665void
3666generate_partitionwise_join_paths(PlannerInfo *root, RelOptInfo *rel)
3667{
3668 List *live_children = NIL;
3669 int cnt_parts;
3670 int num_parts;
3671 RelOptInfo **part_rels;
3672
3673 /* Handle only join relations here. */
3674 if (!IS_JOIN_REL(rel))
3675 return;
3676
3677 /* We've nothing to do if the relation is not partitioned. */
3678 if (!IS_PARTITIONED_REL(rel))
3679 return;
3680
3681 /* The relation should have consider_partitionwise_join set. */
3682 Assert(rel->consider_partitionwise_join);
3683
3684 /* Guard against stack overflow due to overly deep partition hierarchy. */
3685 check_stack_depth();
3686
3687 num_parts = rel->nparts;
3688 part_rels = rel->part_rels;
3689
3690 /* Collect non-dummy child-joins. */
3691 for (cnt_parts = 0; cnt_parts < num_parts; cnt_parts++)
3692 {
3693 RelOptInfo *child_rel = part_rels[cnt_parts];
3694
3695 /* If it's been pruned entirely, it's certainly dummy. */
3696 if (child_rel == NULL)
3697 continue;
3698
3699 /* Add partitionwise join paths for partitioned child-joins. */
3700 generate_partitionwise_join_paths(root, child_rel);
3701
3702 set_cheapest(child_rel);
3703
3704 /* Dummy children will not be scanned, so ignore those. */
3705 if (IS_DUMMY_REL(child_rel))
3706 continue;
3707
3708#ifdef OPTIMIZER_DEBUG
3709 debug_print_rel(root, child_rel);
3710#endif
3711
3712 live_children = lappend(live_children, child_rel);
3713 }
3714
3715 /* If all child-joins are dummy, parent join is also dummy. */
3716 if (!live_children)
3717 {
3718 mark_dummy_rel(rel);
3719 return;
3720 }
3721
3722 /* Build additional paths for this rel from child-join paths. */
3723 add_paths_to_append_rel(root, rel, live_children);
3724 list_free(live_children);
3725}
3726
3727
3728/*****************************************************************************
3729 * DEBUG SUPPORT
3730 *****************************************************************************/
3731
3732#ifdef OPTIMIZER_DEBUG
3733
3734static void
3735print_relids(PlannerInfo *root, Relids relids)
3736{
3737 int x;
3738 bool first = true;
3739
3740 x = -1;
3741 while ((x = bms_next_member(relids, x)) >= 0)
3742 {
3743 if (!first)
3744 printf(" ");
3745 if (x < root->simple_rel_array_size &&
3746 root->simple_rte_array[x])
3747 printf("%s", root->simple_rte_array[x]->eref->aliasname);
3748 else
3749 printf("%d", x);
3750 first = false;
3751 }
3752}
3753
3754static void
3755print_restrictclauses(PlannerInfo *root, List *clauses)
3756{
3757 ListCell *l;
3758
3759 foreach(l, clauses)
3760 {
3761 RestrictInfo *c = lfirst(l);
3762
3763 print_expr((Node *) c->clause, root->parse->rtable);
3764 if (lnext(l))
3765 printf(", ");
3766 }
3767}
3768
3769static void
3770print_path(PlannerInfo *root, Path *path, int indent)
3771{
3772 const char *ptype;
3773 bool join = false;
3774 Path *subpath = NULL;
3775 int i;
3776
3777 switch (nodeTag(path))
3778 {
3779 case T_Path:
3780 switch (path->pathtype)
3781 {
3782 case T_SeqScan:
3783 ptype = "SeqScan";
3784 break;
3785 case T_SampleScan:
3786 ptype = "SampleScan";
3787 break;
3788 case T_FunctionScan:
3789 ptype = "FunctionScan";
3790 break;
3791 case T_TableFuncScan:
3792 ptype = "TableFuncScan";
3793 break;
3794 case T_ValuesScan:
3795 ptype = "ValuesScan";
3796 break;
3797 case T_CteScan:
3798 ptype = "CteScan";
3799 break;
3800 case T_NamedTuplestoreScan:
3801 ptype = "NamedTuplestoreScan";
3802 break;
3803 case T_Result:
3804 ptype = "Result";
3805 break;
3806 case T_WorkTableScan:
3807 ptype = "WorkTableScan";
3808 break;
3809 default:
3810 ptype = "???Path";
3811 break;
3812 }
3813 break;
3814 case T_IndexPath:
3815 ptype = "IdxScan";
3816 break;
3817 case T_BitmapHeapPath:
3818 ptype = "BitmapHeapScan";
3819 break;
3820 case T_BitmapAndPath:
3821 ptype = "BitmapAndPath";
3822 break;
3823 case T_BitmapOrPath:
3824 ptype = "BitmapOrPath";
3825 break;
3826 case T_TidPath:
3827 ptype = "TidScan";
3828 break;
3829 case T_SubqueryScanPath:
3830 ptype = "SubqueryScan";
3831 break;
3832 case T_ForeignPath:
3833 ptype = "ForeignScan";
3834 break;
3835 case T_CustomPath:
3836 ptype = "CustomScan";
3837 break;
3838 case T_NestPath:
3839 ptype = "NestLoop";
3840 join = true;
3841 break;
3842 case T_MergePath:
3843 ptype = "MergeJoin";
3844 join = true;
3845 break;
3846 case T_HashPath:
3847 ptype = "HashJoin";
3848 join = true;
3849 break;
3850 case T_AppendPath:
3851 ptype = "Append";
3852 break;
3853 case T_MergeAppendPath:
3854 ptype = "MergeAppend";
3855 break;
3856 case T_GroupResultPath:
3857 ptype = "GroupResult";
3858 break;
3859 case T_MaterialPath:
3860 ptype = "Material";
3861 subpath = ((MaterialPath *) path)->subpath;
3862 break;
3863 case T_UniquePath:
3864 ptype = "Unique";
3865 subpath = ((UniquePath *) path)->subpath;
3866 break;
3867 case T_GatherPath:
3868 ptype = "Gather";
3869 subpath = ((GatherPath *) path)->subpath;
3870 break;
3871 case T_GatherMergePath:
3872 ptype = "GatherMerge";
3873 subpath = ((GatherMergePath *) path)->subpath;
3874 break;
3875 case T_ProjectionPath:
3876 ptype = "Projection";
3877 subpath = ((ProjectionPath *) path)->subpath;
3878 break;
3879 case T_ProjectSetPath:
3880 ptype = "ProjectSet";
3881 subpath = ((ProjectSetPath *) path)->subpath;
3882 break;
3883 case T_SortPath:
3884 ptype = "Sort";
3885 subpath = ((SortPath *) path)->subpath;
3886 break;
3887 case T_GroupPath:
3888 ptype = "Group";
3889 subpath = ((GroupPath *) path)->subpath;
3890 break;
3891 case T_UpperUniquePath:
3892 ptype = "UpperUnique";
3893 subpath = ((UpperUniquePath *) path)->subpath;
3894 break;
3895 case T_AggPath:
3896 ptype = "Agg";
3897 subpath = ((AggPath *) path)->subpath;
3898 break;
3899 case T_GroupingSetsPath:
3900 ptype = "GroupingSets";
3901 subpath = ((GroupingSetsPath *) path)->subpath;
3902 break;
3903 case T_MinMaxAggPath:
3904 ptype = "MinMaxAgg";
3905 break;
3906 case T_WindowAggPath:
3907 ptype = "WindowAgg";
3908 subpath = ((WindowAggPath *) path)->subpath;
3909 break;
3910 case T_SetOpPath:
3911 ptype = "SetOp";
3912 subpath = ((SetOpPath *) path)->subpath;
3913 break;
3914 case T_RecursiveUnionPath:
3915 ptype = "RecursiveUnion";
3916 break;
3917 case T_LockRowsPath:
3918 ptype = "LockRows";
3919 subpath = ((LockRowsPath *) path)->subpath;
3920 break;
3921 case T_ModifyTablePath:
3922 ptype = "ModifyTable";
3923 break;
3924 case T_LimitPath:
3925 ptype = "Limit";
3926 subpath = ((LimitPath *) path)->subpath;
3927 break;
3928 default:
3929 ptype = "???Path";
3930 break;
3931 }
3932
3933 for (i = 0; i < indent; i++)
3934 printf("\t");
3935 printf("%s", ptype);
3936
3937 if (path->parent)
3938 {
3939 printf("(");
3940 print_relids(root, path->parent->relids);
3941 printf(")");
3942 }
3943 if (path->param_info)
3944 {
3945 printf(" required_outer (");
3946 print_relids(root, path->param_info->ppi_req_outer);
3947 printf(")");
3948 }
3949 printf(" rows=%.0f cost=%.2f..%.2f\n",
3950 path->rows, path->startup_cost, path->total_cost);
3951
3952 if (path->pathkeys)
3953 {
3954 for (i = 0; i < indent; i++)
3955 printf("\t");
3956 printf(" pathkeys: ");
3957 print_pathkeys(path->pathkeys, root->parse->rtable);
3958 }
3959
3960 if (join)
3961 {
3962 JoinPath *jp = (JoinPath *) path;
3963
3964 for (i = 0; i < indent; i++)
3965 printf("\t");
3966 printf(" clauses: ");
3967 print_restrictclauses(root, jp->joinrestrictinfo);
3968 printf("\n");
3969
3970 if (IsA(path, MergePath))
3971 {
3972 MergePath *mp = (MergePath *) path;
3973
3974 for (i = 0; i < indent; i++)
3975 printf("\t");
3976 printf(" sortouter=%d sortinner=%d materializeinner=%d\n",
3977 ((mp->outersortkeys) ? 1 : 0),
3978 ((mp->innersortkeys) ? 1 : 0),
3979 ((mp->materialize_inner) ? 1 : 0));
3980 }
3981
3982 print_path(root, jp->outerjoinpath, indent + 1);
3983 print_path(root, jp->innerjoinpath, indent + 1);
3984 }
3985
3986 if (subpath)
3987 print_path(root, subpath, indent + 1);
3988}
3989
3990void
3991debug_print_rel(PlannerInfo *root, RelOptInfo *rel)
3992{
3993 ListCell *l;
3994
3995 printf("RELOPTINFO (");
3996 print_relids(root, rel->relids);
3997 printf("): rows=%.0f width=%d\n", rel->rows, rel->reltarget->width);
3998
3999 if (rel->baserestrictinfo)
4000 {
4001 printf("\tbaserestrictinfo: ");
4002 print_restrictclauses(root, rel->baserestrictinfo);
4003 printf("\n");
4004 }
4005
4006 if (rel->joininfo)
4007 {
4008 printf("\tjoininfo: ");
4009 print_restrictclauses(root, rel->joininfo);
4010 printf("\n");
4011 }
4012
4013 printf("\tpath list:\n");
4014 foreach(l, rel->pathlist)
4015 print_path(root, lfirst(l), 1);
4016 if (rel->cheapest_parameterized_paths)
4017 {
4018 printf("\n\tcheapest parameterized paths:\n");
4019 foreach(l, rel->cheapest_parameterized_paths)
4020 print_path(root, lfirst(l), 1);
4021 }
4022 if (rel->cheapest_startup_path)
4023 {
4024 printf("\n\tcheapest startup path:\n");
4025 print_path(root, rel->cheapest_startup_path, 1);
4026 }
4027 if (rel->cheapest_total_path)
4028 {
4029 printf("\n\tcheapest total path:\n");
4030 print_path(root, rel->cheapest_total_path, 1);
4031 }
4032 printf("\n");
4033 fflush(stdout);
4034}
4035
4036#endif /* OPTIMIZER_DEBUG */
4037