| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * indxpath.c |
| 4 | * Routines to determine which indexes are usable for scanning a |
| 5 | * given relation, and create Paths accordingly. |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * |
| 11 | * IDENTIFICATION |
| 12 | * src/backend/optimizer/path/indxpath.c |
| 13 | * |
| 14 | *------------------------------------------------------------------------- |
| 15 | */ |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include <math.h> |
| 19 | |
| 20 | #include "access/stratnum.h" |
| 21 | #include "access/sysattr.h" |
| 22 | #include "catalog/pg_am.h" |
| 23 | #include "catalog/pg_operator.h" |
| 24 | #include "catalog/pg_opfamily.h" |
| 25 | #include "catalog/pg_type.h" |
| 26 | #include "nodes/makefuncs.h" |
| 27 | #include "nodes/nodeFuncs.h" |
| 28 | #include "nodes/supportnodes.h" |
| 29 | #include "optimizer/cost.h" |
| 30 | #include "optimizer/optimizer.h" |
| 31 | #include "optimizer/pathnode.h" |
| 32 | #include "optimizer/paths.h" |
| 33 | #include "optimizer/prep.h" |
| 34 | #include "optimizer/restrictinfo.h" |
| 35 | #include "utils/lsyscache.h" |
| 36 | #include "utils/selfuncs.h" |
| 37 | |
| 38 | |
| 39 | /* XXX see PartCollMatchesExprColl */ |
| 40 | #define IndexCollMatchesExprColl(idxcollation, exprcollation) \ |
| 41 | ((idxcollation) == InvalidOid || (idxcollation) == (exprcollation)) |
| 42 | |
| 43 | /* Whether we are looking for plain indexscan, bitmap scan, or either */ |
| 44 | typedef enum |
| 45 | { |
| 46 | ST_INDEXSCAN, /* must support amgettuple */ |
| 47 | ST_BITMAPSCAN, /* must support amgetbitmap */ |
| 48 | ST_ANYSCAN /* either is okay */ |
| 49 | } ScanTypeControl; |
| 50 | |
| 51 | /* Data structure for collecting qual clauses that match an index */ |
| 52 | typedef struct |
| 53 | { |
| 54 | bool nonempty; /* True if lists are not all empty */ |
| 55 | /* Lists of IndexClause nodes, one list per index column */ |
| 56 | List *indexclauses[INDEX_MAX_KEYS]; |
| 57 | } IndexClauseSet; |
| 58 | |
| 59 | /* Per-path data used within choose_bitmap_and() */ |
| 60 | typedef struct |
| 61 | { |
| 62 | Path *path; /* IndexPath, BitmapAndPath, or BitmapOrPath */ |
| 63 | List *quals; /* the WHERE clauses it uses */ |
| 64 | List *preds; /* predicates of its partial index(es) */ |
| 65 | Bitmapset *clauseids; /* quals+preds represented as a bitmapset */ |
| 66 | bool unclassifiable; /* has too many quals+preds to process? */ |
| 67 | } PathClauseUsage; |
| 68 | |
| 69 | /* Callback argument for ec_member_matches_indexcol */ |
| 70 | typedef struct |
| 71 | { |
| 72 | IndexOptInfo *index; /* index we're considering */ |
| 73 | int indexcol; /* index column we want to match to */ |
| 74 | } ec_member_matches_arg; |
| 75 | |
| 76 | |
| 77 | static void consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel, |
| 78 | IndexOptInfo *index, |
| 79 | IndexClauseSet *rclauseset, |
| 80 | IndexClauseSet *jclauseset, |
| 81 | IndexClauseSet *eclauseset, |
| 82 | List **bitindexpaths); |
| 83 | static void consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel, |
| 84 | IndexOptInfo *index, |
| 85 | IndexClauseSet *rclauseset, |
| 86 | IndexClauseSet *jclauseset, |
| 87 | IndexClauseSet *eclauseset, |
| 88 | List **bitindexpaths, |
| 89 | List *indexjoinclauses, |
| 90 | int considered_clauses, |
| 91 | List **considered_relids); |
| 92 | static void get_join_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 93 | IndexOptInfo *index, |
| 94 | IndexClauseSet *rclauseset, |
| 95 | IndexClauseSet *jclauseset, |
| 96 | IndexClauseSet *eclauseset, |
| 97 | List **bitindexpaths, |
| 98 | Relids relids, |
| 99 | List **considered_relids); |
| 100 | static bool eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids, |
| 101 | List *indexjoinclauses); |
| 102 | static bool bms_equal_any(Relids relids, List *relids_list); |
| 103 | static void get_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 104 | IndexOptInfo *index, IndexClauseSet *clauses, |
| 105 | List **bitindexpaths); |
| 106 | static List *build_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 107 | IndexOptInfo *index, IndexClauseSet *clauses, |
| 108 | bool useful_predicate, |
| 109 | ScanTypeControl scantype, |
| 110 | bool *skip_nonnative_saop, |
| 111 | bool *skip_lower_saop); |
| 112 | static List *build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel, |
| 113 | List *clauses, List *other_clauses); |
| 114 | static List *generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel, |
| 115 | List *clauses, List *other_clauses); |
| 116 | static Path *choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, |
| 117 | List *paths); |
| 118 | static int path_usage_comparator(const void *a, const void *b); |
| 119 | static Cost bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel, |
| 120 | Path *ipath); |
| 121 | static Cost bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel, |
| 122 | List *paths); |
| 123 | static PathClauseUsage *classify_index_clause_usage(Path *path, |
| 124 | List **clauselist); |
| 125 | static Relids get_bitmap_tree_required_outer(Path *bitmapqual); |
| 126 | static void find_indexpath_quals(Path *bitmapqual, List **quals, List **preds); |
| 127 | static int find_list_position(Node *node, List **nodelist); |
| 128 | static bool check_index_only(RelOptInfo *rel, IndexOptInfo *index); |
| 129 | static double get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids); |
| 130 | static double adjust_rowcount_for_semijoins(PlannerInfo *root, |
| 131 | Index cur_relid, |
| 132 | Index outer_relid, |
| 133 | double rowcount); |
| 134 | static double approximate_joinrel_size(PlannerInfo *root, Relids relids); |
| 135 | static void match_restriction_clauses_to_index(PlannerInfo *root, |
| 136 | IndexOptInfo *index, |
| 137 | IndexClauseSet *clauseset); |
| 138 | static void match_join_clauses_to_index(PlannerInfo *root, |
| 139 | RelOptInfo *rel, IndexOptInfo *index, |
| 140 | IndexClauseSet *clauseset, |
| 141 | List **joinorclauses); |
| 142 | static void match_eclass_clauses_to_index(PlannerInfo *root, |
| 143 | IndexOptInfo *index, |
| 144 | IndexClauseSet *clauseset); |
| 145 | static void match_clauses_to_index(PlannerInfo *root, |
| 146 | List *clauses, |
| 147 | IndexOptInfo *index, |
| 148 | IndexClauseSet *clauseset); |
| 149 | static void match_clause_to_index(PlannerInfo *root, |
| 150 | RestrictInfo *rinfo, |
| 151 | IndexOptInfo *index, |
| 152 | IndexClauseSet *clauseset); |
| 153 | static IndexClause *match_clause_to_indexcol(PlannerInfo *root, |
| 154 | RestrictInfo *rinfo, |
| 155 | int indexcol, |
| 156 | IndexOptInfo *index); |
| 157 | static IndexClause *match_boolean_index_clause(RestrictInfo *rinfo, |
| 158 | int indexcol, IndexOptInfo *index); |
| 159 | static IndexClause *match_opclause_to_indexcol(PlannerInfo *root, |
| 160 | RestrictInfo *rinfo, |
| 161 | int indexcol, |
| 162 | IndexOptInfo *index); |
| 163 | static IndexClause *match_funcclause_to_indexcol(PlannerInfo *root, |
| 164 | RestrictInfo *rinfo, |
| 165 | int indexcol, |
| 166 | IndexOptInfo *index); |
| 167 | static IndexClause *get_index_clause_from_support(PlannerInfo *root, |
| 168 | RestrictInfo *rinfo, |
| 169 | Oid funcid, |
| 170 | int indexarg, |
| 171 | int indexcol, |
| 172 | IndexOptInfo *index); |
| 173 | static IndexClause *match_saopclause_to_indexcol(RestrictInfo *rinfo, |
| 174 | int indexcol, |
| 175 | IndexOptInfo *index); |
| 176 | static IndexClause *match_rowcompare_to_indexcol(RestrictInfo *rinfo, |
| 177 | int indexcol, |
| 178 | IndexOptInfo *index); |
| 179 | static IndexClause *expand_indexqual_rowcompare(RestrictInfo *rinfo, |
| 180 | int indexcol, |
| 181 | IndexOptInfo *index, |
| 182 | Oid expr_op, |
| 183 | bool var_on_left); |
| 184 | static void match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys, |
| 185 | List **orderby_clauses_p, |
| 186 | List **clause_columns_p); |
| 187 | static Expr *match_clause_to_ordering_op(IndexOptInfo *index, |
| 188 | int indexcol, Expr *clause, Oid pk_opfamily); |
| 189 | static bool ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel, |
| 190 | EquivalenceClass *ec, EquivalenceMember *em, |
| 191 | void *arg); |
| 192 | |
| 193 | |
| 194 | /* |
| 195 | * create_index_paths() |
| 196 | * Generate all interesting index paths for the given relation. |
| 197 | * Candidate paths are added to the rel's pathlist (using add_path). |
| 198 | * |
| 199 | * To be considered for an index scan, an index must match one or more |
| 200 | * restriction clauses or join clauses from the query's qual condition, |
| 201 | * or match the query's ORDER BY condition, or have a predicate that |
| 202 | * matches the query's qual condition. |
| 203 | * |
| 204 | * There are two basic kinds of index scans. A "plain" index scan uses |
| 205 | * only restriction clauses (possibly none at all) in its indexqual, |
| 206 | * so it can be applied in any context. A "parameterized" index scan uses |
| 207 | * join clauses (plus restriction clauses, if available) in its indexqual. |
| 208 | * When joining such a scan to one of the relations supplying the other |
| 209 | * variables used in its indexqual, the parameterized scan must appear as |
| 210 | * the inner relation of a nestloop join; it can't be used on the outer side, |
| 211 | * nor in a merge or hash join. In that context, values for the other rels' |
| 212 | * attributes are available and fixed during any one scan of the indexpath. |
| 213 | * |
| 214 | * An IndexPath is generated and submitted to add_path() for each plain or |
| 215 | * parameterized index scan this routine deems potentially interesting for |
| 216 | * the current query. |
| 217 | * |
| 218 | * 'rel' is the relation for which we want to generate index paths |
| 219 | * |
| 220 | * Note: check_index_predicates() must have been run previously for this rel. |
| 221 | * |
| 222 | * Note: in cases involving LATERAL references in the relation's tlist, it's |
| 223 | * possible that rel->lateral_relids is nonempty. Currently, we include |
| 224 | * lateral_relids into the parameterization reported for each path, but don't |
| 225 | * take it into account otherwise. The fact that any such rels *must* be |
| 226 | * available as parameter sources perhaps should influence our choices of |
| 227 | * index quals ... but for now, it doesn't seem worth troubling over. |
| 228 | * In particular, comments below about "unparameterized" paths should be read |
| 229 | * as meaning "unparameterized so far as the indexquals are concerned". |
| 230 | */ |
| 231 | void |
| 232 | create_index_paths(PlannerInfo *root, RelOptInfo *rel) |
| 233 | { |
| 234 | List *indexpaths; |
| 235 | List *bitindexpaths; |
| 236 | List *bitjoinpaths; |
| 237 | List *joinorclauses; |
| 238 | IndexClauseSet rclauseset; |
| 239 | IndexClauseSet jclauseset; |
| 240 | IndexClauseSet eclauseset; |
| 241 | ListCell *lc; |
| 242 | |
| 243 | /* Skip the whole mess if no indexes */ |
| 244 | if (rel->indexlist == NIL) |
| 245 | return; |
| 246 | |
| 247 | /* Bitmap paths are collected and then dealt with at the end */ |
| 248 | bitindexpaths = bitjoinpaths = joinorclauses = NIL; |
| 249 | |
| 250 | /* Examine each index in turn */ |
| 251 | foreach(lc, rel->indexlist) |
| 252 | { |
| 253 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
| 254 | |
| 255 | /* Protect limited-size array in IndexClauseSets */ |
| 256 | Assert(index->nkeycolumns <= INDEX_MAX_KEYS); |
| 257 | |
| 258 | /* |
| 259 | * Ignore partial indexes that do not match the query. |
| 260 | * (generate_bitmap_or_paths() might be able to do something with |
| 261 | * them, but that's of no concern here.) |
| 262 | */ |
| 263 | if (index->indpred != NIL && !index->predOK) |
| 264 | continue; |
| 265 | |
| 266 | /* |
| 267 | * Identify the restriction clauses that can match the index. |
| 268 | */ |
| 269 | MemSet(&rclauseset, 0, sizeof(rclauseset)); |
| 270 | match_restriction_clauses_to_index(root, index, &rclauseset); |
| 271 | |
| 272 | /* |
| 273 | * Build index paths from the restriction clauses. These will be |
| 274 | * non-parameterized paths. Plain paths go directly to add_path(), |
| 275 | * bitmap paths are added to bitindexpaths to be handled below. |
| 276 | */ |
| 277 | get_index_paths(root, rel, index, &rclauseset, |
| 278 | &bitindexpaths); |
| 279 | |
| 280 | /* |
| 281 | * Identify the join clauses that can match the index. For the moment |
| 282 | * we keep them separate from the restriction clauses. Note that this |
| 283 | * step finds only "loose" join clauses that have not been merged into |
| 284 | * EquivalenceClasses. Also, collect join OR clauses for later. |
| 285 | */ |
| 286 | MemSet(&jclauseset, 0, sizeof(jclauseset)); |
| 287 | match_join_clauses_to_index(root, rel, index, |
| 288 | &jclauseset, &joinorclauses); |
| 289 | |
| 290 | /* |
| 291 | * Look for EquivalenceClasses that can generate joinclauses matching |
| 292 | * the index. |
| 293 | */ |
| 294 | MemSet(&eclauseset, 0, sizeof(eclauseset)); |
| 295 | match_eclass_clauses_to_index(root, index, |
| 296 | &eclauseset); |
| 297 | |
| 298 | /* |
| 299 | * If we found any plain or eclass join clauses, build parameterized |
| 300 | * index paths using them. |
| 301 | */ |
| 302 | if (jclauseset.nonempty || eclauseset.nonempty) |
| 303 | consider_index_join_clauses(root, rel, index, |
| 304 | &rclauseset, |
| 305 | &jclauseset, |
| 306 | &eclauseset, |
| 307 | &bitjoinpaths); |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Generate BitmapOrPaths for any suitable OR-clauses present in the |
| 312 | * restriction list. Add these to bitindexpaths. |
| 313 | */ |
| 314 | indexpaths = generate_bitmap_or_paths(root, rel, |
| 315 | rel->baserestrictinfo, NIL); |
| 316 | bitindexpaths = list_concat(bitindexpaths, indexpaths); |
| 317 | |
| 318 | /* |
| 319 | * Likewise, generate BitmapOrPaths for any suitable OR-clauses present in |
| 320 | * the joinclause list. Add these to bitjoinpaths. |
| 321 | */ |
| 322 | indexpaths = generate_bitmap_or_paths(root, rel, |
| 323 | joinorclauses, rel->baserestrictinfo); |
| 324 | bitjoinpaths = list_concat(bitjoinpaths, indexpaths); |
| 325 | |
| 326 | /* |
| 327 | * If we found anything usable, generate a BitmapHeapPath for the most |
| 328 | * promising combination of restriction bitmap index paths. Note there |
| 329 | * will be only one such path no matter how many indexes exist. This |
| 330 | * should be sufficient since there's basically only one figure of merit |
| 331 | * (total cost) for such a path. |
| 332 | */ |
| 333 | if (bitindexpaths != NIL) |
| 334 | { |
| 335 | Path *bitmapqual; |
| 336 | BitmapHeapPath *bpath; |
| 337 | |
| 338 | bitmapqual = choose_bitmap_and(root, rel, bitindexpaths); |
| 339 | bpath = create_bitmap_heap_path(root, rel, bitmapqual, |
| 340 | rel->lateral_relids, 1.0, 0); |
| 341 | add_path(rel, (Path *) bpath); |
| 342 | |
| 343 | /* create a partial bitmap heap path */ |
| 344 | if (rel->consider_parallel && rel->lateral_relids == NULL) |
| 345 | create_partial_bitmap_paths(root, rel, bitmapqual); |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | * Likewise, if we found anything usable, generate BitmapHeapPaths for the |
| 350 | * most promising combinations of join bitmap index paths. Our strategy |
| 351 | * is to generate one such path for each distinct parameterization seen |
| 352 | * among the available bitmap index paths. This may look pretty |
| 353 | * expensive, but usually there won't be very many distinct |
| 354 | * parameterizations. (This logic is quite similar to that in |
| 355 | * consider_index_join_clauses, but we're working with whole paths not |
| 356 | * individual clauses.) |
| 357 | */ |
| 358 | if (bitjoinpaths != NIL) |
| 359 | { |
| 360 | List *path_outer; |
| 361 | List *all_path_outers; |
| 362 | ListCell *lc; |
| 363 | |
| 364 | /* |
| 365 | * path_outer holds the parameterization of each path in bitjoinpaths |
| 366 | * (to save recalculating that several times), while all_path_outers |
| 367 | * holds all distinct parameterization sets. |
| 368 | */ |
| 369 | path_outer = all_path_outers = NIL; |
| 370 | foreach(lc, bitjoinpaths) |
| 371 | { |
| 372 | Path *path = (Path *) lfirst(lc); |
| 373 | Relids required_outer; |
| 374 | |
| 375 | required_outer = get_bitmap_tree_required_outer(path); |
| 376 | path_outer = lappend(path_outer, required_outer); |
| 377 | if (!bms_equal_any(required_outer, all_path_outers)) |
| 378 | all_path_outers = lappend(all_path_outers, required_outer); |
| 379 | } |
| 380 | |
| 381 | /* Now, for each distinct parameterization set ... */ |
| 382 | foreach(lc, all_path_outers) |
| 383 | { |
| 384 | Relids max_outers = (Relids) lfirst(lc); |
| 385 | List *this_path_set; |
| 386 | Path *bitmapqual; |
| 387 | Relids required_outer; |
| 388 | double loop_count; |
| 389 | BitmapHeapPath *bpath; |
| 390 | ListCell *lcp; |
| 391 | ListCell *lco; |
| 392 | |
| 393 | /* Identify all the bitmap join paths needing no more than that */ |
| 394 | this_path_set = NIL; |
| 395 | forboth(lcp, bitjoinpaths, lco, path_outer) |
| 396 | { |
| 397 | Path *path = (Path *) lfirst(lcp); |
| 398 | Relids p_outers = (Relids) lfirst(lco); |
| 399 | |
| 400 | if (bms_is_subset(p_outers, max_outers)) |
| 401 | this_path_set = lappend(this_path_set, path); |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Add in restriction bitmap paths, since they can be used |
| 406 | * together with any join paths. |
| 407 | */ |
| 408 | this_path_set = list_concat(this_path_set, bitindexpaths); |
| 409 | |
| 410 | /* Select best AND combination for this parameterization */ |
| 411 | bitmapqual = choose_bitmap_and(root, rel, this_path_set); |
| 412 | |
| 413 | /* And push that path into the mix */ |
| 414 | required_outer = get_bitmap_tree_required_outer(bitmapqual); |
| 415 | loop_count = get_loop_count(root, rel->relid, required_outer); |
| 416 | bpath = create_bitmap_heap_path(root, rel, bitmapqual, |
| 417 | required_outer, loop_count, 0); |
| 418 | add_path(rel, (Path *) bpath); |
| 419 | } |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * consider_index_join_clauses |
| 425 | * Given sets of join clauses for an index, decide which parameterized |
| 426 | * index paths to build. |
| 427 | * |
| 428 | * Plain indexpaths are sent directly to add_path, while potential |
| 429 | * bitmap indexpaths are added to *bitindexpaths for later processing. |
| 430 | * |
| 431 | * 'rel' is the index's heap relation |
| 432 | * 'index' is the index for which we want to generate paths |
| 433 | * 'rclauseset' is the collection of indexable restriction clauses |
| 434 | * 'jclauseset' is the collection of indexable simple join clauses |
| 435 | * 'eclauseset' is the collection of indexable clauses from EquivalenceClasses |
| 436 | * '*bitindexpaths' is the list to add bitmap paths to |
| 437 | */ |
| 438 | static void |
| 439 | consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel, |
| 440 | IndexOptInfo *index, |
| 441 | IndexClauseSet *rclauseset, |
| 442 | IndexClauseSet *jclauseset, |
| 443 | IndexClauseSet *eclauseset, |
| 444 | List **bitindexpaths) |
| 445 | { |
| 446 | int considered_clauses = 0; |
| 447 | List *considered_relids = NIL; |
| 448 | int indexcol; |
| 449 | |
| 450 | /* |
| 451 | * The strategy here is to identify every potentially useful set of outer |
| 452 | * rels that can provide indexable join clauses. For each such set, |
| 453 | * select all the join clauses available from those outer rels, add on all |
| 454 | * the indexable restriction clauses, and generate plain and/or bitmap |
| 455 | * index paths for that set of clauses. This is based on the assumption |
| 456 | * that it's always better to apply a clause as an indexqual than as a |
| 457 | * filter (qpqual); which is where an available clause would end up being |
| 458 | * applied if we omit it from the indexquals. |
| 459 | * |
| 460 | * This looks expensive, but in most practical cases there won't be very |
| 461 | * many distinct sets of outer rels to consider. As a safety valve when |
| 462 | * that's not true, we use a heuristic: limit the number of outer rel sets |
| 463 | * considered to a multiple of the number of clauses considered. (We'll |
| 464 | * always consider using each individual join clause, though.) |
| 465 | * |
| 466 | * For simplicity in selecting relevant clauses, we represent each set of |
| 467 | * outer rels as a maximum set of clause_relids --- that is, the indexed |
| 468 | * relation itself is also included in the relids set. considered_relids |
| 469 | * lists all relids sets we've already tried. |
| 470 | */ |
| 471 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 472 | { |
| 473 | /* Consider each applicable simple join clause */ |
| 474 | considered_clauses += list_length(jclauseset->indexclauses[indexcol]); |
| 475 | consider_index_join_outer_rels(root, rel, index, |
| 476 | rclauseset, jclauseset, eclauseset, |
| 477 | bitindexpaths, |
| 478 | jclauseset->indexclauses[indexcol], |
| 479 | considered_clauses, |
| 480 | &considered_relids); |
| 481 | /* Consider each applicable eclass join clause */ |
| 482 | considered_clauses += list_length(eclauseset->indexclauses[indexcol]); |
| 483 | consider_index_join_outer_rels(root, rel, index, |
| 484 | rclauseset, jclauseset, eclauseset, |
| 485 | bitindexpaths, |
| 486 | eclauseset->indexclauses[indexcol], |
| 487 | considered_clauses, |
| 488 | &considered_relids); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * consider_index_join_outer_rels |
| 494 | * Generate parameterized paths based on clause relids in the clause list. |
| 495 | * |
| 496 | * Workhorse for consider_index_join_clauses; see notes therein for rationale. |
| 497 | * |
| 498 | * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset', and |
| 499 | * 'bitindexpaths' as above |
| 500 | * 'indexjoinclauses' is a list of IndexClauses for join clauses |
| 501 | * 'considered_clauses' is the total number of clauses considered (so far) |
| 502 | * '*considered_relids' is a list of all relids sets already considered |
| 503 | */ |
| 504 | static void |
| 505 | consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel, |
| 506 | IndexOptInfo *index, |
| 507 | IndexClauseSet *rclauseset, |
| 508 | IndexClauseSet *jclauseset, |
| 509 | IndexClauseSet *eclauseset, |
| 510 | List **bitindexpaths, |
| 511 | List *indexjoinclauses, |
| 512 | int considered_clauses, |
| 513 | List **considered_relids) |
| 514 | { |
| 515 | ListCell *lc; |
| 516 | |
| 517 | /* Examine relids of each joinclause in the given list */ |
| 518 | foreach(lc, indexjoinclauses) |
| 519 | { |
| 520 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 521 | Relids clause_relids = iclause->rinfo->clause_relids; |
| 522 | EquivalenceClass *parent_ec = iclause->rinfo->parent_ec; |
| 523 | ListCell *lc2; |
| 524 | |
| 525 | /* If we already tried its relids set, no need to do so again */ |
| 526 | if (bms_equal_any(clause_relids, *considered_relids)) |
| 527 | continue; |
| 528 | |
| 529 | /* |
| 530 | * Generate the union of this clause's relids set with each |
| 531 | * previously-tried set. This ensures we try this clause along with |
| 532 | * every interesting subset of previous clauses. However, to avoid |
| 533 | * exponential growth of planning time when there are many clauses, |
| 534 | * limit the number of relid sets accepted to 10 * considered_clauses. |
| 535 | * |
| 536 | * Note: get_join_index_paths adds entries to *considered_relids, but |
| 537 | * it prepends them to the list, so that we won't visit new entries |
| 538 | * during the inner foreach loop. No real harm would be done if we |
| 539 | * did, since the subset check would reject them; but it would waste |
| 540 | * some cycles. |
| 541 | */ |
| 542 | foreach(lc2, *considered_relids) |
| 543 | { |
| 544 | Relids oldrelids = (Relids) lfirst(lc2); |
| 545 | |
| 546 | /* |
| 547 | * If either is a subset of the other, no new set is possible. |
| 548 | * This isn't a complete test for redundancy, but it's easy and |
| 549 | * cheap. get_join_index_paths will check more carefully if we |
| 550 | * already generated the same relids set. |
| 551 | */ |
| 552 | if (bms_subset_compare(clause_relids, oldrelids) != BMS_DIFFERENT) |
| 553 | continue; |
| 554 | |
| 555 | /* |
| 556 | * If this clause was derived from an equivalence class, the |
| 557 | * clause list may contain other clauses derived from the same |
| 558 | * eclass. We should not consider that combining this clause with |
| 559 | * one of those clauses generates a usefully different |
| 560 | * parameterization; so skip if any clause derived from the same |
| 561 | * eclass would already have been included when using oldrelids. |
| 562 | */ |
| 563 | if (parent_ec && |
| 564 | eclass_already_used(parent_ec, oldrelids, |
| 565 | indexjoinclauses)) |
| 566 | continue; |
| 567 | |
| 568 | /* |
| 569 | * If the number of relid sets considered exceeds our heuristic |
| 570 | * limit, stop considering combinations of clauses. We'll still |
| 571 | * consider the current clause alone, though (below this loop). |
| 572 | */ |
| 573 | if (list_length(*considered_relids) >= 10 * considered_clauses) |
| 574 | break; |
| 575 | |
| 576 | /* OK, try the union set */ |
| 577 | get_join_index_paths(root, rel, index, |
| 578 | rclauseset, jclauseset, eclauseset, |
| 579 | bitindexpaths, |
| 580 | bms_union(clause_relids, oldrelids), |
| 581 | considered_relids); |
| 582 | } |
| 583 | |
| 584 | /* Also try this set of relids by itself */ |
| 585 | get_join_index_paths(root, rel, index, |
| 586 | rclauseset, jclauseset, eclauseset, |
| 587 | bitindexpaths, |
| 588 | clause_relids, |
| 589 | considered_relids); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * get_join_index_paths |
| 595 | * Generate index paths using clauses from the specified outer relations. |
| 596 | * In addition to generating paths, relids is added to *considered_relids |
| 597 | * if not already present. |
| 598 | * |
| 599 | * Workhorse for consider_index_join_clauses; see notes therein for rationale. |
| 600 | * |
| 601 | * 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset', |
| 602 | * 'bitindexpaths', 'considered_relids' as above |
| 603 | * 'relids' is the current set of relids to consider (the target rel plus |
| 604 | * one or more outer rels) |
| 605 | */ |
| 606 | static void |
| 607 | get_join_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 608 | IndexOptInfo *index, |
| 609 | IndexClauseSet *rclauseset, |
| 610 | IndexClauseSet *jclauseset, |
| 611 | IndexClauseSet *eclauseset, |
| 612 | List **bitindexpaths, |
| 613 | Relids relids, |
| 614 | List **considered_relids) |
| 615 | { |
| 616 | IndexClauseSet clauseset; |
| 617 | int indexcol; |
| 618 | |
| 619 | /* If we already considered this relids set, don't repeat the work */ |
| 620 | if (bms_equal_any(relids, *considered_relids)) |
| 621 | return; |
| 622 | |
| 623 | /* Identify indexclauses usable with this relids set */ |
| 624 | MemSet(&clauseset, 0, sizeof(clauseset)); |
| 625 | |
| 626 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 627 | { |
| 628 | ListCell *lc; |
| 629 | |
| 630 | /* First find applicable simple join clauses */ |
| 631 | foreach(lc, jclauseset->indexclauses[indexcol]) |
| 632 | { |
| 633 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 634 | |
| 635 | if (bms_is_subset(iclause->rinfo->clause_relids, relids)) |
| 636 | clauseset.indexclauses[indexcol] = |
| 637 | lappend(clauseset.indexclauses[indexcol], iclause); |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Add applicable eclass join clauses. The clauses generated for each |
| 642 | * column are redundant (cf generate_implied_equalities_for_column), |
| 643 | * so we need at most one. This is the only exception to the general |
| 644 | * rule of using all available index clauses. |
| 645 | */ |
| 646 | foreach(lc, eclauseset->indexclauses[indexcol]) |
| 647 | { |
| 648 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 649 | |
| 650 | if (bms_is_subset(iclause->rinfo->clause_relids, relids)) |
| 651 | { |
| 652 | clauseset.indexclauses[indexcol] = |
| 653 | lappend(clauseset.indexclauses[indexcol], iclause); |
| 654 | break; |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | /* Add restriction clauses (this is nondestructive to rclauseset) */ |
| 659 | clauseset.indexclauses[indexcol] = |
| 660 | list_concat(clauseset.indexclauses[indexcol], |
| 661 | rclauseset->indexclauses[indexcol]); |
| 662 | |
| 663 | if (clauseset.indexclauses[indexcol] != NIL) |
| 664 | clauseset.nonempty = true; |
| 665 | } |
| 666 | |
| 667 | /* We should have found something, else caller passed silly relids */ |
| 668 | Assert(clauseset.nonempty); |
| 669 | |
| 670 | /* Build index path(s) using the collected set of clauses */ |
| 671 | get_index_paths(root, rel, index, &clauseset, bitindexpaths); |
| 672 | |
| 673 | /* |
| 674 | * Remember we considered paths for this set of relids. We use lcons not |
| 675 | * lappend to avoid confusing the loop in consider_index_join_outer_rels. |
| 676 | */ |
| 677 | *considered_relids = lcons(relids, *considered_relids); |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * eclass_already_used |
| 682 | * True if any join clause usable with oldrelids was generated from |
| 683 | * the specified equivalence class. |
| 684 | */ |
| 685 | static bool |
| 686 | eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids, |
| 687 | List *indexjoinclauses) |
| 688 | { |
| 689 | ListCell *lc; |
| 690 | |
| 691 | foreach(lc, indexjoinclauses) |
| 692 | { |
| 693 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 694 | RestrictInfo *rinfo = iclause->rinfo; |
| 695 | |
| 696 | if (rinfo->parent_ec == parent_ec && |
| 697 | bms_is_subset(rinfo->clause_relids, oldrelids)) |
| 698 | return true; |
| 699 | } |
| 700 | return false; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * bms_equal_any |
| 705 | * True if relids is bms_equal to any member of relids_list |
| 706 | * |
| 707 | * Perhaps this should be in bitmapset.c someday. |
| 708 | */ |
| 709 | static bool |
| 710 | bms_equal_any(Relids relids, List *relids_list) |
| 711 | { |
| 712 | ListCell *lc; |
| 713 | |
| 714 | foreach(lc, relids_list) |
| 715 | { |
| 716 | if (bms_equal(relids, (Relids) lfirst(lc))) |
| 717 | return true; |
| 718 | } |
| 719 | return false; |
| 720 | } |
| 721 | |
| 722 | |
| 723 | /* |
| 724 | * get_index_paths |
| 725 | * Given an index and a set of index clauses for it, construct IndexPaths. |
| 726 | * |
| 727 | * Plain indexpaths are sent directly to add_path, while potential |
| 728 | * bitmap indexpaths are added to *bitindexpaths for later processing. |
| 729 | * |
| 730 | * This is a fairly simple frontend to build_index_paths(). Its reason for |
| 731 | * existence is mainly to handle ScalarArrayOpExpr quals properly. If the |
| 732 | * index AM supports them natively, we should just include them in simple |
| 733 | * index paths. If not, we should exclude them while building simple index |
| 734 | * paths, and then make a separate attempt to include them in bitmap paths. |
| 735 | * Furthermore, we should consider excluding lower-order ScalarArrayOpExpr |
| 736 | * quals so as to create ordered paths. |
| 737 | */ |
| 738 | static void |
| 739 | get_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 740 | IndexOptInfo *index, IndexClauseSet *clauses, |
| 741 | List **bitindexpaths) |
| 742 | { |
| 743 | List *indexpaths; |
| 744 | bool skip_nonnative_saop = false; |
| 745 | bool skip_lower_saop = false; |
| 746 | ListCell *lc; |
| 747 | |
| 748 | /* |
| 749 | * Build simple index paths using the clauses. Allow ScalarArrayOpExpr |
| 750 | * clauses only if the index AM supports them natively, and skip any such |
| 751 | * clauses for index columns after the first (so that we produce ordered |
| 752 | * paths if possible). |
| 753 | */ |
| 754 | indexpaths = build_index_paths(root, rel, |
| 755 | index, clauses, |
| 756 | index->predOK, |
| 757 | ST_ANYSCAN, |
| 758 | &skip_nonnative_saop, |
| 759 | &skip_lower_saop); |
| 760 | |
| 761 | /* |
| 762 | * If we skipped any lower-order ScalarArrayOpExprs on an index with an AM |
| 763 | * that supports them, then try again including those clauses. This will |
| 764 | * produce paths with more selectivity but no ordering. |
| 765 | */ |
| 766 | if (skip_lower_saop) |
| 767 | { |
| 768 | indexpaths = list_concat(indexpaths, |
| 769 | build_index_paths(root, rel, |
| 770 | index, clauses, |
| 771 | index->predOK, |
| 772 | ST_ANYSCAN, |
| 773 | &skip_nonnative_saop, |
| 774 | NULL)); |
| 775 | } |
| 776 | |
| 777 | /* |
| 778 | * Submit all the ones that can form plain IndexScan plans to add_path. (A |
| 779 | * plain IndexPath can represent either a plain IndexScan or an |
| 780 | * IndexOnlyScan, but for our purposes here that distinction does not |
| 781 | * matter. However, some of the indexes might support only bitmap scans, |
| 782 | * and those we mustn't submit to add_path here.) |
| 783 | * |
| 784 | * Also, pick out the ones that are usable as bitmap scans. For that, we |
| 785 | * must discard indexes that don't support bitmap scans, and we also are |
| 786 | * only interested in paths that have some selectivity; we should discard |
| 787 | * anything that was generated solely for ordering purposes. |
| 788 | */ |
| 789 | foreach(lc, indexpaths) |
| 790 | { |
| 791 | IndexPath *ipath = (IndexPath *) lfirst(lc); |
| 792 | |
| 793 | if (index->amhasgettuple) |
| 794 | add_path(rel, (Path *) ipath); |
| 795 | |
| 796 | if (index->amhasgetbitmap && |
| 797 | (ipath->path.pathkeys == NIL || |
| 798 | ipath->indexselectivity < 1.0)) |
| 799 | *bitindexpaths = lappend(*bitindexpaths, ipath); |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | * If there were ScalarArrayOpExpr clauses that the index can't handle |
| 804 | * natively, generate bitmap scan paths relying on executor-managed |
| 805 | * ScalarArrayOpExpr. |
| 806 | */ |
| 807 | if (skip_nonnative_saop) |
| 808 | { |
| 809 | indexpaths = build_index_paths(root, rel, |
| 810 | index, clauses, |
| 811 | false, |
| 812 | ST_BITMAPSCAN, |
| 813 | NULL, |
| 814 | NULL); |
| 815 | *bitindexpaths = list_concat(*bitindexpaths, indexpaths); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * build_index_paths |
| 821 | * Given an index and a set of index clauses for it, construct zero |
| 822 | * or more IndexPaths. It also constructs zero or more partial IndexPaths. |
| 823 | * |
| 824 | * We return a list of paths because (1) this routine checks some cases |
| 825 | * that should cause us to not generate any IndexPath, and (2) in some |
| 826 | * cases we want to consider both a forward and a backward scan, so as |
| 827 | * to obtain both sort orders. Note that the paths are just returned |
| 828 | * to the caller and not immediately fed to add_path(). |
| 829 | * |
| 830 | * At top level, useful_predicate should be exactly the index's predOK flag |
| 831 | * (ie, true if it has a predicate that was proven from the restriction |
| 832 | * clauses). When working on an arm of an OR clause, useful_predicate |
| 833 | * should be true if the predicate required the current OR list to be proven. |
| 834 | * Note that this routine should never be called at all if the index has an |
| 835 | * unprovable predicate. |
| 836 | * |
| 837 | * scantype indicates whether we want to create plain indexscans, bitmap |
| 838 | * indexscans, or both. When it's ST_BITMAPSCAN, we will not consider |
| 839 | * index ordering while deciding if a Path is worth generating. |
| 840 | * |
| 841 | * If skip_nonnative_saop is non-NULL, we ignore ScalarArrayOpExpr clauses |
| 842 | * unless the index AM supports them directly, and we set *skip_nonnative_saop |
| 843 | * to true if we found any such clauses (caller must initialize the variable |
| 844 | * to false). If it's NULL, we do not ignore ScalarArrayOpExpr clauses. |
| 845 | * |
| 846 | * If skip_lower_saop is non-NULL, we ignore ScalarArrayOpExpr clauses for |
| 847 | * non-first index columns, and we set *skip_lower_saop to true if we found |
| 848 | * any such clauses (caller must initialize the variable to false). If it's |
| 849 | * NULL, we do not ignore non-first ScalarArrayOpExpr clauses, but they will |
| 850 | * result in considering the scan's output to be unordered. |
| 851 | * |
| 852 | * 'rel' is the index's heap relation |
| 853 | * 'index' is the index for which we want to generate paths |
| 854 | * 'clauses' is the collection of indexable clauses (IndexClause nodes) |
| 855 | * 'useful_predicate' indicates whether the index has a useful predicate |
| 856 | * 'scantype' indicates whether we need plain or bitmap scan support |
| 857 | * 'skip_nonnative_saop' indicates whether to accept SAOP if index AM doesn't |
| 858 | * 'skip_lower_saop' indicates whether to accept non-first-column SAOP |
| 859 | */ |
| 860 | static List * |
| 861 | build_index_paths(PlannerInfo *root, RelOptInfo *rel, |
| 862 | IndexOptInfo *index, IndexClauseSet *clauses, |
| 863 | bool useful_predicate, |
| 864 | ScanTypeControl scantype, |
| 865 | bool *skip_nonnative_saop, |
| 866 | bool *skip_lower_saop) |
| 867 | { |
| 868 | List *result = NIL; |
| 869 | IndexPath *ipath; |
| 870 | List *index_clauses; |
| 871 | Relids outer_relids; |
| 872 | double loop_count; |
| 873 | List *orderbyclauses; |
| 874 | List *orderbyclausecols; |
| 875 | List *index_pathkeys; |
| 876 | List *useful_pathkeys; |
| 877 | bool found_lower_saop_clause; |
| 878 | bool pathkeys_possibly_useful; |
| 879 | bool index_is_ordered; |
| 880 | bool index_only_scan; |
| 881 | int indexcol; |
| 882 | |
| 883 | /* |
| 884 | * Check that index supports the desired scan type(s) |
| 885 | */ |
| 886 | switch (scantype) |
| 887 | { |
| 888 | case ST_INDEXSCAN: |
| 889 | if (!index->amhasgettuple) |
| 890 | return NIL; |
| 891 | break; |
| 892 | case ST_BITMAPSCAN: |
| 893 | if (!index->amhasgetbitmap) |
| 894 | return NIL; |
| 895 | break; |
| 896 | case ST_ANYSCAN: |
| 897 | /* either or both are OK */ |
| 898 | break; |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * 1. Combine the per-column IndexClause lists into an overall list. |
| 903 | * |
| 904 | * In the resulting list, clauses are ordered by index key, so that the |
| 905 | * column numbers form a nondecreasing sequence. (This order is depended |
| 906 | * on by btree and possibly other places.) The list can be empty, if the |
| 907 | * index AM allows that. |
| 908 | * |
| 909 | * found_lower_saop_clause is set true if we accept a ScalarArrayOpExpr |
| 910 | * index clause for a non-first index column. This prevents us from |
| 911 | * assuming that the scan result is ordered. (Actually, the result is |
| 912 | * still ordered if there are equality constraints for all earlier |
| 913 | * columns, but it seems too expensive and non-modular for this code to be |
| 914 | * aware of that refinement.) |
| 915 | * |
| 916 | * We also build a Relids set showing which outer rels are required by the |
| 917 | * selected clauses. Any lateral_relids are included in that, but not |
| 918 | * otherwise accounted for. |
| 919 | */ |
| 920 | index_clauses = NIL; |
| 921 | found_lower_saop_clause = false; |
| 922 | outer_relids = bms_copy(rel->lateral_relids); |
| 923 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 924 | { |
| 925 | ListCell *lc; |
| 926 | |
| 927 | foreach(lc, clauses->indexclauses[indexcol]) |
| 928 | { |
| 929 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 930 | RestrictInfo *rinfo = iclause->rinfo; |
| 931 | |
| 932 | /* We might need to omit ScalarArrayOpExpr clauses */ |
| 933 | if (IsA(rinfo->clause, ScalarArrayOpExpr)) |
| 934 | { |
| 935 | if (!index->amsearcharray) |
| 936 | { |
| 937 | if (skip_nonnative_saop) |
| 938 | { |
| 939 | /* Ignore because not supported by index */ |
| 940 | *skip_nonnative_saop = true; |
| 941 | continue; |
| 942 | } |
| 943 | /* Caller had better intend this only for bitmap scan */ |
| 944 | Assert(scantype == ST_BITMAPSCAN); |
| 945 | } |
| 946 | if (indexcol > 0) |
| 947 | { |
| 948 | if (skip_lower_saop) |
| 949 | { |
| 950 | /* Caller doesn't want to lose index ordering */ |
| 951 | *skip_lower_saop = true; |
| 952 | continue; |
| 953 | } |
| 954 | found_lower_saop_clause = true; |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | /* OK to include this clause */ |
| 959 | index_clauses = lappend(index_clauses, iclause); |
| 960 | outer_relids = bms_add_members(outer_relids, |
| 961 | rinfo->clause_relids); |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * If no clauses match the first index column, check for amoptionalkey |
| 966 | * restriction. We can't generate a scan over an index with |
| 967 | * amoptionalkey = false unless there's at least one index clause. |
| 968 | * (When working on columns after the first, this test cannot fail. It |
| 969 | * is always okay for columns after the first to not have any |
| 970 | * clauses.) |
| 971 | */ |
| 972 | if (index_clauses == NIL && !index->amoptionalkey) |
| 973 | return NIL; |
| 974 | } |
| 975 | |
| 976 | /* We do not want the index's rel itself listed in outer_relids */ |
| 977 | outer_relids = bms_del_member(outer_relids, rel->relid); |
| 978 | /* Enforce convention that outer_relids is exactly NULL if empty */ |
| 979 | if (bms_is_empty(outer_relids)) |
| 980 | outer_relids = NULL; |
| 981 | |
| 982 | /* Compute loop_count for cost estimation purposes */ |
| 983 | loop_count = get_loop_count(root, rel->relid, outer_relids); |
| 984 | |
| 985 | /* |
| 986 | * 2. Compute pathkeys describing index's ordering, if any, then see how |
| 987 | * many of them are actually useful for this query. This is not relevant |
| 988 | * if we are only trying to build bitmap indexscans, nor if we have to |
| 989 | * assume the scan is unordered. |
| 990 | */ |
| 991 | pathkeys_possibly_useful = (scantype != ST_BITMAPSCAN && |
| 992 | !found_lower_saop_clause && |
| 993 | has_useful_pathkeys(root, rel)); |
| 994 | index_is_ordered = (index->sortopfamily != NULL); |
| 995 | if (index_is_ordered && pathkeys_possibly_useful) |
| 996 | { |
| 997 | index_pathkeys = build_index_pathkeys(root, index, |
| 998 | ForwardScanDirection); |
| 999 | useful_pathkeys = truncate_useless_pathkeys(root, rel, |
| 1000 | index_pathkeys); |
| 1001 | orderbyclauses = NIL; |
| 1002 | orderbyclausecols = NIL; |
| 1003 | } |
| 1004 | else if (index->amcanorderbyop && pathkeys_possibly_useful) |
| 1005 | { |
| 1006 | /* see if we can generate ordering operators for query_pathkeys */ |
| 1007 | match_pathkeys_to_index(index, root->query_pathkeys, |
| 1008 | &orderbyclauses, |
| 1009 | &orderbyclausecols); |
| 1010 | if (orderbyclauses) |
| 1011 | useful_pathkeys = root->query_pathkeys; |
| 1012 | else |
| 1013 | useful_pathkeys = NIL; |
| 1014 | } |
| 1015 | else |
| 1016 | { |
| 1017 | useful_pathkeys = NIL; |
| 1018 | orderbyclauses = NIL; |
| 1019 | orderbyclausecols = NIL; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * 3. Check if an index-only scan is possible. If we're not building |
| 1024 | * plain indexscans, this isn't relevant since bitmap scans don't support |
| 1025 | * index data retrieval anyway. |
| 1026 | */ |
| 1027 | index_only_scan = (scantype != ST_BITMAPSCAN && |
| 1028 | check_index_only(rel, index)); |
| 1029 | |
| 1030 | /* |
| 1031 | * 4. Generate an indexscan path if there are relevant restriction clauses |
| 1032 | * in the current clauses, OR the index ordering is potentially useful for |
| 1033 | * later merging or final output ordering, OR the index has a useful |
| 1034 | * predicate, OR an index-only scan is possible. |
| 1035 | */ |
| 1036 | if (index_clauses != NIL || useful_pathkeys != NIL || useful_predicate || |
| 1037 | index_only_scan) |
| 1038 | { |
| 1039 | ipath = create_index_path(root, index, |
| 1040 | index_clauses, |
| 1041 | orderbyclauses, |
| 1042 | orderbyclausecols, |
| 1043 | useful_pathkeys, |
| 1044 | index_is_ordered ? |
| 1045 | ForwardScanDirection : |
| 1046 | NoMovementScanDirection, |
| 1047 | index_only_scan, |
| 1048 | outer_relids, |
| 1049 | loop_count, |
| 1050 | false); |
| 1051 | result = lappend(result, ipath); |
| 1052 | |
| 1053 | /* |
| 1054 | * If appropriate, consider parallel index scan. We don't allow |
| 1055 | * parallel index scan for bitmap index scans. |
| 1056 | */ |
| 1057 | if (index->amcanparallel && |
| 1058 | rel->consider_parallel && outer_relids == NULL && |
| 1059 | scantype != ST_BITMAPSCAN) |
| 1060 | { |
| 1061 | ipath = create_index_path(root, index, |
| 1062 | index_clauses, |
| 1063 | orderbyclauses, |
| 1064 | orderbyclausecols, |
| 1065 | useful_pathkeys, |
| 1066 | index_is_ordered ? |
| 1067 | ForwardScanDirection : |
| 1068 | NoMovementScanDirection, |
| 1069 | index_only_scan, |
| 1070 | outer_relids, |
| 1071 | loop_count, |
| 1072 | true); |
| 1073 | |
| 1074 | /* |
| 1075 | * if, after costing the path, we find that it's not worth using |
| 1076 | * parallel workers, just free it. |
| 1077 | */ |
| 1078 | if (ipath->path.parallel_workers > 0) |
| 1079 | add_partial_path(rel, (Path *) ipath); |
| 1080 | else |
| 1081 | pfree(ipath); |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | /* |
| 1086 | * 5. If the index is ordered, a backwards scan might be interesting. |
| 1087 | */ |
| 1088 | if (index_is_ordered && pathkeys_possibly_useful) |
| 1089 | { |
| 1090 | index_pathkeys = build_index_pathkeys(root, index, |
| 1091 | BackwardScanDirection); |
| 1092 | useful_pathkeys = truncate_useless_pathkeys(root, rel, |
| 1093 | index_pathkeys); |
| 1094 | if (useful_pathkeys != NIL) |
| 1095 | { |
| 1096 | ipath = create_index_path(root, index, |
| 1097 | index_clauses, |
| 1098 | NIL, |
| 1099 | NIL, |
| 1100 | useful_pathkeys, |
| 1101 | BackwardScanDirection, |
| 1102 | index_only_scan, |
| 1103 | outer_relids, |
| 1104 | loop_count, |
| 1105 | false); |
| 1106 | result = lappend(result, ipath); |
| 1107 | |
| 1108 | /* If appropriate, consider parallel index scan */ |
| 1109 | if (index->amcanparallel && |
| 1110 | rel->consider_parallel && outer_relids == NULL && |
| 1111 | scantype != ST_BITMAPSCAN) |
| 1112 | { |
| 1113 | ipath = create_index_path(root, index, |
| 1114 | index_clauses, |
| 1115 | NIL, |
| 1116 | NIL, |
| 1117 | useful_pathkeys, |
| 1118 | BackwardScanDirection, |
| 1119 | index_only_scan, |
| 1120 | outer_relids, |
| 1121 | loop_count, |
| 1122 | true); |
| 1123 | |
| 1124 | /* |
| 1125 | * if, after costing the path, we find that it's not worth |
| 1126 | * using parallel workers, just free it. |
| 1127 | */ |
| 1128 | if (ipath->path.parallel_workers > 0) |
| 1129 | add_partial_path(rel, (Path *) ipath); |
| 1130 | else |
| 1131 | pfree(ipath); |
| 1132 | } |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | return result; |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * build_paths_for_OR |
| 1141 | * Given a list of restriction clauses from one arm of an OR clause, |
| 1142 | * construct all matching IndexPaths for the relation. |
| 1143 | * |
| 1144 | * Here we must scan all indexes of the relation, since a bitmap OR tree |
| 1145 | * can use multiple indexes. |
| 1146 | * |
| 1147 | * The caller actually supplies two lists of restriction clauses: some |
| 1148 | * "current" ones and some "other" ones. Both lists can be used freely |
| 1149 | * to match keys of the index, but an index must use at least one of the |
| 1150 | * "current" clauses to be considered usable. The motivation for this is |
| 1151 | * examples like |
| 1152 | * WHERE (x = 42) AND (... OR (y = 52 AND z = 77) OR ....) |
| 1153 | * While we are considering the y/z subclause of the OR, we can use "x = 42" |
| 1154 | * as one of the available index conditions; but we shouldn't match the |
| 1155 | * subclause to any index on x alone, because such a Path would already have |
| 1156 | * been generated at the upper level. So we could use an index on x,y,z |
| 1157 | * or an index on x,y for the OR subclause, but not an index on just x. |
| 1158 | * When dealing with a partial index, a match of the index predicate to |
| 1159 | * one of the "current" clauses also makes the index usable. |
| 1160 | * |
| 1161 | * 'rel' is the relation for which we want to generate index paths |
| 1162 | * 'clauses' is the current list of clauses (RestrictInfo nodes) |
| 1163 | * 'other_clauses' is the list of additional upper-level clauses |
| 1164 | */ |
| 1165 | static List * |
| 1166 | build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel, |
| 1167 | List *clauses, List *other_clauses) |
| 1168 | { |
| 1169 | List *result = NIL; |
| 1170 | List *all_clauses = NIL; /* not computed till needed */ |
| 1171 | ListCell *lc; |
| 1172 | |
| 1173 | foreach(lc, rel->indexlist) |
| 1174 | { |
| 1175 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
| 1176 | IndexClauseSet clauseset; |
| 1177 | List *indexpaths; |
| 1178 | bool useful_predicate; |
| 1179 | |
| 1180 | /* Ignore index if it doesn't support bitmap scans */ |
| 1181 | if (!index->amhasgetbitmap) |
| 1182 | continue; |
| 1183 | |
| 1184 | /* |
| 1185 | * Ignore partial indexes that do not match the query. If a partial |
| 1186 | * index is marked predOK then we know it's OK. Otherwise, we have to |
| 1187 | * test whether the added clauses are sufficient to imply the |
| 1188 | * predicate. If so, we can use the index in the current context. |
| 1189 | * |
| 1190 | * We set useful_predicate to true iff the predicate was proven using |
| 1191 | * the current set of clauses. This is needed to prevent matching a |
| 1192 | * predOK index to an arm of an OR, which would be a legal but |
| 1193 | * pointlessly inefficient plan. (A better plan will be generated by |
| 1194 | * just scanning the predOK index alone, no OR.) |
| 1195 | */ |
| 1196 | useful_predicate = false; |
| 1197 | if (index->indpred != NIL) |
| 1198 | { |
| 1199 | if (index->predOK) |
| 1200 | { |
| 1201 | /* Usable, but don't set useful_predicate */ |
| 1202 | } |
| 1203 | else |
| 1204 | { |
| 1205 | /* Form all_clauses if not done already */ |
| 1206 | if (all_clauses == NIL) |
| 1207 | all_clauses = list_concat(list_copy(clauses), |
| 1208 | other_clauses); |
| 1209 | |
| 1210 | if (!predicate_implied_by(index->indpred, all_clauses, false)) |
| 1211 | continue; /* can't use it at all */ |
| 1212 | |
| 1213 | if (!predicate_implied_by(index->indpred, other_clauses, false)) |
| 1214 | useful_predicate = true; |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Identify the restriction clauses that can match the index. |
| 1220 | */ |
| 1221 | MemSet(&clauseset, 0, sizeof(clauseset)); |
| 1222 | match_clauses_to_index(root, clauses, index, &clauseset); |
| 1223 | |
| 1224 | /* |
| 1225 | * If no matches so far, and the index predicate isn't useful, we |
| 1226 | * don't want it. |
| 1227 | */ |
| 1228 | if (!clauseset.nonempty && !useful_predicate) |
| 1229 | continue; |
| 1230 | |
| 1231 | /* |
| 1232 | * Add "other" restriction clauses to the clauseset. |
| 1233 | */ |
| 1234 | match_clauses_to_index(root, other_clauses, index, &clauseset); |
| 1235 | |
| 1236 | /* |
| 1237 | * Construct paths if possible. |
| 1238 | */ |
| 1239 | indexpaths = build_index_paths(root, rel, |
| 1240 | index, &clauseset, |
| 1241 | useful_predicate, |
| 1242 | ST_BITMAPSCAN, |
| 1243 | NULL, |
| 1244 | NULL); |
| 1245 | result = list_concat(result, indexpaths); |
| 1246 | } |
| 1247 | |
| 1248 | return result; |
| 1249 | } |
| 1250 | |
| 1251 | /* |
| 1252 | * generate_bitmap_or_paths |
| 1253 | * Look through the list of clauses to find OR clauses, and generate |
| 1254 | * a BitmapOrPath for each one we can handle that way. Return a list |
| 1255 | * of the generated BitmapOrPaths. |
| 1256 | * |
| 1257 | * other_clauses is a list of additional clauses that can be assumed true |
| 1258 | * for the purpose of generating indexquals, but are not to be searched for |
| 1259 | * ORs. (See build_paths_for_OR() for motivation.) |
| 1260 | */ |
| 1261 | static List * |
| 1262 | generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel, |
| 1263 | List *clauses, List *other_clauses) |
| 1264 | { |
| 1265 | List *result = NIL; |
| 1266 | List *all_clauses; |
| 1267 | ListCell *lc; |
| 1268 | |
| 1269 | /* |
| 1270 | * We can use both the current and other clauses as context for |
| 1271 | * build_paths_for_OR; no need to remove ORs from the lists. |
| 1272 | */ |
| 1273 | all_clauses = list_concat(list_copy(clauses), other_clauses); |
| 1274 | |
| 1275 | foreach(lc, clauses) |
| 1276 | { |
| 1277 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc); |
| 1278 | List *pathlist; |
| 1279 | Path *bitmapqual; |
| 1280 | ListCell *j; |
| 1281 | |
| 1282 | /* Ignore RestrictInfos that aren't ORs */ |
| 1283 | if (!restriction_is_or_clause(rinfo)) |
| 1284 | continue; |
| 1285 | |
| 1286 | /* |
| 1287 | * We must be able to match at least one index to each of the arms of |
| 1288 | * the OR, else we can't use it. |
| 1289 | */ |
| 1290 | pathlist = NIL; |
| 1291 | foreach(j, ((BoolExpr *) rinfo->orclause)->args) |
| 1292 | { |
| 1293 | Node *orarg = (Node *) lfirst(j); |
| 1294 | List *indlist; |
| 1295 | |
| 1296 | /* OR arguments should be ANDs or sub-RestrictInfos */ |
| 1297 | if (is_andclause(orarg)) |
| 1298 | { |
| 1299 | List *andargs = ((BoolExpr *) orarg)->args; |
| 1300 | |
| 1301 | indlist = build_paths_for_OR(root, rel, |
| 1302 | andargs, |
| 1303 | all_clauses); |
| 1304 | |
| 1305 | /* Recurse in case there are sub-ORs */ |
| 1306 | indlist = list_concat(indlist, |
| 1307 | generate_bitmap_or_paths(root, rel, |
| 1308 | andargs, |
| 1309 | all_clauses)); |
| 1310 | } |
| 1311 | else |
| 1312 | { |
| 1313 | RestrictInfo *rinfo = castNode(RestrictInfo, orarg); |
| 1314 | List *orargs; |
| 1315 | |
| 1316 | Assert(!restriction_is_or_clause(rinfo)); |
| 1317 | orargs = list_make1(rinfo); |
| 1318 | |
| 1319 | indlist = build_paths_for_OR(root, rel, |
| 1320 | orargs, |
| 1321 | all_clauses); |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * If nothing matched this arm, we can't do anything with this OR |
| 1326 | * clause. |
| 1327 | */ |
| 1328 | if (indlist == NIL) |
| 1329 | { |
| 1330 | pathlist = NIL; |
| 1331 | break; |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * OK, pick the most promising AND combination, and add it to |
| 1336 | * pathlist. |
| 1337 | */ |
| 1338 | bitmapqual = choose_bitmap_and(root, rel, indlist); |
| 1339 | pathlist = lappend(pathlist, bitmapqual); |
| 1340 | } |
| 1341 | |
| 1342 | /* |
| 1343 | * If we have a match for every arm, then turn them into a |
| 1344 | * BitmapOrPath, and add to result list. |
| 1345 | */ |
| 1346 | if (pathlist != NIL) |
| 1347 | { |
| 1348 | bitmapqual = (Path *) create_bitmap_or_path(root, rel, pathlist); |
| 1349 | result = lappend(result, bitmapqual); |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | return result; |
| 1354 | } |
| 1355 | |
| 1356 | |
| 1357 | /* |
| 1358 | * choose_bitmap_and |
| 1359 | * Given a nonempty list of bitmap paths, AND them into one path. |
| 1360 | * |
| 1361 | * This is a nontrivial decision since we can legally use any subset of the |
| 1362 | * given path set. We want to choose a good tradeoff between selectivity |
| 1363 | * and cost of computing the bitmap. |
| 1364 | * |
| 1365 | * The result is either a single one of the inputs, or a BitmapAndPath |
| 1366 | * combining multiple inputs. |
| 1367 | */ |
| 1368 | static Path * |
| 1369 | choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths) |
| 1370 | { |
| 1371 | int npaths = list_length(paths); |
| 1372 | PathClauseUsage **pathinfoarray; |
| 1373 | PathClauseUsage *pathinfo; |
| 1374 | List *clauselist; |
| 1375 | List *bestpaths = NIL; |
| 1376 | Cost bestcost = 0; |
| 1377 | int i, |
| 1378 | j; |
| 1379 | ListCell *l; |
| 1380 | |
| 1381 | Assert(npaths > 0); /* else caller error */ |
| 1382 | if (npaths == 1) |
| 1383 | return (Path *) linitial(paths); /* easy case */ |
| 1384 | |
| 1385 | /* |
| 1386 | * In theory we should consider every nonempty subset of the given paths. |
| 1387 | * In practice that seems like overkill, given the crude nature of the |
| 1388 | * estimates, not to mention the possible effects of higher-level AND and |
| 1389 | * OR clauses. Moreover, it's completely impractical if there are a large |
| 1390 | * number of paths, since the work would grow as O(2^N). |
| 1391 | * |
| 1392 | * As a heuristic, we first check for paths using exactly the same sets of |
| 1393 | * WHERE clauses + index predicate conditions, and reject all but the |
| 1394 | * cheapest-to-scan in any such group. This primarily gets rid of indexes |
| 1395 | * that include the interesting columns but also irrelevant columns. (In |
| 1396 | * situations where the DBA has gone overboard on creating variant |
| 1397 | * indexes, this can make for a very large reduction in the number of |
| 1398 | * paths considered further.) |
| 1399 | * |
| 1400 | * We then sort the surviving paths with the cheapest-to-scan first, and |
| 1401 | * for each path, consider using that path alone as the basis for a bitmap |
| 1402 | * scan. Then we consider bitmap AND scans formed from that path plus |
| 1403 | * each subsequent (higher-cost) path, adding on a subsequent path if it |
| 1404 | * results in a reduction in the estimated total scan cost. This means we |
| 1405 | * consider about O(N^2) rather than O(2^N) path combinations, which is |
| 1406 | * quite tolerable, especially given than N is usually reasonably small |
| 1407 | * because of the prefiltering step. The cheapest of these is returned. |
| 1408 | * |
| 1409 | * We will only consider AND combinations in which no two indexes use the |
| 1410 | * same WHERE clause. This is a bit of a kluge: it's needed because |
| 1411 | * costsize.c and clausesel.c aren't very smart about redundant clauses. |
| 1412 | * They will usually double-count the redundant clauses, producing a |
| 1413 | * too-small selectivity that makes a redundant AND step look like it |
| 1414 | * reduces the total cost. Perhaps someday that code will be smarter and |
| 1415 | * we can remove this limitation. (But note that this also defends |
| 1416 | * against flat-out duplicate input paths, which can happen because |
| 1417 | * match_join_clauses_to_index will find the same OR join clauses that |
| 1418 | * extract_restriction_or_clauses has pulled OR restriction clauses out |
| 1419 | * of.) |
| 1420 | * |
| 1421 | * For the same reason, we reject AND combinations in which an index |
| 1422 | * predicate clause duplicates another clause. Here we find it necessary |
| 1423 | * to be even stricter: we'll reject a partial index if any of its |
| 1424 | * predicate clauses are implied by the set of WHERE clauses and predicate |
| 1425 | * clauses used so far. This covers cases such as a condition "x = 42" |
| 1426 | * used with a plain index, followed by a clauseless scan of a partial |
| 1427 | * index "WHERE x >= 40 AND x < 50". The partial index has been accepted |
| 1428 | * only because "x = 42" was present, and so allowing it would partially |
| 1429 | * double-count selectivity. (We could use predicate_implied_by on |
| 1430 | * regular qual clauses too, to have a more intelligent, but much more |
| 1431 | * expensive, check for redundancy --- but in most cases simple equality |
| 1432 | * seems to suffice.) |
| 1433 | */ |
| 1434 | |
| 1435 | /* |
| 1436 | * Extract clause usage info and detect any paths that use exactly the |
| 1437 | * same set of clauses; keep only the cheapest-to-scan of any such groups. |
| 1438 | * The surviving paths are put into an array for qsort'ing. |
| 1439 | */ |
| 1440 | pathinfoarray = (PathClauseUsage **) |
| 1441 | palloc(npaths * sizeof(PathClauseUsage *)); |
| 1442 | clauselist = NIL; |
| 1443 | npaths = 0; |
| 1444 | foreach(l, paths) |
| 1445 | { |
| 1446 | Path *ipath = (Path *) lfirst(l); |
| 1447 | |
| 1448 | pathinfo = classify_index_clause_usage(ipath, &clauselist); |
| 1449 | |
| 1450 | /* If it's unclassifiable, treat it as distinct from all others */ |
| 1451 | if (pathinfo->unclassifiable) |
| 1452 | { |
| 1453 | pathinfoarray[npaths++] = pathinfo; |
| 1454 | continue; |
| 1455 | } |
| 1456 | |
| 1457 | for (i = 0; i < npaths; i++) |
| 1458 | { |
| 1459 | if (!pathinfoarray[i]->unclassifiable && |
| 1460 | bms_equal(pathinfo->clauseids, pathinfoarray[i]->clauseids)) |
| 1461 | break; |
| 1462 | } |
| 1463 | if (i < npaths) |
| 1464 | { |
| 1465 | /* duplicate clauseids, keep the cheaper one */ |
| 1466 | Cost ncost; |
| 1467 | Cost ocost; |
| 1468 | Selectivity nselec; |
| 1469 | Selectivity oselec; |
| 1470 | |
| 1471 | cost_bitmap_tree_node(pathinfo->path, &ncost, &nselec); |
| 1472 | cost_bitmap_tree_node(pathinfoarray[i]->path, &ocost, &oselec); |
| 1473 | if (ncost < ocost) |
| 1474 | pathinfoarray[i] = pathinfo; |
| 1475 | } |
| 1476 | else |
| 1477 | { |
| 1478 | /* not duplicate clauseids, add to array */ |
| 1479 | pathinfoarray[npaths++] = pathinfo; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | /* If only one surviving path, we're done */ |
| 1484 | if (npaths == 1) |
| 1485 | return pathinfoarray[0]->path; |
| 1486 | |
| 1487 | /* Sort the surviving paths by index access cost */ |
| 1488 | qsort(pathinfoarray, npaths, sizeof(PathClauseUsage *), |
| 1489 | path_usage_comparator); |
| 1490 | |
| 1491 | /* |
| 1492 | * For each surviving index, consider it as an "AND group leader", and see |
| 1493 | * whether adding on any of the later indexes results in an AND path with |
| 1494 | * cheaper total cost than before. Then take the cheapest AND group. |
| 1495 | * |
| 1496 | * Note: paths that are either clauseless or unclassifiable will have |
| 1497 | * empty clauseids, so that they will not be rejected by the clauseids |
| 1498 | * filter here, nor will they cause later paths to be rejected by it. |
| 1499 | */ |
| 1500 | for (i = 0; i < npaths; i++) |
| 1501 | { |
| 1502 | Cost costsofar; |
| 1503 | List *qualsofar; |
| 1504 | Bitmapset *clauseidsofar; |
| 1505 | ListCell *lastcell; |
| 1506 | |
| 1507 | pathinfo = pathinfoarray[i]; |
| 1508 | paths = list_make1(pathinfo->path); |
| 1509 | costsofar = bitmap_scan_cost_est(root, rel, pathinfo->path); |
| 1510 | qualsofar = list_concat(list_copy(pathinfo->quals), |
| 1511 | list_copy(pathinfo->preds)); |
| 1512 | clauseidsofar = bms_copy(pathinfo->clauseids); |
| 1513 | lastcell = list_head(paths); /* for quick deletions */ |
| 1514 | |
| 1515 | for (j = i + 1; j < npaths; j++) |
| 1516 | { |
| 1517 | Cost newcost; |
| 1518 | |
| 1519 | pathinfo = pathinfoarray[j]; |
| 1520 | /* Check for redundancy */ |
| 1521 | if (bms_overlap(pathinfo->clauseids, clauseidsofar)) |
| 1522 | continue; /* consider it redundant */ |
| 1523 | if (pathinfo->preds) |
| 1524 | { |
| 1525 | bool redundant = false; |
| 1526 | |
| 1527 | /* we check each predicate clause separately */ |
| 1528 | foreach(l, pathinfo->preds) |
| 1529 | { |
| 1530 | Node *np = (Node *) lfirst(l); |
| 1531 | |
| 1532 | if (predicate_implied_by(list_make1(np), qualsofar, false)) |
| 1533 | { |
| 1534 | redundant = true; |
| 1535 | break; /* out of inner foreach loop */ |
| 1536 | } |
| 1537 | } |
| 1538 | if (redundant) |
| 1539 | continue; |
| 1540 | } |
| 1541 | /* tentatively add new path to paths, so we can estimate cost */ |
| 1542 | paths = lappend(paths, pathinfo->path); |
| 1543 | newcost = bitmap_and_cost_est(root, rel, paths); |
| 1544 | if (newcost < costsofar) |
| 1545 | { |
| 1546 | /* keep new path in paths, update subsidiary variables */ |
| 1547 | costsofar = newcost; |
| 1548 | qualsofar = list_concat(qualsofar, |
| 1549 | list_copy(pathinfo->quals)); |
| 1550 | qualsofar = list_concat(qualsofar, |
| 1551 | list_copy(pathinfo->preds)); |
| 1552 | clauseidsofar = bms_add_members(clauseidsofar, |
| 1553 | pathinfo->clauseids); |
| 1554 | lastcell = lnext(lastcell); |
| 1555 | } |
| 1556 | else |
| 1557 | { |
| 1558 | /* reject new path, remove it from paths list */ |
| 1559 | paths = list_delete_cell(paths, lnext(lastcell), lastcell); |
| 1560 | } |
| 1561 | Assert(lnext(lastcell) == NULL); |
| 1562 | } |
| 1563 | |
| 1564 | /* Keep the cheapest AND-group (or singleton) */ |
| 1565 | if (i == 0 || costsofar < bestcost) |
| 1566 | { |
| 1567 | bestpaths = paths; |
| 1568 | bestcost = costsofar; |
| 1569 | } |
| 1570 | |
| 1571 | /* some easy cleanup (we don't try real hard though) */ |
| 1572 | list_free(qualsofar); |
| 1573 | } |
| 1574 | |
| 1575 | if (list_length(bestpaths) == 1) |
| 1576 | return (Path *) linitial(bestpaths); /* no need for AND */ |
| 1577 | return (Path *) create_bitmap_and_path(root, rel, bestpaths); |
| 1578 | } |
| 1579 | |
| 1580 | /* qsort comparator to sort in increasing index access cost order */ |
| 1581 | static int |
| 1582 | path_usage_comparator(const void *a, const void *b) |
| 1583 | { |
| 1584 | PathClauseUsage *pa = *(PathClauseUsage *const *) a; |
| 1585 | PathClauseUsage *pb = *(PathClauseUsage *const *) b; |
| 1586 | Cost acost; |
| 1587 | Cost bcost; |
| 1588 | Selectivity aselec; |
| 1589 | Selectivity bselec; |
| 1590 | |
| 1591 | cost_bitmap_tree_node(pa->path, &acost, &aselec); |
| 1592 | cost_bitmap_tree_node(pb->path, &bcost, &bselec); |
| 1593 | |
| 1594 | /* |
| 1595 | * If costs are the same, sort by selectivity. |
| 1596 | */ |
| 1597 | if (acost < bcost) |
| 1598 | return -1; |
| 1599 | if (acost > bcost) |
| 1600 | return 1; |
| 1601 | |
| 1602 | if (aselec < bselec) |
| 1603 | return -1; |
| 1604 | if (aselec > bselec) |
| 1605 | return 1; |
| 1606 | |
| 1607 | return 0; |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Estimate the cost of actually executing a bitmap scan with a single |
| 1612 | * index path (no BitmapAnd, at least not at this level; but it could be |
| 1613 | * a BitmapOr). |
| 1614 | */ |
| 1615 | static Cost |
| 1616 | bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel, Path *ipath) |
| 1617 | { |
| 1618 | BitmapHeapPath bpath; |
| 1619 | Relids required_outer; |
| 1620 | |
| 1621 | /* Identify required outer rels, in case it's a parameterized scan */ |
| 1622 | required_outer = get_bitmap_tree_required_outer(ipath); |
| 1623 | |
| 1624 | /* Set up a dummy BitmapHeapPath */ |
| 1625 | bpath.path.type = T_BitmapHeapPath; |
| 1626 | bpath.path.pathtype = T_BitmapHeapScan; |
| 1627 | bpath.path.parent = rel; |
| 1628 | bpath.path.pathtarget = rel->reltarget; |
| 1629 | bpath.path.param_info = get_baserel_parampathinfo(root, rel, |
| 1630 | required_outer); |
| 1631 | bpath.path.pathkeys = NIL; |
| 1632 | bpath.bitmapqual = ipath; |
| 1633 | |
| 1634 | /* |
| 1635 | * Check the cost of temporary path without considering parallelism. |
| 1636 | * Parallel bitmap heap path will be considered at later stage. |
| 1637 | */ |
| 1638 | bpath.path.parallel_workers = 0; |
| 1639 | cost_bitmap_heap_scan(&bpath.path, root, rel, |
| 1640 | bpath.path.param_info, |
| 1641 | ipath, |
| 1642 | get_loop_count(root, rel->relid, required_outer)); |
| 1643 | |
| 1644 | return bpath.path.total_cost; |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * Estimate the cost of actually executing a BitmapAnd scan with the given |
| 1649 | * inputs. |
| 1650 | */ |
| 1651 | static Cost |
| 1652 | bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel, List *paths) |
| 1653 | { |
| 1654 | BitmapAndPath apath; |
| 1655 | BitmapHeapPath bpath; |
| 1656 | Relids required_outer; |
| 1657 | |
| 1658 | /* Set up a dummy BitmapAndPath */ |
| 1659 | apath.path.type = T_BitmapAndPath; |
| 1660 | apath.path.pathtype = T_BitmapAnd; |
| 1661 | apath.path.parent = rel; |
| 1662 | apath.path.pathtarget = rel->reltarget; |
| 1663 | apath.path.param_info = NULL; /* not used in bitmap trees */ |
| 1664 | apath.path.pathkeys = NIL; |
| 1665 | apath.bitmapquals = paths; |
| 1666 | cost_bitmap_and_node(&apath, root); |
| 1667 | |
| 1668 | /* Identify required outer rels, in case it's a parameterized scan */ |
| 1669 | required_outer = get_bitmap_tree_required_outer((Path *) &apath); |
| 1670 | |
| 1671 | /* Set up a dummy BitmapHeapPath */ |
| 1672 | bpath.path.type = T_BitmapHeapPath; |
| 1673 | bpath.path.pathtype = T_BitmapHeapScan; |
| 1674 | bpath.path.parent = rel; |
| 1675 | bpath.path.pathtarget = rel->reltarget; |
| 1676 | bpath.path.param_info = get_baserel_parampathinfo(root, rel, |
| 1677 | required_outer); |
| 1678 | bpath.path.pathkeys = NIL; |
| 1679 | bpath.bitmapqual = (Path *) &apath; |
| 1680 | |
| 1681 | /* |
| 1682 | * Check the cost of temporary path without considering parallelism. |
| 1683 | * Parallel bitmap heap path will be considered at later stage. |
| 1684 | */ |
| 1685 | bpath.path.parallel_workers = 0; |
| 1686 | |
| 1687 | /* Now we can do cost_bitmap_heap_scan */ |
| 1688 | cost_bitmap_heap_scan(&bpath.path, root, rel, |
| 1689 | bpath.path.param_info, |
| 1690 | (Path *) &apath, |
| 1691 | get_loop_count(root, rel->relid, required_outer)); |
| 1692 | |
| 1693 | return bpath.path.total_cost; |
| 1694 | } |
| 1695 | |
| 1696 | |
| 1697 | /* |
| 1698 | * classify_index_clause_usage |
| 1699 | * Construct a PathClauseUsage struct describing the WHERE clauses and |
| 1700 | * index predicate clauses used by the given indexscan path. |
| 1701 | * We consider two clauses the same if they are equal(). |
| 1702 | * |
| 1703 | * At some point we might want to migrate this info into the Path data |
| 1704 | * structure proper, but for the moment it's only needed within |
| 1705 | * choose_bitmap_and(). |
| 1706 | * |
| 1707 | * *clauselist is used and expanded as needed to identify all the distinct |
| 1708 | * clauses seen across successive calls. Caller must initialize it to NIL |
| 1709 | * before first call of a set. |
| 1710 | */ |
| 1711 | static PathClauseUsage * |
| 1712 | classify_index_clause_usage(Path *path, List **clauselist) |
| 1713 | { |
| 1714 | PathClauseUsage *result; |
| 1715 | Bitmapset *clauseids; |
| 1716 | ListCell *lc; |
| 1717 | |
| 1718 | result = (PathClauseUsage *) palloc(sizeof(PathClauseUsage)); |
| 1719 | result->path = path; |
| 1720 | |
| 1721 | /* Recursively find the quals and preds used by the path */ |
| 1722 | result->quals = NIL; |
| 1723 | result->preds = NIL; |
| 1724 | find_indexpath_quals(path, &result->quals, &result->preds); |
| 1725 | |
| 1726 | /* |
| 1727 | * Some machine-generated queries have outlandish numbers of qual clauses. |
| 1728 | * To avoid getting into O(N^2) behavior even in this preliminary |
| 1729 | * classification step, we want to limit the number of entries we can |
| 1730 | * accumulate in *clauselist. Treat any path with more than 100 quals + |
| 1731 | * preds as unclassifiable, which will cause calling code to consider it |
| 1732 | * distinct from all other paths. |
| 1733 | */ |
| 1734 | if (list_length(result->quals) + list_length(result->preds) > 100) |
| 1735 | { |
| 1736 | result->clauseids = NULL; |
| 1737 | result->unclassifiable = true; |
| 1738 | return result; |
| 1739 | } |
| 1740 | |
| 1741 | /* Build up a bitmapset representing the quals and preds */ |
| 1742 | clauseids = NULL; |
| 1743 | foreach(lc, result->quals) |
| 1744 | { |
| 1745 | Node *node = (Node *) lfirst(lc); |
| 1746 | |
| 1747 | clauseids = bms_add_member(clauseids, |
| 1748 | find_list_position(node, clauselist)); |
| 1749 | } |
| 1750 | foreach(lc, result->preds) |
| 1751 | { |
| 1752 | Node *node = (Node *) lfirst(lc); |
| 1753 | |
| 1754 | clauseids = bms_add_member(clauseids, |
| 1755 | find_list_position(node, clauselist)); |
| 1756 | } |
| 1757 | result->clauseids = clauseids; |
| 1758 | result->unclassifiable = false; |
| 1759 | |
| 1760 | return result; |
| 1761 | } |
| 1762 | |
| 1763 | |
| 1764 | /* |
| 1765 | * get_bitmap_tree_required_outer |
| 1766 | * Find the required outer rels for a bitmap tree (index/and/or) |
| 1767 | * |
| 1768 | * We don't associate any particular parameterization with a BitmapAnd or |
| 1769 | * BitmapOr node; however, the IndexPaths have parameterization info, in |
| 1770 | * their capacity as standalone access paths. The parameterization required |
| 1771 | * for the bitmap heap scan node is the union of rels referenced in the |
| 1772 | * child IndexPaths. |
| 1773 | */ |
| 1774 | static Relids |
| 1775 | get_bitmap_tree_required_outer(Path *bitmapqual) |
| 1776 | { |
| 1777 | Relids result = NULL; |
| 1778 | ListCell *lc; |
| 1779 | |
| 1780 | if (IsA(bitmapqual, IndexPath)) |
| 1781 | { |
| 1782 | return bms_copy(PATH_REQ_OUTER(bitmapqual)); |
| 1783 | } |
| 1784 | else if (IsA(bitmapqual, BitmapAndPath)) |
| 1785 | { |
| 1786 | foreach(lc, ((BitmapAndPath *) bitmapqual)->bitmapquals) |
| 1787 | { |
| 1788 | result = bms_join(result, |
| 1789 | get_bitmap_tree_required_outer((Path *) lfirst(lc))); |
| 1790 | } |
| 1791 | } |
| 1792 | else if (IsA(bitmapqual, BitmapOrPath)) |
| 1793 | { |
| 1794 | foreach(lc, ((BitmapOrPath *) bitmapqual)->bitmapquals) |
| 1795 | { |
| 1796 | result = bms_join(result, |
| 1797 | get_bitmap_tree_required_outer((Path *) lfirst(lc))); |
| 1798 | } |
| 1799 | } |
| 1800 | else |
| 1801 | elog(ERROR, "unrecognized node type: %d" , nodeTag(bitmapqual)); |
| 1802 | |
| 1803 | return result; |
| 1804 | } |
| 1805 | |
| 1806 | |
| 1807 | /* |
| 1808 | * find_indexpath_quals |
| 1809 | * |
| 1810 | * Given the Path structure for a plain or bitmap indexscan, extract lists |
| 1811 | * of all the index clauses and index predicate conditions used in the Path. |
| 1812 | * These are appended to the initial contents of *quals and *preds (hence |
| 1813 | * caller should initialize those to NIL). |
| 1814 | * |
| 1815 | * Note we are not trying to produce an accurate representation of the AND/OR |
| 1816 | * semantics of the Path, but just find out all the base conditions used. |
| 1817 | * |
| 1818 | * The result lists contain pointers to the expressions used in the Path, |
| 1819 | * but all the list cells are freshly built, so it's safe to destructively |
| 1820 | * modify the lists (eg, by concat'ing with other lists). |
| 1821 | */ |
| 1822 | static void |
| 1823 | find_indexpath_quals(Path *bitmapqual, List **quals, List **preds) |
| 1824 | { |
| 1825 | if (IsA(bitmapqual, BitmapAndPath)) |
| 1826 | { |
| 1827 | BitmapAndPath *apath = (BitmapAndPath *) bitmapqual; |
| 1828 | ListCell *l; |
| 1829 | |
| 1830 | foreach(l, apath->bitmapquals) |
| 1831 | { |
| 1832 | find_indexpath_quals((Path *) lfirst(l), quals, preds); |
| 1833 | } |
| 1834 | } |
| 1835 | else if (IsA(bitmapqual, BitmapOrPath)) |
| 1836 | { |
| 1837 | BitmapOrPath *opath = (BitmapOrPath *) bitmapqual; |
| 1838 | ListCell *l; |
| 1839 | |
| 1840 | foreach(l, opath->bitmapquals) |
| 1841 | { |
| 1842 | find_indexpath_quals((Path *) lfirst(l), quals, preds); |
| 1843 | } |
| 1844 | } |
| 1845 | else if (IsA(bitmapqual, IndexPath)) |
| 1846 | { |
| 1847 | IndexPath *ipath = (IndexPath *) bitmapqual; |
| 1848 | ListCell *l; |
| 1849 | |
| 1850 | foreach(l, ipath->indexclauses) |
| 1851 | { |
| 1852 | IndexClause *iclause = (IndexClause *) lfirst(l); |
| 1853 | |
| 1854 | *quals = lappend(*quals, iclause->rinfo->clause); |
| 1855 | } |
| 1856 | *preds = list_concat(*preds, list_copy(ipath->indexinfo->indpred)); |
| 1857 | } |
| 1858 | else |
| 1859 | elog(ERROR, "unrecognized node type: %d" , nodeTag(bitmapqual)); |
| 1860 | } |
| 1861 | |
| 1862 | |
| 1863 | /* |
| 1864 | * find_list_position |
| 1865 | * Return the given node's position (counting from 0) in the given |
| 1866 | * list of nodes. If it's not equal() to any existing list member, |
| 1867 | * add it at the end, and return that position. |
| 1868 | */ |
| 1869 | static int |
| 1870 | find_list_position(Node *node, List **nodelist) |
| 1871 | { |
| 1872 | int i; |
| 1873 | ListCell *lc; |
| 1874 | |
| 1875 | i = 0; |
| 1876 | foreach(lc, *nodelist) |
| 1877 | { |
| 1878 | Node *oldnode = (Node *) lfirst(lc); |
| 1879 | |
| 1880 | if (equal(node, oldnode)) |
| 1881 | return i; |
| 1882 | i++; |
| 1883 | } |
| 1884 | |
| 1885 | *nodelist = lappend(*nodelist, node); |
| 1886 | |
| 1887 | return i; |
| 1888 | } |
| 1889 | |
| 1890 | |
| 1891 | /* |
| 1892 | * check_index_only |
| 1893 | * Determine whether an index-only scan is possible for this index. |
| 1894 | */ |
| 1895 | static bool |
| 1896 | check_index_only(RelOptInfo *rel, IndexOptInfo *index) |
| 1897 | { |
| 1898 | bool result; |
| 1899 | Bitmapset *attrs_used = NULL; |
| 1900 | Bitmapset *index_canreturn_attrs = NULL; |
| 1901 | Bitmapset *index_cannotreturn_attrs = NULL; |
| 1902 | ListCell *lc; |
| 1903 | int i; |
| 1904 | |
| 1905 | /* Index-only scans must be enabled */ |
| 1906 | if (!enable_indexonlyscan) |
| 1907 | return false; |
| 1908 | |
| 1909 | /* |
| 1910 | * Check that all needed attributes of the relation are available from the |
| 1911 | * index. |
| 1912 | */ |
| 1913 | |
| 1914 | /* |
| 1915 | * First, identify all the attributes needed for joins or final output. |
| 1916 | * Note: we must look at rel's targetlist, not the attr_needed data, |
| 1917 | * because attr_needed isn't computed for inheritance child rels. |
| 1918 | */ |
| 1919 | pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used); |
| 1920 | |
| 1921 | /* |
| 1922 | * Add all the attributes used by restriction clauses; but consider only |
| 1923 | * those clauses not implied by the index predicate, since ones that are |
| 1924 | * so implied don't need to be checked explicitly in the plan. |
| 1925 | * |
| 1926 | * Note: attributes used only in index quals would not be needed at |
| 1927 | * runtime either, if we are certain that the index is not lossy. However |
| 1928 | * it'd be complicated to account for that accurately, and it doesn't |
| 1929 | * matter in most cases, since we'd conclude that such attributes are |
| 1930 | * available from the index anyway. |
| 1931 | */ |
| 1932 | foreach(lc, index->indrestrictinfo) |
| 1933 | { |
| 1934 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 1935 | |
| 1936 | pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used); |
| 1937 | } |
| 1938 | |
| 1939 | /* |
| 1940 | * Construct a bitmapset of columns that the index can return back in an |
| 1941 | * index-only scan. If there are multiple index columns containing the |
| 1942 | * same attribute, all of them must be capable of returning the value, |
| 1943 | * since we might recheck operators on any of them. (Potentially we could |
| 1944 | * be smarter about that, but it's such a weird situation that it doesn't |
| 1945 | * seem worth spending a lot of sweat on.) |
| 1946 | */ |
| 1947 | for (i = 0; i < index->ncolumns; i++) |
| 1948 | { |
| 1949 | int attno = index->indexkeys[i]; |
| 1950 | |
| 1951 | /* |
| 1952 | * For the moment, we just ignore index expressions. It might be nice |
| 1953 | * to do something with them, later. |
| 1954 | */ |
| 1955 | if (attno == 0) |
| 1956 | continue; |
| 1957 | |
| 1958 | if (index->canreturn[i]) |
| 1959 | index_canreturn_attrs = |
| 1960 | bms_add_member(index_canreturn_attrs, |
| 1961 | attno - FirstLowInvalidHeapAttributeNumber); |
| 1962 | else |
| 1963 | index_cannotreturn_attrs = |
| 1964 | bms_add_member(index_cannotreturn_attrs, |
| 1965 | attno - FirstLowInvalidHeapAttributeNumber); |
| 1966 | } |
| 1967 | |
| 1968 | index_canreturn_attrs = bms_del_members(index_canreturn_attrs, |
| 1969 | index_cannotreturn_attrs); |
| 1970 | |
| 1971 | /* Do we have all the necessary attributes? */ |
| 1972 | result = bms_is_subset(attrs_used, index_canreturn_attrs); |
| 1973 | |
| 1974 | bms_free(attrs_used); |
| 1975 | bms_free(index_canreturn_attrs); |
| 1976 | bms_free(index_cannotreturn_attrs); |
| 1977 | |
| 1978 | return result; |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * get_loop_count |
| 1983 | * Choose the loop count estimate to use for costing a parameterized path |
| 1984 | * with the given set of outer relids. |
| 1985 | * |
| 1986 | * Since we produce parameterized paths before we've begun to generate join |
| 1987 | * relations, it's impossible to predict exactly how many times a parameterized |
| 1988 | * path will be iterated; we don't know the size of the relation that will be |
| 1989 | * on the outside of the nestloop. However, we should try to account for |
| 1990 | * multiple iterations somehow in costing the path. The heuristic embodied |
| 1991 | * here is to use the rowcount of the smallest other base relation needed in |
| 1992 | * the join clauses used by the path. (We could alternatively consider the |
| 1993 | * largest one, but that seems too optimistic.) This is of course the right |
| 1994 | * answer for single-other-relation cases, and it seems like a reasonable |
| 1995 | * zero-order approximation for multiway-join cases. |
| 1996 | * |
| 1997 | * In addition, we check to see if the other side of each join clause is on |
| 1998 | * the inside of some semijoin that the current relation is on the outside of. |
| 1999 | * If so, the only way that a parameterized path could be used is if the |
| 2000 | * semijoin RHS has been unique-ified, so we should use the number of unique |
| 2001 | * RHS rows rather than using the relation's raw rowcount. |
| 2002 | * |
| 2003 | * Note: for this to work, allpaths.c must establish all baserel size |
| 2004 | * estimates before it begins to compute paths, or at least before it |
| 2005 | * calls create_index_paths(). |
| 2006 | */ |
| 2007 | static double |
| 2008 | get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids) |
| 2009 | { |
| 2010 | double result; |
| 2011 | int outer_relid; |
| 2012 | |
| 2013 | /* For a non-parameterized path, just return 1.0 quickly */ |
| 2014 | if (outer_relids == NULL) |
| 2015 | return 1.0; |
| 2016 | |
| 2017 | result = 0.0; |
| 2018 | outer_relid = -1; |
| 2019 | while ((outer_relid = bms_next_member(outer_relids, outer_relid)) >= 0) |
| 2020 | { |
| 2021 | RelOptInfo *outer_rel; |
| 2022 | double rowcount; |
| 2023 | |
| 2024 | /* Paranoia: ignore bogus relid indexes */ |
| 2025 | if (outer_relid >= root->simple_rel_array_size) |
| 2026 | continue; |
| 2027 | outer_rel = root->simple_rel_array[outer_relid]; |
| 2028 | if (outer_rel == NULL) |
| 2029 | continue; |
| 2030 | Assert(outer_rel->relid == outer_relid); /* sanity check on array */ |
| 2031 | |
| 2032 | /* Other relation could be proven empty, if so ignore */ |
| 2033 | if (IS_DUMMY_REL(outer_rel)) |
| 2034 | continue; |
| 2035 | |
| 2036 | /* Otherwise, rel's rows estimate should be valid by now */ |
| 2037 | Assert(outer_rel->rows > 0); |
| 2038 | |
| 2039 | /* Check to see if rel is on the inside of any semijoins */ |
| 2040 | rowcount = adjust_rowcount_for_semijoins(root, |
| 2041 | cur_relid, |
| 2042 | outer_relid, |
| 2043 | outer_rel->rows); |
| 2044 | |
| 2045 | /* Remember smallest row count estimate among the outer rels */ |
| 2046 | if (result == 0.0 || result > rowcount) |
| 2047 | result = rowcount; |
| 2048 | } |
| 2049 | /* Return 1.0 if we found no valid relations (shouldn't happen) */ |
| 2050 | return (result > 0.0) ? result : 1.0; |
| 2051 | } |
| 2052 | |
| 2053 | /* |
| 2054 | * Check to see if outer_relid is on the inside of any semijoin that cur_relid |
| 2055 | * is on the outside of. If so, replace rowcount with the estimated number of |
| 2056 | * unique rows from the semijoin RHS (assuming that's smaller, which it might |
| 2057 | * not be). The estimate is crude but it's the best we can do at this stage |
| 2058 | * of the proceedings. |
| 2059 | */ |
| 2060 | static double |
| 2061 | adjust_rowcount_for_semijoins(PlannerInfo *root, |
| 2062 | Index cur_relid, |
| 2063 | Index outer_relid, |
| 2064 | double rowcount) |
| 2065 | { |
| 2066 | ListCell *lc; |
| 2067 | |
| 2068 | foreach(lc, root->join_info_list) |
| 2069 | { |
| 2070 | SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc); |
| 2071 | |
| 2072 | if (sjinfo->jointype == JOIN_SEMI && |
| 2073 | bms_is_member(cur_relid, sjinfo->syn_lefthand) && |
| 2074 | bms_is_member(outer_relid, sjinfo->syn_righthand)) |
| 2075 | { |
| 2076 | /* Estimate number of unique-ified rows */ |
| 2077 | double nraw; |
| 2078 | double nunique; |
| 2079 | |
| 2080 | nraw = approximate_joinrel_size(root, sjinfo->syn_righthand); |
| 2081 | nunique = estimate_num_groups(root, |
| 2082 | sjinfo->semi_rhs_exprs, |
| 2083 | nraw, |
| 2084 | NULL); |
| 2085 | if (rowcount > nunique) |
| 2086 | rowcount = nunique; |
| 2087 | } |
| 2088 | } |
| 2089 | return rowcount; |
| 2090 | } |
| 2091 | |
| 2092 | /* |
| 2093 | * Make an approximate estimate of the size of a joinrel. |
| 2094 | * |
| 2095 | * We don't have enough info at this point to get a good estimate, so we |
| 2096 | * just multiply the base relation sizes together. Fortunately, this is |
| 2097 | * the right answer anyway for the most common case with a single relation |
| 2098 | * on the RHS of a semijoin. Also, estimate_num_groups() has only a weak |
| 2099 | * dependency on its input_rows argument (it basically uses it as a clamp). |
| 2100 | * So we might be able to get a fairly decent end result even with a severe |
| 2101 | * overestimate of the RHS's raw size. |
| 2102 | */ |
| 2103 | static double |
| 2104 | approximate_joinrel_size(PlannerInfo *root, Relids relids) |
| 2105 | { |
| 2106 | double rowcount = 1.0; |
| 2107 | int relid; |
| 2108 | |
| 2109 | relid = -1; |
| 2110 | while ((relid = bms_next_member(relids, relid)) >= 0) |
| 2111 | { |
| 2112 | RelOptInfo *rel; |
| 2113 | |
| 2114 | /* Paranoia: ignore bogus relid indexes */ |
| 2115 | if (relid >= root->simple_rel_array_size) |
| 2116 | continue; |
| 2117 | rel = root->simple_rel_array[relid]; |
| 2118 | if (rel == NULL) |
| 2119 | continue; |
| 2120 | Assert(rel->relid == relid); /* sanity check on array */ |
| 2121 | |
| 2122 | /* Relation could be proven empty, if so ignore */ |
| 2123 | if (IS_DUMMY_REL(rel)) |
| 2124 | continue; |
| 2125 | |
| 2126 | /* Otherwise, rel's rows estimate should be valid by now */ |
| 2127 | Assert(rel->rows > 0); |
| 2128 | |
| 2129 | /* Accumulate product */ |
| 2130 | rowcount *= rel->rows; |
| 2131 | } |
| 2132 | return rowcount; |
| 2133 | } |
| 2134 | |
| 2135 | |
| 2136 | /**************************************************************************** |
| 2137 | * ---- ROUTINES TO CHECK QUERY CLAUSES ---- |
| 2138 | ****************************************************************************/ |
| 2139 | |
| 2140 | /* |
| 2141 | * match_restriction_clauses_to_index |
| 2142 | * Identify restriction clauses for the rel that match the index. |
| 2143 | * Matching clauses are added to *clauseset. |
| 2144 | */ |
| 2145 | static void |
| 2146 | match_restriction_clauses_to_index(PlannerInfo *root, |
| 2147 | IndexOptInfo *index, |
| 2148 | IndexClauseSet *clauseset) |
| 2149 | { |
| 2150 | /* We can ignore clauses that are implied by the index predicate */ |
| 2151 | match_clauses_to_index(root, index->indrestrictinfo, index, clauseset); |
| 2152 | } |
| 2153 | |
| 2154 | /* |
| 2155 | * match_join_clauses_to_index |
| 2156 | * Identify join clauses for the rel that match the index. |
| 2157 | * Matching clauses are added to *clauseset. |
| 2158 | * Also, add any potentially usable join OR clauses to *joinorclauses. |
| 2159 | */ |
| 2160 | static void |
| 2161 | match_join_clauses_to_index(PlannerInfo *root, |
| 2162 | RelOptInfo *rel, IndexOptInfo *index, |
| 2163 | IndexClauseSet *clauseset, |
| 2164 | List **joinorclauses) |
| 2165 | { |
| 2166 | ListCell *lc; |
| 2167 | |
| 2168 | /* Scan the rel's join clauses */ |
| 2169 | foreach(lc, rel->joininfo) |
| 2170 | { |
| 2171 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 2172 | |
| 2173 | /* Check if clause can be moved to this rel */ |
| 2174 | if (!join_clause_is_movable_to(rinfo, rel)) |
| 2175 | continue; |
| 2176 | |
| 2177 | /* Potentially usable, so see if it matches the index or is an OR */ |
| 2178 | if (restriction_is_or_clause(rinfo)) |
| 2179 | *joinorclauses = lappend(*joinorclauses, rinfo); |
| 2180 | else |
| 2181 | match_clause_to_index(root, rinfo, index, clauseset); |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | /* |
| 2186 | * match_eclass_clauses_to_index |
| 2187 | * Identify EquivalenceClass join clauses for the rel that match the index. |
| 2188 | * Matching clauses are added to *clauseset. |
| 2189 | */ |
| 2190 | static void |
| 2191 | match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index, |
| 2192 | IndexClauseSet *clauseset) |
| 2193 | { |
| 2194 | int indexcol; |
| 2195 | |
| 2196 | /* No work if rel is not in any such ECs */ |
| 2197 | if (!index->rel->has_eclass_joins) |
| 2198 | return; |
| 2199 | |
| 2200 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 2201 | { |
| 2202 | ec_member_matches_arg arg; |
| 2203 | List *clauses; |
| 2204 | |
| 2205 | /* Generate clauses, skipping any that join to lateral_referencers */ |
| 2206 | arg.index = index; |
| 2207 | arg.indexcol = indexcol; |
| 2208 | clauses = generate_implied_equalities_for_column(root, |
| 2209 | index->rel, |
| 2210 | ec_member_matches_indexcol, |
| 2211 | (void *) &arg, |
| 2212 | index->rel->lateral_referencers); |
| 2213 | |
| 2214 | /* |
| 2215 | * We have to check whether the results actually do match the index, |
| 2216 | * since for non-btree indexes the EC's equality operators might not |
| 2217 | * be in the index opclass (cf ec_member_matches_indexcol). |
| 2218 | */ |
| 2219 | match_clauses_to_index(root, clauses, index, clauseset); |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * match_clauses_to_index |
| 2225 | * Perform match_clause_to_index() for each clause in a list. |
| 2226 | * Matching clauses are added to *clauseset. |
| 2227 | */ |
| 2228 | static void |
| 2229 | match_clauses_to_index(PlannerInfo *root, |
| 2230 | List *clauses, |
| 2231 | IndexOptInfo *index, |
| 2232 | IndexClauseSet *clauseset) |
| 2233 | { |
| 2234 | ListCell *lc; |
| 2235 | |
| 2236 | foreach(lc, clauses) |
| 2237 | { |
| 2238 | RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc); |
| 2239 | |
| 2240 | match_clause_to_index(root, rinfo, index, clauseset); |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | /* |
| 2245 | * match_clause_to_index |
| 2246 | * Test whether a qual clause can be used with an index. |
| 2247 | * |
| 2248 | * If the clause is usable, add an IndexClause entry for it to the appropriate |
| 2249 | * list in *clauseset. (*clauseset must be initialized to zeroes before first |
| 2250 | * call.) |
| 2251 | * |
| 2252 | * Note: in some circumstances we may find the same RestrictInfos coming from |
| 2253 | * multiple places. Defend against redundant outputs by refusing to add a |
| 2254 | * clause twice (pointer equality should be a good enough check for this). |
| 2255 | * |
| 2256 | * Note: it's possible that a badly-defined index could have multiple matching |
| 2257 | * columns. We always select the first match if so; this avoids scenarios |
| 2258 | * wherein we get an inflated idea of the index's selectivity by using the |
| 2259 | * same clause multiple times with different index columns. |
| 2260 | */ |
| 2261 | static void |
| 2262 | match_clause_to_index(PlannerInfo *root, |
| 2263 | RestrictInfo *rinfo, |
| 2264 | IndexOptInfo *index, |
| 2265 | IndexClauseSet *clauseset) |
| 2266 | { |
| 2267 | int indexcol; |
| 2268 | |
| 2269 | /* |
| 2270 | * Never match pseudoconstants to indexes. (Normally a match could not |
| 2271 | * happen anyway, since a pseudoconstant clause couldn't contain a Var, |
| 2272 | * but what if someone builds an expression index on a constant? It's not |
| 2273 | * totally unreasonable to do so with a partial index, either.) |
| 2274 | */ |
| 2275 | if (rinfo->pseudoconstant) |
| 2276 | return; |
| 2277 | |
| 2278 | /* |
| 2279 | * If clause can't be used as an indexqual because it must wait till after |
| 2280 | * some lower-security-level restriction clause, reject it. |
| 2281 | */ |
| 2282 | if (!restriction_is_securely_promotable(rinfo, index->rel)) |
| 2283 | return; |
| 2284 | |
| 2285 | /* OK, check each index key column for a match */ |
| 2286 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 2287 | { |
| 2288 | IndexClause *iclause; |
| 2289 | ListCell *lc; |
| 2290 | |
| 2291 | /* Ignore duplicates */ |
| 2292 | foreach(lc, clauseset->indexclauses[indexcol]) |
| 2293 | { |
| 2294 | IndexClause *iclause = (IndexClause *) lfirst(lc); |
| 2295 | |
| 2296 | if (iclause->rinfo == rinfo) |
| 2297 | return; |
| 2298 | } |
| 2299 | |
| 2300 | /* OK, try to match the clause to the index column */ |
| 2301 | iclause = match_clause_to_indexcol(root, |
| 2302 | rinfo, |
| 2303 | indexcol, |
| 2304 | index); |
| 2305 | if (iclause) |
| 2306 | { |
| 2307 | /* Success, so record it */ |
| 2308 | clauseset->indexclauses[indexcol] = |
| 2309 | lappend(clauseset->indexclauses[indexcol], iclause); |
| 2310 | clauseset->nonempty = true; |
| 2311 | return; |
| 2312 | } |
| 2313 | } |
| 2314 | } |
| 2315 | |
| 2316 | /* |
| 2317 | * match_clause_to_indexcol() |
| 2318 | * Determine whether a restriction clause matches a column of an index, |
| 2319 | * and if so, build an IndexClause node describing the details. |
| 2320 | * |
| 2321 | * To match an index normally, an operator clause: |
| 2322 | * |
| 2323 | * (1) must be in the form (indexkey op const) or (const op indexkey); |
| 2324 | * and |
| 2325 | * (2) must contain an operator which is in the index's operator family |
| 2326 | * for this column; and |
| 2327 | * (3) must match the collation of the index, if collation is relevant. |
| 2328 | * |
| 2329 | * Our definition of "const" is exceedingly liberal: we allow anything that |
| 2330 | * doesn't involve a volatile function or a Var of the index's relation. |
| 2331 | * In particular, Vars belonging to other relations of the query are |
| 2332 | * accepted here, since a clause of that form can be used in a |
| 2333 | * parameterized indexscan. It's the responsibility of higher code levels |
| 2334 | * to manage restriction and join clauses appropriately. |
| 2335 | * |
| 2336 | * Note: we do need to check for Vars of the index's relation on the |
| 2337 | * "const" side of the clause, since clauses like (a.f1 OP (b.f2 OP a.f3)) |
| 2338 | * are not processable by a parameterized indexscan on a.f1, whereas |
| 2339 | * something like (a.f1 OP (b.f2 OP c.f3)) is. |
| 2340 | * |
| 2341 | * Presently, the executor can only deal with indexquals that have the |
| 2342 | * indexkey on the left, so we can only use clauses that have the indexkey |
| 2343 | * on the right if we can commute the clause to put the key on the left. |
| 2344 | * We handle that by generating an IndexClause with the correctly-commuted |
| 2345 | * opclause as a derived indexqual. |
| 2346 | * |
| 2347 | * If the index has a collation, the clause must have the same collation. |
| 2348 | * For collation-less indexes, we assume it doesn't matter; this is |
| 2349 | * necessary for cases like "hstore ? text", wherein hstore's operators |
| 2350 | * don't care about collation but the clause will get marked with a |
| 2351 | * collation anyway because of the text argument. (This logic is |
| 2352 | * embodied in the macro IndexCollMatchesExprColl.) |
| 2353 | * |
| 2354 | * It is also possible to match RowCompareExpr clauses to indexes (but |
| 2355 | * currently, only btree indexes handle this). |
| 2356 | * |
| 2357 | * It is also possible to match ScalarArrayOpExpr clauses to indexes, when |
| 2358 | * the clause is of the form "indexkey op ANY (arrayconst)". |
| 2359 | * |
| 2360 | * For boolean indexes, it is also possible to match the clause directly |
| 2361 | * to the indexkey; or perhaps the clause is (NOT indexkey). |
| 2362 | * |
| 2363 | * And, last but not least, some operators and functions can be processed |
| 2364 | * to derive (typically lossy) indexquals from a clause that isn't in |
| 2365 | * itself indexable. If we see that any operand of an OpExpr or FuncExpr |
| 2366 | * matches the index key, and the function has a planner support function |
| 2367 | * attached to it, we'll invoke the support function to see if such an |
| 2368 | * indexqual can be built. |
| 2369 | * |
| 2370 | * 'rinfo' is the clause to be tested (as a RestrictInfo node). |
| 2371 | * 'indexcol' is a column number of 'index' (counting from 0). |
| 2372 | * 'index' is the index of interest. |
| 2373 | * |
| 2374 | * Returns an IndexClause if the clause can be used with this index key, |
| 2375 | * or NULL if not. |
| 2376 | * |
| 2377 | * NOTE: returns NULL if clause is an OR or AND clause; it is the |
| 2378 | * responsibility of higher-level routines to cope with those. |
| 2379 | */ |
| 2380 | static IndexClause * |
| 2381 | match_clause_to_indexcol(PlannerInfo *root, |
| 2382 | RestrictInfo *rinfo, |
| 2383 | int indexcol, |
| 2384 | IndexOptInfo *index) |
| 2385 | { |
| 2386 | IndexClause *iclause; |
| 2387 | Expr *clause = rinfo->clause; |
| 2388 | Oid opfamily; |
| 2389 | |
| 2390 | Assert(indexcol < index->nkeycolumns); |
| 2391 | |
| 2392 | /* |
| 2393 | * Historically this code has coped with NULL clauses. That's probably |
| 2394 | * not possible anymore, but we might as well continue to cope. |
| 2395 | */ |
| 2396 | if (clause == NULL) |
| 2397 | return NULL; |
| 2398 | |
| 2399 | /* First check for boolean-index cases. */ |
| 2400 | opfamily = index->opfamily[indexcol]; |
| 2401 | if (IsBooleanOpfamily(opfamily)) |
| 2402 | { |
| 2403 | iclause = match_boolean_index_clause(rinfo, indexcol, index); |
| 2404 | if (iclause) |
| 2405 | return iclause; |
| 2406 | } |
| 2407 | |
| 2408 | /* |
| 2409 | * Clause must be an opclause, funcclause, ScalarArrayOpExpr, or |
| 2410 | * RowCompareExpr. Or, if the index supports it, we can handle IS |
| 2411 | * NULL/NOT NULL clauses. |
| 2412 | */ |
| 2413 | if (IsA(clause, OpExpr)) |
| 2414 | { |
| 2415 | return match_opclause_to_indexcol(root, rinfo, indexcol, index); |
| 2416 | } |
| 2417 | else if (IsA(clause, FuncExpr)) |
| 2418 | { |
| 2419 | return match_funcclause_to_indexcol(root, rinfo, indexcol, index); |
| 2420 | } |
| 2421 | else if (IsA(clause, ScalarArrayOpExpr)) |
| 2422 | { |
| 2423 | return match_saopclause_to_indexcol(rinfo, indexcol, index); |
| 2424 | } |
| 2425 | else if (IsA(clause, RowCompareExpr)) |
| 2426 | { |
| 2427 | return match_rowcompare_to_indexcol(rinfo, indexcol, index); |
| 2428 | } |
| 2429 | else if (index->amsearchnulls && IsA(clause, NullTest)) |
| 2430 | { |
| 2431 | NullTest *nt = (NullTest *) clause; |
| 2432 | |
| 2433 | if (!nt->argisrow && |
| 2434 | match_index_to_operand((Node *) nt->arg, indexcol, index)) |
| 2435 | { |
| 2436 | iclause = makeNode(IndexClause); |
| 2437 | iclause->rinfo = rinfo; |
| 2438 | iclause->indexquals = list_make1(rinfo); |
| 2439 | iclause->lossy = false; |
| 2440 | iclause->indexcol = indexcol; |
| 2441 | iclause->indexcols = NIL; |
| 2442 | return iclause; |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | return NULL; |
| 2447 | } |
| 2448 | |
| 2449 | /* |
| 2450 | * match_boolean_index_clause |
| 2451 | * Recognize restriction clauses that can be matched to a boolean index. |
| 2452 | * |
| 2453 | * The idea here is that, for an index on a boolean column that supports the |
| 2454 | * BooleanEqualOperator, we can transform a plain reference to the indexkey |
| 2455 | * into "indexkey = true", or "NOT indexkey" into "indexkey = false", etc, |
| 2456 | * so as to make the expression indexable using the index's "=" operator. |
| 2457 | * Since Postgres 8.1, we must do this because constant simplification does |
| 2458 | * the reverse transformation; without this code there'd be no way to use |
| 2459 | * such an index at all. |
| 2460 | * |
| 2461 | * This should be called only when IsBooleanOpfamily() recognizes the |
| 2462 | * index's operator family. We check to see if the clause matches the |
| 2463 | * index's key, and if so, build a suitable IndexClause. |
| 2464 | */ |
| 2465 | static IndexClause * |
| 2466 | match_boolean_index_clause(RestrictInfo *rinfo, |
| 2467 | int indexcol, |
| 2468 | IndexOptInfo *index) |
| 2469 | { |
| 2470 | Node *clause = (Node *) rinfo->clause; |
| 2471 | Expr *op = NULL; |
| 2472 | |
| 2473 | /* Direct match? */ |
| 2474 | if (match_index_to_operand(clause, indexcol, index)) |
| 2475 | { |
| 2476 | /* convert to indexkey = TRUE */ |
| 2477 | op = make_opclause(BooleanEqualOperator, BOOLOID, false, |
| 2478 | (Expr *) clause, |
| 2479 | (Expr *) makeBoolConst(true, false), |
| 2480 | InvalidOid, InvalidOid); |
| 2481 | } |
| 2482 | /* NOT clause? */ |
| 2483 | else if (is_notclause(clause)) |
| 2484 | { |
| 2485 | Node *arg = (Node *) get_notclausearg((Expr *) clause); |
| 2486 | |
| 2487 | if (match_index_to_operand(arg, indexcol, index)) |
| 2488 | { |
| 2489 | /* convert to indexkey = FALSE */ |
| 2490 | op = make_opclause(BooleanEqualOperator, BOOLOID, false, |
| 2491 | (Expr *) arg, |
| 2492 | (Expr *) makeBoolConst(false, false), |
| 2493 | InvalidOid, InvalidOid); |
| 2494 | } |
| 2495 | } |
| 2496 | |
| 2497 | /* |
| 2498 | * Since we only consider clauses at top level of WHERE, we can convert |
| 2499 | * indexkey IS TRUE and indexkey IS FALSE to index searches as well. The |
| 2500 | * different meaning for NULL isn't important. |
| 2501 | */ |
| 2502 | else if (clause && IsA(clause, BooleanTest)) |
| 2503 | { |
| 2504 | BooleanTest *btest = (BooleanTest *) clause; |
| 2505 | Node *arg = (Node *) btest->arg; |
| 2506 | |
| 2507 | if (btest->booltesttype == IS_TRUE && |
| 2508 | match_index_to_operand(arg, indexcol, index)) |
| 2509 | { |
| 2510 | /* convert to indexkey = TRUE */ |
| 2511 | op = make_opclause(BooleanEqualOperator, BOOLOID, false, |
| 2512 | (Expr *) arg, |
| 2513 | (Expr *) makeBoolConst(true, false), |
| 2514 | InvalidOid, InvalidOid); |
| 2515 | } |
| 2516 | else if (btest->booltesttype == IS_FALSE && |
| 2517 | match_index_to_operand(arg, indexcol, index)) |
| 2518 | { |
| 2519 | /* convert to indexkey = FALSE */ |
| 2520 | op = make_opclause(BooleanEqualOperator, BOOLOID, false, |
| 2521 | (Expr *) arg, |
| 2522 | (Expr *) makeBoolConst(false, false), |
| 2523 | InvalidOid, InvalidOid); |
| 2524 | } |
| 2525 | } |
| 2526 | |
| 2527 | /* |
| 2528 | * If we successfully made an operator clause from the given qual, we must |
| 2529 | * wrap it in an IndexClause. It's not lossy. |
| 2530 | */ |
| 2531 | if (op) |
| 2532 | { |
| 2533 | IndexClause *iclause = makeNode(IndexClause); |
| 2534 | |
| 2535 | iclause->rinfo = rinfo; |
| 2536 | iclause->indexquals = list_make1(make_simple_restrictinfo(op)); |
| 2537 | iclause->lossy = false; |
| 2538 | iclause->indexcol = indexcol; |
| 2539 | iclause->indexcols = NIL; |
| 2540 | return iclause; |
| 2541 | } |
| 2542 | |
| 2543 | return NULL; |
| 2544 | } |
| 2545 | |
| 2546 | /* |
| 2547 | * match_opclause_to_indexcol() |
| 2548 | * Handles the OpExpr case for match_clause_to_indexcol(), |
| 2549 | * which see for comments. |
| 2550 | */ |
| 2551 | static IndexClause * |
| 2552 | match_opclause_to_indexcol(PlannerInfo *root, |
| 2553 | RestrictInfo *rinfo, |
| 2554 | int indexcol, |
| 2555 | IndexOptInfo *index) |
| 2556 | { |
| 2557 | IndexClause *iclause; |
| 2558 | OpExpr *clause = (OpExpr *) rinfo->clause; |
| 2559 | Node *leftop, |
| 2560 | *rightop; |
| 2561 | Oid expr_op; |
| 2562 | Oid expr_coll; |
| 2563 | Index index_relid; |
| 2564 | Oid opfamily; |
| 2565 | Oid idxcollation; |
| 2566 | |
| 2567 | /* |
| 2568 | * Only binary operators need apply. (In theory, a planner support |
| 2569 | * function could do something with a unary operator, but it seems |
| 2570 | * unlikely to be worth the cycles to check.) |
| 2571 | */ |
| 2572 | if (list_length(clause->args) != 2) |
| 2573 | return NULL; |
| 2574 | |
| 2575 | leftop = (Node *) linitial(clause->args); |
| 2576 | rightop = (Node *) lsecond(clause->args); |
| 2577 | expr_op = clause->opno; |
| 2578 | expr_coll = clause->inputcollid; |
| 2579 | |
| 2580 | index_relid = index->rel->relid; |
| 2581 | opfamily = index->opfamily[indexcol]; |
| 2582 | idxcollation = index->indexcollations[indexcol]; |
| 2583 | |
| 2584 | /* |
| 2585 | * Check for clauses of the form: (indexkey operator constant) or |
| 2586 | * (constant operator indexkey). See match_clause_to_indexcol's notes |
| 2587 | * about const-ness. |
| 2588 | * |
| 2589 | * Note that we don't ask the support function about clauses that don't |
| 2590 | * have one of these forms. Again, in principle it might be possible to |
| 2591 | * do something, but it seems unlikely to be worth the cycles to check. |
| 2592 | */ |
| 2593 | if (match_index_to_operand(leftop, indexcol, index) && |
| 2594 | !bms_is_member(index_relid, rinfo->right_relids) && |
| 2595 | !contain_volatile_functions(rightop)) |
| 2596 | { |
| 2597 | if (IndexCollMatchesExprColl(idxcollation, expr_coll) && |
| 2598 | op_in_opfamily(expr_op, opfamily)) |
| 2599 | { |
| 2600 | iclause = makeNode(IndexClause); |
| 2601 | iclause->rinfo = rinfo; |
| 2602 | iclause->indexquals = list_make1(rinfo); |
| 2603 | iclause->lossy = false; |
| 2604 | iclause->indexcol = indexcol; |
| 2605 | iclause->indexcols = NIL; |
| 2606 | return iclause; |
| 2607 | } |
| 2608 | |
| 2609 | /* |
| 2610 | * If we didn't find a member of the index's opfamily, try the support |
| 2611 | * function for the operator's underlying function. |
| 2612 | */ |
| 2613 | set_opfuncid(clause); /* make sure we have opfuncid */ |
| 2614 | return get_index_clause_from_support(root, |
| 2615 | rinfo, |
| 2616 | clause->opfuncid, |
| 2617 | 0, /* indexarg on left */ |
| 2618 | indexcol, |
| 2619 | index); |
| 2620 | } |
| 2621 | |
| 2622 | if (match_index_to_operand(rightop, indexcol, index) && |
| 2623 | !bms_is_member(index_relid, rinfo->left_relids) && |
| 2624 | !contain_volatile_functions(leftop)) |
| 2625 | { |
| 2626 | if (IndexCollMatchesExprColl(idxcollation, expr_coll)) |
| 2627 | { |
| 2628 | Oid comm_op = get_commutator(expr_op); |
| 2629 | |
| 2630 | if (OidIsValid(comm_op) && |
| 2631 | op_in_opfamily(comm_op, opfamily)) |
| 2632 | { |
| 2633 | RestrictInfo *commrinfo; |
| 2634 | |
| 2635 | /* Build a commuted OpExpr and RestrictInfo */ |
| 2636 | commrinfo = commute_restrictinfo(rinfo, comm_op); |
| 2637 | |
| 2638 | /* Make an IndexClause showing that as a derived qual */ |
| 2639 | iclause = makeNode(IndexClause); |
| 2640 | iclause->rinfo = rinfo; |
| 2641 | iclause->indexquals = list_make1(commrinfo); |
| 2642 | iclause->lossy = false; |
| 2643 | iclause->indexcol = indexcol; |
| 2644 | iclause->indexcols = NIL; |
| 2645 | return iclause; |
| 2646 | } |
| 2647 | } |
| 2648 | |
| 2649 | /* |
| 2650 | * If we didn't find a member of the index's opfamily, try the support |
| 2651 | * function for the operator's underlying function. |
| 2652 | */ |
| 2653 | set_opfuncid(clause); /* make sure we have opfuncid */ |
| 2654 | return get_index_clause_from_support(root, |
| 2655 | rinfo, |
| 2656 | clause->opfuncid, |
| 2657 | 1, /* indexarg on right */ |
| 2658 | indexcol, |
| 2659 | index); |
| 2660 | } |
| 2661 | |
| 2662 | return NULL; |
| 2663 | } |
| 2664 | |
| 2665 | /* |
| 2666 | * match_funcclause_to_indexcol() |
| 2667 | * Handles the FuncExpr case for match_clause_to_indexcol(), |
| 2668 | * which see for comments. |
| 2669 | */ |
| 2670 | static IndexClause * |
| 2671 | match_funcclause_to_indexcol(PlannerInfo *root, |
| 2672 | RestrictInfo *rinfo, |
| 2673 | int indexcol, |
| 2674 | IndexOptInfo *index) |
| 2675 | { |
| 2676 | FuncExpr *clause = (FuncExpr *) rinfo->clause; |
| 2677 | int indexarg; |
| 2678 | ListCell *lc; |
| 2679 | |
| 2680 | /* |
| 2681 | * We have no built-in intelligence about function clauses, but if there's |
| 2682 | * a planner support function, it might be able to do something. But, to |
| 2683 | * cut down on wasted planning cycles, only call the support function if |
| 2684 | * at least one argument matches the target index column. |
| 2685 | * |
| 2686 | * Note that we don't insist on the other arguments being pseudoconstants; |
| 2687 | * the support function has to check that. This is to allow cases where |
| 2688 | * only some of the other arguments need to be included in the indexqual. |
| 2689 | */ |
| 2690 | indexarg = 0; |
| 2691 | foreach(lc, clause->args) |
| 2692 | { |
| 2693 | Node *op = (Node *) lfirst(lc); |
| 2694 | |
| 2695 | if (match_index_to_operand(op, indexcol, index)) |
| 2696 | { |
| 2697 | return get_index_clause_from_support(root, |
| 2698 | rinfo, |
| 2699 | clause->funcid, |
| 2700 | indexarg, |
| 2701 | indexcol, |
| 2702 | index); |
| 2703 | } |
| 2704 | |
| 2705 | indexarg++; |
| 2706 | } |
| 2707 | |
| 2708 | return NULL; |
| 2709 | } |
| 2710 | |
| 2711 | /* |
| 2712 | * get_index_clause_from_support() |
| 2713 | * If the function has a planner support function, try to construct |
| 2714 | * an IndexClause using indexquals created by the support function. |
| 2715 | */ |
| 2716 | static IndexClause * |
| 2717 | get_index_clause_from_support(PlannerInfo *root, |
| 2718 | RestrictInfo *rinfo, |
| 2719 | Oid funcid, |
| 2720 | int indexarg, |
| 2721 | int indexcol, |
| 2722 | IndexOptInfo *index) |
| 2723 | { |
| 2724 | Oid prosupport = get_func_support(funcid); |
| 2725 | SupportRequestIndexCondition req; |
| 2726 | List *sresult; |
| 2727 | |
| 2728 | if (!OidIsValid(prosupport)) |
| 2729 | return NULL; |
| 2730 | |
| 2731 | req.type = T_SupportRequestIndexCondition; |
| 2732 | req.root = root; |
| 2733 | req.funcid = funcid; |
| 2734 | req.node = (Node *) rinfo->clause; |
| 2735 | req.indexarg = indexarg; |
| 2736 | req.index = index; |
| 2737 | req.indexcol = indexcol; |
| 2738 | req.opfamily = index->opfamily[indexcol]; |
| 2739 | req.indexcollation = index->indexcollations[indexcol]; |
| 2740 | |
| 2741 | req.lossy = true; /* default assumption */ |
| 2742 | |
| 2743 | sresult = (List *) |
| 2744 | DatumGetPointer(OidFunctionCall1(prosupport, |
| 2745 | PointerGetDatum(&req))); |
| 2746 | |
| 2747 | if (sresult != NIL) |
| 2748 | { |
| 2749 | IndexClause *iclause = makeNode(IndexClause); |
| 2750 | List *indexquals = NIL; |
| 2751 | ListCell *lc; |
| 2752 | |
| 2753 | /* |
| 2754 | * The support function API says it should just give back bare |
| 2755 | * clauses, so here we must wrap each one in a RestrictInfo. |
| 2756 | */ |
| 2757 | foreach(lc, sresult) |
| 2758 | { |
| 2759 | Expr *clause = (Expr *) lfirst(lc); |
| 2760 | |
| 2761 | indexquals = lappend(indexquals, make_simple_restrictinfo(clause)); |
| 2762 | } |
| 2763 | |
| 2764 | iclause->rinfo = rinfo; |
| 2765 | iclause->indexquals = indexquals; |
| 2766 | iclause->lossy = req.lossy; |
| 2767 | iclause->indexcol = indexcol; |
| 2768 | iclause->indexcols = NIL; |
| 2769 | |
| 2770 | return iclause; |
| 2771 | } |
| 2772 | |
| 2773 | return NULL; |
| 2774 | } |
| 2775 | |
| 2776 | /* |
| 2777 | * match_saopclause_to_indexcol() |
| 2778 | * Handles the ScalarArrayOpExpr case for match_clause_to_indexcol(), |
| 2779 | * which see for comments. |
| 2780 | */ |
| 2781 | static IndexClause * |
| 2782 | match_saopclause_to_indexcol(RestrictInfo *rinfo, |
| 2783 | int indexcol, |
| 2784 | IndexOptInfo *index) |
| 2785 | { |
| 2786 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause; |
| 2787 | Node *leftop, |
| 2788 | *rightop; |
| 2789 | Relids right_relids; |
| 2790 | Oid expr_op; |
| 2791 | Oid expr_coll; |
| 2792 | Index index_relid; |
| 2793 | Oid opfamily; |
| 2794 | Oid idxcollation; |
| 2795 | |
| 2796 | /* We only accept ANY clauses, not ALL */ |
| 2797 | if (!saop->useOr) |
| 2798 | return NULL; |
| 2799 | leftop = (Node *) linitial(saop->args); |
| 2800 | rightop = (Node *) lsecond(saop->args); |
| 2801 | right_relids = pull_varnos(rightop); |
| 2802 | expr_op = saop->opno; |
| 2803 | expr_coll = saop->inputcollid; |
| 2804 | |
| 2805 | index_relid = index->rel->relid; |
| 2806 | opfamily = index->opfamily[indexcol]; |
| 2807 | idxcollation = index->indexcollations[indexcol]; |
| 2808 | |
| 2809 | /* |
| 2810 | * We must have indexkey on the left and a pseudo-constant array argument. |
| 2811 | */ |
| 2812 | if (match_index_to_operand(leftop, indexcol, index) && |
| 2813 | !bms_is_member(index_relid, right_relids) && |
| 2814 | !contain_volatile_functions(rightop)) |
| 2815 | { |
| 2816 | if (IndexCollMatchesExprColl(idxcollation, expr_coll) && |
| 2817 | op_in_opfamily(expr_op, opfamily)) |
| 2818 | { |
| 2819 | IndexClause *iclause = makeNode(IndexClause); |
| 2820 | |
| 2821 | iclause->rinfo = rinfo; |
| 2822 | iclause->indexquals = list_make1(rinfo); |
| 2823 | iclause->lossy = false; |
| 2824 | iclause->indexcol = indexcol; |
| 2825 | iclause->indexcols = NIL; |
| 2826 | return iclause; |
| 2827 | } |
| 2828 | |
| 2829 | /* |
| 2830 | * We do not currently ask support functions about ScalarArrayOpExprs, |
| 2831 | * though in principle we could. |
| 2832 | */ |
| 2833 | } |
| 2834 | |
| 2835 | return NULL; |
| 2836 | } |
| 2837 | |
| 2838 | /* |
| 2839 | * match_rowcompare_to_indexcol() |
| 2840 | * Handles the RowCompareExpr case for match_clause_to_indexcol(), |
| 2841 | * which see for comments. |
| 2842 | * |
| 2843 | * In this routine we check whether the first column of the row comparison |
| 2844 | * matches the target index column. This is sufficient to guarantee that some |
| 2845 | * index condition can be constructed from the RowCompareExpr --- the rest |
| 2846 | * is handled by expand_indexqual_rowcompare(). |
| 2847 | */ |
| 2848 | static IndexClause * |
| 2849 | match_rowcompare_to_indexcol(RestrictInfo *rinfo, |
| 2850 | int indexcol, |
| 2851 | IndexOptInfo *index) |
| 2852 | { |
| 2853 | RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause; |
| 2854 | Index index_relid; |
| 2855 | Oid opfamily; |
| 2856 | Oid idxcollation; |
| 2857 | Node *leftop, |
| 2858 | *rightop; |
| 2859 | bool var_on_left; |
| 2860 | Oid expr_op; |
| 2861 | Oid expr_coll; |
| 2862 | |
| 2863 | /* Forget it if we're not dealing with a btree index */ |
| 2864 | if (index->relam != BTREE_AM_OID) |
| 2865 | return NULL; |
| 2866 | |
| 2867 | index_relid = index->rel->relid; |
| 2868 | opfamily = index->opfamily[indexcol]; |
| 2869 | idxcollation = index->indexcollations[indexcol]; |
| 2870 | |
| 2871 | /* |
| 2872 | * We could do the matching on the basis of insisting that the opfamily |
| 2873 | * shown in the RowCompareExpr be the same as the index column's opfamily, |
| 2874 | * but that could fail in the presence of reverse-sort opfamilies: it'd be |
| 2875 | * a matter of chance whether RowCompareExpr had picked the forward or |
| 2876 | * reverse-sort family. So look only at the operator, and match if it is |
| 2877 | * a member of the index's opfamily (after commutation, if the indexkey is |
| 2878 | * on the right). We'll worry later about whether any additional |
| 2879 | * operators are matchable to the index. |
| 2880 | */ |
| 2881 | leftop = (Node *) linitial(clause->largs); |
| 2882 | rightop = (Node *) linitial(clause->rargs); |
| 2883 | expr_op = linitial_oid(clause->opnos); |
| 2884 | expr_coll = linitial_oid(clause->inputcollids); |
| 2885 | |
| 2886 | /* Collations must match, if relevant */ |
| 2887 | if (!IndexCollMatchesExprColl(idxcollation, expr_coll)) |
| 2888 | return NULL; |
| 2889 | |
| 2890 | /* |
| 2891 | * These syntactic tests are the same as in match_opclause_to_indexcol() |
| 2892 | */ |
| 2893 | if (match_index_to_operand(leftop, indexcol, index) && |
| 2894 | !bms_is_member(index_relid, pull_varnos(rightop)) && |
| 2895 | !contain_volatile_functions(rightop)) |
| 2896 | { |
| 2897 | /* OK, indexkey is on left */ |
| 2898 | var_on_left = true; |
| 2899 | } |
| 2900 | else if (match_index_to_operand(rightop, indexcol, index) && |
| 2901 | !bms_is_member(index_relid, pull_varnos(leftop)) && |
| 2902 | !contain_volatile_functions(leftop)) |
| 2903 | { |
| 2904 | /* indexkey is on right, so commute the operator */ |
| 2905 | expr_op = get_commutator(expr_op); |
| 2906 | if (expr_op == InvalidOid) |
| 2907 | return NULL; |
| 2908 | var_on_left = false; |
| 2909 | } |
| 2910 | else |
| 2911 | return NULL; |
| 2912 | |
| 2913 | /* We're good if the operator is the right type of opfamily member */ |
| 2914 | switch (get_op_opfamily_strategy(expr_op, opfamily)) |
| 2915 | { |
| 2916 | case BTLessStrategyNumber: |
| 2917 | case BTLessEqualStrategyNumber: |
| 2918 | case BTGreaterEqualStrategyNumber: |
| 2919 | case BTGreaterStrategyNumber: |
| 2920 | return expand_indexqual_rowcompare(rinfo, |
| 2921 | indexcol, |
| 2922 | index, |
| 2923 | expr_op, |
| 2924 | var_on_left); |
| 2925 | } |
| 2926 | |
| 2927 | return NULL; |
| 2928 | } |
| 2929 | |
| 2930 | /* |
| 2931 | * expand_indexqual_rowcompare --- expand a single indexqual condition |
| 2932 | * that is a RowCompareExpr |
| 2933 | * |
| 2934 | * It's already known that the first column of the row comparison matches |
| 2935 | * the specified column of the index. We can use additional columns of the |
| 2936 | * row comparison as index qualifications, so long as they match the index |
| 2937 | * in the "same direction", ie, the indexkeys are all on the same side of the |
| 2938 | * clause and the operators are all the same-type members of the opfamilies. |
| 2939 | * |
| 2940 | * If all the columns of the RowCompareExpr match in this way, we just use it |
| 2941 | * as-is, except for possibly commuting it to put the indexkeys on the left. |
| 2942 | * |
| 2943 | * Otherwise, we build a shortened RowCompareExpr (if more than one |
| 2944 | * column matches) or a simple OpExpr (if the first-column match is all |
| 2945 | * there is). In these cases the modified clause is always "<=" or ">=" |
| 2946 | * even when the original was "<" or ">" --- this is necessary to match all |
| 2947 | * the rows that could match the original. (We are building a lossy version |
| 2948 | * of the row comparison when we do this, so we set lossy = true.) |
| 2949 | * |
| 2950 | * Note: this is really just the last half of match_rowcompare_to_indexcol, |
| 2951 | * but we split it out for comprehensibility. |
| 2952 | */ |
| 2953 | static IndexClause * |
| 2954 | expand_indexqual_rowcompare(RestrictInfo *rinfo, |
| 2955 | int indexcol, |
| 2956 | IndexOptInfo *index, |
| 2957 | Oid expr_op, |
| 2958 | bool var_on_left) |
| 2959 | { |
| 2960 | IndexClause *iclause = makeNode(IndexClause); |
| 2961 | RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause; |
| 2962 | int op_strategy; |
| 2963 | Oid op_lefttype; |
| 2964 | Oid op_righttype; |
| 2965 | int matching_cols; |
| 2966 | List *expr_ops; |
| 2967 | List *opfamilies; |
| 2968 | List *lefttypes; |
| 2969 | List *righttypes; |
| 2970 | List *new_ops; |
| 2971 | List *var_args; |
| 2972 | List *non_var_args; |
| 2973 | ListCell *vargs_cell; |
| 2974 | ListCell *nargs_cell; |
| 2975 | ListCell *opnos_cell; |
| 2976 | ListCell *collids_cell; |
| 2977 | |
| 2978 | iclause->rinfo = rinfo; |
| 2979 | iclause->indexcol = indexcol; |
| 2980 | |
| 2981 | if (var_on_left) |
| 2982 | { |
| 2983 | var_args = clause->largs; |
| 2984 | non_var_args = clause->rargs; |
| 2985 | } |
| 2986 | else |
| 2987 | { |
| 2988 | var_args = clause->rargs; |
| 2989 | non_var_args = clause->largs; |
| 2990 | } |
| 2991 | |
| 2992 | get_op_opfamily_properties(expr_op, index->opfamily[indexcol], false, |
| 2993 | &op_strategy, |
| 2994 | &op_lefttype, |
| 2995 | &op_righttype); |
| 2996 | |
| 2997 | /* Initialize returned list of which index columns are used */ |
| 2998 | iclause->indexcols = list_make1_int(indexcol); |
| 2999 | |
| 3000 | /* Build lists of ops, opfamilies and operator datatypes in case needed */ |
| 3001 | expr_ops = list_make1_oid(expr_op); |
| 3002 | opfamilies = list_make1_oid(index->opfamily[indexcol]); |
| 3003 | lefttypes = list_make1_oid(op_lefttype); |
| 3004 | righttypes = list_make1_oid(op_righttype); |
| 3005 | |
| 3006 | /* |
| 3007 | * See how many of the remaining columns match some index column in the |
| 3008 | * same way. As in match_clause_to_indexcol(), the "other" side of any |
| 3009 | * potential index condition is OK as long as it doesn't use Vars from the |
| 3010 | * indexed relation. |
| 3011 | */ |
| 3012 | matching_cols = 1; |
| 3013 | vargs_cell = lnext(list_head(var_args)); |
| 3014 | nargs_cell = lnext(list_head(non_var_args)); |
| 3015 | opnos_cell = lnext(list_head(clause->opnos)); |
| 3016 | collids_cell = lnext(list_head(clause->inputcollids)); |
| 3017 | |
| 3018 | while (vargs_cell != NULL) |
| 3019 | { |
| 3020 | Node *varop = (Node *) lfirst(vargs_cell); |
| 3021 | Node *constop = (Node *) lfirst(nargs_cell); |
| 3022 | int i; |
| 3023 | |
| 3024 | expr_op = lfirst_oid(opnos_cell); |
| 3025 | if (!var_on_left) |
| 3026 | { |
| 3027 | /* indexkey is on right, so commute the operator */ |
| 3028 | expr_op = get_commutator(expr_op); |
| 3029 | if (expr_op == InvalidOid) |
| 3030 | break; /* operator is not usable */ |
| 3031 | } |
| 3032 | if (bms_is_member(index->rel->relid, pull_varnos(constop))) |
| 3033 | break; /* no good, Var on wrong side */ |
| 3034 | if (contain_volatile_functions(constop)) |
| 3035 | break; /* no good, volatile comparison value */ |
| 3036 | |
| 3037 | /* |
| 3038 | * The Var side can match any key column of the index. |
| 3039 | */ |
| 3040 | for (i = 0; i < index->nkeycolumns; i++) |
| 3041 | { |
| 3042 | if (match_index_to_operand(varop, i, index) && |
| 3043 | get_op_opfamily_strategy(expr_op, |
| 3044 | index->opfamily[i]) == op_strategy && |
| 3045 | IndexCollMatchesExprColl(index->indexcollations[i], |
| 3046 | lfirst_oid(collids_cell))) |
| 3047 | break; |
| 3048 | } |
| 3049 | if (i >= index->nkeycolumns) |
| 3050 | break; /* no match found */ |
| 3051 | |
| 3052 | /* Add column number to returned list */ |
| 3053 | iclause->indexcols = lappend_int(iclause->indexcols, i); |
| 3054 | |
| 3055 | /* Add operator info to lists */ |
| 3056 | get_op_opfamily_properties(expr_op, index->opfamily[i], false, |
| 3057 | &op_strategy, |
| 3058 | &op_lefttype, |
| 3059 | &op_righttype); |
| 3060 | expr_ops = lappend_oid(expr_ops, expr_op); |
| 3061 | opfamilies = lappend_oid(opfamilies, index->opfamily[i]); |
| 3062 | lefttypes = lappend_oid(lefttypes, op_lefttype); |
| 3063 | righttypes = lappend_oid(righttypes, op_righttype); |
| 3064 | |
| 3065 | /* This column matches, keep scanning */ |
| 3066 | matching_cols++; |
| 3067 | vargs_cell = lnext(vargs_cell); |
| 3068 | nargs_cell = lnext(nargs_cell); |
| 3069 | opnos_cell = lnext(opnos_cell); |
| 3070 | collids_cell = lnext(collids_cell); |
| 3071 | } |
| 3072 | |
| 3073 | /* Result is non-lossy if all columns are usable as index quals */ |
| 3074 | iclause->lossy = (matching_cols != list_length(clause->opnos)); |
| 3075 | |
| 3076 | /* |
| 3077 | * We can use rinfo->clause as-is if we have var on left and it's all |
| 3078 | * usable as index quals. |
| 3079 | */ |
| 3080 | if (var_on_left && !iclause->lossy) |
| 3081 | iclause->indexquals = list_make1(rinfo); |
| 3082 | else |
| 3083 | { |
| 3084 | /* |
| 3085 | * We have to generate a modified rowcompare (possibly just one |
| 3086 | * OpExpr). The painful part of this is changing < to <= or > to >=, |
| 3087 | * so deal with that first. |
| 3088 | */ |
| 3089 | if (!iclause->lossy) |
| 3090 | { |
| 3091 | /* very easy, just use the commuted operators */ |
| 3092 | new_ops = expr_ops; |
| 3093 | } |
| 3094 | else if (op_strategy == BTLessEqualStrategyNumber || |
| 3095 | op_strategy == BTGreaterEqualStrategyNumber) |
| 3096 | { |
| 3097 | /* easy, just use the same (possibly commuted) operators */ |
| 3098 | new_ops = list_truncate(expr_ops, matching_cols); |
| 3099 | } |
| 3100 | else |
| 3101 | { |
| 3102 | ListCell *opfamilies_cell; |
| 3103 | ListCell *lefttypes_cell; |
| 3104 | ListCell *righttypes_cell; |
| 3105 | |
| 3106 | if (op_strategy == BTLessStrategyNumber) |
| 3107 | op_strategy = BTLessEqualStrategyNumber; |
| 3108 | else if (op_strategy == BTGreaterStrategyNumber) |
| 3109 | op_strategy = BTGreaterEqualStrategyNumber; |
| 3110 | else |
| 3111 | elog(ERROR, "unexpected strategy number %d" , op_strategy); |
| 3112 | new_ops = NIL; |
| 3113 | forthree(opfamilies_cell, opfamilies, |
| 3114 | lefttypes_cell, lefttypes, |
| 3115 | righttypes_cell, righttypes) |
| 3116 | { |
| 3117 | Oid opfam = lfirst_oid(opfamilies_cell); |
| 3118 | Oid lefttype = lfirst_oid(lefttypes_cell); |
| 3119 | Oid righttype = lfirst_oid(righttypes_cell); |
| 3120 | |
| 3121 | expr_op = get_opfamily_member(opfam, lefttype, righttype, |
| 3122 | op_strategy); |
| 3123 | if (!OidIsValid(expr_op)) /* should not happen */ |
| 3124 | elog(ERROR, "missing operator %d(%u,%u) in opfamily %u" , |
| 3125 | op_strategy, lefttype, righttype, opfam); |
| 3126 | new_ops = lappend_oid(new_ops, expr_op); |
| 3127 | } |
| 3128 | } |
| 3129 | |
| 3130 | /* If we have more than one matching col, create a subset rowcompare */ |
| 3131 | if (matching_cols > 1) |
| 3132 | { |
| 3133 | RowCompareExpr *rc = makeNode(RowCompareExpr); |
| 3134 | |
| 3135 | rc->rctype = (RowCompareType) op_strategy; |
| 3136 | rc->opnos = new_ops; |
| 3137 | rc->opfamilies = list_truncate(list_copy(clause->opfamilies), |
| 3138 | matching_cols); |
| 3139 | rc->inputcollids = list_truncate(list_copy(clause->inputcollids), |
| 3140 | matching_cols); |
| 3141 | rc->largs = list_truncate(copyObject(var_args), |
| 3142 | matching_cols); |
| 3143 | rc->rargs = list_truncate(copyObject(non_var_args), |
| 3144 | matching_cols); |
| 3145 | iclause->indexquals = list_make1(make_simple_restrictinfo((Expr *) rc)); |
| 3146 | } |
| 3147 | else |
| 3148 | { |
| 3149 | Expr *op; |
| 3150 | |
| 3151 | /* We don't report an index column list in this case */ |
| 3152 | iclause->indexcols = NIL; |
| 3153 | |
| 3154 | op = make_opclause(linitial_oid(new_ops), BOOLOID, false, |
| 3155 | copyObject(linitial(var_args)), |
| 3156 | copyObject(linitial(non_var_args)), |
| 3157 | InvalidOid, |
| 3158 | linitial_oid(clause->inputcollids)); |
| 3159 | iclause->indexquals = list_make1(make_simple_restrictinfo(op)); |
| 3160 | } |
| 3161 | } |
| 3162 | |
| 3163 | return iclause; |
| 3164 | } |
| 3165 | |
| 3166 | |
| 3167 | /**************************************************************************** |
| 3168 | * ---- ROUTINES TO CHECK ORDERING OPERATORS ---- |
| 3169 | ****************************************************************************/ |
| 3170 | |
| 3171 | /* |
| 3172 | * match_pathkeys_to_index |
| 3173 | * Test whether an index can produce output ordered according to the |
| 3174 | * given pathkeys using "ordering operators". |
| 3175 | * |
| 3176 | * If it can, return a list of suitable ORDER BY expressions, each of the form |
| 3177 | * "indexedcol operator pseudoconstant", along with an integer list of the |
| 3178 | * index column numbers (zero based) that each clause would be used with. |
| 3179 | * NIL lists are returned if the ordering is not achievable this way. |
| 3180 | * |
| 3181 | * On success, the result list is ordered by pathkeys, and in fact is |
| 3182 | * one-to-one with the requested pathkeys. |
| 3183 | */ |
| 3184 | static void |
| 3185 | match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys, |
| 3186 | List **orderby_clauses_p, |
| 3187 | List **clause_columns_p) |
| 3188 | { |
| 3189 | List *orderby_clauses = NIL; |
| 3190 | List *clause_columns = NIL; |
| 3191 | ListCell *lc1; |
| 3192 | |
| 3193 | *orderby_clauses_p = NIL; /* set default results */ |
| 3194 | *clause_columns_p = NIL; |
| 3195 | |
| 3196 | /* Only indexes with the amcanorderbyop property are interesting here */ |
| 3197 | if (!index->amcanorderbyop) |
| 3198 | return; |
| 3199 | |
| 3200 | foreach(lc1, pathkeys) |
| 3201 | { |
| 3202 | PathKey *pathkey = (PathKey *) lfirst(lc1); |
| 3203 | bool found = false; |
| 3204 | ListCell *lc2; |
| 3205 | |
| 3206 | /* |
| 3207 | * Note: for any failure to match, we just return NIL immediately. |
| 3208 | * There is no value in matching just some of the pathkeys. |
| 3209 | */ |
| 3210 | |
| 3211 | /* Pathkey must request default sort order for the target opfamily */ |
| 3212 | if (pathkey->pk_strategy != BTLessStrategyNumber || |
| 3213 | pathkey->pk_nulls_first) |
| 3214 | return; |
| 3215 | |
| 3216 | /* If eclass is volatile, no hope of using an indexscan */ |
| 3217 | if (pathkey->pk_eclass->ec_has_volatile) |
| 3218 | return; |
| 3219 | |
| 3220 | /* |
| 3221 | * Try to match eclass member expression(s) to index. Note that child |
| 3222 | * EC members are considered, but only when they belong to the target |
| 3223 | * relation. (Unlike regular members, the same expression could be a |
| 3224 | * child member of more than one EC. Therefore, the same index could |
| 3225 | * be considered to match more than one pathkey list, which is OK |
| 3226 | * here. See also get_eclass_for_sort_expr.) |
| 3227 | */ |
| 3228 | foreach(lc2, pathkey->pk_eclass->ec_members) |
| 3229 | { |
| 3230 | EquivalenceMember *member = (EquivalenceMember *) lfirst(lc2); |
| 3231 | int indexcol; |
| 3232 | |
| 3233 | /* No possibility of match if it references other relations */ |
| 3234 | if (!bms_equal(member->em_relids, index->rel->relids)) |
| 3235 | continue; |
| 3236 | |
| 3237 | /* |
| 3238 | * We allow any column of the index to match each pathkey; they |
| 3239 | * don't have to match left-to-right as you might expect. This is |
| 3240 | * correct for GiST, and it doesn't matter for SP-GiST because |
| 3241 | * that doesn't handle multiple columns anyway, and no other |
| 3242 | * existing AMs support amcanorderbyop. We might need different |
| 3243 | * logic in future for other implementations. |
| 3244 | */ |
| 3245 | for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++) |
| 3246 | { |
| 3247 | Expr *expr; |
| 3248 | |
| 3249 | expr = match_clause_to_ordering_op(index, |
| 3250 | indexcol, |
| 3251 | member->em_expr, |
| 3252 | pathkey->pk_opfamily); |
| 3253 | if (expr) |
| 3254 | { |
| 3255 | orderby_clauses = lappend(orderby_clauses, expr); |
| 3256 | clause_columns = lappend_int(clause_columns, indexcol); |
| 3257 | found = true; |
| 3258 | break; |
| 3259 | } |
| 3260 | } |
| 3261 | |
| 3262 | if (found) /* don't want to look at remaining members */ |
| 3263 | break; |
| 3264 | } |
| 3265 | |
| 3266 | if (!found) /* fail if no match for this pathkey */ |
| 3267 | return; |
| 3268 | } |
| 3269 | |
| 3270 | *orderby_clauses_p = orderby_clauses; /* success! */ |
| 3271 | *clause_columns_p = clause_columns; |
| 3272 | } |
| 3273 | |
| 3274 | /* |
| 3275 | * match_clause_to_ordering_op |
| 3276 | * Determines whether an ordering operator expression matches an |
| 3277 | * index column. |
| 3278 | * |
| 3279 | * This is similar to, but simpler than, match_clause_to_indexcol. |
| 3280 | * We only care about simple OpExpr cases. The input is a bare |
| 3281 | * expression that is being ordered by, which must be of the form |
| 3282 | * (indexkey op const) or (const op indexkey) where op is an ordering |
| 3283 | * operator for the column's opfamily. |
| 3284 | * |
| 3285 | * 'index' is the index of interest. |
| 3286 | * 'indexcol' is a column number of 'index' (counting from 0). |
| 3287 | * 'clause' is the ordering expression to be tested. |
| 3288 | * 'pk_opfamily' is the btree opfamily describing the required sort order. |
| 3289 | * |
| 3290 | * Note that we currently do not consider the collation of the ordering |
| 3291 | * operator's result. In practical cases the result type will be numeric |
| 3292 | * and thus have no collation, and it's not very clear what to match to |
| 3293 | * if it did have a collation. The index's collation should match the |
| 3294 | * ordering operator's input collation, not its result. |
| 3295 | * |
| 3296 | * If successful, return 'clause' as-is if the indexkey is on the left, |
| 3297 | * otherwise a commuted copy of 'clause'. If no match, return NULL. |
| 3298 | */ |
| 3299 | static Expr * |
| 3300 | match_clause_to_ordering_op(IndexOptInfo *index, |
| 3301 | int indexcol, |
| 3302 | Expr *clause, |
| 3303 | Oid pk_opfamily) |
| 3304 | { |
| 3305 | Oid opfamily; |
| 3306 | Oid idxcollation; |
| 3307 | Node *leftop, |
| 3308 | *rightop; |
| 3309 | Oid expr_op; |
| 3310 | Oid expr_coll; |
| 3311 | Oid sortfamily; |
| 3312 | bool commuted; |
| 3313 | |
| 3314 | Assert(indexcol < index->nkeycolumns); |
| 3315 | |
| 3316 | opfamily = index->opfamily[indexcol]; |
| 3317 | idxcollation = index->indexcollations[indexcol]; |
| 3318 | |
| 3319 | /* |
| 3320 | * Clause must be a binary opclause. |
| 3321 | */ |
| 3322 | if (!is_opclause(clause)) |
| 3323 | return NULL; |
| 3324 | leftop = get_leftop(clause); |
| 3325 | rightop = get_rightop(clause); |
| 3326 | if (!leftop || !rightop) |
| 3327 | return NULL; |
| 3328 | expr_op = ((OpExpr *) clause)->opno; |
| 3329 | expr_coll = ((OpExpr *) clause)->inputcollid; |
| 3330 | |
| 3331 | /* |
| 3332 | * We can forget the whole thing right away if wrong collation. |
| 3333 | */ |
| 3334 | if (!IndexCollMatchesExprColl(idxcollation, expr_coll)) |
| 3335 | return NULL; |
| 3336 | |
| 3337 | /* |
| 3338 | * Check for clauses of the form: (indexkey operator constant) or |
| 3339 | * (constant operator indexkey). |
| 3340 | */ |
| 3341 | if (match_index_to_operand(leftop, indexcol, index) && |
| 3342 | !contain_var_clause(rightop) && |
| 3343 | !contain_volatile_functions(rightop)) |
| 3344 | { |
| 3345 | commuted = false; |
| 3346 | } |
| 3347 | else if (match_index_to_operand(rightop, indexcol, index) && |
| 3348 | !contain_var_clause(leftop) && |
| 3349 | !contain_volatile_functions(leftop)) |
| 3350 | { |
| 3351 | /* Might match, but we need a commuted operator */ |
| 3352 | expr_op = get_commutator(expr_op); |
| 3353 | if (expr_op == InvalidOid) |
| 3354 | return NULL; |
| 3355 | commuted = true; |
| 3356 | } |
| 3357 | else |
| 3358 | return NULL; |
| 3359 | |
| 3360 | /* |
| 3361 | * Is the (commuted) operator an ordering operator for the opfamily? And |
| 3362 | * if so, does it yield the right sorting semantics? |
| 3363 | */ |
| 3364 | sortfamily = get_op_opfamily_sortfamily(expr_op, opfamily); |
| 3365 | if (sortfamily != pk_opfamily) |
| 3366 | return NULL; |
| 3367 | |
| 3368 | /* We have a match. Return clause or a commuted version thereof. */ |
| 3369 | if (commuted) |
| 3370 | { |
| 3371 | OpExpr *newclause = makeNode(OpExpr); |
| 3372 | |
| 3373 | /* flat-copy all the fields of clause */ |
| 3374 | memcpy(newclause, clause, sizeof(OpExpr)); |
| 3375 | |
| 3376 | /* commute it */ |
| 3377 | newclause->opno = expr_op; |
| 3378 | newclause->opfuncid = InvalidOid; |
| 3379 | newclause->args = list_make2(rightop, leftop); |
| 3380 | |
| 3381 | clause = (Expr *) newclause; |
| 3382 | } |
| 3383 | |
| 3384 | return clause; |
| 3385 | } |
| 3386 | |
| 3387 | |
| 3388 | /**************************************************************************** |
| 3389 | * ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ---- |
| 3390 | ****************************************************************************/ |
| 3391 | |
| 3392 | /* |
| 3393 | * check_index_predicates |
| 3394 | * Set the predicate-derived IndexOptInfo fields for each index |
| 3395 | * of the specified relation. |
| 3396 | * |
| 3397 | * predOK is set true if the index is partial and its predicate is satisfied |
| 3398 | * for this query, ie the query's WHERE clauses imply the predicate. |
| 3399 | * |
| 3400 | * indrestrictinfo is set to the relation's baserestrictinfo list less any |
| 3401 | * conditions that are implied by the index's predicate. (Obviously, for a |
| 3402 | * non-partial index, this is the same as baserestrictinfo.) Such conditions |
| 3403 | * can be dropped from the plan when using the index, in certain cases. |
| 3404 | * |
| 3405 | * At one time it was possible for this to get re-run after adding more |
| 3406 | * restrictions to the rel, thus possibly letting us prove more indexes OK. |
| 3407 | * That doesn't happen any more (at least not in the core code's usage), |
| 3408 | * but this code still supports it in case extensions want to mess with the |
| 3409 | * baserestrictinfo list. We assume that adding more restrictions can't make |
| 3410 | * an index not predOK. We must recompute indrestrictinfo each time, though, |
| 3411 | * to make sure any newly-added restrictions get into it if needed. |
| 3412 | */ |
| 3413 | void |
| 3414 | check_index_predicates(PlannerInfo *root, RelOptInfo *rel) |
| 3415 | { |
| 3416 | List *clauselist; |
| 3417 | bool have_partial; |
| 3418 | bool is_target_rel; |
| 3419 | Relids otherrels; |
| 3420 | ListCell *lc; |
| 3421 | |
| 3422 | /* Indexes are available only on base or "other" member relations. */ |
| 3423 | Assert(IS_SIMPLE_REL(rel)); |
| 3424 | |
| 3425 | /* |
| 3426 | * Initialize the indrestrictinfo lists to be identical to |
| 3427 | * baserestrictinfo, and check whether there are any partial indexes. If |
| 3428 | * not, this is all we need to do. |
| 3429 | */ |
| 3430 | have_partial = false; |
| 3431 | foreach(lc, rel->indexlist) |
| 3432 | { |
| 3433 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
| 3434 | |
| 3435 | index->indrestrictinfo = rel->baserestrictinfo; |
| 3436 | if (index->indpred) |
| 3437 | have_partial = true; |
| 3438 | } |
| 3439 | if (!have_partial) |
| 3440 | return; |
| 3441 | |
| 3442 | /* |
| 3443 | * Construct a list of clauses that we can assume true for the purpose of |
| 3444 | * proving the index(es) usable. Restriction clauses for the rel are |
| 3445 | * always usable, and so are any join clauses that are "movable to" this |
| 3446 | * rel. Also, we can consider any EC-derivable join clauses (which must |
| 3447 | * be "movable to" this rel, by definition). |
| 3448 | */ |
| 3449 | clauselist = list_copy(rel->baserestrictinfo); |
| 3450 | |
| 3451 | /* Scan the rel's join clauses */ |
| 3452 | foreach(lc, rel->joininfo) |
| 3453 | { |
| 3454 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 3455 | |
| 3456 | /* Check if clause can be moved to this rel */ |
| 3457 | if (!join_clause_is_movable_to(rinfo, rel)) |
| 3458 | continue; |
| 3459 | |
| 3460 | clauselist = lappend(clauselist, rinfo); |
| 3461 | } |
| 3462 | |
| 3463 | /* |
| 3464 | * Add on any equivalence-derivable join clauses. Computing the correct |
| 3465 | * relid sets for generate_join_implied_equalities is slightly tricky |
| 3466 | * because the rel could be a child rel rather than a true baserel, and in |
| 3467 | * that case we must remove its parents' relid(s) from all_baserels. |
| 3468 | */ |
| 3469 | if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL) |
| 3470 | otherrels = bms_difference(root->all_baserels, |
| 3471 | find_childrel_parents(root, rel)); |
| 3472 | else |
| 3473 | otherrels = bms_difference(root->all_baserels, rel->relids); |
| 3474 | |
| 3475 | if (!bms_is_empty(otherrels)) |
| 3476 | clauselist = |
| 3477 | list_concat(clauselist, |
| 3478 | generate_join_implied_equalities(root, |
| 3479 | bms_union(rel->relids, |
| 3480 | otherrels), |
| 3481 | otherrels, |
| 3482 | rel)); |
| 3483 | |
| 3484 | /* |
| 3485 | * Normally we remove quals that are implied by a partial index's |
| 3486 | * predicate from indrestrictinfo, indicating that they need not be |
| 3487 | * checked explicitly by an indexscan plan using this index. However, if |
| 3488 | * the rel is a target relation of UPDATE/DELETE/SELECT FOR UPDATE, we |
| 3489 | * cannot remove such quals from the plan, because they need to be in the |
| 3490 | * plan so that they will be properly rechecked by EvalPlanQual testing. |
| 3491 | * Some day we might want to remove such quals from the main plan anyway |
| 3492 | * and pass them through to EvalPlanQual via a side channel; but for now, |
| 3493 | * we just don't remove implied quals at all for target relations. |
| 3494 | */ |
| 3495 | is_target_rel = (rel->relid == root->parse->resultRelation || |
| 3496 | get_plan_rowmark(root->rowMarks, rel->relid) != NULL); |
| 3497 | |
| 3498 | /* |
| 3499 | * Now try to prove each index predicate true, and compute the |
| 3500 | * indrestrictinfo lists for partial indexes. Note that we compute the |
| 3501 | * indrestrictinfo list even for non-predOK indexes; this might seem |
| 3502 | * wasteful, but we may be able to use such indexes in OR clauses, cf |
| 3503 | * generate_bitmap_or_paths(). |
| 3504 | */ |
| 3505 | foreach(lc, rel->indexlist) |
| 3506 | { |
| 3507 | IndexOptInfo *index = (IndexOptInfo *) lfirst(lc); |
| 3508 | ListCell *lcr; |
| 3509 | |
| 3510 | if (index->indpred == NIL) |
| 3511 | continue; /* ignore non-partial indexes here */ |
| 3512 | |
| 3513 | if (!index->predOK) /* don't repeat work if already proven OK */ |
| 3514 | index->predOK = predicate_implied_by(index->indpred, clauselist, |
| 3515 | false); |
| 3516 | |
| 3517 | /* If rel is an update target, leave indrestrictinfo as set above */ |
| 3518 | if (is_target_rel) |
| 3519 | continue; |
| 3520 | |
| 3521 | /* Else compute indrestrictinfo as the non-implied quals */ |
| 3522 | index->indrestrictinfo = NIL; |
| 3523 | foreach(lcr, rel->baserestrictinfo) |
| 3524 | { |
| 3525 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcr); |
| 3526 | |
| 3527 | /* predicate_implied_by() assumes first arg is immutable */ |
| 3528 | if (contain_mutable_functions((Node *) rinfo->clause) || |
| 3529 | !predicate_implied_by(list_make1(rinfo->clause), |
| 3530 | index->indpred, false)) |
| 3531 | index->indrestrictinfo = lappend(index->indrestrictinfo, rinfo); |
| 3532 | } |
| 3533 | } |
| 3534 | } |
| 3535 | |
| 3536 | /**************************************************************************** |
| 3537 | * ---- ROUTINES TO CHECK EXTERNALLY-VISIBLE CONDITIONS ---- |
| 3538 | ****************************************************************************/ |
| 3539 | |
| 3540 | /* |
| 3541 | * ec_member_matches_indexcol |
| 3542 | * Test whether an EquivalenceClass member matches an index column. |
| 3543 | * |
| 3544 | * This is a callback for use by generate_implied_equalities_for_column. |
| 3545 | */ |
| 3546 | static bool |
| 3547 | ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel, |
| 3548 | EquivalenceClass *ec, EquivalenceMember *em, |
| 3549 | void *arg) |
| 3550 | { |
| 3551 | IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index; |
| 3552 | int indexcol = ((ec_member_matches_arg *) arg)->indexcol; |
| 3553 | Oid curFamily; |
| 3554 | Oid curCollation; |
| 3555 | |
| 3556 | Assert(indexcol < index->nkeycolumns); |
| 3557 | |
| 3558 | curFamily = index->opfamily[indexcol]; |
| 3559 | curCollation = index->indexcollations[indexcol]; |
| 3560 | |
| 3561 | /* |
| 3562 | * If it's a btree index, we can reject it if its opfamily isn't |
| 3563 | * compatible with the EC, since no clause generated from the EC could be |
| 3564 | * used with the index. For non-btree indexes, we can't easily tell |
| 3565 | * whether clauses generated from the EC could be used with the index, so |
| 3566 | * don't check the opfamily. This might mean we return "true" for a |
| 3567 | * useless EC, so we have to recheck the results of |
| 3568 | * generate_implied_equalities_for_column; see |
| 3569 | * match_eclass_clauses_to_index. |
| 3570 | */ |
| 3571 | if (index->relam == BTREE_AM_OID && |
| 3572 | !list_member_oid(ec->ec_opfamilies, curFamily)) |
| 3573 | return false; |
| 3574 | |
| 3575 | /* We insist on collation match for all index types, though */ |
| 3576 | if (!IndexCollMatchesExprColl(curCollation, ec->ec_collation)) |
| 3577 | return false; |
| 3578 | |
| 3579 | return match_index_to_operand((Node *) em->em_expr, indexcol, index); |
| 3580 | } |
| 3581 | |
| 3582 | /* |
| 3583 | * relation_has_unique_index_for |
| 3584 | * Determine whether the relation provably has at most one row satisfying |
| 3585 | * a set of equality conditions, because the conditions constrain all |
| 3586 | * columns of some unique index. |
| 3587 | * |
| 3588 | * The conditions can be represented in either or both of two ways: |
| 3589 | * 1. A list of RestrictInfo nodes, where the caller has already determined |
| 3590 | * that each condition is a mergejoinable equality with an expression in |
| 3591 | * this relation on one side, and an expression not involving this relation |
| 3592 | * on the other. The transient outer_is_left flag is used to identify which |
| 3593 | * side we should look at: left side if outer_is_left is false, right side |
| 3594 | * if it is true. |
| 3595 | * 2. A list of expressions in this relation, and a corresponding list of |
| 3596 | * equality operators. The caller must have already checked that the operators |
| 3597 | * represent equality. (Note: the operators could be cross-type; the |
| 3598 | * expressions should correspond to their RHS inputs.) |
| 3599 | * |
| 3600 | * The caller need only supply equality conditions arising from joins; |
| 3601 | * this routine automatically adds in any usable baserestrictinfo clauses. |
| 3602 | * (Note that the passed-in restrictlist will be destructively modified!) |
| 3603 | */ |
| 3604 | bool |
| 3605 | relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel, |
| 3606 | List *restrictlist, |
| 3607 | List *exprlist, List *oprlist) |
| 3608 | { |
| 3609 | ListCell *ic; |
| 3610 | |
| 3611 | Assert(list_length(exprlist) == list_length(oprlist)); |
| 3612 | |
| 3613 | /* Short-circuit if no indexes... */ |
| 3614 | if (rel->indexlist == NIL) |
| 3615 | return false; |
| 3616 | |
| 3617 | /* |
| 3618 | * Examine the rel's restriction clauses for usable var = const clauses |
| 3619 | * that we can add to the restrictlist. |
| 3620 | */ |
| 3621 | foreach(ic, rel->baserestrictinfo) |
| 3622 | { |
| 3623 | RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(ic); |
| 3624 | |
| 3625 | /* |
| 3626 | * Note: can_join won't be set for a restriction clause, but |
| 3627 | * mergeopfamilies will be if it has a mergejoinable operator and |
| 3628 | * doesn't contain volatile functions. |
| 3629 | */ |
| 3630 | if (restrictinfo->mergeopfamilies == NIL) |
| 3631 | continue; /* not mergejoinable */ |
| 3632 | |
| 3633 | /* |
| 3634 | * The clause certainly doesn't refer to anything but the given rel. |
| 3635 | * If either side is pseudoconstant then we can use it. |
| 3636 | */ |
| 3637 | if (bms_is_empty(restrictinfo->left_relids)) |
| 3638 | { |
| 3639 | /* righthand side is inner */ |
| 3640 | restrictinfo->outer_is_left = true; |
| 3641 | } |
| 3642 | else if (bms_is_empty(restrictinfo->right_relids)) |
| 3643 | { |
| 3644 | /* lefthand side is inner */ |
| 3645 | restrictinfo->outer_is_left = false; |
| 3646 | } |
| 3647 | else |
| 3648 | continue; |
| 3649 | |
| 3650 | /* OK, add to list */ |
| 3651 | restrictlist = lappend(restrictlist, restrictinfo); |
| 3652 | } |
| 3653 | |
| 3654 | /* Short-circuit the easy case */ |
| 3655 | if (restrictlist == NIL && exprlist == NIL) |
| 3656 | return false; |
| 3657 | |
| 3658 | /* Examine each index of the relation ... */ |
| 3659 | foreach(ic, rel->indexlist) |
| 3660 | { |
| 3661 | IndexOptInfo *ind = (IndexOptInfo *) lfirst(ic); |
| 3662 | int c; |
| 3663 | |
| 3664 | /* |
| 3665 | * If the index is not unique, or not immediately enforced, or if it's |
| 3666 | * a partial index that doesn't match the query, it's useless here. |
| 3667 | */ |
| 3668 | if (!ind->unique || !ind->immediate || |
| 3669 | (ind->indpred != NIL && !ind->predOK)) |
| 3670 | continue; |
| 3671 | |
| 3672 | /* |
| 3673 | * Try to find each index column in the lists of conditions. This is |
| 3674 | * O(N^2) or worse, but we expect all the lists to be short. |
| 3675 | */ |
| 3676 | for (c = 0; c < ind->nkeycolumns; c++) |
| 3677 | { |
| 3678 | bool matched = false; |
| 3679 | ListCell *lc; |
| 3680 | ListCell *lc2; |
| 3681 | |
| 3682 | foreach(lc, restrictlist) |
| 3683 | { |
| 3684 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 3685 | Node *rexpr; |
| 3686 | |
| 3687 | /* |
| 3688 | * The condition's equality operator must be a member of the |
| 3689 | * index opfamily, else it is not asserting the right kind of |
| 3690 | * equality behavior for this index. We check this first |
| 3691 | * since it's probably cheaper than match_index_to_operand(). |
| 3692 | */ |
| 3693 | if (!list_member_oid(rinfo->mergeopfamilies, ind->opfamily[c])) |
| 3694 | continue; |
| 3695 | |
| 3696 | /* |
| 3697 | * XXX at some point we may need to check collations here too. |
| 3698 | * For the moment we assume all collations reduce to the same |
| 3699 | * notion of equality. |
| 3700 | */ |
| 3701 | |
| 3702 | /* OK, see if the condition operand matches the index key */ |
| 3703 | if (rinfo->outer_is_left) |
| 3704 | rexpr = get_rightop(rinfo->clause); |
| 3705 | else |
| 3706 | rexpr = get_leftop(rinfo->clause); |
| 3707 | |
| 3708 | if (match_index_to_operand(rexpr, c, ind)) |
| 3709 | { |
| 3710 | matched = true; /* column is unique */ |
| 3711 | break; |
| 3712 | } |
| 3713 | } |
| 3714 | |
| 3715 | if (matched) |
| 3716 | continue; |
| 3717 | |
| 3718 | forboth(lc, exprlist, lc2, oprlist) |
| 3719 | { |
| 3720 | Node *expr = (Node *) lfirst(lc); |
| 3721 | Oid opr = lfirst_oid(lc2); |
| 3722 | |
| 3723 | /* See if the expression matches the index key */ |
| 3724 | if (!match_index_to_operand(expr, c, ind)) |
| 3725 | continue; |
| 3726 | |
| 3727 | /* |
| 3728 | * The equality operator must be a member of the index |
| 3729 | * opfamily, else it is not asserting the right kind of |
| 3730 | * equality behavior for this index. We assume the caller |
| 3731 | * determined it is an equality operator, so we don't need to |
| 3732 | * check any more tightly than this. |
| 3733 | */ |
| 3734 | if (!op_in_opfamily(opr, ind->opfamily[c])) |
| 3735 | continue; |
| 3736 | |
| 3737 | /* |
| 3738 | * XXX at some point we may need to check collations here too. |
| 3739 | * For the moment we assume all collations reduce to the same |
| 3740 | * notion of equality. |
| 3741 | */ |
| 3742 | |
| 3743 | matched = true; /* column is unique */ |
| 3744 | break; |
| 3745 | } |
| 3746 | |
| 3747 | if (!matched) |
| 3748 | break; /* no match; this index doesn't help us */ |
| 3749 | } |
| 3750 | |
| 3751 | /* Matched all key columns of this index? */ |
| 3752 | if (c == ind->nkeycolumns) |
| 3753 | return true; |
| 3754 | } |
| 3755 | |
| 3756 | return false; |
| 3757 | } |
| 3758 | |
| 3759 | /* |
| 3760 | * indexcol_is_bool_constant_for_query |
| 3761 | * |
| 3762 | * If an index column is constrained to have a constant value by the query's |
| 3763 | * WHERE conditions, then it's irrelevant for sort-order considerations. |
| 3764 | * Usually that means we have a restriction clause WHERE indexcol = constant, |
| 3765 | * which gets turned into an EquivalenceClass containing a constant, which |
| 3766 | * is recognized as redundant by build_index_pathkeys(). But if the index |
| 3767 | * column is a boolean variable (or expression), then we are not going to |
| 3768 | * see WHERE indexcol = constant, because expression preprocessing will have |
| 3769 | * simplified that to "WHERE indexcol" or "WHERE NOT indexcol". So we are not |
| 3770 | * going to have a matching EquivalenceClass (unless the query also contains |
| 3771 | * "ORDER BY indexcol"). To allow such cases to work the same as they would |
| 3772 | * for non-boolean values, this function is provided to detect whether the |
| 3773 | * specified index column matches a boolean restriction clause. |
| 3774 | */ |
| 3775 | bool |
| 3776 | indexcol_is_bool_constant_for_query(IndexOptInfo *index, int indexcol) |
| 3777 | { |
| 3778 | ListCell *lc; |
| 3779 | |
| 3780 | /* If the index isn't boolean, we can't possibly get a match */ |
| 3781 | if (!IsBooleanOpfamily(index->opfamily[indexcol])) |
| 3782 | return false; |
| 3783 | |
| 3784 | /* Check each restriction clause for the index's rel */ |
| 3785 | foreach(lc, index->rel->baserestrictinfo) |
| 3786 | { |
| 3787 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 3788 | |
| 3789 | /* |
| 3790 | * As in match_clause_to_indexcol, never match pseudoconstants to |
| 3791 | * indexes. (It might be semantically okay to do so here, but the |
| 3792 | * odds of getting a match are negligible, so don't waste the cycles.) |
| 3793 | */ |
| 3794 | if (rinfo->pseudoconstant) |
| 3795 | continue; |
| 3796 | |
| 3797 | /* See if we can match the clause's expression to the index column */ |
| 3798 | if (match_boolean_index_clause(rinfo, indexcol, index)) |
| 3799 | return true; |
| 3800 | } |
| 3801 | |
| 3802 | return false; |
| 3803 | } |
| 3804 | |
| 3805 | |
| 3806 | /**************************************************************************** |
| 3807 | * ---- ROUTINES TO CHECK OPERANDS ---- |
| 3808 | ****************************************************************************/ |
| 3809 | |
| 3810 | /* |
| 3811 | * match_index_to_operand() |
| 3812 | * Generalized test for a match between an index's key |
| 3813 | * and the operand on one side of a restriction or join clause. |
| 3814 | * |
| 3815 | * operand: the nodetree to be compared to the index |
| 3816 | * indexcol: the column number of the index (counting from 0) |
| 3817 | * index: the index of interest |
| 3818 | * |
| 3819 | * Note that we aren't interested in collations here; the caller must check |
| 3820 | * for a collation match, if it's dealing with an operator where that matters. |
| 3821 | * |
| 3822 | * This is exported for use in selfuncs.c. |
| 3823 | */ |
| 3824 | bool |
| 3825 | match_index_to_operand(Node *operand, |
| 3826 | int indexcol, |
| 3827 | IndexOptInfo *index) |
| 3828 | { |
| 3829 | int indkey; |
| 3830 | |
| 3831 | /* |
| 3832 | * Ignore any RelabelType node above the operand. This is needed to be |
| 3833 | * able to apply indexscanning in binary-compatible-operator cases. Note: |
| 3834 | * we can assume there is at most one RelabelType node; |
| 3835 | * eval_const_expressions() will have simplified if more than one. |
| 3836 | */ |
| 3837 | if (operand && IsA(operand, RelabelType)) |
| 3838 | operand = (Node *) ((RelabelType *) operand)->arg; |
| 3839 | |
| 3840 | indkey = index->indexkeys[indexcol]; |
| 3841 | if (indkey != 0) |
| 3842 | { |
| 3843 | /* |
| 3844 | * Simple index column; operand must be a matching Var. |
| 3845 | */ |
| 3846 | if (operand && IsA(operand, Var) && |
| 3847 | index->rel->relid == ((Var *) operand)->varno && |
| 3848 | indkey == ((Var *) operand)->varattno) |
| 3849 | return true; |
| 3850 | } |
| 3851 | else |
| 3852 | { |
| 3853 | /* |
| 3854 | * Index expression; find the correct expression. (This search could |
| 3855 | * be avoided, at the cost of complicating all the callers of this |
| 3856 | * routine; doesn't seem worth it.) |
| 3857 | */ |
| 3858 | ListCell *indexpr_item; |
| 3859 | int i; |
| 3860 | Node *indexkey; |
| 3861 | |
| 3862 | indexpr_item = list_head(index->indexprs); |
| 3863 | for (i = 0; i < indexcol; i++) |
| 3864 | { |
| 3865 | if (index->indexkeys[i] == 0) |
| 3866 | { |
| 3867 | if (indexpr_item == NULL) |
| 3868 | elog(ERROR, "wrong number of index expressions" ); |
| 3869 | indexpr_item = lnext(indexpr_item); |
| 3870 | } |
| 3871 | } |
| 3872 | if (indexpr_item == NULL) |
| 3873 | elog(ERROR, "wrong number of index expressions" ); |
| 3874 | indexkey = (Node *) lfirst(indexpr_item); |
| 3875 | |
| 3876 | /* |
| 3877 | * Does it match the operand? Again, strip any relabeling. |
| 3878 | */ |
| 3879 | if (indexkey && IsA(indexkey, RelabelType)) |
| 3880 | indexkey = (Node *) ((RelabelType *) indexkey)->arg; |
| 3881 | |
| 3882 | if (equal(indexkey, operand)) |
| 3883 | return true; |
| 3884 | } |
| 3885 | |
| 3886 | return false; |
| 3887 | } |
| 3888 | |
| 3889 | /* |
| 3890 | * is_pseudo_constant_for_index() |
| 3891 | * Test whether the given expression can be used as an indexscan |
| 3892 | * comparison value. |
| 3893 | * |
| 3894 | * An indexscan comparison value must not contain any volatile functions, |
| 3895 | * and it can't contain any Vars of the index's own table. Vars of |
| 3896 | * other tables are okay, though; in that case we'd be producing an |
| 3897 | * indexqual usable in a parameterized indexscan. This is, therefore, |
| 3898 | * a weaker condition than is_pseudo_constant_clause(). |
| 3899 | * |
| 3900 | * This function is exported for use by planner support functions, |
| 3901 | * which will have available the IndexOptInfo, but not any RestrictInfo |
| 3902 | * infrastructure. It is making the same test made by functions above |
| 3903 | * such as match_opclause_to_indexcol(), but those rely where possible |
| 3904 | * on RestrictInfo information about variable membership. |
| 3905 | * |
| 3906 | * expr: the nodetree to be checked |
| 3907 | * index: the index of interest |
| 3908 | */ |
| 3909 | bool |
| 3910 | is_pseudo_constant_for_index(Node *expr, IndexOptInfo *index) |
| 3911 | { |
| 3912 | /* pull_varnos is cheaper than volatility check, so do that first */ |
| 3913 | if (bms_is_member(index->rel->relid, pull_varnos(expr))) |
| 3914 | return false; /* no good, contains Var of table */ |
| 3915 | if (contain_volatile_functions(expr)) |
| 3916 | return false; /* no good, volatile comparison value */ |
| 3917 | return true; |
| 3918 | } |
| 3919 | |