| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * setrefs.c |
| 4 | * Post-processing of a completed plan tree: fix references to subplan |
| 5 | * vars, compute regproc values for operators, etc |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * |
| 11 | * IDENTIFICATION |
| 12 | * src/backend/optimizer/plan/setrefs.c |
| 13 | * |
| 14 | *------------------------------------------------------------------------- |
| 15 | */ |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "access/transam.h" |
| 19 | #include "catalog/pg_type.h" |
| 20 | #include "nodes/makefuncs.h" |
| 21 | #include "nodes/nodeFuncs.h" |
| 22 | #include "optimizer/optimizer.h" |
| 23 | #include "optimizer/pathnode.h" |
| 24 | #include "optimizer/planmain.h" |
| 25 | #include "optimizer/planner.h" |
| 26 | #include "optimizer/tlist.h" |
| 27 | #include "tcop/utility.h" |
| 28 | #include "utils/lsyscache.h" |
| 29 | #include "utils/syscache.h" |
| 30 | |
| 31 | |
| 32 | typedef struct |
| 33 | { |
| 34 | Index varno; /* RT index of Var */ |
| 35 | AttrNumber varattno; /* attr number of Var */ |
| 36 | AttrNumber resno; /* TLE position of Var */ |
| 37 | } tlist_vinfo; |
| 38 | |
| 39 | typedef struct |
| 40 | { |
| 41 | List *tlist; /* underlying target list */ |
| 42 | int num_vars; /* number of plain Var tlist entries */ |
| 43 | bool has_ph_vars; /* are there PlaceHolderVar entries? */ |
| 44 | bool has_non_vars; /* are there other entries? */ |
| 45 | tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */ |
| 46 | } indexed_tlist; |
| 47 | |
| 48 | typedef struct |
| 49 | { |
| 50 | PlannerInfo *root; |
| 51 | int rtoffset; |
| 52 | } fix_scan_expr_context; |
| 53 | |
| 54 | typedef struct |
| 55 | { |
| 56 | PlannerInfo *root; |
| 57 | indexed_tlist *outer_itlist; |
| 58 | indexed_tlist *inner_itlist; |
| 59 | Index acceptable_rel; |
| 60 | int rtoffset; |
| 61 | } fix_join_expr_context; |
| 62 | |
| 63 | typedef struct |
| 64 | { |
| 65 | PlannerInfo *root; |
| 66 | indexed_tlist *subplan_itlist; |
| 67 | Index newvarno; |
| 68 | int rtoffset; |
| 69 | } fix_upper_expr_context; |
| 70 | |
| 71 | /* |
| 72 | * Check if a Const node is a regclass value. We accept plain OID too, |
| 73 | * since a regclass Const will get folded to that type if it's an argument |
| 74 | * to oideq or similar operators. (This might result in some extraneous |
| 75 | * values in a plan's list of relation dependencies, but the worst result |
| 76 | * would be occasional useless replans.) |
| 77 | */ |
| 78 | #define ISREGCLASSCONST(con) \ |
| 79 | (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \ |
| 80 | !(con)->constisnull) |
| 81 | |
| 82 | #define fix_scan_list(root, lst, rtoffset) \ |
| 83 | ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset)) |
| 84 | |
| 85 | static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing); |
| 86 | static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte); |
| 87 | static bool flatten_rtes_walker(Node *node, PlannerGlobal *glob); |
| 88 | static void add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte); |
| 89 | static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset); |
| 90 | static Plan *set_indexonlyscan_references(PlannerInfo *root, |
| 91 | IndexOnlyScan *plan, |
| 92 | int rtoffset); |
| 93 | static Plan *set_subqueryscan_references(PlannerInfo *root, |
| 94 | SubqueryScan *plan, |
| 95 | int rtoffset); |
| 96 | static bool trivial_subqueryscan(SubqueryScan *plan); |
| 97 | static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child); |
| 98 | static void set_foreignscan_references(PlannerInfo *root, |
| 99 | ForeignScan *fscan, |
| 100 | int rtoffset); |
| 101 | static void set_customscan_references(PlannerInfo *root, |
| 102 | CustomScan *cscan, |
| 103 | int rtoffset); |
| 104 | static Plan *set_append_references(PlannerInfo *root, |
| 105 | Append *aplan, |
| 106 | int rtoffset); |
| 107 | static Plan *set_mergeappend_references(PlannerInfo *root, |
| 108 | MergeAppend *mplan, |
| 109 | int rtoffset); |
| 110 | static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset); |
| 111 | static Node *fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset); |
| 112 | static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context); |
| 113 | static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context); |
| 114 | static void set_join_references(PlannerInfo *root, Join *join, int rtoffset); |
| 115 | static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset); |
| 116 | static void set_param_references(PlannerInfo *root, Plan *plan); |
| 117 | static Node *convert_combining_aggrefs(Node *node, void *context); |
| 118 | static void set_dummy_tlist_references(Plan *plan, int rtoffset); |
| 119 | static indexed_tlist *build_tlist_index(List *tlist); |
| 120 | static Var *search_indexed_tlist_for_var(Var *var, |
| 121 | indexed_tlist *itlist, |
| 122 | Index newvarno, |
| 123 | int rtoffset); |
| 124 | static Var *search_indexed_tlist_for_non_var(Expr *node, |
| 125 | indexed_tlist *itlist, |
| 126 | Index newvarno); |
| 127 | static Var *search_indexed_tlist_for_sortgroupref(Expr *node, |
| 128 | Index sortgroupref, |
| 129 | indexed_tlist *itlist, |
| 130 | Index newvarno); |
| 131 | static List *fix_join_expr(PlannerInfo *root, |
| 132 | List *clauses, |
| 133 | indexed_tlist *outer_itlist, |
| 134 | indexed_tlist *inner_itlist, |
| 135 | Index acceptable_rel, int rtoffset); |
| 136 | static Node *fix_join_expr_mutator(Node *node, |
| 137 | fix_join_expr_context *context); |
| 138 | static Node *fix_upper_expr(PlannerInfo *root, |
| 139 | Node *node, |
| 140 | indexed_tlist *subplan_itlist, |
| 141 | Index newvarno, |
| 142 | int rtoffset); |
| 143 | static Node *fix_upper_expr_mutator(Node *node, |
| 144 | fix_upper_expr_context *context); |
| 145 | static List *set_returning_clause_references(PlannerInfo *root, |
| 146 | List *rlist, |
| 147 | Plan *topplan, |
| 148 | Index resultRelation, |
| 149 | int rtoffset); |
| 150 | |
| 151 | |
| 152 | /***************************************************************************** |
| 153 | * |
| 154 | * SUBPLAN REFERENCES |
| 155 | * |
| 156 | *****************************************************************************/ |
| 157 | |
| 158 | /* |
| 159 | * set_plan_references |
| 160 | * |
| 161 | * This is the final processing pass of the planner/optimizer. The plan |
| 162 | * tree is complete; we just have to adjust some representational details |
| 163 | * for the convenience of the executor: |
| 164 | * |
| 165 | * 1. We flatten the various subquery rangetables into a single list, and |
| 166 | * zero out RangeTblEntry fields that are not useful to the executor. |
| 167 | * |
| 168 | * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable. |
| 169 | * |
| 170 | * 3. We adjust Vars in upper plan nodes to refer to the outputs of their |
| 171 | * subplans. |
| 172 | * |
| 173 | * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving |
| 174 | * partial aggregation or minmax aggregate optimization. |
| 175 | * |
| 176 | * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params, |
| 177 | * now that we have finished planning all MULTIEXPR subplans. |
| 178 | * |
| 179 | * 6. We compute regproc OIDs for operators (ie, we look up the function |
| 180 | * that implements each op). |
| 181 | * |
| 182 | * 7. We create lists of specific objects that the plan depends on. |
| 183 | * This will be used by plancache.c to drive invalidation of cached plans. |
| 184 | * Relation dependencies are represented by OIDs, and everything else by |
| 185 | * PlanInvalItems (this distinction is motivated by the shared-inval APIs). |
| 186 | * Currently, relations, user-defined functions, and domains are the only |
| 187 | * types of objects that are explicitly tracked this way. |
| 188 | * |
| 189 | * 8. We assign every plan node in the tree a unique ID. |
| 190 | * |
| 191 | * We also perform one final optimization step, which is to delete |
| 192 | * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing |
| 193 | * anything useful. The reason for doing this last is that |
| 194 | * it can't readily be done before set_plan_references, because it would |
| 195 | * break set_upper_references: the Vars in the child plan's top tlist |
| 196 | * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan |
| 197 | * serves a necessary function as a buffer between outer query and subquery |
| 198 | * variable numbering ... but after we've flattened the rangetable this is |
| 199 | * no longer a problem, since then there's only one rtindex namespace. |
| 200 | * Likewise, Append and MergeAppend buffer between the parent and child vars |
| 201 | * of an appendrel, but we don't need to worry about that once we've done |
| 202 | * set_plan_references. |
| 203 | * |
| 204 | * set_plan_references recursively traverses the whole plan tree. |
| 205 | * |
| 206 | * The return value is normally the same Plan node passed in, but can be |
| 207 | * different when the passed-in Plan is a node we decide isn't needed. |
| 208 | * |
| 209 | * The flattened rangetable entries are appended to root->glob->finalrtable. |
| 210 | * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the |
| 211 | * RT indexes of ModifyTable result relations to root->glob->resultRelations. |
| 212 | * Plan dependencies are appended to root->glob->relationOids (for relations) |
| 213 | * and root->glob->invalItems (for everything else). |
| 214 | * |
| 215 | * Notice that we modify Plan nodes in-place, but use expression_tree_mutator |
| 216 | * to process targetlist and qual expressions. We can assume that the Plan |
| 217 | * nodes were just built by the planner and are not multiply referenced, but |
| 218 | * it's not so safe to assume that for expression tree nodes. |
| 219 | */ |
| 220 | Plan * |
| 221 | set_plan_references(PlannerInfo *root, Plan *plan) |
| 222 | { |
| 223 | PlannerGlobal *glob = root->glob; |
| 224 | int rtoffset = list_length(glob->finalrtable); |
| 225 | ListCell *lc; |
| 226 | |
| 227 | /* |
| 228 | * Add all the query's RTEs to the flattened rangetable. The live ones |
| 229 | * will have their rangetable indexes increased by rtoffset. (Additional |
| 230 | * RTEs, not referenced by the Plan tree, might get added after those.) |
| 231 | */ |
| 232 | add_rtes_to_flat_rtable(root, false); |
| 233 | |
| 234 | /* |
| 235 | * Adjust RT indexes of PlanRowMarks and add to final rowmarks list |
| 236 | */ |
| 237 | foreach(lc, root->rowMarks) |
| 238 | { |
| 239 | PlanRowMark *rc = lfirst_node(PlanRowMark, lc); |
| 240 | PlanRowMark *newrc; |
| 241 | |
| 242 | /* flat copy is enough since all fields are scalars */ |
| 243 | newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark)); |
| 244 | memcpy(newrc, rc, sizeof(PlanRowMark)); |
| 245 | |
| 246 | /* adjust indexes ... but *not* the rowmarkId */ |
| 247 | newrc->rti += rtoffset; |
| 248 | newrc->prti += rtoffset; |
| 249 | |
| 250 | glob->finalrowmarks = lappend(glob->finalrowmarks, newrc); |
| 251 | } |
| 252 | |
| 253 | /* Now fix the Plan tree */ |
| 254 | return set_plan_refs(root, plan, rtoffset); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable |
| 259 | * |
| 260 | * This can recurse into subquery plans; "recursing" is true if so. |
| 261 | */ |
| 262 | static void |
| 263 | add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) |
| 264 | { |
| 265 | PlannerGlobal *glob = root->glob; |
| 266 | Index rti; |
| 267 | ListCell *lc; |
| 268 | |
| 269 | /* |
| 270 | * Add the query's own RTEs to the flattened rangetable. |
| 271 | * |
| 272 | * At top level, we must add all RTEs so that their indexes in the |
| 273 | * flattened rangetable match up with their original indexes. When |
| 274 | * recursing, we only care about extracting relation RTEs. |
| 275 | */ |
| 276 | foreach(lc, root->parse->rtable) |
| 277 | { |
| 278 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
| 279 | |
| 280 | if (!recursing || rte->rtekind == RTE_RELATION) |
| 281 | add_rte_to_flat_rtable(glob, rte); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * If there are any dead subqueries, they are not referenced in the Plan |
| 286 | * tree, so we must add RTEs contained in them to the flattened rtable |
| 287 | * separately. (If we failed to do this, the executor would not perform |
| 288 | * expected permission checks for tables mentioned in such subqueries.) |
| 289 | * |
| 290 | * Note: this pass over the rangetable can't be combined with the previous |
| 291 | * one, because that would mess up the numbering of the live RTEs in the |
| 292 | * flattened rangetable. |
| 293 | */ |
| 294 | rti = 1; |
| 295 | foreach(lc, root->parse->rtable) |
| 296 | { |
| 297 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
| 298 | |
| 299 | /* |
| 300 | * We should ignore inheritance-parent RTEs: their contents have been |
| 301 | * pulled up into our rangetable already. Also ignore any subquery |
| 302 | * RTEs without matching RelOptInfos, as they likewise have been |
| 303 | * pulled up. |
| 304 | */ |
| 305 | if (rte->rtekind == RTE_SUBQUERY && !rte->inh && |
| 306 | rti < root->simple_rel_array_size) |
| 307 | { |
| 308 | RelOptInfo *rel = root->simple_rel_array[rti]; |
| 309 | |
| 310 | if (rel != NULL) |
| 311 | { |
| 312 | Assert(rel->relid == rti); /* sanity check on array */ |
| 313 | |
| 314 | /* |
| 315 | * The subquery might never have been planned at all, if it |
| 316 | * was excluded on the basis of self-contradictory constraints |
| 317 | * in our query level. In this case apply |
| 318 | * flatten_unplanned_rtes. |
| 319 | * |
| 320 | * If it was planned but the result rel is dummy, we assume |
| 321 | * that it has been omitted from our plan tree (see |
| 322 | * set_subquery_pathlist), and recurse to pull up its RTEs. |
| 323 | * |
| 324 | * Otherwise, it should be represented by a SubqueryScan node |
| 325 | * somewhere in our plan tree, and we'll pull up its RTEs when |
| 326 | * we process that plan node. |
| 327 | * |
| 328 | * However, if we're recursing, then we should pull up RTEs |
| 329 | * whether the subquery is dummy or not, because we've found |
| 330 | * that some upper query level is treating this one as dummy, |
| 331 | * and so we won't scan this level's plan tree at all. |
| 332 | */ |
| 333 | if (rel->subroot == NULL) |
| 334 | flatten_unplanned_rtes(glob, rte); |
| 335 | else if (recursing || |
| 336 | IS_DUMMY_REL(fetch_upper_rel(rel->subroot, |
| 337 | UPPERREL_FINAL, NULL))) |
| 338 | add_rtes_to_flat_rtable(rel->subroot, true); |
| 339 | } |
| 340 | } |
| 341 | rti++; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | * Extract RangeTblEntries from a subquery that was never planned at all |
| 347 | */ |
| 348 | static void |
| 349 | flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte) |
| 350 | { |
| 351 | /* Use query_tree_walker to find all RTEs in the parse tree */ |
| 352 | (void) query_tree_walker(rte->subquery, |
| 353 | flatten_rtes_walker, |
| 354 | (void *) glob, |
| 355 | QTW_EXAMINE_RTES_BEFORE); |
| 356 | } |
| 357 | |
| 358 | static bool |
| 359 | flatten_rtes_walker(Node *node, PlannerGlobal *glob) |
| 360 | { |
| 361 | if (node == NULL) |
| 362 | return false; |
| 363 | if (IsA(node, RangeTblEntry)) |
| 364 | { |
| 365 | RangeTblEntry *rte = (RangeTblEntry *) node; |
| 366 | |
| 367 | /* As above, we need only save relation RTEs */ |
| 368 | if (rte->rtekind == RTE_RELATION) |
| 369 | add_rte_to_flat_rtable(glob, rte); |
| 370 | return false; |
| 371 | } |
| 372 | if (IsA(node, Query)) |
| 373 | { |
| 374 | /* Recurse into subselects */ |
| 375 | return query_tree_walker((Query *) node, |
| 376 | flatten_rtes_walker, |
| 377 | (void *) glob, |
| 378 | QTW_EXAMINE_RTES_BEFORE); |
| 379 | } |
| 380 | return expression_tree_walker(node, flatten_rtes_walker, |
| 381 | (void *) glob); |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Add (a copy of) the given RTE to the final rangetable |
| 386 | * |
| 387 | * In the flat rangetable, we zero out substructure pointers that are not |
| 388 | * needed by the executor; this reduces the storage space and copying cost |
| 389 | * for cached plans. We keep only the ctename, alias and eref Alias fields, |
| 390 | * which are needed by EXPLAIN, and the selectedCols, insertedCols and |
| 391 | * updatedCols bitmaps, which are needed for executor-startup permissions |
| 392 | * checking and for trigger event checking. |
| 393 | */ |
| 394 | static void |
| 395 | add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte) |
| 396 | { |
| 397 | RangeTblEntry *newrte; |
| 398 | |
| 399 | /* flat copy to duplicate all the scalar fields */ |
| 400 | newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry)); |
| 401 | memcpy(newrte, rte, sizeof(RangeTblEntry)); |
| 402 | |
| 403 | /* zap unneeded sub-structure */ |
| 404 | newrte->tablesample = NULL; |
| 405 | newrte->subquery = NULL; |
| 406 | newrte->joinaliasvars = NIL; |
| 407 | newrte->functions = NIL; |
| 408 | newrte->tablefunc = NULL; |
| 409 | newrte->values_lists = NIL; |
| 410 | newrte->coltypes = NIL; |
| 411 | newrte->coltypmods = NIL; |
| 412 | newrte->colcollations = NIL; |
| 413 | newrte->securityQuals = NIL; |
| 414 | |
| 415 | glob->finalrtable = lappend(glob->finalrtable, newrte); |
| 416 | |
| 417 | /* |
| 418 | * Check for RT index overflow; it's very unlikely, but if it did happen, |
| 419 | * the executor would get confused by varnos that match the special varno |
| 420 | * values. |
| 421 | */ |
| 422 | if (IS_SPECIAL_VARNO(list_length(glob->finalrtable))) |
| 423 | ereport(ERROR, |
| 424 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| 425 | errmsg("too many range table entries" ))); |
| 426 | |
| 427 | /* |
| 428 | * If it's a plain relation RTE, add the table to relationOids. |
| 429 | * |
| 430 | * We do this even though the RTE might be unreferenced in the plan tree; |
| 431 | * this would correspond to cases such as views that were expanded, child |
| 432 | * tables that were eliminated by constraint exclusion, etc. Schema |
| 433 | * invalidation on such a rel must still force rebuilding of the plan. |
| 434 | * |
| 435 | * Note we don't bother to avoid making duplicate list entries. We could, |
| 436 | * but it would probably cost more cycles than it would save. |
| 437 | */ |
| 438 | if (newrte->rtekind == RTE_RELATION) |
| 439 | glob->relationOids = lappend_oid(glob->relationOids, newrte->relid); |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * set_plan_refs: recurse through the Plan nodes of a single subquery level |
| 444 | */ |
| 445 | static Plan * |
| 446 | set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) |
| 447 | { |
| 448 | ListCell *l; |
| 449 | |
| 450 | if (plan == NULL) |
| 451 | return NULL; |
| 452 | |
| 453 | /* Assign this node a unique ID. */ |
| 454 | plan->plan_node_id = root->glob->lastPlanNodeId++; |
| 455 | |
| 456 | /* |
| 457 | * Plan-type-specific fixes |
| 458 | */ |
| 459 | switch (nodeTag(plan)) |
| 460 | { |
| 461 | case T_SeqScan: |
| 462 | { |
| 463 | SeqScan *splan = (SeqScan *) plan; |
| 464 | |
| 465 | splan->scanrelid += rtoffset; |
| 466 | splan->plan.targetlist = |
| 467 | fix_scan_list(root, splan->plan.targetlist, rtoffset); |
| 468 | splan->plan.qual = |
| 469 | fix_scan_list(root, splan->plan.qual, rtoffset); |
| 470 | } |
| 471 | break; |
| 472 | case T_SampleScan: |
| 473 | { |
| 474 | SampleScan *splan = (SampleScan *) plan; |
| 475 | |
| 476 | splan->scan.scanrelid += rtoffset; |
| 477 | splan->scan.plan.targetlist = |
| 478 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 479 | splan->scan.plan.qual = |
| 480 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 481 | splan->tablesample = (TableSampleClause *) |
| 482 | fix_scan_expr(root, (Node *) splan->tablesample, rtoffset); |
| 483 | } |
| 484 | break; |
| 485 | case T_IndexScan: |
| 486 | { |
| 487 | IndexScan *splan = (IndexScan *) plan; |
| 488 | |
| 489 | splan->scan.scanrelid += rtoffset; |
| 490 | splan->scan.plan.targetlist = |
| 491 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 492 | splan->scan.plan.qual = |
| 493 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 494 | splan->indexqual = |
| 495 | fix_scan_list(root, splan->indexqual, rtoffset); |
| 496 | splan->indexqualorig = |
| 497 | fix_scan_list(root, splan->indexqualorig, rtoffset); |
| 498 | splan->indexorderby = |
| 499 | fix_scan_list(root, splan->indexorderby, rtoffset); |
| 500 | splan->indexorderbyorig = |
| 501 | fix_scan_list(root, splan->indexorderbyorig, rtoffset); |
| 502 | } |
| 503 | break; |
| 504 | case T_IndexOnlyScan: |
| 505 | { |
| 506 | IndexOnlyScan *splan = (IndexOnlyScan *) plan; |
| 507 | |
| 508 | return set_indexonlyscan_references(root, splan, rtoffset); |
| 509 | } |
| 510 | break; |
| 511 | case T_BitmapIndexScan: |
| 512 | { |
| 513 | BitmapIndexScan *splan = (BitmapIndexScan *) plan; |
| 514 | |
| 515 | splan->scan.scanrelid += rtoffset; |
| 516 | /* no need to fix targetlist and qual */ |
| 517 | Assert(splan->scan.plan.targetlist == NIL); |
| 518 | Assert(splan->scan.plan.qual == NIL); |
| 519 | splan->indexqual = |
| 520 | fix_scan_list(root, splan->indexqual, rtoffset); |
| 521 | splan->indexqualorig = |
| 522 | fix_scan_list(root, splan->indexqualorig, rtoffset); |
| 523 | } |
| 524 | break; |
| 525 | case T_BitmapHeapScan: |
| 526 | { |
| 527 | BitmapHeapScan *splan = (BitmapHeapScan *) plan; |
| 528 | |
| 529 | splan->scan.scanrelid += rtoffset; |
| 530 | splan->scan.plan.targetlist = |
| 531 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 532 | splan->scan.plan.qual = |
| 533 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 534 | splan->bitmapqualorig = |
| 535 | fix_scan_list(root, splan->bitmapqualorig, rtoffset); |
| 536 | } |
| 537 | break; |
| 538 | case T_TidScan: |
| 539 | { |
| 540 | TidScan *splan = (TidScan *) plan; |
| 541 | |
| 542 | splan->scan.scanrelid += rtoffset; |
| 543 | splan->scan.plan.targetlist = |
| 544 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 545 | splan->scan.plan.qual = |
| 546 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 547 | splan->tidquals = |
| 548 | fix_scan_list(root, splan->tidquals, rtoffset); |
| 549 | } |
| 550 | break; |
| 551 | case T_SubqueryScan: |
| 552 | /* Needs special treatment, see comments below */ |
| 553 | return set_subqueryscan_references(root, |
| 554 | (SubqueryScan *) plan, |
| 555 | rtoffset); |
| 556 | case T_FunctionScan: |
| 557 | { |
| 558 | FunctionScan *splan = (FunctionScan *) plan; |
| 559 | |
| 560 | splan->scan.scanrelid += rtoffset; |
| 561 | splan->scan.plan.targetlist = |
| 562 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 563 | splan->scan.plan.qual = |
| 564 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 565 | splan->functions = |
| 566 | fix_scan_list(root, splan->functions, rtoffset); |
| 567 | } |
| 568 | break; |
| 569 | case T_TableFuncScan: |
| 570 | { |
| 571 | TableFuncScan *splan = (TableFuncScan *) plan; |
| 572 | |
| 573 | splan->scan.scanrelid += rtoffset; |
| 574 | splan->scan.plan.targetlist = |
| 575 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 576 | splan->scan.plan.qual = |
| 577 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 578 | splan->tablefunc = (TableFunc *) |
| 579 | fix_scan_expr(root, (Node *) splan->tablefunc, rtoffset); |
| 580 | } |
| 581 | break; |
| 582 | case T_ValuesScan: |
| 583 | { |
| 584 | ValuesScan *splan = (ValuesScan *) plan; |
| 585 | |
| 586 | splan->scan.scanrelid += rtoffset; |
| 587 | splan->scan.plan.targetlist = |
| 588 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 589 | splan->scan.plan.qual = |
| 590 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 591 | splan->values_lists = |
| 592 | fix_scan_list(root, splan->values_lists, rtoffset); |
| 593 | } |
| 594 | break; |
| 595 | case T_CteScan: |
| 596 | { |
| 597 | CteScan *splan = (CteScan *) plan; |
| 598 | |
| 599 | splan->scan.scanrelid += rtoffset; |
| 600 | splan->scan.plan.targetlist = |
| 601 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 602 | splan->scan.plan.qual = |
| 603 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 604 | } |
| 605 | break; |
| 606 | case T_NamedTuplestoreScan: |
| 607 | { |
| 608 | NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan; |
| 609 | |
| 610 | splan->scan.scanrelid += rtoffset; |
| 611 | splan->scan.plan.targetlist = |
| 612 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 613 | splan->scan.plan.qual = |
| 614 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 615 | } |
| 616 | break; |
| 617 | case T_WorkTableScan: |
| 618 | { |
| 619 | WorkTableScan *splan = (WorkTableScan *) plan; |
| 620 | |
| 621 | splan->scan.scanrelid += rtoffset; |
| 622 | splan->scan.plan.targetlist = |
| 623 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
| 624 | splan->scan.plan.qual = |
| 625 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
| 626 | } |
| 627 | break; |
| 628 | case T_ForeignScan: |
| 629 | set_foreignscan_references(root, (ForeignScan *) plan, rtoffset); |
| 630 | break; |
| 631 | case T_CustomScan: |
| 632 | set_customscan_references(root, (CustomScan *) plan, rtoffset); |
| 633 | break; |
| 634 | |
| 635 | case T_NestLoop: |
| 636 | case T_MergeJoin: |
| 637 | case T_HashJoin: |
| 638 | set_join_references(root, (Join *) plan, rtoffset); |
| 639 | break; |
| 640 | |
| 641 | case T_Gather: |
| 642 | case T_GatherMerge: |
| 643 | { |
| 644 | set_upper_references(root, plan, rtoffset); |
| 645 | set_param_references(root, plan); |
| 646 | } |
| 647 | break; |
| 648 | |
| 649 | case T_Hash: |
| 650 | set_hash_references(root, plan, rtoffset); |
| 651 | break; |
| 652 | |
| 653 | case T_Material: |
| 654 | case T_Sort: |
| 655 | case T_Unique: |
| 656 | case T_SetOp: |
| 657 | |
| 658 | /* |
| 659 | * These plan types don't actually bother to evaluate their |
| 660 | * targetlists, because they just return their unmodified input |
| 661 | * tuples. Even though the targetlist won't be used by the |
| 662 | * executor, we fix it up for possible use by EXPLAIN (not to |
| 663 | * mention ease of debugging --- wrong varnos are very confusing). |
| 664 | */ |
| 665 | set_dummy_tlist_references(plan, rtoffset); |
| 666 | |
| 667 | /* |
| 668 | * Since these plan types don't check quals either, we should not |
| 669 | * find any qual expression attached to them. |
| 670 | */ |
| 671 | Assert(plan->qual == NIL); |
| 672 | break; |
| 673 | case T_LockRows: |
| 674 | { |
| 675 | LockRows *splan = (LockRows *) plan; |
| 676 | |
| 677 | /* |
| 678 | * Like the plan types above, LockRows doesn't evaluate its |
| 679 | * tlist or quals. But we have to fix up the RT indexes in |
| 680 | * its rowmarks. |
| 681 | */ |
| 682 | set_dummy_tlist_references(plan, rtoffset); |
| 683 | Assert(splan->plan.qual == NIL); |
| 684 | |
| 685 | foreach(l, splan->rowMarks) |
| 686 | { |
| 687 | PlanRowMark *rc = (PlanRowMark *) lfirst(l); |
| 688 | |
| 689 | rc->rti += rtoffset; |
| 690 | rc->prti += rtoffset; |
| 691 | } |
| 692 | } |
| 693 | break; |
| 694 | case T_Limit: |
| 695 | { |
| 696 | Limit *splan = (Limit *) plan; |
| 697 | |
| 698 | /* |
| 699 | * Like the plan types above, Limit doesn't evaluate its tlist |
| 700 | * or quals. It does have live expressions for limit/offset, |
| 701 | * however; and those cannot contain subplan variable refs, so |
| 702 | * fix_scan_expr works for them. |
| 703 | */ |
| 704 | set_dummy_tlist_references(plan, rtoffset); |
| 705 | Assert(splan->plan.qual == NIL); |
| 706 | |
| 707 | splan->limitOffset = |
| 708 | fix_scan_expr(root, splan->limitOffset, rtoffset); |
| 709 | splan->limitCount = |
| 710 | fix_scan_expr(root, splan->limitCount, rtoffset); |
| 711 | } |
| 712 | break; |
| 713 | case T_Agg: |
| 714 | { |
| 715 | Agg *agg = (Agg *) plan; |
| 716 | |
| 717 | /* |
| 718 | * If this node is combining partial-aggregation results, we |
| 719 | * must convert its Aggrefs to contain references to the |
| 720 | * partial-aggregate subexpressions that will be available |
| 721 | * from the child plan node. |
| 722 | */ |
| 723 | if (DO_AGGSPLIT_COMBINE(agg->aggsplit)) |
| 724 | { |
| 725 | plan->targetlist = (List *) |
| 726 | convert_combining_aggrefs((Node *) plan->targetlist, |
| 727 | NULL); |
| 728 | plan->qual = (List *) |
| 729 | convert_combining_aggrefs((Node *) plan->qual, |
| 730 | NULL); |
| 731 | } |
| 732 | |
| 733 | set_upper_references(root, plan, rtoffset); |
| 734 | } |
| 735 | break; |
| 736 | case T_Group: |
| 737 | set_upper_references(root, plan, rtoffset); |
| 738 | break; |
| 739 | case T_WindowAgg: |
| 740 | { |
| 741 | WindowAgg *wplan = (WindowAgg *) plan; |
| 742 | |
| 743 | set_upper_references(root, plan, rtoffset); |
| 744 | |
| 745 | /* |
| 746 | * Like Limit node limit/offset expressions, WindowAgg has |
| 747 | * frame offset expressions, which cannot contain subplan |
| 748 | * variable refs, so fix_scan_expr works for them. |
| 749 | */ |
| 750 | wplan->startOffset = |
| 751 | fix_scan_expr(root, wplan->startOffset, rtoffset); |
| 752 | wplan->endOffset = |
| 753 | fix_scan_expr(root, wplan->endOffset, rtoffset); |
| 754 | } |
| 755 | break; |
| 756 | case T_Result: |
| 757 | { |
| 758 | Result *splan = (Result *) plan; |
| 759 | |
| 760 | /* |
| 761 | * Result may or may not have a subplan; if not, it's more |
| 762 | * like a scan node than an upper node. |
| 763 | */ |
| 764 | if (splan->plan.lefttree != NULL) |
| 765 | set_upper_references(root, plan, rtoffset); |
| 766 | else |
| 767 | { |
| 768 | splan->plan.targetlist = |
| 769 | fix_scan_list(root, splan->plan.targetlist, rtoffset); |
| 770 | splan->plan.qual = |
| 771 | fix_scan_list(root, splan->plan.qual, rtoffset); |
| 772 | } |
| 773 | /* resconstantqual can't contain any subplan variable refs */ |
| 774 | splan->resconstantqual = |
| 775 | fix_scan_expr(root, splan->resconstantqual, rtoffset); |
| 776 | } |
| 777 | break; |
| 778 | case T_ProjectSet: |
| 779 | set_upper_references(root, plan, rtoffset); |
| 780 | break; |
| 781 | case T_ModifyTable: |
| 782 | { |
| 783 | ModifyTable *splan = (ModifyTable *) plan; |
| 784 | |
| 785 | Assert(splan->plan.targetlist == NIL); |
| 786 | Assert(splan->plan.qual == NIL); |
| 787 | |
| 788 | splan->withCheckOptionLists = |
| 789 | fix_scan_list(root, splan->withCheckOptionLists, rtoffset); |
| 790 | |
| 791 | if (splan->returningLists) |
| 792 | { |
| 793 | List *newRL = NIL; |
| 794 | ListCell *lcrl, |
| 795 | *lcrr, |
| 796 | *lcp; |
| 797 | |
| 798 | /* |
| 799 | * Pass each per-subplan returningList through |
| 800 | * set_returning_clause_references(). |
| 801 | */ |
| 802 | Assert(list_length(splan->returningLists) == list_length(splan->resultRelations)); |
| 803 | Assert(list_length(splan->returningLists) == list_length(splan->plans)); |
| 804 | forthree(lcrl, splan->returningLists, |
| 805 | lcrr, splan->resultRelations, |
| 806 | lcp, splan->plans) |
| 807 | { |
| 808 | List *rlist = (List *) lfirst(lcrl); |
| 809 | Index resultrel = lfirst_int(lcrr); |
| 810 | Plan *subplan = (Plan *) lfirst(lcp); |
| 811 | |
| 812 | rlist = set_returning_clause_references(root, |
| 813 | rlist, |
| 814 | subplan, |
| 815 | resultrel, |
| 816 | rtoffset); |
| 817 | newRL = lappend(newRL, rlist); |
| 818 | } |
| 819 | splan->returningLists = newRL; |
| 820 | |
| 821 | /* |
| 822 | * Set up the visible plan targetlist as being the same as |
| 823 | * the first RETURNING list. This is for the use of |
| 824 | * EXPLAIN; the executor won't pay any attention to the |
| 825 | * targetlist. We postpone this step until here so that |
| 826 | * we don't have to do set_returning_clause_references() |
| 827 | * twice on identical targetlists. |
| 828 | */ |
| 829 | splan->plan.targetlist = copyObject(linitial(newRL)); |
| 830 | } |
| 831 | |
| 832 | /* |
| 833 | * We treat ModifyTable with ON CONFLICT as a form of 'pseudo |
| 834 | * join', where the inner side is the EXCLUDED tuple. |
| 835 | * Therefore use fix_join_expr to setup the relevant variables |
| 836 | * to INNER_VAR. We explicitly don't create any OUTER_VARs as |
| 837 | * those are already used by RETURNING and it seems better to |
| 838 | * be non-conflicting. |
| 839 | */ |
| 840 | if (splan->onConflictSet) |
| 841 | { |
| 842 | indexed_tlist *itlist; |
| 843 | |
| 844 | itlist = build_tlist_index(splan->exclRelTlist); |
| 845 | |
| 846 | splan->onConflictSet = |
| 847 | fix_join_expr(root, splan->onConflictSet, |
| 848 | NULL, itlist, |
| 849 | linitial_int(splan->resultRelations), |
| 850 | rtoffset); |
| 851 | |
| 852 | splan->onConflictWhere = (Node *) |
| 853 | fix_join_expr(root, (List *) splan->onConflictWhere, |
| 854 | NULL, itlist, |
| 855 | linitial_int(splan->resultRelations), |
| 856 | rtoffset); |
| 857 | |
| 858 | pfree(itlist); |
| 859 | |
| 860 | splan->exclRelTlist = |
| 861 | fix_scan_list(root, splan->exclRelTlist, rtoffset); |
| 862 | } |
| 863 | |
| 864 | splan->nominalRelation += rtoffset; |
| 865 | if (splan->rootRelation) |
| 866 | splan->rootRelation += rtoffset; |
| 867 | splan->exclRelRTI += rtoffset; |
| 868 | |
| 869 | foreach(l, splan->resultRelations) |
| 870 | { |
| 871 | lfirst_int(l) += rtoffset; |
| 872 | } |
| 873 | foreach(l, splan->rowMarks) |
| 874 | { |
| 875 | PlanRowMark *rc = (PlanRowMark *) lfirst(l); |
| 876 | |
| 877 | rc->rti += rtoffset; |
| 878 | rc->prti += rtoffset; |
| 879 | } |
| 880 | foreach(l, splan->plans) |
| 881 | { |
| 882 | lfirst(l) = set_plan_refs(root, |
| 883 | (Plan *) lfirst(l), |
| 884 | rtoffset); |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Append this ModifyTable node's final result relation RT |
| 889 | * index(es) to the global list for the plan, and set its |
| 890 | * resultRelIndex to reflect their starting position in the |
| 891 | * global list. |
| 892 | */ |
| 893 | splan->resultRelIndex = list_length(root->glob->resultRelations); |
| 894 | root->glob->resultRelations = |
| 895 | list_concat(root->glob->resultRelations, |
| 896 | list_copy(splan->resultRelations)); |
| 897 | |
| 898 | /* |
| 899 | * If the main target relation is a partitioned table, also |
| 900 | * add the partition root's RT index to rootResultRelations, |
| 901 | * and remember its index in that list in rootResultRelIndex. |
| 902 | */ |
| 903 | if (splan->rootRelation) |
| 904 | { |
| 905 | splan->rootResultRelIndex = |
| 906 | list_length(root->glob->rootResultRelations); |
| 907 | root->glob->rootResultRelations = |
| 908 | lappend_int(root->glob->rootResultRelations, |
| 909 | splan->rootRelation); |
| 910 | } |
| 911 | } |
| 912 | break; |
| 913 | case T_Append: |
| 914 | /* Needs special treatment, see comments below */ |
| 915 | return set_append_references(root, |
| 916 | (Append *) plan, |
| 917 | rtoffset); |
| 918 | case T_MergeAppend: |
| 919 | /* Needs special treatment, see comments below */ |
| 920 | return set_mergeappend_references(root, |
| 921 | (MergeAppend *) plan, |
| 922 | rtoffset); |
| 923 | case T_RecursiveUnion: |
| 924 | /* This doesn't evaluate targetlist or check quals either */ |
| 925 | set_dummy_tlist_references(plan, rtoffset); |
| 926 | Assert(plan->qual == NIL); |
| 927 | break; |
| 928 | case T_BitmapAnd: |
| 929 | { |
| 930 | BitmapAnd *splan = (BitmapAnd *) plan; |
| 931 | |
| 932 | /* BitmapAnd works like Append, but has no tlist */ |
| 933 | Assert(splan->plan.targetlist == NIL); |
| 934 | Assert(splan->plan.qual == NIL); |
| 935 | foreach(l, splan->bitmapplans) |
| 936 | { |
| 937 | lfirst(l) = set_plan_refs(root, |
| 938 | (Plan *) lfirst(l), |
| 939 | rtoffset); |
| 940 | } |
| 941 | } |
| 942 | break; |
| 943 | case T_BitmapOr: |
| 944 | { |
| 945 | BitmapOr *splan = (BitmapOr *) plan; |
| 946 | |
| 947 | /* BitmapOr works like Append, but has no tlist */ |
| 948 | Assert(splan->plan.targetlist == NIL); |
| 949 | Assert(splan->plan.qual == NIL); |
| 950 | foreach(l, splan->bitmapplans) |
| 951 | { |
| 952 | lfirst(l) = set_plan_refs(root, |
| 953 | (Plan *) lfirst(l), |
| 954 | rtoffset); |
| 955 | } |
| 956 | } |
| 957 | break; |
| 958 | default: |
| 959 | elog(ERROR, "unrecognized node type: %d" , |
| 960 | (int) nodeTag(plan)); |
| 961 | break; |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * Now recurse into child plans, if any |
| 966 | * |
| 967 | * NOTE: it is essential that we recurse into child plans AFTER we set |
| 968 | * subplan references in this plan's tlist and quals. If we did the |
| 969 | * reference-adjustments bottom-up, then we would fail to match this |
| 970 | * plan's var nodes against the already-modified nodes of the children. |
| 971 | */ |
| 972 | plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); |
| 973 | plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); |
| 974 | |
| 975 | return plan; |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * set_indexonlyscan_references |
| 980 | * Do set_plan_references processing on an IndexOnlyScan |
| 981 | * |
| 982 | * This is unlike the handling of a plain IndexScan because we have to |
| 983 | * convert Vars referencing the heap into Vars referencing the index. |
| 984 | * We can use the fix_upper_expr machinery for that, by working from a |
| 985 | * targetlist describing the index columns. |
| 986 | */ |
| 987 | static Plan * |
| 988 | set_indexonlyscan_references(PlannerInfo *root, |
| 989 | IndexOnlyScan *plan, |
| 990 | int rtoffset) |
| 991 | { |
| 992 | indexed_tlist *index_itlist; |
| 993 | |
| 994 | index_itlist = build_tlist_index(plan->indextlist); |
| 995 | |
| 996 | plan->scan.scanrelid += rtoffset; |
| 997 | plan->scan.plan.targetlist = (List *) |
| 998 | fix_upper_expr(root, |
| 999 | (Node *) plan->scan.plan.targetlist, |
| 1000 | index_itlist, |
| 1001 | INDEX_VAR, |
| 1002 | rtoffset); |
| 1003 | plan->scan.plan.qual = (List *) |
| 1004 | fix_upper_expr(root, |
| 1005 | (Node *) plan->scan.plan.qual, |
| 1006 | index_itlist, |
| 1007 | INDEX_VAR, |
| 1008 | rtoffset); |
| 1009 | /* indexqual is already transformed to reference index columns */ |
| 1010 | plan->indexqual = fix_scan_list(root, plan->indexqual, rtoffset); |
| 1011 | /* indexorderby is already transformed to reference index columns */ |
| 1012 | plan->indexorderby = fix_scan_list(root, plan->indexorderby, rtoffset); |
| 1013 | /* indextlist must NOT be transformed to reference index columns */ |
| 1014 | plan->indextlist = fix_scan_list(root, plan->indextlist, rtoffset); |
| 1015 | |
| 1016 | pfree(index_itlist); |
| 1017 | |
| 1018 | return (Plan *) plan; |
| 1019 | } |
| 1020 | |
| 1021 | /* |
| 1022 | * set_subqueryscan_references |
| 1023 | * Do set_plan_references processing on a SubqueryScan |
| 1024 | * |
| 1025 | * We try to strip out the SubqueryScan entirely; if we can't, we have |
| 1026 | * to do the normal processing on it. |
| 1027 | */ |
| 1028 | static Plan * |
| 1029 | set_subqueryscan_references(PlannerInfo *root, |
| 1030 | SubqueryScan *plan, |
| 1031 | int rtoffset) |
| 1032 | { |
| 1033 | RelOptInfo *rel; |
| 1034 | Plan *result; |
| 1035 | |
| 1036 | /* Need to look up the subquery's RelOptInfo, since we need its subroot */ |
| 1037 | rel = find_base_rel(root, plan->scan.scanrelid); |
| 1038 | |
| 1039 | /* Recursively process the subplan */ |
| 1040 | plan->subplan = set_plan_references(rel->subroot, plan->subplan); |
| 1041 | |
| 1042 | if (trivial_subqueryscan(plan)) |
| 1043 | { |
| 1044 | /* |
| 1045 | * We can omit the SubqueryScan node and just pull up the subplan. |
| 1046 | */ |
| 1047 | result = clean_up_removed_plan_level((Plan *) plan, plan->subplan); |
| 1048 | } |
| 1049 | else |
| 1050 | { |
| 1051 | /* |
| 1052 | * Keep the SubqueryScan node. We have to do the processing that |
| 1053 | * set_plan_references would otherwise have done on it. Notice we do |
| 1054 | * not do set_upper_references() here, because a SubqueryScan will |
| 1055 | * always have been created with correct references to its subplan's |
| 1056 | * outputs to begin with. |
| 1057 | */ |
| 1058 | plan->scan.scanrelid += rtoffset; |
| 1059 | plan->scan.plan.targetlist = |
| 1060 | fix_scan_list(root, plan->scan.plan.targetlist, rtoffset); |
| 1061 | plan->scan.plan.qual = |
| 1062 | fix_scan_list(root, plan->scan.plan.qual, rtoffset); |
| 1063 | |
| 1064 | result = (Plan *) plan; |
| 1065 | } |
| 1066 | |
| 1067 | return result; |
| 1068 | } |
| 1069 | |
| 1070 | /* |
| 1071 | * trivial_subqueryscan |
| 1072 | * Detect whether a SubqueryScan can be deleted from the plan tree. |
| 1073 | * |
| 1074 | * We can delete it if it has no qual to check and the targetlist just |
| 1075 | * regurgitates the output of the child plan. |
| 1076 | */ |
| 1077 | static bool |
| 1078 | trivial_subqueryscan(SubqueryScan *plan) |
| 1079 | { |
| 1080 | int attrno; |
| 1081 | ListCell *lp, |
| 1082 | *lc; |
| 1083 | |
| 1084 | if (plan->scan.plan.qual != NIL) |
| 1085 | return false; |
| 1086 | |
| 1087 | if (list_length(plan->scan.plan.targetlist) != |
| 1088 | list_length(plan->subplan->targetlist)) |
| 1089 | return false; /* tlists not same length */ |
| 1090 | |
| 1091 | attrno = 1; |
| 1092 | forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist) |
| 1093 | { |
| 1094 | TargetEntry *ptle = (TargetEntry *) lfirst(lp); |
| 1095 | TargetEntry *ctle = (TargetEntry *) lfirst(lc); |
| 1096 | |
| 1097 | if (ptle->resjunk != ctle->resjunk) |
| 1098 | return false; /* tlist doesn't match junk status */ |
| 1099 | |
| 1100 | /* |
| 1101 | * We accept either a Var referencing the corresponding element of the |
| 1102 | * subplan tlist, or a Const equaling the subplan element. See |
| 1103 | * generate_setop_tlist() for motivation. |
| 1104 | */ |
| 1105 | if (ptle->expr && IsA(ptle->expr, Var)) |
| 1106 | { |
| 1107 | Var *var = (Var *) ptle->expr; |
| 1108 | |
| 1109 | Assert(var->varno == plan->scan.scanrelid); |
| 1110 | Assert(var->varlevelsup == 0); |
| 1111 | if (var->varattno != attrno) |
| 1112 | return false; /* out of order */ |
| 1113 | } |
| 1114 | else if (ptle->expr && IsA(ptle->expr, Const)) |
| 1115 | { |
| 1116 | if (!equal(ptle->expr, ctle->expr)) |
| 1117 | return false; |
| 1118 | } |
| 1119 | else |
| 1120 | return false; |
| 1121 | |
| 1122 | attrno++; |
| 1123 | } |
| 1124 | |
| 1125 | return true; |
| 1126 | } |
| 1127 | |
| 1128 | /* |
| 1129 | * clean_up_removed_plan_level |
| 1130 | * Do necessary cleanup when we strip out a SubqueryScan, Append, etc |
| 1131 | * |
| 1132 | * We are dropping the "parent" plan in favor of returning just its "child". |
| 1133 | * A few small tweaks are needed. |
| 1134 | */ |
| 1135 | static Plan * |
| 1136 | clean_up_removed_plan_level(Plan *parent, Plan *child) |
| 1137 | { |
| 1138 | /* We have to be sure we don't lose any initplans */ |
| 1139 | child->initPlan = list_concat(parent->initPlan, |
| 1140 | child->initPlan); |
| 1141 | |
| 1142 | /* |
| 1143 | * We also have to transfer the parent's column labeling info into the |
| 1144 | * child, else columns sent to client will be improperly labeled if this |
| 1145 | * is the topmost plan level. resjunk and so on may be important too. |
| 1146 | */ |
| 1147 | apply_tlist_labeling(child->targetlist, parent->targetlist); |
| 1148 | |
| 1149 | return child; |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * set_foreignscan_references |
| 1154 | * Do set_plan_references processing on a ForeignScan |
| 1155 | */ |
| 1156 | static void |
| 1157 | set_foreignscan_references(PlannerInfo *root, |
| 1158 | ForeignScan *fscan, |
| 1159 | int rtoffset) |
| 1160 | { |
| 1161 | /* Adjust scanrelid if it's valid */ |
| 1162 | if (fscan->scan.scanrelid > 0) |
| 1163 | fscan->scan.scanrelid += rtoffset; |
| 1164 | |
| 1165 | if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0) |
| 1166 | { |
| 1167 | /* |
| 1168 | * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference |
| 1169 | * foreign scan tuple |
| 1170 | */ |
| 1171 | indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist); |
| 1172 | |
| 1173 | fscan->scan.plan.targetlist = (List *) |
| 1174 | fix_upper_expr(root, |
| 1175 | (Node *) fscan->scan.plan.targetlist, |
| 1176 | itlist, |
| 1177 | INDEX_VAR, |
| 1178 | rtoffset); |
| 1179 | fscan->scan.plan.qual = (List *) |
| 1180 | fix_upper_expr(root, |
| 1181 | (Node *) fscan->scan.plan.qual, |
| 1182 | itlist, |
| 1183 | INDEX_VAR, |
| 1184 | rtoffset); |
| 1185 | fscan->fdw_exprs = (List *) |
| 1186 | fix_upper_expr(root, |
| 1187 | (Node *) fscan->fdw_exprs, |
| 1188 | itlist, |
| 1189 | INDEX_VAR, |
| 1190 | rtoffset); |
| 1191 | fscan->fdw_recheck_quals = (List *) |
| 1192 | fix_upper_expr(root, |
| 1193 | (Node *) fscan->fdw_recheck_quals, |
| 1194 | itlist, |
| 1195 | INDEX_VAR, |
| 1196 | rtoffset); |
| 1197 | pfree(itlist); |
| 1198 | /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */ |
| 1199 | fscan->fdw_scan_tlist = |
| 1200 | fix_scan_list(root, fscan->fdw_scan_tlist, rtoffset); |
| 1201 | } |
| 1202 | else |
| 1203 | { |
| 1204 | /* |
| 1205 | * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard |
| 1206 | * way |
| 1207 | */ |
| 1208 | fscan->scan.plan.targetlist = |
| 1209 | fix_scan_list(root, fscan->scan.plan.targetlist, rtoffset); |
| 1210 | fscan->scan.plan.qual = |
| 1211 | fix_scan_list(root, fscan->scan.plan.qual, rtoffset); |
| 1212 | fscan->fdw_exprs = |
| 1213 | fix_scan_list(root, fscan->fdw_exprs, rtoffset); |
| 1214 | fscan->fdw_recheck_quals = |
| 1215 | fix_scan_list(root, fscan->fdw_recheck_quals, rtoffset); |
| 1216 | } |
| 1217 | |
| 1218 | /* Adjust fs_relids if needed */ |
| 1219 | if (rtoffset > 0) |
| 1220 | { |
| 1221 | Bitmapset *tempset = NULL; |
| 1222 | int x = -1; |
| 1223 | |
| 1224 | while ((x = bms_next_member(fscan->fs_relids, x)) >= 0) |
| 1225 | tempset = bms_add_member(tempset, x + rtoffset); |
| 1226 | fscan->fs_relids = tempset; |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * set_customscan_references |
| 1232 | * Do set_plan_references processing on a CustomScan |
| 1233 | */ |
| 1234 | static void |
| 1235 | set_customscan_references(PlannerInfo *root, |
| 1236 | CustomScan *cscan, |
| 1237 | int rtoffset) |
| 1238 | { |
| 1239 | ListCell *lc; |
| 1240 | |
| 1241 | /* Adjust scanrelid if it's valid */ |
| 1242 | if (cscan->scan.scanrelid > 0) |
| 1243 | cscan->scan.scanrelid += rtoffset; |
| 1244 | |
| 1245 | if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0) |
| 1246 | { |
| 1247 | /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */ |
| 1248 | indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist); |
| 1249 | |
| 1250 | cscan->scan.plan.targetlist = (List *) |
| 1251 | fix_upper_expr(root, |
| 1252 | (Node *) cscan->scan.plan.targetlist, |
| 1253 | itlist, |
| 1254 | INDEX_VAR, |
| 1255 | rtoffset); |
| 1256 | cscan->scan.plan.qual = (List *) |
| 1257 | fix_upper_expr(root, |
| 1258 | (Node *) cscan->scan.plan.qual, |
| 1259 | itlist, |
| 1260 | INDEX_VAR, |
| 1261 | rtoffset); |
| 1262 | cscan->custom_exprs = (List *) |
| 1263 | fix_upper_expr(root, |
| 1264 | (Node *) cscan->custom_exprs, |
| 1265 | itlist, |
| 1266 | INDEX_VAR, |
| 1267 | rtoffset); |
| 1268 | pfree(itlist); |
| 1269 | /* custom_scan_tlist itself just needs fix_scan_list() adjustments */ |
| 1270 | cscan->custom_scan_tlist = |
| 1271 | fix_scan_list(root, cscan->custom_scan_tlist, rtoffset); |
| 1272 | } |
| 1273 | else |
| 1274 | { |
| 1275 | /* Adjust tlist, qual, custom_exprs in the standard way */ |
| 1276 | cscan->scan.plan.targetlist = |
| 1277 | fix_scan_list(root, cscan->scan.plan.targetlist, rtoffset); |
| 1278 | cscan->scan.plan.qual = |
| 1279 | fix_scan_list(root, cscan->scan.plan.qual, rtoffset); |
| 1280 | cscan->custom_exprs = |
| 1281 | fix_scan_list(root, cscan->custom_exprs, rtoffset); |
| 1282 | } |
| 1283 | |
| 1284 | /* Adjust child plan-nodes recursively, if needed */ |
| 1285 | foreach(lc, cscan->custom_plans) |
| 1286 | { |
| 1287 | lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset); |
| 1288 | } |
| 1289 | |
| 1290 | /* Adjust custom_relids if needed */ |
| 1291 | if (rtoffset > 0) |
| 1292 | { |
| 1293 | Bitmapset *tempset = NULL; |
| 1294 | int x = -1; |
| 1295 | |
| 1296 | while ((x = bms_next_member(cscan->custom_relids, x)) >= 0) |
| 1297 | tempset = bms_add_member(tempset, x + rtoffset); |
| 1298 | cscan->custom_relids = tempset; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * set_append_references |
| 1304 | * Do set_plan_references processing on an Append |
| 1305 | * |
| 1306 | * We try to strip out the Append entirely; if we can't, we have |
| 1307 | * to do the normal processing on it. |
| 1308 | */ |
| 1309 | static Plan * |
| 1310 | set_append_references(PlannerInfo *root, |
| 1311 | Append *aplan, |
| 1312 | int rtoffset) |
| 1313 | { |
| 1314 | ListCell *l; |
| 1315 | |
| 1316 | /* |
| 1317 | * Append, like Sort et al, doesn't actually evaluate its targetlist or |
| 1318 | * check quals. If it's got exactly one child plan, then it's not doing |
| 1319 | * anything useful at all, and we can strip it out. |
| 1320 | */ |
| 1321 | Assert(aplan->plan.qual == NIL); |
| 1322 | |
| 1323 | /* First, we gotta recurse on the children */ |
| 1324 | foreach(l, aplan->appendplans) |
| 1325 | { |
| 1326 | lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset); |
| 1327 | } |
| 1328 | |
| 1329 | /* Now, if there's just one, forget the Append and return that child */ |
| 1330 | if (list_length(aplan->appendplans) == 1) |
| 1331 | return clean_up_removed_plan_level((Plan *) aplan, |
| 1332 | (Plan *) linitial(aplan->appendplans)); |
| 1333 | |
| 1334 | /* |
| 1335 | * Otherwise, clean up the Append as needed. It's okay to do this after |
| 1336 | * recursing to the children, because set_dummy_tlist_references doesn't |
| 1337 | * look at those. |
| 1338 | */ |
| 1339 | set_dummy_tlist_references((Plan *) aplan, rtoffset); |
| 1340 | |
| 1341 | if (aplan->part_prune_info) |
| 1342 | { |
| 1343 | foreach(l, aplan->part_prune_info->prune_infos) |
| 1344 | { |
| 1345 | List *prune_infos = lfirst(l); |
| 1346 | ListCell *l2; |
| 1347 | |
| 1348 | foreach(l2, prune_infos) |
| 1349 | { |
| 1350 | PartitionedRelPruneInfo *pinfo = lfirst(l2); |
| 1351 | |
| 1352 | pinfo->rtindex += rtoffset; |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | /* We don't need to recurse to lefttree or righttree ... */ |
| 1358 | Assert(aplan->plan.lefttree == NULL); |
| 1359 | Assert(aplan->plan.righttree == NULL); |
| 1360 | |
| 1361 | return (Plan *) aplan; |
| 1362 | } |
| 1363 | |
| 1364 | /* |
| 1365 | * set_mergeappend_references |
| 1366 | * Do set_plan_references processing on a MergeAppend |
| 1367 | * |
| 1368 | * We try to strip out the MergeAppend entirely; if we can't, we have |
| 1369 | * to do the normal processing on it. |
| 1370 | */ |
| 1371 | static Plan * |
| 1372 | set_mergeappend_references(PlannerInfo *root, |
| 1373 | MergeAppend *mplan, |
| 1374 | int rtoffset) |
| 1375 | { |
| 1376 | ListCell *l; |
| 1377 | |
| 1378 | /* |
| 1379 | * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist |
| 1380 | * or check quals. If it's got exactly one child plan, then it's not |
| 1381 | * doing anything useful at all, and we can strip it out. |
| 1382 | */ |
| 1383 | Assert(mplan->plan.qual == NIL); |
| 1384 | |
| 1385 | /* First, we gotta recurse on the children */ |
| 1386 | foreach(l, mplan->mergeplans) |
| 1387 | { |
| 1388 | lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset); |
| 1389 | } |
| 1390 | |
| 1391 | /* Now, if there's just one, forget the MergeAppend and return that child */ |
| 1392 | if (list_length(mplan->mergeplans) == 1) |
| 1393 | return clean_up_removed_plan_level((Plan *) mplan, |
| 1394 | (Plan *) linitial(mplan->mergeplans)); |
| 1395 | |
| 1396 | /* |
| 1397 | * Otherwise, clean up the MergeAppend as needed. It's okay to do this |
| 1398 | * after recursing to the children, because set_dummy_tlist_references |
| 1399 | * doesn't look at those. |
| 1400 | */ |
| 1401 | set_dummy_tlist_references((Plan *) mplan, rtoffset); |
| 1402 | |
| 1403 | if (mplan->part_prune_info) |
| 1404 | { |
| 1405 | foreach(l, mplan->part_prune_info->prune_infos) |
| 1406 | { |
| 1407 | List *prune_infos = lfirst(l); |
| 1408 | ListCell *l2; |
| 1409 | |
| 1410 | foreach(l2, prune_infos) |
| 1411 | { |
| 1412 | PartitionedRelPruneInfo *pinfo = lfirst(l2); |
| 1413 | |
| 1414 | pinfo->rtindex += rtoffset; |
| 1415 | } |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | /* We don't need to recurse to lefttree or righttree ... */ |
| 1420 | Assert(mplan->plan.lefttree == NULL); |
| 1421 | Assert(mplan->plan.righttree == NULL); |
| 1422 | |
| 1423 | return (Plan *) mplan; |
| 1424 | } |
| 1425 | |
| 1426 | /* |
| 1427 | * set_hash_references |
| 1428 | * Do set_plan_references processing on a Hash node |
| 1429 | */ |
| 1430 | static void |
| 1431 | set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset) |
| 1432 | { |
| 1433 | Hash *hplan = (Hash *) plan; |
| 1434 | Plan *outer_plan = plan->lefttree; |
| 1435 | indexed_tlist *outer_itlist; |
| 1436 | |
| 1437 | /* |
| 1438 | * Hash's hashkeys are used when feeding tuples into the hashtable, |
| 1439 | * therefore have them reference Hash's outer plan (which itself is the |
| 1440 | * inner plan of the HashJoin). |
| 1441 | */ |
| 1442 | outer_itlist = build_tlist_index(outer_plan->targetlist); |
| 1443 | hplan->hashkeys = (List *) |
| 1444 | fix_upper_expr(root, |
| 1445 | (Node *) hplan->hashkeys, |
| 1446 | outer_itlist, |
| 1447 | OUTER_VAR, |
| 1448 | rtoffset); |
| 1449 | |
| 1450 | /* Hash doesn't project */ |
| 1451 | set_dummy_tlist_references(plan, rtoffset); |
| 1452 | |
| 1453 | /* Hash nodes don't have their own quals */ |
| 1454 | Assert(plan->qual == NIL); |
| 1455 | } |
| 1456 | |
| 1457 | /* |
| 1458 | * copyVar |
| 1459 | * Copy a Var node. |
| 1460 | * |
| 1461 | * fix_scan_expr and friends do this enough times that it's worth having |
| 1462 | * a bespoke routine instead of using the generic copyObject() function. |
| 1463 | */ |
| 1464 | static inline Var * |
| 1465 | copyVar(Var *var) |
| 1466 | { |
| 1467 | Var *newvar = (Var *) palloc(sizeof(Var)); |
| 1468 | |
| 1469 | *newvar = *var; |
| 1470 | return newvar; |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * fix_expr_common |
| 1475 | * Do generic set_plan_references processing on an expression node |
| 1476 | * |
| 1477 | * This is code that is common to all variants of expression-fixing. |
| 1478 | * We must look up operator opcode info for OpExpr and related nodes, |
| 1479 | * add OIDs from regclass Const nodes into root->glob->relationOids, and |
| 1480 | * add PlanInvalItems for user-defined functions into root->glob->invalItems. |
| 1481 | * We also fill in column index lists for GROUPING() expressions. |
| 1482 | * |
| 1483 | * We assume it's okay to update opcode info in-place. So this could possibly |
| 1484 | * scribble on the planner's input data structures, but it's OK. |
| 1485 | */ |
| 1486 | static void |
| 1487 | fix_expr_common(PlannerInfo *root, Node *node) |
| 1488 | { |
| 1489 | /* We assume callers won't call us on a NULL pointer */ |
| 1490 | if (IsA(node, Aggref)) |
| 1491 | { |
| 1492 | record_plan_function_dependency(root, |
| 1493 | ((Aggref *) node)->aggfnoid); |
| 1494 | } |
| 1495 | else if (IsA(node, WindowFunc)) |
| 1496 | { |
| 1497 | record_plan_function_dependency(root, |
| 1498 | ((WindowFunc *) node)->winfnoid); |
| 1499 | } |
| 1500 | else if (IsA(node, FuncExpr)) |
| 1501 | { |
| 1502 | record_plan_function_dependency(root, |
| 1503 | ((FuncExpr *) node)->funcid); |
| 1504 | } |
| 1505 | else if (IsA(node, OpExpr)) |
| 1506 | { |
| 1507 | set_opfuncid((OpExpr *) node); |
| 1508 | record_plan_function_dependency(root, |
| 1509 | ((OpExpr *) node)->opfuncid); |
| 1510 | } |
| 1511 | else if (IsA(node, DistinctExpr)) |
| 1512 | { |
| 1513 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
| 1514 | record_plan_function_dependency(root, |
| 1515 | ((DistinctExpr *) node)->opfuncid); |
| 1516 | } |
| 1517 | else if (IsA(node, NullIfExpr)) |
| 1518 | { |
| 1519 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
| 1520 | record_plan_function_dependency(root, |
| 1521 | ((NullIfExpr *) node)->opfuncid); |
| 1522 | } |
| 1523 | else if (IsA(node, ScalarArrayOpExpr)) |
| 1524 | { |
| 1525 | set_sa_opfuncid((ScalarArrayOpExpr *) node); |
| 1526 | record_plan_function_dependency(root, |
| 1527 | ((ScalarArrayOpExpr *) node)->opfuncid); |
| 1528 | } |
| 1529 | else if (IsA(node, Const)) |
| 1530 | { |
| 1531 | Const *con = (Const *) node; |
| 1532 | |
| 1533 | /* Check for regclass reference */ |
| 1534 | if (ISREGCLASSCONST(con)) |
| 1535 | root->glob->relationOids = |
| 1536 | lappend_oid(root->glob->relationOids, |
| 1537 | DatumGetObjectId(con->constvalue)); |
| 1538 | } |
| 1539 | else if (IsA(node, GroupingFunc)) |
| 1540 | { |
| 1541 | GroupingFunc *g = (GroupingFunc *) node; |
| 1542 | AttrNumber *grouping_map = root->grouping_map; |
| 1543 | |
| 1544 | /* If there are no grouping sets, we don't need this. */ |
| 1545 | |
| 1546 | Assert(grouping_map || g->cols == NIL); |
| 1547 | |
| 1548 | if (grouping_map) |
| 1549 | { |
| 1550 | ListCell *lc; |
| 1551 | List *cols = NIL; |
| 1552 | |
| 1553 | foreach(lc, g->refs) |
| 1554 | { |
| 1555 | cols = lappend_int(cols, grouping_map[lfirst_int(lc)]); |
| 1556 | } |
| 1557 | |
| 1558 | Assert(!g->cols || equal(cols, g->cols)); |
| 1559 | |
| 1560 | if (!g->cols) |
| 1561 | g->cols = cols; |
| 1562 | } |
| 1563 | } |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * fix_param_node |
| 1568 | * Do set_plan_references processing on a Param |
| 1569 | * |
| 1570 | * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from |
| 1571 | * root->multiexpr_params; otherwise no change is needed. |
| 1572 | * Just for paranoia's sake, we make a copy of the node in either case. |
| 1573 | */ |
| 1574 | static Node * |
| 1575 | fix_param_node(PlannerInfo *root, Param *p) |
| 1576 | { |
| 1577 | if (p->paramkind == PARAM_MULTIEXPR) |
| 1578 | { |
| 1579 | int subqueryid = p->paramid >> 16; |
| 1580 | int colno = p->paramid & 0xFFFF; |
| 1581 | List *params; |
| 1582 | |
| 1583 | if (subqueryid <= 0 || |
| 1584 | subqueryid > list_length(root->multiexpr_params)) |
| 1585 | elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d" , p->paramid); |
| 1586 | params = (List *) list_nth(root->multiexpr_params, subqueryid - 1); |
| 1587 | if (colno <= 0 || colno > list_length(params)) |
| 1588 | elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d" , p->paramid); |
| 1589 | return copyObject(list_nth(params, colno - 1)); |
| 1590 | } |
| 1591 | return (Node *) copyObject(p); |
| 1592 | } |
| 1593 | |
| 1594 | /* |
| 1595 | * fix_scan_expr |
| 1596 | * Do set_plan_references processing on a scan-level expression |
| 1597 | * |
| 1598 | * This consists of incrementing all Vars' varnos by rtoffset, |
| 1599 | * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars, |
| 1600 | * replacing Aggref nodes that should be replaced by initplan output Params, |
| 1601 | * looking up operator opcode info for OpExpr and related nodes, |
| 1602 | * and adding OIDs from regclass Const nodes into root->glob->relationOids. |
| 1603 | */ |
| 1604 | static Node * |
| 1605 | fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset) |
| 1606 | { |
| 1607 | fix_scan_expr_context context; |
| 1608 | |
| 1609 | context.root = root; |
| 1610 | context.rtoffset = rtoffset; |
| 1611 | |
| 1612 | if (rtoffset != 0 || |
| 1613 | root->multiexpr_params != NIL || |
| 1614 | root->glob->lastPHId != 0 || |
| 1615 | root->minmax_aggs != NIL) |
| 1616 | { |
| 1617 | return fix_scan_expr_mutator(node, &context); |
| 1618 | } |
| 1619 | else |
| 1620 | { |
| 1621 | /* |
| 1622 | * If rtoffset == 0, we don't need to change any Vars, and if there |
| 1623 | * are no MULTIEXPR subqueries then we don't need to replace |
| 1624 | * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere |
| 1625 | * we won't need to remove them, and if there are no minmax Aggrefs we |
| 1626 | * won't need to replace them. Then it's OK to just scribble on the |
| 1627 | * input node tree instead of copying (since the only change, filling |
| 1628 | * in any unset opfuncid fields, is harmless). This saves just enough |
| 1629 | * cycles to be noticeable on trivial queries. |
| 1630 | */ |
| 1631 | (void) fix_scan_expr_walker(node, &context); |
| 1632 | return node; |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | static Node * |
| 1637 | fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context) |
| 1638 | { |
| 1639 | if (node == NULL) |
| 1640 | return NULL; |
| 1641 | if (IsA(node, Var)) |
| 1642 | { |
| 1643 | Var *var = copyVar((Var *) node); |
| 1644 | |
| 1645 | Assert(var->varlevelsup == 0); |
| 1646 | |
| 1647 | /* |
| 1648 | * We should not see any Vars marked INNER_VAR or OUTER_VAR. But an |
| 1649 | * indexqual expression could contain INDEX_VAR Vars. |
| 1650 | */ |
| 1651 | Assert(var->varno != INNER_VAR); |
| 1652 | Assert(var->varno != OUTER_VAR); |
| 1653 | if (!IS_SPECIAL_VARNO(var->varno)) |
| 1654 | var->varno += context->rtoffset; |
| 1655 | if (var->varnoold > 0) |
| 1656 | var->varnoold += context->rtoffset; |
| 1657 | return (Node *) var; |
| 1658 | } |
| 1659 | if (IsA(node, Param)) |
| 1660 | return fix_param_node(context->root, (Param *) node); |
| 1661 | if (IsA(node, Aggref)) |
| 1662 | { |
| 1663 | Aggref *aggref = (Aggref *) node; |
| 1664 | |
| 1665 | /* See if the Aggref should be replaced by a Param */ |
| 1666 | if (context->root->minmax_aggs != NIL && |
| 1667 | list_length(aggref->args) == 1) |
| 1668 | { |
| 1669 | TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args); |
| 1670 | ListCell *lc; |
| 1671 | |
| 1672 | foreach(lc, context->root->minmax_aggs) |
| 1673 | { |
| 1674 | MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc); |
| 1675 | |
| 1676 | if (mminfo->aggfnoid == aggref->aggfnoid && |
| 1677 | equal(mminfo->target, curTarget->expr)) |
| 1678 | return (Node *) copyObject(mminfo->param); |
| 1679 | } |
| 1680 | } |
| 1681 | /* If no match, just fall through to process it normally */ |
| 1682 | } |
| 1683 | if (IsA(node, CurrentOfExpr)) |
| 1684 | { |
| 1685 | CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node); |
| 1686 | |
| 1687 | Assert(cexpr->cvarno != INNER_VAR); |
| 1688 | Assert(cexpr->cvarno != OUTER_VAR); |
| 1689 | if (!IS_SPECIAL_VARNO(cexpr->cvarno)) |
| 1690 | cexpr->cvarno += context->rtoffset; |
| 1691 | return (Node *) cexpr; |
| 1692 | } |
| 1693 | if (IsA(node, PlaceHolderVar)) |
| 1694 | { |
| 1695 | /* At scan level, we should always just evaluate the contained expr */ |
| 1696 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 1697 | |
| 1698 | return fix_scan_expr_mutator((Node *) phv->phexpr, context); |
| 1699 | } |
| 1700 | fix_expr_common(context->root, node); |
| 1701 | return expression_tree_mutator(node, fix_scan_expr_mutator, |
| 1702 | (void *) context); |
| 1703 | } |
| 1704 | |
| 1705 | static bool |
| 1706 | fix_scan_expr_walker(Node *node, fix_scan_expr_context *context) |
| 1707 | { |
| 1708 | if (node == NULL) |
| 1709 | return false; |
| 1710 | Assert(!IsA(node, PlaceHolderVar)); |
| 1711 | fix_expr_common(context->root, node); |
| 1712 | return expression_tree_walker(node, fix_scan_expr_walker, |
| 1713 | (void *) context); |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * set_join_references |
| 1718 | * Modify the target list and quals of a join node to reference its |
| 1719 | * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting |
| 1720 | * attno values to the result domain number of either the corresponding |
| 1721 | * outer or inner join tuple item. Also perform opcode lookup for these |
| 1722 | * expressions, and add regclass OIDs to root->glob->relationOids. |
| 1723 | */ |
| 1724 | static void |
| 1725 | set_join_references(PlannerInfo *root, Join *join, int rtoffset) |
| 1726 | { |
| 1727 | Plan *outer_plan = join->plan.lefttree; |
| 1728 | Plan *inner_plan = join->plan.righttree; |
| 1729 | indexed_tlist *outer_itlist; |
| 1730 | indexed_tlist *inner_itlist; |
| 1731 | |
| 1732 | outer_itlist = build_tlist_index(outer_plan->targetlist); |
| 1733 | inner_itlist = build_tlist_index(inner_plan->targetlist); |
| 1734 | |
| 1735 | /* |
| 1736 | * First process the joinquals (including merge or hash clauses). These |
| 1737 | * are logically below the join so they can always use all values |
| 1738 | * available from the input tlists. It's okay to also handle |
| 1739 | * NestLoopParams now, because those couldn't refer to nullable |
| 1740 | * subexpressions. |
| 1741 | */ |
| 1742 | join->joinqual = fix_join_expr(root, |
| 1743 | join->joinqual, |
| 1744 | outer_itlist, |
| 1745 | inner_itlist, |
| 1746 | (Index) 0, |
| 1747 | rtoffset); |
| 1748 | |
| 1749 | /* Now do join-type-specific stuff */ |
| 1750 | if (IsA(join, NestLoop)) |
| 1751 | { |
| 1752 | NestLoop *nl = (NestLoop *) join; |
| 1753 | ListCell *lc; |
| 1754 | |
| 1755 | foreach(lc, nl->nestParams) |
| 1756 | { |
| 1757 | NestLoopParam *nlp = (NestLoopParam *) lfirst(lc); |
| 1758 | |
| 1759 | nlp->paramval = (Var *) fix_upper_expr(root, |
| 1760 | (Node *) nlp->paramval, |
| 1761 | outer_itlist, |
| 1762 | OUTER_VAR, |
| 1763 | rtoffset); |
| 1764 | /* Check we replaced any PlaceHolderVar with simple Var */ |
| 1765 | if (!(IsA(nlp->paramval, Var) && |
| 1766 | nlp->paramval->varno == OUTER_VAR)) |
| 1767 | elog(ERROR, "NestLoopParam was not reduced to a simple Var" ); |
| 1768 | } |
| 1769 | } |
| 1770 | else if (IsA(join, MergeJoin)) |
| 1771 | { |
| 1772 | MergeJoin *mj = (MergeJoin *) join; |
| 1773 | |
| 1774 | mj->mergeclauses = fix_join_expr(root, |
| 1775 | mj->mergeclauses, |
| 1776 | outer_itlist, |
| 1777 | inner_itlist, |
| 1778 | (Index) 0, |
| 1779 | rtoffset); |
| 1780 | } |
| 1781 | else if (IsA(join, HashJoin)) |
| 1782 | { |
| 1783 | HashJoin *hj = (HashJoin *) join; |
| 1784 | |
| 1785 | hj->hashclauses = fix_join_expr(root, |
| 1786 | hj->hashclauses, |
| 1787 | outer_itlist, |
| 1788 | inner_itlist, |
| 1789 | (Index) 0, |
| 1790 | rtoffset); |
| 1791 | |
| 1792 | /* |
| 1793 | * HashJoin's hashkeys are used to look for matching tuples from its |
| 1794 | * outer plan (not the Hash node!) in the hashtable. |
| 1795 | */ |
| 1796 | hj->hashkeys = (List *) fix_upper_expr(root, |
| 1797 | (Node *) hj->hashkeys, |
| 1798 | outer_itlist, |
| 1799 | OUTER_VAR, |
| 1800 | rtoffset); |
| 1801 | } |
| 1802 | |
| 1803 | /* |
| 1804 | * Now we need to fix up the targetlist and qpqual, which are logically |
| 1805 | * above the join. This means they should not re-use any input expression |
| 1806 | * that was computed in the nullable side of an outer join. Vars and |
| 1807 | * PlaceHolderVars are fine, so we can implement this restriction just by |
| 1808 | * clearing has_non_vars in the indexed_tlist structs. |
| 1809 | * |
| 1810 | * XXX This is a grotty workaround for the fact that we don't clearly |
| 1811 | * distinguish between a Var appearing below an outer join and the "same" |
| 1812 | * Var appearing above it. If we did, we'd not need to hack the matching |
| 1813 | * rules this way. |
| 1814 | */ |
| 1815 | switch (join->jointype) |
| 1816 | { |
| 1817 | case JOIN_LEFT: |
| 1818 | case JOIN_SEMI: |
| 1819 | case JOIN_ANTI: |
| 1820 | inner_itlist->has_non_vars = false; |
| 1821 | break; |
| 1822 | case JOIN_RIGHT: |
| 1823 | outer_itlist->has_non_vars = false; |
| 1824 | break; |
| 1825 | case JOIN_FULL: |
| 1826 | outer_itlist->has_non_vars = false; |
| 1827 | inner_itlist->has_non_vars = false; |
| 1828 | break; |
| 1829 | default: |
| 1830 | break; |
| 1831 | } |
| 1832 | |
| 1833 | join->plan.targetlist = fix_join_expr(root, |
| 1834 | join->plan.targetlist, |
| 1835 | outer_itlist, |
| 1836 | inner_itlist, |
| 1837 | (Index) 0, |
| 1838 | rtoffset); |
| 1839 | join->plan.qual = fix_join_expr(root, |
| 1840 | join->plan.qual, |
| 1841 | outer_itlist, |
| 1842 | inner_itlist, |
| 1843 | (Index) 0, |
| 1844 | rtoffset); |
| 1845 | |
| 1846 | pfree(outer_itlist); |
| 1847 | pfree(inner_itlist); |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * set_upper_references |
| 1852 | * Update the targetlist and quals of an upper-level plan node |
| 1853 | * to refer to the tuples returned by its lefttree subplan. |
| 1854 | * Also perform opcode lookup for these expressions, and |
| 1855 | * add regclass OIDs to root->glob->relationOids. |
| 1856 | * |
| 1857 | * This is used for single-input plan types like Agg, Group, Result. |
| 1858 | * |
| 1859 | * In most cases, we have to match up individual Vars in the tlist and |
| 1860 | * qual expressions with elements of the subplan's tlist (which was |
| 1861 | * generated by flattening these selfsame expressions, so it should have all |
| 1862 | * the required variables). There is an important exception, however: |
| 1863 | * depending on where we are in the plan tree, sort/group columns may have |
| 1864 | * been pushed into the subplan tlist unflattened. If these values are also |
| 1865 | * needed in the output then we want to reference the subplan tlist element |
| 1866 | * rather than recomputing the expression. |
| 1867 | */ |
| 1868 | static void |
| 1869 | set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset) |
| 1870 | { |
| 1871 | Plan *subplan = plan->lefttree; |
| 1872 | indexed_tlist *subplan_itlist; |
| 1873 | List *output_targetlist; |
| 1874 | ListCell *l; |
| 1875 | |
| 1876 | subplan_itlist = build_tlist_index(subplan->targetlist); |
| 1877 | |
| 1878 | output_targetlist = NIL; |
| 1879 | foreach(l, plan->targetlist) |
| 1880 | { |
| 1881 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 1882 | Node *newexpr; |
| 1883 | |
| 1884 | /* If it's a sort/group item, first try to match by sortref */ |
| 1885 | if (tle->ressortgroupref != 0) |
| 1886 | { |
| 1887 | newexpr = (Node *) |
| 1888 | search_indexed_tlist_for_sortgroupref(tle->expr, |
| 1889 | tle->ressortgroupref, |
| 1890 | subplan_itlist, |
| 1891 | OUTER_VAR); |
| 1892 | if (!newexpr) |
| 1893 | newexpr = fix_upper_expr(root, |
| 1894 | (Node *) tle->expr, |
| 1895 | subplan_itlist, |
| 1896 | OUTER_VAR, |
| 1897 | rtoffset); |
| 1898 | } |
| 1899 | else |
| 1900 | newexpr = fix_upper_expr(root, |
| 1901 | (Node *) tle->expr, |
| 1902 | subplan_itlist, |
| 1903 | OUTER_VAR, |
| 1904 | rtoffset); |
| 1905 | tle = flatCopyTargetEntry(tle); |
| 1906 | tle->expr = (Expr *) newexpr; |
| 1907 | output_targetlist = lappend(output_targetlist, tle); |
| 1908 | } |
| 1909 | plan->targetlist = output_targetlist; |
| 1910 | |
| 1911 | plan->qual = (List *) |
| 1912 | fix_upper_expr(root, |
| 1913 | (Node *) plan->qual, |
| 1914 | subplan_itlist, |
| 1915 | OUTER_VAR, |
| 1916 | rtoffset); |
| 1917 | |
| 1918 | pfree(subplan_itlist); |
| 1919 | } |
| 1920 | |
| 1921 | /* |
| 1922 | * set_param_references |
| 1923 | * Initialize the initParam list in Gather or Gather merge node such that |
| 1924 | * it contains reference of all the params that needs to be evaluated |
| 1925 | * before execution of the node. It contains the initplan params that are |
| 1926 | * being passed to the plan nodes below it. |
| 1927 | */ |
| 1928 | static void |
| 1929 | set_param_references(PlannerInfo *root, Plan *plan) |
| 1930 | { |
| 1931 | Assert(IsA(plan, Gather) ||IsA(plan, GatherMerge)); |
| 1932 | |
| 1933 | if (plan->lefttree->extParam) |
| 1934 | { |
| 1935 | PlannerInfo *proot; |
| 1936 | Bitmapset *initSetParam = NULL; |
| 1937 | ListCell *l; |
| 1938 | |
| 1939 | for (proot = root; proot != NULL; proot = proot->parent_root) |
| 1940 | { |
| 1941 | foreach(l, proot->init_plans) |
| 1942 | { |
| 1943 | SubPlan *initsubplan = (SubPlan *) lfirst(l); |
| 1944 | ListCell *l2; |
| 1945 | |
| 1946 | foreach(l2, initsubplan->setParam) |
| 1947 | { |
| 1948 | initSetParam = bms_add_member(initSetParam, lfirst_int(l2)); |
| 1949 | } |
| 1950 | } |
| 1951 | } |
| 1952 | |
| 1953 | /* |
| 1954 | * Remember the list of all external initplan params that are used by |
| 1955 | * the children of Gather or Gather merge node. |
| 1956 | */ |
| 1957 | if (IsA(plan, Gather)) |
| 1958 | ((Gather *) plan)->initParam = |
| 1959 | bms_intersect(plan->lefttree->extParam, initSetParam); |
| 1960 | else |
| 1961 | ((GatherMerge *) plan)->initParam = |
| 1962 | bms_intersect(plan->lefttree->extParam, initSetParam); |
| 1963 | } |
| 1964 | } |
| 1965 | |
| 1966 | /* |
| 1967 | * Recursively scan an expression tree and convert Aggrefs to the proper |
| 1968 | * intermediate form for combining aggregates. This means (1) replacing each |
| 1969 | * one's argument list with a single argument that is the original Aggref |
| 1970 | * modified to show partial aggregation and (2) changing the upper Aggref to |
| 1971 | * show combining aggregation. |
| 1972 | * |
| 1973 | * After this step, set_upper_references will replace the partial Aggrefs |
| 1974 | * with Vars referencing the lower Agg plan node's outputs, so that the final |
| 1975 | * form seen by the executor is a combining Aggref with a Var as input. |
| 1976 | * |
| 1977 | * It's rather messy to postpone this step until setrefs.c; ideally it'd be |
| 1978 | * done in createplan.c. The difficulty is that once we modify the Aggref |
| 1979 | * expressions, they will no longer be equal() to their original form and |
| 1980 | * so cross-plan-node-level matches will fail. So this has to happen after |
| 1981 | * the plan node above the Agg has resolved its subplan references. |
| 1982 | */ |
| 1983 | static Node * |
| 1984 | convert_combining_aggrefs(Node *node, void *context) |
| 1985 | { |
| 1986 | if (node == NULL) |
| 1987 | return NULL; |
| 1988 | if (IsA(node, Aggref)) |
| 1989 | { |
| 1990 | Aggref *orig_agg = (Aggref *) node; |
| 1991 | Aggref *child_agg; |
| 1992 | Aggref *parent_agg; |
| 1993 | |
| 1994 | /* Assert we've not chosen to partial-ize any unsupported cases */ |
| 1995 | Assert(orig_agg->aggorder == NIL); |
| 1996 | Assert(orig_agg->aggdistinct == NIL); |
| 1997 | |
| 1998 | /* |
| 1999 | * Since aggregate calls can't be nested, we needn't recurse into the |
| 2000 | * arguments. But for safety, flat-copy the Aggref node itself rather |
| 2001 | * than modifying it in-place. |
| 2002 | */ |
| 2003 | child_agg = makeNode(Aggref); |
| 2004 | memcpy(child_agg, orig_agg, sizeof(Aggref)); |
| 2005 | |
| 2006 | /* |
| 2007 | * For the parent Aggref, we want to copy all the fields of the |
| 2008 | * original aggregate *except* the args list, which we'll replace |
| 2009 | * below, and the aggfilter expression, which should be applied only |
| 2010 | * by the child not the parent. Rather than explicitly knowing about |
| 2011 | * all the other fields here, we can momentarily modify child_agg to |
| 2012 | * provide a suitable source for copyObject. |
| 2013 | */ |
| 2014 | child_agg->args = NIL; |
| 2015 | child_agg->aggfilter = NULL; |
| 2016 | parent_agg = copyObject(child_agg); |
| 2017 | child_agg->args = orig_agg->args; |
| 2018 | child_agg->aggfilter = orig_agg->aggfilter; |
| 2019 | |
| 2020 | /* |
| 2021 | * Now, set up child_agg to represent the first phase of partial |
| 2022 | * aggregation. For now, assume serialization is required. |
| 2023 | */ |
| 2024 | mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL); |
| 2025 | |
| 2026 | /* |
| 2027 | * And set up parent_agg to represent the second phase. |
| 2028 | */ |
| 2029 | parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg, |
| 2030 | 1, NULL, false)); |
| 2031 | mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL); |
| 2032 | |
| 2033 | return (Node *) parent_agg; |
| 2034 | } |
| 2035 | return expression_tree_mutator(node, convert_combining_aggrefs, |
| 2036 | (void *) context); |
| 2037 | } |
| 2038 | |
| 2039 | /* |
| 2040 | * set_dummy_tlist_references |
| 2041 | * Replace the targetlist of an upper-level plan node with a simple |
| 2042 | * list of OUTER_VAR references to its child. |
| 2043 | * |
| 2044 | * This is used for plan types like Sort and Append that don't evaluate |
| 2045 | * their targetlists. Although the executor doesn't care at all what's in |
| 2046 | * the tlist, EXPLAIN needs it to be realistic. |
| 2047 | * |
| 2048 | * Note: we could almost use set_upper_references() here, but it fails for |
| 2049 | * Append for lack of a lefttree subplan. Single-purpose code is faster |
| 2050 | * anyway. |
| 2051 | */ |
| 2052 | static void |
| 2053 | set_dummy_tlist_references(Plan *plan, int rtoffset) |
| 2054 | { |
| 2055 | List *output_targetlist; |
| 2056 | ListCell *l; |
| 2057 | |
| 2058 | output_targetlist = NIL; |
| 2059 | foreach(l, plan->targetlist) |
| 2060 | { |
| 2061 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 2062 | Var *oldvar = (Var *) tle->expr; |
| 2063 | Var *newvar; |
| 2064 | |
| 2065 | /* |
| 2066 | * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts |
| 2067 | * as Consts, not Vars referencing Consts. Here, there's no speed |
| 2068 | * advantage to be had, but it makes EXPLAIN output look cleaner, and |
| 2069 | * again it avoids confusing the executor. |
| 2070 | */ |
| 2071 | if (IsA(oldvar, Const)) |
| 2072 | { |
| 2073 | /* just reuse the existing TLE node */ |
| 2074 | output_targetlist = lappend(output_targetlist, tle); |
| 2075 | continue; |
| 2076 | } |
| 2077 | |
| 2078 | newvar = makeVar(OUTER_VAR, |
| 2079 | tle->resno, |
| 2080 | exprType((Node *) oldvar), |
| 2081 | exprTypmod((Node *) oldvar), |
| 2082 | exprCollation((Node *) oldvar), |
| 2083 | 0); |
| 2084 | if (IsA(oldvar, Var)) |
| 2085 | { |
| 2086 | newvar->varnoold = oldvar->varno + rtoffset; |
| 2087 | newvar->varoattno = oldvar->varattno; |
| 2088 | } |
| 2089 | else |
| 2090 | { |
| 2091 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
| 2092 | newvar->varoattno = 0; |
| 2093 | } |
| 2094 | |
| 2095 | tle = flatCopyTargetEntry(tle); |
| 2096 | tle->expr = (Expr *) newvar; |
| 2097 | output_targetlist = lappend(output_targetlist, tle); |
| 2098 | } |
| 2099 | plan->targetlist = output_targetlist; |
| 2100 | |
| 2101 | /* We don't touch plan->qual here */ |
| 2102 | } |
| 2103 | |
| 2104 | |
| 2105 | /* |
| 2106 | * build_tlist_index --- build an index data structure for a child tlist |
| 2107 | * |
| 2108 | * In most cases, subplan tlists will be "flat" tlists with only Vars, |
| 2109 | * so we try to optimize that case by extracting information about Vars |
| 2110 | * in advance. Matching a parent tlist to a child is still an O(N^2) |
| 2111 | * operation, but at least with a much smaller constant factor than plain |
| 2112 | * tlist_member() searches. |
| 2113 | * |
| 2114 | * The result of this function is an indexed_tlist struct to pass to |
| 2115 | * search_indexed_tlist_for_var() or search_indexed_tlist_for_non_var(). |
| 2116 | * When done, the indexed_tlist may be freed with a single pfree(). |
| 2117 | */ |
| 2118 | static indexed_tlist * |
| 2119 | build_tlist_index(List *tlist) |
| 2120 | { |
| 2121 | indexed_tlist *itlist; |
| 2122 | tlist_vinfo *vinfo; |
| 2123 | ListCell *l; |
| 2124 | |
| 2125 | /* Create data structure with enough slots for all tlist entries */ |
| 2126 | itlist = (indexed_tlist *) |
| 2127 | palloc(offsetof(indexed_tlist, vars) + |
| 2128 | list_length(tlist) * sizeof(tlist_vinfo)); |
| 2129 | |
| 2130 | itlist->tlist = tlist; |
| 2131 | itlist->has_ph_vars = false; |
| 2132 | itlist->has_non_vars = false; |
| 2133 | |
| 2134 | /* Find the Vars and fill in the index array */ |
| 2135 | vinfo = itlist->vars; |
| 2136 | foreach(l, tlist) |
| 2137 | { |
| 2138 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 2139 | |
| 2140 | if (tle->expr && IsA(tle->expr, Var)) |
| 2141 | { |
| 2142 | Var *var = (Var *) tle->expr; |
| 2143 | |
| 2144 | vinfo->varno = var->varno; |
| 2145 | vinfo->varattno = var->varattno; |
| 2146 | vinfo->resno = tle->resno; |
| 2147 | vinfo++; |
| 2148 | } |
| 2149 | else if (tle->expr && IsA(tle->expr, PlaceHolderVar)) |
| 2150 | itlist->has_ph_vars = true; |
| 2151 | else |
| 2152 | itlist->has_non_vars = true; |
| 2153 | } |
| 2154 | |
| 2155 | itlist->num_vars = (vinfo - itlist->vars); |
| 2156 | |
| 2157 | return itlist; |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * build_tlist_index_other_vars --- build a restricted tlist index |
| 2162 | * |
| 2163 | * This is like build_tlist_index, but we only index tlist entries that |
| 2164 | * are Vars belonging to some rel other than the one specified. We will set |
| 2165 | * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars |
| 2166 | * (so nothing other than Vars and PlaceHolderVars can be matched). |
| 2167 | */ |
| 2168 | static indexed_tlist * |
| 2169 | build_tlist_index_other_vars(List *tlist, Index ignore_rel) |
| 2170 | { |
| 2171 | indexed_tlist *itlist; |
| 2172 | tlist_vinfo *vinfo; |
| 2173 | ListCell *l; |
| 2174 | |
| 2175 | /* Create data structure with enough slots for all tlist entries */ |
| 2176 | itlist = (indexed_tlist *) |
| 2177 | palloc(offsetof(indexed_tlist, vars) + |
| 2178 | list_length(tlist) * sizeof(tlist_vinfo)); |
| 2179 | |
| 2180 | itlist->tlist = tlist; |
| 2181 | itlist->has_ph_vars = false; |
| 2182 | itlist->has_non_vars = false; |
| 2183 | |
| 2184 | /* Find the desired Vars and fill in the index array */ |
| 2185 | vinfo = itlist->vars; |
| 2186 | foreach(l, tlist) |
| 2187 | { |
| 2188 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 2189 | |
| 2190 | if (tle->expr && IsA(tle->expr, Var)) |
| 2191 | { |
| 2192 | Var *var = (Var *) tle->expr; |
| 2193 | |
| 2194 | if (var->varno != ignore_rel) |
| 2195 | { |
| 2196 | vinfo->varno = var->varno; |
| 2197 | vinfo->varattno = var->varattno; |
| 2198 | vinfo->resno = tle->resno; |
| 2199 | vinfo++; |
| 2200 | } |
| 2201 | } |
| 2202 | else if (tle->expr && IsA(tle->expr, PlaceHolderVar)) |
| 2203 | itlist->has_ph_vars = true; |
| 2204 | } |
| 2205 | |
| 2206 | itlist->num_vars = (vinfo - itlist->vars); |
| 2207 | |
| 2208 | return itlist; |
| 2209 | } |
| 2210 | |
| 2211 | /* |
| 2212 | * search_indexed_tlist_for_var --- find a Var in an indexed tlist |
| 2213 | * |
| 2214 | * If a match is found, return a copy of the given Var with suitably |
| 2215 | * modified varno/varattno (to wit, newvarno and the resno of the TLE entry). |
| 2216 | * Also ensure that varnoold is incremented by rtoffset. |
| 2217 | * If no match, return NULL. |
| 2218 | */ |
| 2219 | static Var * |
| 2220 | search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist, |
| 2221 | Index newvarno, int rtoffset) |
| 2222 | { |
| 2223 | Index varno = var->varno; |
| 2224 | AttrNumber varattno = var->varattno; |
| 2225 | tlist_vinfo *vinfo; |
| 2226 | int i; |
| 2227 | |
| 2228 | vinfo = itlist->vars; |
| 2229 | i = itlist->num_vars; |
| 2230 | while (i-- > 0) |
| 2231 | { |
| 2232 | if (vinfo->varno == varno && vinfo->varattno == varattno) |
| 2233 | { |
| 2234 | /* Found a match */ |
| 2235 | Var *newvar = copyVar(var); |
| 2236 | |
| 2237 | newvar->varno = newvarno; |
| 2238 | newvar->varattno = vinfo->resno; |
| 2239 | if (newvar->varnoold > 0) |
| 2240 | newvar->varnoold += rtoffset; |
| 2241 | return newvar; |
| 2242 | } |
| 2243 | vinfo++; |
| 2244 | } |
| 2245 | return NULL; /* no match */ |
| 2246 | } |
| 2247 | |
| 2248 | /* |
| 2249 | * search_indexed_tlist_for_non_var --- find a non-Var in an indexed tlist |
| 2250 | * |
| 2251 | * If a match is found, return a Var constructed to reference the tlist item. |
| 2252 | * If no match, return NULL. |
| 2253 | * |
| 2254 | * NOTE: it is a waste of time to call this unless itlist->has_ph_vars or |
| 2255 | * itlist->has_non_vars. Furthermore, set_join_references() relies on being |
| 2256 | * able to prevent matching of non-Vars by clearing itlist->has_non_vars, |
| 2257 | * so there's a correctness reason not to call it unless that's set. |
| 2258 | */ |
| 2259 | static Var * |
| 2260 | search_indexed_tlist_for_non_var(Expr *node, |
| 2261 | indexed_tlist *itlist, Index newvarno) |
| 2262 | { |
| 2263 | TargetEntry *tle; |
| 2264 | |
| 2265 | /* |
| 2266 | * If it's a simple Const, replacing it with a Var is silly, even if there |
| 2267 | * happens to be an identical Const below; a Var is more expensive to |
| 2268 | * execute than a Const. What's more, replacing it could confuse some |
| 2269 | * places in the executor that expect to see simple Consts for, eg, |
| 2270 | * dropped columns. |
| 2271 | */ |
| 2272 | if (IsA(node, Const)) |
| 2273 | return NULL; |
| 2274 | |
| 2275 | tle = tlist_member(node, itlist->tlist); |
| 2276 | if (tle) |
| 2277 | { |
| 2278 | /* Found a matching subplan output expression */ |
| 2279 | Var *newvar; |
| 2280 | |
| 2281 | newvar = makeVarFromTargetEntry(newvarno, tle); |
| 2282 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
| 2283 | newvar->varoattno = 0; |
| 2284 | return newvar; |
| 2285 | } |
| 2286 | return NULL; /* no match */ |
| 2287 | } |
| 2288 | |
| 2289 | /* |
| 2290 | * search_indexed_tlist_for_sortgroupref --- find a sort/group expression |
| 2291 | * |
| 2292 | * If a match is found, return a Var constructed to reference the tlist item. |
| 2293 | * If no match, return NULL. |
| 2294 | * |
| 2295 | * This is needed to ensure that we select the right subplan TLE in cases |
| 2296 | * where there are multiple textually-equal()-but-volatile sort expressions. |
| 2297 | * And it's also faster than search_indexed_tlist_for_non_var. |
| 2298 | */ |
| 2299 | static Var * |
| 2300 | search_indexed_tlist_for_sortgroupref(Expr *node, |
| 2301 | Index sortgroupref, |
| 2302 | indexed_tlist *itlist, |
| 2303 | Index newvarno) |
| 2304 | { |
| 2305 | ListCell *lc; |
| 2306 | |
| 2307 | foreach(lc, itlist->tlist) |
| 2308 | { |
| 2309 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
| 2310 | |
| 2311 | /* The equal() check should be redundant, but let's be paranoid */ |
| 2312 | if (tle->ressortgroupref == sortgroupref && |
| 2313 | equal(node, tle->expr)) |
| 2314 | { |
| 2315 | /* Found a matching subplan output expression */ |
| 2316 | Var *newvar; |
| 2317 | |
| 2318 | newvar = makeVarFromTargetEntry(newvarno, tle); |
| 2319 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
| 2320 | newvar->varoattno = 0; |
| 2321 | return newvar; |
| 2322 | } |
| 2323 | } |
| 2324 | return NULL; /* no match */ |
| 2325 | } |
| 2326 | |
| 2327 | /* |
| 2328 | * fix_join_expr |
| 2329 | * Create a new set of targetlist entries or join qual clauses by |
| 2330 | * changing the varno/varattno values of variables in the clauses |
| 2331 | * to reference target list values from the outer and inner join |
| 2332 | * relation target lists. Also perform opcode lookup and add |
| 2333 | * regclass OIDs to root->glob->relationOids. |
| 2334 | * |
| 2335 | * This is used in three different scenarios: |
| 2336 | * 1) a normal join clause, where all the Vars in the clause *must* be |
| 2337 | * replaced by OUTER_VAR or INNER_VAR references. In this case |
| 2338 | * acceptable_rel should be zero so that any failure to match a Var will be |
| 2339 | * reported as an error. |
| 2340 | * 2) RETURNING clauses, which may contain both Vars of the target relation |
| 2341 | * and Vars of other relations. In this case we want to replace the |
| 2342 | * other-relation Vars by OUTER_VAR references, while leaving target Vars |
| 2343 | * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the |
| 2344 | * target relation should be passed. |
| 2345 | * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are |
| 2346 | * to be replaced with INNER_VAR references, while leaving target Vars (the |
| 2347 | * to-be-updated relation) alone. Correspondingly inner_itlist is to be |
| 2348 | * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target |
| 2349 | * relation. |
| 2350 | * |
| 2351 | * 'clauses' is the targetlist or list of join clauses |
| 2352 | * 'outer_itlist' is the indexed target list of the outer join relation, |
| 2353 | * or NULL |
| 2354 | * 'inner_itlist' is the indexed target list of the inner join relation, |
| 2355 | * or NULL |
| 2356 | * 'acceptable_rel' is either zero or the rangetable index of a relation |
| 2357 | * whose Vars may appear in the clause without provoking an error |
| 2358 | * 'rtoffset': how much to increment varnoold by |
| 2359 | * |
| 2360 | * Returns the new expression tree. The original clause structure is |
| 2361 | * not modified. |
| 2362 | */ |
| 2363 | static List * |
| 2364 | fix_join_expr(PlannerInfo *root, |
| 2365 | List *clauses, |
| 2366 | indexed_tlist *outer_itlist, |
| 2367 | indexed_tlist *inner_itlist, |
| 2368 | Index acceptable_rel, |
| 2369 | int rtoffset) |
| 2370 | { |
| 2371 | fix_join_expr_context context; |
| 2372 | |
| 2373 | context.root = root; |
| 2374 | context.outer_itlist = outer_itlist; |
| 2375 | context.inner_itlist = inner_itlist; |
| 2376 | context.acceptable_rel = acceptable_rel; |
| 2377 | context.rtoffset = rtoffset; |
| 2378 | return (List *) fix_join_expr_mutator((Node *) clauses, &context); |
| 2379 | } |
| 2380 | |
| 2381 | static Node * |
| 2382 | fix_join_expr_mutator(Node *node, fix_join_expr_context *context) |
| 2383 | { |
| 2384 | Var *newvar; |
| 2385 | |
| 2386 | if (node == NULL) |
| 2387 | return NULL; |
| 2388 | if (IsA(node, Var)) |
| 2389 | { |
| 2390 | Var *var = (Var *) node; |
| 2391 | |
| 2392 | /* Look for the var in the input tlists, first in the outer */ |
| 2393 | if (context->outer_itlist) |
| 2394 | { |
| 2395 | newvar = search_indexed_tlist_for_var(var, |
| 2396 | context->outer_itlist, |
| 2397 | OUTER_VAR, |
| 2398 | context->rtoffset); |
| 2399 | if (newvar) |
| 2400 | return (Node *) newvar; |
| 2401 | } |
| 2402 | |
| 2403 | /* then in the inner. */ |
| 2404 | if (context->inner_itlist) |
| 2405 | { |
| 2406 | newvar = search_indexed_tlist_for_var(var, |
| 2407 | context->inner_itlist, |
| 2408 | INNER_VAR, |
| 2409 | context->rtoffset); |
| 2410 | if (newvar) |
| 2411 | return (Node *) newvar; |
| 2412 | } |
| 2413 | |
| 2414 | /* If it's for acceptable_rel, adjust and return it */ |
| 2415 | if (var->varno == context->acceptable_rel) |
| 2416 | { |
| 2417 | var = copyVar(var); |
| 2418 | var->varno += context->rtoffset; |
| 2419 | if (var->varnoold > 0) |
| 2420 | var->varnoold += context->rtoffset; |
| 2421 | return (Node *) var; |
| 2422 | } |
| 2423 | |
| 2424 | /* No referent found for Var */ |
| 2425 | elog(ERROR, "variable not found in subplan target lists" ); |
| 2426 | } |
| 2427 | if (IsA(node, PlaceHolderVar)) |
| 2428 | { |
| 2429 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 2430 | |
| 2431 | /* See if the PlaceHolderVar has bubbled up from a lower plan node */ |
| 2432 | if (context->outer_itlist && context->outer_itlist->has_ph_vars) |
| 2433 | { |
| 2434 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
| 2435 | context->outer_itlist, |
| 2436 | OUTER_VAR); |
| 2437 | if (newvar) |
| 2438 | return (Node *) newvar; |
| 2439 | } |
| 2440 | if (context->inner_itlist && context->inner_itlist->has_ph_vars) |
| 2441 | { |
| 2442 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
| 2443 | context->inner_itlist, |
| 2444 | INNER_VAR); |
| 2445 | if (newvar) |
| 2446 | return (Node *) newvar; |
| 2447 | } |
| 2448 | |
| 2449 | /* If not supplied by input plans, evaluate the contained expr */ |
| 2450 | return fix_join_expr_mutator((Node *) phv->phexpr, context); |
| 2451 | } |
| 2452 | /* Try matching more complex expressions too, if tlists have any */ |
| 2453 | if (context->outer_itlist && context->outer_itlist->has_non_vars) |
| 2454 | { |
| 2455 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
| 2456 | context->outer_itlist, |
| 2457 | OUTER_VAR); |
| 2458 | if (newvar) |
| 2459 | return (Node *) newvar; |
| 2460 | } |
| 2461 | if (context->inner_itlist && context->inner_itlist->has_non_vars) |
| 2462 | { |
| 2463 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
| 2464 | context->inner_itlist, |
| 2465 | INNER_VAR); |
| 2466 | if (newvar) |
| 2467 | return (Node *) newvar; |
| 2468 | } |
| 2469 | /* Special cases (apply only AFTER failing to match to lower tlist) */ |
| 2470 | if (IsA(node, Param)) |
| 2471 | return fix_param_node(context->root, (Param *) node); |
| 2472 | fix_expr_common(context->root, node); |
| 2473 | return expression_tree_mutator(node, |
| 2474 | fix_join_expr_mutator, |
| 2475 | (void *) context); |
| 2476 | } |
| 2477 | |
| 2478 | /* |
| 2479 | * fix_upper_expr |
| 2480 | * Modifies an expression tree so that all Var nodes reference outputs |
| 2481 | * of a subplan. Also looks for Aggref nodes that should be replaced |
| 2482 | * by initplan output Params. Also performs opcode lookup, and adds |
| 2483 | * regclass OIDs to root->glob->relationOids. |
| 2484 | * |
| 2485 | * This is used to fix up target and qual expressions of non-join upper-level |
| 2486 | * plan nodes, as well as index-only scan nodes. |
| 2487 | * |
| 2488 | * An error is raised if no matching var can be found in the subplan tlist |
| 2489 | * --- so this routine should only be applied to nodes whose subplans' |
| 2490 | * targetlists were generated by flattening the expressions used in the |
| 2491 | * parent node. |
| 2492 | * |
| 2493 | * If itlist->has_non_vars is true, then we try to match whole subexpressions |
| 2494 | * against elements of the subplan tlist, so that we can avoid recomputing |
| 2495 | * expressions that were already computed by the subplan. (This is relatively |
| 2496 | * expensive, so we don't want to try it in the common case where the |
| 2497 | * subplan tlist is just a flattened list of Vars.) |
| 2498 | * |
| 2499 | * 'node': the tree to be fixed (a target item or qual) |
| 2500 | * 'subplan_itlist': indexed target list for subplan (or index) |
| 2501 | * 'newvarno': varno to use for Vars referencing tlist elements |
| 2502 | * 'rtoffset': how much to increment varnoold by |
| 2503 | * |
| 2504 | * The resulting tree is a copy of the original in which all Var nodes have |
| 2505 | * varno = newvarno, varattno = resno of corresponding targetlist element. |
| 2506 | * The original tree is not modified. |
| 2507 | */ |
| 2508 | static Node * |
| 2509 | fix_upper_expr(PlannerInfo *root, |
| 2510 | Node *node, |
| 2511 | indexed_tlist *subplan_itlist, |
| 2512 | Index newvarno, |
| 2513 | int rtoffset) |
| 2514 | { |
| 2515 | fix_upper_expr_context context; |
| 2516 | |
| 2517 | context.root = root; |
| 2518 | context.subplan_itlist = subplan_itlist; |
| 2519 | context.newvarno = newvarno; |
| 2520 | context.rtoffset = rtoffset; |
| 2521 | return fix_upper_expr_mutator(node, &context); |
| 2522 | } |
| 2523 | |
| 2524 | static Node * |
| 2525 | fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context) |
| 2526 | { |
| 2527 | Var *newvar; |
| 2528 | |
| 2529 | if (node == NULL) |
| 2530 | return NULL; |
| 2531 | if (IsA(node, Var)) |
| 2532 | { |
| 2533 | Var *var = (Var *) node; |
| 2534 | |
| 2535 | newvar = search_indexed_tlist_for_var(var, |
| 2536 | context->subplan_itlist, |
| 2537 | context->newvarno, |
| 2538 | context->rtoffset); |
| 2539 | if (!newvar) |
| 2540 | elog(ERROR, "variable not found in subplan target list" ); |
| 2541 | return (Node *) newvar; |
| 2542 | } |
| 2543 | if (IsA(node, PlaceHolderVar)) |
| 2544 | { |
| 2545 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 2546 | |
| 2547 | /* See if the PlaceHolderVar has bubbled up from a lower plan node */ |
| 2548 | if (context->subplan_itlist->has_ph_vars) |
| 2549 | { |
| 2550 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
| 2551 | context->subplan_itlist, |
| 2552 | context->newvarno); |
| 2553 | if (newvar) |
| 2554 | return (Node *) newvar; |
| 2555 | } |
| 2556 | /* If not supplied by input plan, evaluate the contained expr */ |
| 2557 | return fix_upper_expr_mutator((Node *) phv->phexpr, context); |
| 2558 | } |
| 2559 | /* Try matching more complex expressions too, if tlist has any */ |
| 2560 | if (context->subplan_itlist->has_non_vars) |
| 2561 | { |
| 2562 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
| 2563 | context->subplan_itlist, |
| 2564 | context->newvarno); |
| 2565 | if (newvar) |
| 2566 | return (Node *) newvar; |
| 2567 | } |
| 2568 | /* Special cases (apply only AFTER failing to match to lower tlist) */ |
| 2569 | if (IsA(node, Param)) |
| 2570 | return fix_param_node(context->root, (Param *) node); |
| 2571 | if (IsA(node, Aggref)) |
| 2572 | { |
| 2573 | Aggref *aggref = (Aggref *) node; |
| 2574 | |
| 2575 | /* See if the Aggref should be replaced by a Param */ |
| 2576 | if (context->root->minmax_aggs != NIL && |
| 2577 | list_length(aggref->args) == 1) |
| 2578 | { |
| 2579 | TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args); |
| 2580 | ListCell *lc; |
| 2581 | |
| 2582 | foreach(lc, context->root->minmax_aggs) |
| 2583 | { |
| 2584 | MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc); |
| 2585 | |
| 2586 | if (mminfo->aggfnoid == aggref->aggfnoid && |
| 2587 | equal(mminfo->target, curTarget->expr)) |
| 2588 | return (Node *) copyObject(mminfo->param); |
| 2589 | } |
| 2590 | } |
| 2591 | /* If no match, just fall through to process it normally */ |
| 2592 | } |
| 2593 | fix_expr_common(context->root, node); |
| 2594 | return expression_tree_mutator(node, |
| 2595 | fix_upper_expr_mutator, |
| 2596 | (void *) context); |
| 2597 | } |
| 2598 | |
| 2599 | /* |
| 2600 | * set_returning_clause_references |
| 2601 | * Perform setrefs.c's work on a RETURNING targetlist |
| 2602 | * |
| 2603 | * If the query involves more than just the result table, we have to |
| 2604 | * adjust any Vars that refer to other tables to reference junk tlist |
| 2605 | * entries in the top subplan's targetlist. Vars referencing the result |
| 2606 | * table should be left alone, however (the executor will evaluate them |
| 2607 | * using the actual heap tuple, after firing triggers if any). In the |
| 2608 | * adjusted RETURNING list, result-table Vars will have their original |
| 2609 | * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR. |
| 2610 | * |
| 2611 | * We also must perform opcode lookup and add regclass OIDs to |
| 2612 | * root->glob->relationOids. |
| 2613 | * |
| 2614 | * 'rlist': the RETURNING targetlist to be fixed |
| 2615 | * 'topplan': the top subplan node that will be just below the ModifyTable |
| 2616 | * node (note it's not yet passed through set_plan_refs) |
| 2617 | * 'resultRelation': RT index of the associated result relation |
| 2618 | * 'rtoffset': how much to increment varnos by |
| 2619 | * |
| 2620 | * Note: the given 'root' is for the parent query level, not the 'topplan'. |
| 2621 | * This does not matter currently since we only access the dependency-item |
| 2622 | * lists in root->glob, but it would need some hacking if we wanted a root |
| 2623 | * that actually matches the subplan. |
| 2624 | * |
| 2625 | * Note: resultRelation is not yet adjusted by rtoffset. |
| 2626 | */ |
| 2627 | static List * |
| 2628 | set_returning_clause_references(PlannerInfo *root, |
| 2629 | List *rlist, |
| 2630 | Plan *topplan, |
| 2631 | Index resultRelation, |
| 2632 | int rtoffset) |
| 2633 | { |
| 2634 | indexed_tlist *itlist; |
| 2635 | |
| 2636 | /* |
| 2637 | * We can perform the desired Var fixup by abusing the fix_join_expr |
| 2638 | * machinery that formerly handled inner indexscan fixup. We search the |
| 2639 | * top plan's targetlist for Vars of non-result relations, and use |
| 2640 | * fix_join_expr to convert RETURNING Vars into references to those tlist |
| 2641 | * entries, while leaving result-rel Vars as-is. |
| 2642 | * |
| 2643 | * PlaceHolderVars will also be sought in the targetlist, but no |
| 2644 | * more-complex expressions will be. Note that it is not possible for a |
| 2645 | * PlaceHolderVar to refer to the result relation, since the result is |
| 2646 | * never below an outer join. If that case could happen, we'd have to be |
| 2647 | * prepared to pick apart the PlaceHolderVar and evaluate its contained |
| 2648 | * expression instead. |
| 2649 | */ |
| 2650 | itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation); |
| 2651 | |
| 2652 | rlist = fix_join_expr(root, |
| 2653 | rlist, |
| 2654 | itlist, |
| 2655 | NULL, |
| 2656 | resultRelation, |
| 2657 | rtoffset); |
| 2658 | |
| 2659 | pfree(itlist); |
| 2660 | |
| 2661 | return rlist; |
| 2662 | } |
| 2663 | |
| 2664 | |
| 2665 | /***************************************************************************** |
| 2666 | * QUERY DEPENDENCY MANAGEMENT |
| 2667 | *****************************************************************************/ |
| 2668 | |
| 2669 | /* |
| 2670 | * record_plan_function_dependency |
| 2671 | * Mark the current plan as depending on a particular function. |
| 2672 | * |
| 2673 | * This is exported so that the function-inlining code can record a |
| 2674 | * dependency on a function that it's removed from the plan tree. |
| 2675 | */ |
| 2676 | void |
| 2677 | record_plan_function_dependency(PlannerInfo *root, Oid funcid) |
| 2678 | { |
| 2679 | /* |
| 2680 | * For performance reasons, we don't bother to track built-in functions; |
| 2681 | * we just assume they'll never change (or at least not in ways that'd |
| 2682 | * invalidate plans using them). For this purpose we can consider a |
| 2683 | * built-in function to be one with OID less than FirstBootstrapObjectId. |
| 2684 | * Note that the OID generator guarantees never to generate such an OID |
| 2685 | * after startup, even at OID wraparound. |
| 2686 | */ |
| 2687 | if (funcid >= (Oid) FirstBootstrapObjectId) |
| 2688 | { |
| 2689 | PlanInvalItem *inval_item = makeNode(PlanInvalItem); |
| 2690 | |
| 2691 | /* |
| 2692 | * It would work to use any syscache on pg_proc, but the easiest is |
| 2693 | * PROCOID since we already have the function's OID at hand. Note |
| 2694 | * that plancache.c knows we use PROCOID. |
| 2695 | */ |
| 2696 | inval_item->cacheId = PROCOID; |
| 2697 | inval_item->hashValue = GetSysCacheHashValue1(PROCOID, |
| 2698 | ObjectIdGetDatum(funcid)); |
| 2699 | |
| 2700 | root->glob->invalItems = lappend(root->glob->invalItems, inval_item); |
| 2701 | } |
| 2702 | } |
| 2703 | |
| 2704 | /* |
| 2705 | * record_plan_type_dependency |
| 2706 | * Mark the current plan as depending on a particular type. |
| 2707 | * |
| 2708 | * This is exported so that eval_const_expressions can record a |
| 2709 | * dependency on a domain that it's removed a CoerceToDomain node for. |
| 2710 | * |
| 2711 | * We don't currently need to record dependencies on domains that the |
| 2712 | * plan contains CoerceToDomain nodes for, though that might change in |
| 2713 | * future. Hence, this isn't actually called in this module, though |
| 2714 | * someday fix_expr_common might call it. |
| 2715 | */ |
| 2716 | void |
| 2717 | record_plan_type_dependency(PlannerInfo *root, Oid typid) |
| 2718 | { |
| 2719 | /* |
| 2720 | * As in record_plan_function_dependency, ignore the possibility that |
| 2721 | * someone would change a built-in domain. |
| 2722 | */ |
| 2723 | if (typid >= (Oid) FirstBootstrapObjectId) |
| 2724 | { |
| 2725 | PlanInvalItem *inval_item = makeNode(PlanInvalItem); |
| 2726 | |
| 2727 | /* |
| 2728 | * It would work to use any syscache on pg_type, but the easiest is |
| 2729 | * TYPEOID since we already have the type's OID at hand. Note that |
| 2730 | * plancache.c knows we use TYPEOID. |
| 2731 | */ |
| 2732 | inval_item->cacheId = TYPEOID; |
| 2733 | inval_item->hashValue = GetSysCacheHashValue1(TYPEOID, |
| 2734 | ObjectIdGetDatum(typid)); |
| 2735 | |
| 2736 | root->glob->invalItems = lappend(root->glob->invalItems, inval_item); |
| 2737 | } |
| 2738 | } |
| 2739 | |
| 2740 | /* |
| 2741 | * extract_query_dependencies |
| 2742 | * Given a rewritten, but not yet planned, query or queries |
| 2743 | * (i.e. a Query node or list of Query nodes), extract dependencies |
| 2744 | * just as set_plan_references would do. Also detect whether any |
| 2745 | * rewrite steps were affected by RLS. |
| 2746 | * |
| 2747 | * This is needed by plancache.c to handle invalidation of cached unplanned |
| 2748 | * queries. |
| 2749 | * |
| 2750 | * Note: this does not go through eval_const_expressions, and hence doesn't |
| 2751 | * reflect its additions of inlined functions and elided CoerceToDomain nodes |
| 2752 | * to the invalItems list. This is obviously OK for functions, since we'll |
| 2753 | * see them in the original query tree anyway. For domains, it's OK because |
| 2754 | * we don't care about domains unless they get elided. That is, a plan might |
| 2755 | * have domain dependencies that the query tree doesn't. |
| 2756 | */ |
| 2757 | void |
| 2758 | (Node *query, |
| 2759 | List **relationOids, |
| 2760 | List **invalItems, |
| 2761 | bool *hasRowSecurity) |
| 2762 | { |
| 2763 | PlannerGlobal glob; |
| 2764 | PlannerInfo root; |
| 2765 | |
| 2766 | /* Make up dummy planner state so we can use this module's machinery */ |
| 2767 | MemSet(&glob, 0, sizeof(glob)); |
| 2768 | glob.type = T_PlannerGlobal; |
| 2769 | glob.relationOids = NIL; |
| 2770 | glob.invalItems = NIL; |
| 2771 | /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */ |
| 2772 | glob.dependsOnRole = false; |
| 2773 | |
| 2774 | MemSet(&root, 0, sizeof(root)); |
| 2775 | root.type = T_PlannerInfo; |
| 2776 | root.glob = &glob; |
| 2777 | |
| 2778 | (void) extract_query_dependencies_walker(query, &root); |
| 2779 | |
| 2780 | *relationOids = glob.relationOids; |
| 2781 | *invalItems = glob.invalItems; |
| 2782 | *hasRowSecurity = glob.dependsOnRole; |
| 2783 | } |
| 2784 | |
| 2785 | /* |
| 2786 | * Tree walker for extract_query_dependencies. |
| 2787 | * |
| 2788 | * This is exported so that expression_planner_with_deps can call it on |
| 2789 | * simple expressions (post-planning, not before planning, in that case). |
| 2790 | * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids |
| 2791 | * and invalItems lists are added to as needed. |
| 2792 | */ |
| 2793 | bool |
| 2794 | (Node *node, PlannerInfo *context) |
| 2795 | { |
| 2796 | if (node == NULL) |
| 2797 | return false; |
| 2798 | Assert(!IsA(node, PlaceHolderVar)); |
| 2799 | if (IsA(node, Query)) |
| 2800 | { |
| 2801 | Query *query = (Query *) node; |
| 2802 | ListCell *lc; |
| 2803 | |
| 2804 | if (query->commandType == CMD_UTILITY) |
| 2805 | { |
| 2806 | /* |
| 2807 | * Ignore utility statements, except those (such as EXPLAIN) that |
| 2808 | * contain a parsed-but-not-planned query. |
| 2809 | */ |
| 2810 | query = UtilityContainsQuery(query->utilityStmt); |
| 2811 | if (query == NULL) |
| 2812 | return false; |
| 2813 | } |
| 2814 | |
| 2815 | /* Remember if any Query has RLS quals applied by rewriter */ |
| 2816 | if (query->hasRowSecurity) |
| 2817 | context->glob->dependsOnRole = true; |
| 2818 | |
| 2819 | /* Collect relation OIDs in this Query's rtable */ |
| 2820 | foreach(lc, query->rtable) |
| 2821 | { |
| 2822 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
| 2823 | |
| 2824 | if (rte->rtekind == RTE_RELATION) |
| 2825 | context->glob->relationOids = |
| 2826 | lappend_oid(context->glob->relationOids, rte->relid); |
| 2827 | else if (rte->rtekind == RTE_NAMEDTUPLESTORE && |
| 2828 | OidIsValid(rte->relid)) |
| 2829 | context->glob->relationOids = |
| 2830 | lappend_oid(context->glob->relationOids, |
| 2831 | rte->relid); |
| 2832 | } |
| 2833 | |
| 2834 | /* And recurse into the query's subexpressions */ |
| 2835 | return query_tree_walker(query, extract_query_dependencies_walker, |
| 2836 | (void *) context, 0); |
| 2837 | } |
| 2838 | /* Extract function dependencies and check for regclass Consts */ |
| 2839 | fix_expr_common(context, node); |
| 2840 | return expression_tree_walker(node, extract_query_dependencies_walker, |
| 2841 | (void *) context); |
| 2842 | } |
| 2843 | |