1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * setrefs.c |
4 | * Post-processing of a completed plan tree: fix references to subplan |
5 | * vars, compute regproc values for operators, etc |
6 | * |
7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
8 | * Portions Copyright (c) 1994, Regents of the University of California |
9 | * |
10 | * |
11 | * IDENTIFICATION |
12 | * src/backend/optimizer/plan/setrefs.c |
13 | * |
14 | *------------------------------------------------------------------------- |
15 | */ |
16 | #include "postgres.h" |
17 | |
18 | #include "access/transam.h" |
19 | #include "catalog/pg_type.h" |
20 | #include "nodes/makefuncs.h" |
21 | #include "nodes/nodeFuncs.h" |
22 | #include "optimizer/optimizer.h" |
23 | #include "optimizer/pathnode.h" |
24 | #include "optimizer/planmain.h" |
25 | #include "optimizer/planner.h" |
26 | #include "optimizer/tlist.h" |
27 | #include "tcop/utility.h" |
28 | #include "utils/lsyscache.h" |
29 | #include "utils/syscache.h" |
30 | |
31 | |
32 | typedef struct |
33 | { |
34 | Index varno; /* RT index of Var */ |
35 | AttrNumber varattno; /* attr number of Var */ |
36 | AttrNumber resno; /* TLE position of Var */ |
37 | } tlist_vinfo; |
38 | |
39 | typedef struct |
40 | { |
41 | List *tlist; /* underlying target list */ |
42 | int num_vars; /* number of plain Var tlist entries */ |
43 | bool has_ph_vars; /* are there PlaceHolderVar entries? */ |
44 | bool has_non_vars; /* are there other entries? */ |
45 | tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */ |
46 | } indexed_tlist; |
47 | |
48 | typedef struct |
49 | { |
50 | PlannerInfo *root; |
51 | int rtoffset; |
52 | } fix_scan_expr_context; |
53 | |
54 | typedef struct |
55 | { |
56 | PlannerInfo *root; |
57 | indexed_tlist *outer_itlist; |
58 | indexed_tlist *inner_itlist; |
59 | Index acceptable_rel; |
60 | int rtoffset; |
61 | } fix_join_expr_context; |
62 | |
63 | typedef struct |
64 | { |
65 | PlannerInfo *root; |
66 | indexed_tlist *subplan_itlist; |
67 | Index newvarno; |
68 | int rtoffset; |
69 | } fix_upper_expr_context; |
70 | |
71 | /* |
72 | * Check if a Const node is a regclass value. We accept plain OID too, |
73 | * since a regclass Const will get folded to that type if it's an argument |
74 | * to oideq or similar operators. (This might result in some extraneous |
75 | * values in a plan's list of relation dependencies, but the worst result |
76 | * would be occasional useless replans.) |
77 | */ |
78 | #define ISREGCLASSCONST(con) \ |
79 | (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \ |
80 | !(con)->constisnull) |
81 | |
82 | #define fix_scan_list(root, lst, rtoffset) \ |
83 | ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset)) |
84 | |
85 | static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing); |
86 | static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte); |
87 | static bool flatten_rtes_walker(Node *node, PlannerGlobal *glob); |
88 | static void add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte); |
89 | static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset); |
90 | static Plan *set_indexonlyscan_references(PlannerInfo *root, |
91 | IndexOnlyScan *plan, |
92 | int rtoffset); |
93 | static Plan *set_subqueryscan_references(PlannerInfo *root, |
94 | SubqueryScan *plan, |
95 | int rtoffset); |
96 | static bool trivial_subqueryscan(SubqueryScan *plan); |
97 | static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child); |
98 | static void set_foreignscan_references(PlannerInfo *root, |
99 | ForeignScan *fscan, |
100 | int rtoffset); |
101 | static void set_customscan_references(PlannerInfo *root, |
102 | CustomScan *cscan, |
103 | int rtoffset); |
104 | static Plan *set_append_references(PlannerInfo *root, |
105 | Append *aplan, |
106 | int rtoffset); |
107 | static Plan *set_mergeappend_references(PlannerInfo *root, |
108 | MergeAppend *mplan, |
109 | int rtoffset); |
110 | static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset); |
111 | static Node *fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset); |
112 | static Node *fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context); |
113 | static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context); |
114 | static void set_join_references(PlannerInfo *root, Join *join, int rtoffset); |
115 | static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset); |
116 | static void set_param_references(PlannerInfo *root, Plan *plan); |
117 | static Node *convert_combining_aggrefs(Node *node, void *context); |
118 | static void set_dummy_tlist_references(Plan *plan, int rtoffset); |
119 | static indexed_tlist *build_tlist_index(List *tlist); |
120 | static Var *search_indexed_tlist_for_var(Var *var, |
121 | indexed_tlist *itlist, |
122 | Index newvarno, |
123 | int rtoffset); |
124 | static Var *search_indexed_tlist_for_non_var(Expr *node, |
125 | indexed_tlist *itlist, |
126 | Index newvarno); |
127 | static Var *search_indexed_tlist_for_sortgroupref(Expr *node, |
128 | Index sortgroupref, |
129 | indexed_tlist *itlist, |
130 | Index newvarno); |
131 | static List *fix_join_expr(PlannerInfo *root, |
132 | List *clauses, |
133 | indexed_tlist *outer_itlist, |
134 | indexed_tlist *inner_itlist, |
135 | Index acceptable_rel, int rtoffset); |
136 | static Node *fix_join_expr_mutator(Node *node, |
137 | fix_join_expr_context *context); |
138 | static Node *fix_upper_expr(PlannerInfo *root, |
139 | Node *node, |
140 | indexed_tlist *subplan_itlist, |
141 | Index newvarno, |
142 | int rtoffset); |
143 | static Node *fix_upper_expr_mutator(Node *node, |
144 | fix_upper_expr_context *context); |
145 | static List *set_returning_clause_references(PlannerInfo *root, |
146 | List *rlist, |
147 | Plan *topplan, |
148 | Index resultRelation, |
149 | int rtoffset); |
150 | |
151 | |
152 | /***************************************************************************** |
153 | * |
154 | * SUBPLAN REFERENCES |
155 | * |
156 | *****************************************************************************/ |
157 | |
158 | /* |
159 | * set_plan_references |
160 | * |
161 | * This is the final processing pass of the planner/optimizer. The plan |
162 | * tree is complete; we just have to adjust some representational details |
163 | * for the convenience of the executor: |
164 | * |
165 | * 1. We flatten the various subquery rangetables into a single list, and |
166 | * zero out RangeTblEntry fields that are not useful to the executor. |
167 | * |
168 | * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable. |
169 | * |
170 | * 3. We adjust Vars in upper plan nodes to refer to the outputs of their |
171 | * subplans. |
172 | * |
173 | * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving |
174 | * partial aggregation or minmax aggregate optimization. |
175 | * |
176 | * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params, |
177 | * now that we have finished planning all MULTIEXPR subplans. |
178 | * |
179 | * 6. We compute regproc OIDs for operators (ie, we look up the function |
180 | * that implements each op). |
181 | * |
182 | * 7. We create lists of specific objects that the plan depends on. |
183 | * This will be used by plancache.c to drive invalidation of cached plans. |
184 | * Relation dependencies are represented by OIDs, and everything else by |
185 | * PlanInvalItems (this distinction is motivated by the shared-inval APIs). |
186 | * Currently, relations, user-defined functions, and domains are the only |
187 | * types of objects that are explicitly tracked this way. |
188 | * |
189 | * 8. We assign every plan node in the tree a unique ID. |
190 | * |
191 | * We also perform one final optimization step, which is to delete |
192 | * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing |
193 | * anything useful. The reason for doing this last is that |
194 | * it can't readily be done before set_plan_references, because it would |
195 | * break set_upper_references: the Vars in the child plan's top tlist |
196 | * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan |
197 | * serves a necessary function as a buffer between outer query and subquery |
198 | * variable numbering ... but after we've flattened the rangetable this is |
199 | * no longer a problem, since then there's only one rtindex namespace. |
200 | * Likewise, Append and MergeAppend buffer between the parent and child vars |
201 | * of an appendrel, but we don't need to worry about that once we've done |
202 | * set_plan_references. |
203 | * |
204 | * set_plan_references recursively traverses the whole plan tree. |
205 | * |
206 | * The return value is normally the same Plan node passed in, but can be |
207 | * different when the passed-in Plan is a node we decide isn't needed. |
208 | * |
209 | * The flattened rangetable entries are appended to root->glob->finalrtable. |
210 | * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the |
211 | * RT indexes of ModifyTable result relations to root->glob->resultRelations. |
212 | * Plan dependencies are appended to root->glob->relationOids (for relations) |
213 | * and root->glob->invalItems (for everything else). |
214 | * |
215 | * Notice that we modify Plan nodes in-place, but use expression_tree_mutator |
216 | * to process targetlist and qual expressions. We can assume that the Plan |
217 | * nodes were just built by the planner and are not multiply referenced, but |
218 | * it's not so safe to assume that for expression tree nodes. |
219 | */ |
220 | Plan * |
221 | set_plan_references(PlannerInfo *root, Plan *plan) |
222 | { |
223 | PlannerGlobal *glob = root->glob; |
224 | int rtoffset = list_length(glob->finalrtable); |
225 | ListCell *lc; |
226 | |
227 | /* |
228 | * Add all the query's RTEs to the flattened rangetable. The live ones |
229 | * will have their rangetable indexes increased by rtoffset. (Additional |
230 | * RTEs, not referenced by the Plan tree, might get added after those.) |
231 | */ |
232 | add_rtes_to_flat_rtable(root, false); |
233 | |
234 | /* |
235 | * Adjust RT indexes of PlanRowMarks and add to final rowmarks list |
236 | */ |
237 | foreach(lc, root->rowMarks) |
238 | { |
239 | PlanRowMark *rc = lfirst_node(PlanRowMark, lc); |
240 | PlanRowMark *newrc; |
241 | |
242 | /* flat copy is enough since all fields are scalars */ |
243 | newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark)); |
244 | memcpy(newrc, rc, sizeof(PlanRowMark)); |
245 | |
246 | /* adjust indexes ... but *not* the rowmarkId */ |
247 | newrc->rti += rtoffset; |
248 | newrc->prti += rtoffset; |
249 | |
250 | glob->finalrowmarks = lappend(glob->finalrowmarks, newrc); |
251 | } |
252 | |
253 | /* Now fix the Plan tree */ |
254 | return set_plan_refs(root, plan, rtoffset); |
255 | } |
256 | |
257 | /* |
258 | * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable |
259 | * |
260 | * This can recurse into subquery plans; "recursing" is true if so. |
261 | */ |
262 | static void |
263 | add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing) |
264 | { |
265 | PlannerGlobal *glob = root->glob; |
266 | Index rti; |
267 | ListCell *lc; |
268 | |
269 | /* |
270 | * Add the query's own RTEs to the flattened rangetable. |
271 | * |
272 | * At top level, we must add all RTEs so that their indexes in the |
273 | * flattened rangetable match up with their original indexes. When |
274 | * recursing, we only care about extracting relation RTEs. |
275 | */ |
276 | foreach(lc, root->parse->rtable) |
277 | { |
278 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
279 | |
280 | if (!recursing || rte->rtekind == RTE_RELATION) |
281 | add_rte_to_flat_rtable(glob, rte); |
282 | } |
283 | |
284 | /* |
285 | * If there are any dead subqueries, they are not referenced in the Plan |
286 | * tree, so we must add RTEs contained in them to the flattened rtable |
287 | * separately. (If we failed to do this, the executor would not perform |
288 | * expected permission checks for tables mentioned in such subqueries.) |
289 | * |
290 | * Note: this pass over the rangetable can't be combined with the previous |
291 | * one, because that would mess up the numbering of the live RTEs in the |
292 | * flattened rangetable. |
293 | */ |
294 | rti = 1; |
295 | foreach(lc, root->parse->rtable) |
296 | { |
297 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
298 | |
299 | /* |
300 | * We should ignore inheritance-parent RTEs: their contents have been |
301 | * pulled up into our rangetable already. Also ignore any subquery |
302 | * RTEs without matching RelOptInfos, as they likewise have been |
303 | * pulled up. |
304 | */ |
305 | if (rte->rtekind == RTE_SUBQUERY && !rte->inh && |
306 | rti < root->simple_rel_array_size) |
307 | { |
308 | RelOptInfo *rel = root->simple_rel_array[rti]; |
309 | |
310 | if (rel != NULL) |
311 | { |
312 | Assert(rel->relid == rti); /* sanity check on array */ |
313 | |
314 | /* |
315 | * The subquery might never have been planned at all, if it |
316 | * was excluded on the basis of self-contradictory constraints |
317 | * in our query level. In this case apply |
318 | * flatten_unplanned_rtes. |
319 | * |
320 | * If it was planned but the result rel is dummy, we assume |
321 | * that it has been omitted from our plan tree (see |
322 | * set_subquery_pathlist), and recurse to pull up its RTEs. |
323 | * |
324 | * Otherwise, it should be represented by a SubqueryScan node |
325 | * somewhere in our plan tree, and we'll pull up its RTEs when |
326 | * we process that plan node. |
327 | * |
328 | * However, if we're recursing, then we should pull up RTEs |
329 | * whether the subquery is dummy or not, because we've found |
330 | * that some upper query level is treating this one as dummy, |
331 | * and so we won't scan this level's plan tree at all. |
332 | */ |
333 | if (rel->subroot == NULL) |
334 | flatten_unplanned_rtes(glob, rte); |
335 | else if (recursing || |
336 | IS_DUMMY_REL(fetch_upper_rel(rel->subroot, |
337 | UPPERREL_FINAL, NULL))) |
338 | add_rtes_to_flat_rtable(rel->subroot, true); |
339 | } |
340 | } |
341 | rti++; |
342 | } |
343 | } |
344 | |
345 | /* |
346 | * Extract RangeTblEntries from a subquery that was never planned at all |
347 | */ |
348 | static void |
349 | flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte) |
350 | { |
351 | /* Use query_tree_walker to find all RTEs in the parse tree */ |
352 | (void) query_tree_walker(rte->subquery, |
353 | flatten_rtes_walker, |
354 | (void *) glob, |
355 | QTW_EXAMINE_RTES_BEFORE); |
356 | } |
357 | |
358 | static bool |
359 | flatten_rtes_walker(Node *node, PlannerGlobal *glob) |
360 | { |
361 | if (node == NULL) |
362 | return false; |
363 | if (IsA(node, RangeTblEntry)) |
364 | { |
365 | RangeTblEntry *rte = (RangeTblEntry *) node; |
366 | |
367 | /* As above, we need only save relation RTEs */ |
368 | if (rte->rtekind == RTE_RELATION) |
369 | add_rte_to_flat_rtable(glob, rte); |
370 | return false; |
371 | } |
372 | if (IsA(node, Query)) |
373 | { |
374 | /* Recurse into subselects */ |
375 | return query_tree_walker((Query *) node, |
376 | flatten_rtes_walker, |
377 | (void *) glob, |
378 | QTW_EXAMINE_RTES_BEFORE); |
379 | } |
380 | return expression_tree_walker(node, flatten_rtes_walker, |
381 | (void *) glob); |
382 | } |
383 | |
384 | /* |
385 | * Add (a copy of) the given RTE to the final rangetable |
386 | * |
387 | * In the flat rangetable, we zero out substructure pointers that are not |
388 | * needed by the executor; this reduces the storage space and copying cost |
389 | * for cached plans. We keep only the ctename, alias and eref Alias fields, |
390 | * which are needed by EXPLAIN, and the selectedCols, insertedCols and |
391 | * updatedCols bitmaps, which are needed for executor-startup permissions |
392 | * checking and for trigger event checking. |
393 | */ |
394 | static void |
395 | add_rte_to_flat_rtable(PlannerGlobal *glob, RangeTblEntry *rte) |
396 | { |
397 | RangeTblEntry *newrte; |
398 | |
399 | /* flat copy to duplicate all the scalar fields */ |
400 | newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry)); |
401 | memcpy(newrte, rte, sizeof(RangeTblEntry)); |
402 | |
403 | /* zap unneeded sub-structure */ |
404 | newrte->tablesample = NULL; |
405 | newrte->subquery = NULL; |
406 | newrte->joinaliasvars = NIL; |
407 | newrte->functions = NIL; |
408 | newrte->tablefunc = NULL; |
409 | newrte->values_lists = NIL; |
410 | newrte->coltypes = NIL; |
411 | newrte->coltypmods = NIL; |
412 | newrte->colcollations = NIL; |
413 | newrte->securityQuals = NIL; |
414 | |
415 | glob->finalrtable = lappend(glob->finalrtable, newrte); |
416 | |
417 | /* |
418 | * Check for RT index overflow; it's very unlikely, but if it did happen, |
419 | * the executor would get confused by varnos that match the special varno |
420 | * values. |
421 | */ |
422 | if (IS_SPECIAL_VARNO(list_length(glob->finalrtable))) |
423 | ereport(ERROR, |
424 | (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
425 | errmsg("too many range table entries" ))); |
426 | |
427 | /* |
428 | * If it's a plain relation RTE, add the table to relationOids. |
429 | * |
430 | * We do this even though the RTE might be unreferenced in the plan tree; |
431 | * this would correspond to cases such as views that were expanded, child |
432 | * tables that were eliminated by constraint exclusion, etc. Schema |
433 | * invalidation on such a rel must still force rebuilding of the plan. |
434 | * |
435 | * Note we don't bother to avoid making duplicate list entries. We could, |
436 | * but it would probably cost more cycles than it would save. |
437 | */ |
438 | if (newrte->rtekind == RTE_RELATION) |
439 | glob->relationOids = lappend_oid(glob->relationOids, newrte->relid); |
440 | } |
441 | |
442 | /* |
443 | * set_plan_refs: recurse through the Plan nodes of a single subquery level |
444 | */ |
445 | static Plan * |
446 | set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset) |
447 | { |
448 | ListCell *l; |
449 | |
450 | if (plan == NULL) |
451 | return NULL; |
452 | |
453 | /* Assign this node a unique ID. */ |
454 | plan->plan_node_id = root->glob->lastPlanNodeId++; |
455 | |
456 | /* |
457 | * Plan-type-specific fixes |
458 | */ |
459 | switch (nodeTag(plan)) |
460 | { |
461 | case T_SeqScan: |
462 | { |
463 | SeqScan *splan = (SeqScan *) plan; |
464 | |
465 | splan->scanrelid += rtoffset; |
466 | splan->plan.targetlist = |
467 | fix_scan_list(root, splan->plan.targetlist, rtoffset); |
468 | splan->plan.qual = |
469 | fix_scan_list(root, splan->plan.qual, rtoffset); |
470 | } |
471 | break; |
472 | case T_SampleScan: |
473 | { |
474 | SampleScan *splan = (SampleScan *) plan; |
475 | |
476 | splan->scan.scanrelid += rtoffset; |
477 | splan->scan.plan.targetlist = |
478 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
479 | splan->scan.plan.qual = |
480 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
481 | splan->tablesample = (TableSampleClause *) |
482 | fix_scan_expr(root, (Node *) splan->tablesample, rtoffset); |
483 | } |
484 | break; |
485 | case T_IndexScan: |
486 | { |
487 | IndexScan *splan = (IndexScan *) plan; |
488 | |
489 | splan->scan.scanrelid += rtoffset; |
490 | splan->scan.plan.targetlist = |
491 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
492 | splan->scan.plan.qual = |
493 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
494 | splan->indexqual = |
495 | fix_scan_list(root, splan->indexqual, rtoffset); |
496 | splan->indexqualorig = |
497 | fix_scan_list(root, splan->indexqualorig, rtoffset); |
498 | splan->indexorderby = |
499 | fix_scan_list(root, splan->indexorderby, rtoffset); |
500 | splan->indexorderbyorig = |
501 | fix_scan_list(root, splan->indexorderbyorig, rtoffset); |
502 | } |
503 | break; |
504 | case T_IndexOnlyScan: |
505 | { |
506 | IndexOnlyScan *splan = (IndexOnlyScan *) plan; |
507 | |
508 | return set_indexonlyscan_references(root, splan, rtoffset); |
509 | } |
510 | break; |
511 | case T_BitmapIndexScan: |
512 | { |
513 | BitmapIndexScan *splan = (BitmapIndexScan *) plan; |
514 | |
515 | splan->scan.scanrelid += rtoffset; |
516 | /* no need to fix targetlist and qual */ |
517 | Assert(splan->scan.plan.targetlist == NIL); |
518 | Assert(splan->scan.plan.qual == NIL); |
519 | splan->indexqual = |
520 | fix_scan_list(root, splan->indexqual, rtoffset); |
521 | splan->indexqualorig = |
522 | fix_scan_list(root, splan->indexqualorig, rtoffset); |
523 | } |
524 | break; |
525 | case T_BitmapHeapScan: |
526 | { |
527 | BitmapHeapScan *splan = (BitmapHeapScan *) plan; |
528 | |
529 | splan->scan.scanrelid += rtoffset; |
530 | splan->scan.plan.targetlist = |
531 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
532 | splan->scan.plan.qual = |
533 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
534 | splan->bitmapqualorig = |
535 | fix_scan_list(root, splan->bitmapqualorig, rtoffset); |
536 | } |
537 | break; |
538 | case T_TidScan: |
539 | { |
540 | TidScan *splan = (TidScan *) plan; |
541 | |
542 | splan->scan.scanrelid += rtoffset; |
543 | splan->scan.plan.targetlist = |
544 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
545 | splan->scan.plan.qual = |
546 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
547 | splan->tidquals = |
548 | fix_scan_list(root, splan->tidquals, rtoffset); |
549 | } |
550 | break; |
551 | case T_SubqueryScan: |
552 | /* Needs special treatment, see comments below */ |
553 | return set_subqueryscan_references(root, |
554 | (SubqueryScan *) plan, |
555 | rtoffset); |
556 | case T_FunctionScan: |
557 | { |
558 | FunctionScan *splan = (FunctionScan *) plan; |
559 | |
560 | splan->scan.scanrelid += rtoffset; |
561 | splan->scan.plan.targetlist = |
562 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
563 | splan->scan.plan.qual = |
564 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
565 | splan->functions = |
566 | fix_scan_list(root, splan->functions, rtoffset); |
567 | } |
568 | break; |
569 | case T_TableFuncScan: |
570 | { |
571 | TableFuncScan *splan = (TableFuncScan *) plan; |
572 | |
573 | splan->scan.scanrelid += rtoffset; |
574 | splan->scan.plan.targetlist = |
575 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
576 | splan->scan.plan.qual = |
577 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
578 | splan->tablefunc = (TableFunc *) |
579 | fix_scan_expr(root, (Node *) splan->tablefunc, rtoffset); |
580 | } |
581 | break; |
582 | case T_ValuesScan: |
583 | { |
584 | ValuesScan *splan = (ValuesScan *) plan; |
585 | |
586 | splan->scan.scanrelid += rtoffset; |
587 | splan->scan.plan.targetlist = |
588 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
589 | splan->scan.plan.qual = |
590 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
591 | splan->values_lists = |
592 | fix_scan_list(root, splan->values_lists, rtoffset); |
593 | } |
594 | break; |
595 | case T_CteScan: |
596 | { |
597 | CteScan *splan = (CteScan *) plan; |
598 | |
599 | splan->scan.scanrelid += rtoffset; |
600 | splan->scan.plan.targetlist = |
601 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
602 | splan->scan.plan.qual = |
603 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
604 | } |
605 | break; |
606 | case T_NamedTuplestoreScan: |
607 | { |
608 | NamedTuplestoreScan *splan = (NamedTuplestoreScan *) plan; |
609 | |
610 | splan->scan.scanrelid += rtoffset; |
611 | splan->scan.plan.targetlist = |
612 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
613 | splan->scan.plan.qual = |
614 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
615 | } |
616 | break; |
617 | case T_WorkTableScan: |
618 | { |
619 | WorkTableScan *splan = (WorkTableScan *) plan; |
620 | |
621 | splan->scan.scanrelid += rtoffset; |
622 | splan->scan.plan.targetlist = |
623 | fix_scan_list(root, splan->scan.plan.targetlist, rtoffset); |
624 | splan->scan.plan.qual = |
625 | fix_scan_list(root, splan->scan.plan.qual, rtoffset); |
626 | } |
627 | break; |
628 | case T_ForeignScan: |
629 | set_foreignscan_references(root, (ForeignScan *) plan, rtoffset); |
630 | break; |
631 | case T_CustomScan: |
632 | set_customscan_references(root, (CustomScan *) plan, rtoffset); |
633 | break; |
634 | |
635 | case T_NestLoop: |
636 | case T_MergeJoin: |
637 | case T_HashJoin: |
638 | set_join_references(root, (Join *) plan, rtoffset); |
639 | break; |
640 | |
641 | case T_Gather: |
642 | case T_GatherMerge: |
643 | { |
644 | set_upper_references(root, plan, rtoffset); |
645 | set_param_references(root, plan); |
646 | } |
647 | break; |
648 | |
649 | case T_Hash: |
650 | set_hash_references(root, plan, rtoffset); |
651 | break; |
652 | |
653 | case T_Material: |
654 | case T_Sort: |
655 | case T_Unique: |
656 | case T_SetOp: |
657 | |
658 | /* |
659 | * These plan types don't actually bother to evaluate their |
660 | * targetlists, because they just return their unmodified input |
661 | * tuples. Even though the targetlist won't be used by the |
662 | * executor, we fix it up for possible use by EXPLAIN (not to |
663 | * mention ease of debugging --- wrong varnos are very confusing). |
664 | */ |
665 | set_dummy_tlist_references(plan, rtoffset); |
666 | |
667 | /* |
668 | * Since these plan types don't check quals either, we should not |
669 | * find any qual expression attached to them. |
670 | */ |
671 | Assert(plan->qual == NIL); |
672 | break; |
673 | case T_LockRows: |
674 | { |
675 | LockRows *splan = (LockRows *) plan; |
676 | |
677 | /* |
678 | * Like the plan types above, LockRows doesn't evaluate its |
679 | * tlist or quals. But we have to fix up the RT indexes in |
680 | * its rowmarks. |
681 | */ |
682 | set_dummy_tlist_references(plan, rtoffset); |
683 | Assert(splan->plan.qual == NIL); |
684 | |
685 | foreach(l, splan->rowMarks) |
686 | { |
687 | PlanRowMark *rc = (PlanRowMark *) lfirst(l); |
688 | |
689 | rc->rti += rtoffset; |
690 | rc->prti += rtoffset; |
691 | } |
692 | } |
693 | break; |
694 | case T_Limit: |
695 | { |
696 | Limit *splan = (Limit *) plan; |
697 | |
698 | /* |
699 | * Like the plan types above, Limit doesn't evaluate its tlist |
700 | * or quals. It does have live expressions for limit/offset, |
701 | * however; and those cannot contain subplan variable refs, so |
702 | * fix_scan_expr works for them. |
703 | */ |
704 | set_dummy_tlist_references(plan, rtoffset); |
705 | Assert(splan->plan.qual == NIL); |
706 | |
707 | splan->limitOffset = |
708 | fix_scan_expr(root, splan->limitOffset, rtoffset); |
709 | splan->limitCount = |
710 | fix_scan_expr(root, splan->limitCount, rtoffset); |
711 | } |
712 | break; |
713 | case T_Agg: |
714 | { |
715 | Agg *agg = (Agg *) plan; |
716 | |
717 | /* |
718 | * If this node is combining partial-aggregation results, we |
719 | * must convert its Aggrefs to contain references to the |
720 | * partial-aggregate subexpressions that will be available |
721 | * from the child plan node. |
722 | */ |
723 | if (DO_AGGSPLIT_COMBINE(agg->aggsplit)) |
724 | { |
725 | plan->targetlist = (List *) |
726 | convert_combining_aggrefs((Node *) plan->targetlist, |
727 | NULL); |
728 | plan->qual = (List *) |
729 | convert_combining_aggrefs((Node *) plan->qual, |
730 | NULL); |
731 | } |
732 | |
733 | set_upper_references(root, plan, rtoffset); |
734 | } |
735 | break; |
736 | case T_Group: |
737 | set_upper_references(root, plan, rtoffset); |
738 | break; |
739 | case T_WindowAgg: |
740 | { |
741 | WindowAgg *wplan = (WindowAgg *) plan; |
742 | |
743 | set_upper_references(root, plan, rtoffset); |
744 | |
745 | /* |
746 | * Like Limit node limit/offset expressions, WindowAgg has |
747 | * frame offset expressions, which cannot contain subplan |
748 | * variable refs, so fix_scan_expr works for them. |
749 | */ |
750 | wplan->startOffset = |
751 | fix_scan_expr(root, wplan->startOffset, rtoffset); |
752 | wplan->endOffset = |
753 | fix_scan_expr(root, wplan->endOffset, rtoffset); |
754 | } |
755 | break; |
756 | case T_Result: |
757 | { |
758 | Result *splan = (Result *) plan; |
759 | |
760 | /* |
761 | * Result may or may not have a subplan; if not, it's more |
762 | * like a scan node than an upper node. |
763 | */ |
764 | if (splan->plan.lefttree != NULL) |
765 | set_upper_references(root, plan, rtoffset); |
766 | else |
767 | { |
768 | splan->plan.targetlist = |
769 | fix_scan_list(root, splan->plan.targetlist, rtoffset); |
770 | splan->plan.qual = |
771 | fix_scan_list(root, splan->plan.qual, rtoffset); |
772 | } |
773 | /* resconstantqual can't contain any subplan variable refs */ |
774 | splan->resconstantqual = |
775 | fix_scan_expr(root, splan->resconstantqual, rtoffset); |
776 | } |
777 | break; |
778 | case T_ProjectSet: |
779 | set_upper_references(root, plan, rtoffset); |
780 | break; |
781 | case T_ModifyTable: |
782 | { |
783 | ModifyTable *splan = (ModifyTable *) plan; |
784 | |
785 | Assert(splan->plan.targetlist == NIL); |
786 | Assert(splan->plan.qual == NIL); |
787 | |
788 | splan->withCheckOptionLists = |
789 | fix_scan_list(root, splan->withCheckOptionLists, rtoffset); |
790 | |
791 | if (splan->returningLists) |
792 | { |
793 | List *newRL = NIL; |
794 | ListCell *lcrl, |
795 | *lcrr, |
796 | *lcp; |
797 | |
798 | /* |
799 | * Pass each per-subplan returningList through |
800 | * set_returning_clause_references(). |
801 | */ |
802 | Assert(list_length(splan->returningLists) == list_length(splan->resultRelations)); |
803 | Assert(list_length(splan->returningLists) == list_length(splan->plans)); |
804 | forthree(lcrl, splan->returningLists, |
805 | lcrr, splan->resultRelations, |
806 | lcp, splan->plans) |
807 | { |
808 | List *rlist = (List *) lfirst(lcrl); |
809 | Index resultrel = lfirst_int(lcrr); |
810 | Plan *subplan = (Plan *) lfirst(lcp); |
811 | |
812 | rlist = set_returning_clause_references(root, |
813 | rlist, |
814 | subplan, |
815 | resultrel, |
816 | rtoffset); |
817 | newRL = lappend(newRL, rlist); |
818 | } |
819 | splan->returningLists = newRL; |
820 | |
821 | /* |
822 | * Set up the visible plan targetlist as being the same as |
823 | * the first RETURNING list. This is for the use of |
824 | * EXPLAIN; the executor won't pay any attention to the |
825 | * targetlist. We postpone this step until here so that |
826 | * we don't have to do set_returning_clause_references() |
827 | * twice on identical targetlists. |
828 | */ |
829 | splan->plan.targetlist = copyObject(linitial(newRL)); |
830 | } |
831 | |
832 | /* |
833 | * We treat ModifyTable with ON CONFLICT as a form of 'pseudo |
834 | * join', where the inner side is the EXCLUDED tuple. |
835 | * Therefore use fix_join_expr to setup the relevant variables |
836 | * to INNER_VAR. We explicitly don't create any OUTER_VARs as |
837 | * those are already used by RETURNING and it seems better to |
838 | * be non-conflicting. |
839 | */ |
840 | if (splan->onConflictSet) |
841 | { |
842 | indexed_tlist *itlist; |
843 | |
844 | itlist = build_tlist_index(splan->exclRelTlist); |
845 | |
846 | splan->onConflictSet = |
847 | fix_join_expr(root, splan->onConflictSet, |
848 | NULL, itlist, |
849 | linitial_int(splan->resultRelations), |
850 | rtoffset); |
851 | |
852 | splan->onConflictWhere = (Node *) |
853 | fix_join_expr(root, (List *) splan->onConflictWhere, |
854 | NULL, itlist, |
855 | linitial_int(splan->resultRelations), |
856 | rtoffset); |
857 | |
858 | pfree(itlist); |
859 | |
860 | splan->exclRelTlist = |
861 | fix_scan_list(root, splan->exclRelTlist, rtoffset); |
862 | } |
863 | |
864 | splan->nominalRelation += rtoffset; |
865 | if (splan->rootRelation) |
866 | splan->rootRelation += rtoffset; |
867 | splan->exclRelRTI += rtoffset; |
868 | |
869 | foreach(l, splan->resultRelations) |
870 | { |
871 | lfirst_int(l) += rtoffset; |
872 | } |
873 | foreach(l, splan->rowMarks) |
874 | { |
875 | PlanRowMark *rc = (PlanRowMark *) lfirst(l); |
876 | |
877 | rc->rti += rtoffset; |
878 | rc->prti += rtoffset; |
879 | } |
880 | foreach(l, splan->plans) |
881 | { |
882 | lfirst(l) = set_plan_refs(root, |
883 | (Plan *) lfirst(l), |
884 | rtoffset); |
885 | } |
886 | |
887 | /* |
888 | * Append this ModifyTable node's final result relation RT |
889 | * index(es) to the global list for the plan, and set its |
890 | * resultRelIndex to reflect their starting position in the |
891 | * global list. |
892 | */ |
893 | splan->resultRelIndex = list_length(root->glob->resultRelations); |
894 | root->glob->resultRelations = |
895 | list_concat(root->glob->resultRelations, |
896 | list_copy(splan->resultRelations)); |
897 | |
898 | /* |
899 | * If the main target relation is a partitioned table, also |
900 | * add the partition root's RT index to rootResultRelations, |
901 | * and remember its index in that list in rootResultRelIndex. |
902 | */ |
903 | if (splan->rootRelation) |
904 | { |
905 | splan->rootResultRelIndex = |
906 | list_length(root->glob->rootResultRelations); |
907 | root->glob->rootResultRelations = |
908 | lappend_int(root->glob->rootResultRelations, |
909 | splan->rootRelation); |
910 | } |
911 | } |
912 | break; |
913 | case T_Append: |
914 | /* Needs special treatment, see comments below */ |
915 | return set_append_references(root, |
916 | (Append *) plan, |
917 | rtoffset); |
918 | case T_MergeAppend: |
919 | /* Needs special treatment, see comments below */ |
920 | return set_mergeappend_references(root, |
921 | (MergeAppend *) plan, |
922 | rtoffset); |
923 | case T_RecursiveUnion: |
924 | /* This doesn't evaluate targetlist or check quals either */ |
925 | set_dummy_tlist_references(plan, rtoffset); |
926 | Assert(plan->qual == NIL); |
927 | break; |
928 | case T_BitmapAnd: |
929 | { |
930 | BitmapAnd *splan = (BitmapAnd *) plan; |
931 | |
932 | /* BitmapAnd works like Append, but has no tlist */ |
933 | Assert(splan->plan.targetlist == NIL); |
934 | Assert(splan->plan.qual == NIL); |
935 | foreach(l, splan->bitmapplans) |
936 | { |
937 | lfirst(l) = set_plan_refs(root, |
938 | (Plan *) lfirst(l), |
939 | rtoffset); |
940 | } |
941 | } |
942 | break; |
943 | case T_BitmapOr: |
944 | { |
945 | BitmapOr *splan = (BitmapOr *) plan; |
946 | |
947 | /* BitmapOr works like Append, but has no tlist */ |
948 | Assert(splan->plan.targetlist == NIL); |
949 | Assert(splan->plan.qual == NIL); |
950 | foreach(l, splan->bitmapplans) |
951 | { |
952 | lfirst(l) = set_plan_refs(root, |
953 | (Plan *) lfirst(l), |
954 | rtoffset); |
955 | } |
956 | } |
957 | break; |
958 | default: |
959 | elog(ERROR, "unrecognized node type: %d" , |
960 | (int) nodeTag(plan)); |
961 | break; |
962 | } |
963 | |
964 | /* |
965 | * Now recurse into child plans, if any |
966 | * |
967 | * NOTE: it is essential that we recurse into child plans AFTER we set |
968 | * subplan references in this plan's tlist and quals. If we did the |
969 | * reference-adjustments bottom-up, then we would fail to match this |
970 | * plan's var nodes against the already-modified nodes of the children. |
971 | */ |
972 | plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset); |
973 | plan->righttree = set_plan_refs(root, plan->righttree, rtoffset); |
974 | |
975 | return plan; |
976 | } |
977 | |
978 | /* |
979 | * set_indexonlyscan_references |
980 | * Do set_plan_references processing on an IndexOnlyScan |
981 | * |
982 | * This is unlike the handling of a plain IndexScan because we have to |
983 | * convert Vars referencing the heap into Vars referencing the index. |
984 | * We can use the fix_upper_expr machinery for that, by working from a |
985 | * targetlist describing the index columns. |
986 | */ |
987 | static Plan * |
988 | set_indexonlyscan_references(PlannerInfo *root, |
989 | IndexOnlyScan *plan, |
990 | int rtoffset) |
991 | { |
992 | indexed_tlist *index_itlist; |
993 | |
994 | index_itlist = build_tlist_index(plan->indextlist); |
995 | |
996 | plan->scan.scanrelid += rtoffset; |
997 | plan->scan.plan.targetlist = (List *) |
998 | fix_upper_expr(root, |
999 | (Node *) plan->scan.plan.targetlist, |
1000 | index_itlist, |
1001 | INDEX_VAR, |
1002 | rtoffset); |
1003 | plan->scan.plan.qual = (List *) |
1004 | fix_upper_expr(root, |
1005 | (Node *) plan->scan.plan.qual, |
1006 | index_itlist, |
1007 | INDEX_VAR, |
1008 | rtoffset); |
1009 | /* indexqual is already transformed to reference index columns */ |
1010 | plan->indexqual = fix_scan_list(root, plan->indexqual, rtoffset); |
1011 | /* indexorderby is already transformed to reference index columns */ |
1012 | plan->indexorderby = fix_scan_list(root, plan->indexorderby, rtoffset); |
1013 | /* indextlist must NOT be transformed to reference index columns */ |
1014 | plan->indextlist = fix_scan_list(root, plan->indextlist, rtoffset); |
1015 | |
1016 | pfree(index_itlist); |
1017 | |
1018 | return (Plan *) plan; |
1019 | } |
1020 | |
1021 | /* |
1022 | * set_subqueryscan_references |
1023 | * Do set_plan_references processing on a SubqueryScan |
1024 | * |
1025 | * We try to strip out the SubqueryScan entirely; if we can't, we have |
1026 | * to do the normal processing on it. |
1027 | */ |
1028 | static Plan * |
1029 | set_subqueryscan_references(PlannerInfo *root, |
1030 | SubqueryScan *plan, |
1031 | int rtoffset) |
1032 | { |
1033 | RelOptInfo *rel; |
1034 | Plan *result; |
1035 | |
1036 | /* Need to look up the subquery's RelOptInfo, since we need its subroot */ |
1037 | rel = find_base_rel(root, plan->scan.scanrelid); |
1038 | |
1039 | /* Recursively process the subplan */ |
1040 | plan->subplan = set_plan_references(rel->subroot, plan->subplan); |
1041 | |
1042 | if (trivial_subqueryscan(plan)) |
1043 | { |
1044 | /* |
1045 | * We can omit the SubqueryScan node and just pull up the subplan. |
1046 | */ |
1047 | result = clean_up_removed_plan_level((Plan *) plan, plan->subplan); |
1048 | } |
1049 | else |
1050 | { |
1051 | /* |
1052 | * Keep the SubqueryScan node. We have to do the processing that |
1053 | * set_plan_references would otherwise have done on it. Notice we do |
1054 | * not do set_upper_references() here, because a SubqueryScan will |
1055 | * always have been created with correct references to its subplan's |
1056 | * outputs to begin with. |
1057 | */ |
1058 | plan->scan.scanrelid += rtoffset; |
1059 | plan->scan.plan.targetlist = |
1060 | fix_scan_list(root, plan->scan.plan.targetlist, rtoffset); |
1061 | plan->scan.plan.qual = |
1062 | fix_scan_list(root, plan->scan.plan.qual, rtoffset); |
1063 | |
1064 | result = (Plan *) plan; |
1065 | } |
1066 | |
1067 | return result; |
1068 | } |
1069 | |
1070 | /* |
1071 | * trivial_subqueryscan |
1072 | * Detect whether a SubqueryScan can be deleted from the plan tree. |
1073 | * |
1074 | * We can delete it if it has no qual to check and the targetlist just |
1075 | * regurgitates the output of the child plan. |
1076 | */ |
1077 | static bool |
1078 | trivial_subqueryscan(SubqueryScan *plan) |
1079 | { |
1080 | int attrno; |
1081 | ListCell *lp, |
1082 | *lc; |
1083 | |
1084 | if (plan->scan.plan.qual != NIL) |
1085 | return false; |
1086 | |
1087 | if (list_length(plan->scan.plan.targetlist) != |
1088 | list_length(plan->subplan->targetlist)) |
1089 | return false; /* tlists not same length */ |
1090 | |
1091 | attrno = 1; |
1092 | forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist) |
1093 | { |
1094 | TargetEntry *ptle = (TargetEntry *) lfirst(lp); |
1095 | TargetEntry *ctle = (TargetEntry *) lfirst(lc); |
1096 | |
1097 | if (ptle->resjunk != ctle->resjunk) |
1098 | return false; /* tlist doesn't match junk status */ |
1099 | |
1100 | /* |
1101 | * We accept either a Var referencing the corresponding element of the |
1102 | * subplan tlist, or a Const equaling the subplan element. See |
1103 | * generate_setop_tlist() for motivation. |
1104 | */ |
1105 | if (ptle->expr && IsA(ptle->expr, Var)) |
1106 | { |
1107 | Var *var = (Var *) ptle->expr; |
1108 | |
1109 | Assert(var->varno == plan->scan.scanrelid); |
1110 | Assert(var->varlevelsup == 0); |
1111 | if (var->varattno != attrno) |
1112 | return false; /* out of order */ |
1113 | } |
1114 | else if (ptle->expr && IsA(ptle->expr, Const)) |
1115 | { |
1116 | if (!equal(ptle->expr, ctle->expr)) |
1117 | return false; |
1118 | } |
1119 | else |
1120 | return false; |
1121 | |
1122 | attrno++; |
1123 | } |
1124 | |
1125 | return true; |
1126 | } |
1127 | |
1128 | /* |
1129 | * clean_up_removed_plan_level |
1130 | * Do necessary cleanup when we strip out a SubqueryScan, Append, etc |
1131 | * |
1132 | * We are dropping the "parent" plan in favor of returning just its "child". |
1133 | * A few small tweaks are needed. |
1134 | */ |
1135 | static Plan * |
1136 | clean_up_removed_plan_level(Plan *parent, Plan *child) |
1137 | { |
1138 | /* We have to be sure we don't lose any initplans */ |
1139 | child->initPlan = list_concat(parent->initPlan, |
1140 | child->initPlan); |
1141 | |
1142 | /* |
1143 | * We also have to transfer the parent's column labeling info into the |
1144 | * child, else columns sent to client will be improperly labeled if this |
1145 | * is the topmost plan level. resjunk and so on may be important too. |
1146 | */ |
1147 | apply_tlist_labeling(child->targetlist, parent->targetlist); |
1148 | |
1149 | return child; |
1150 | } |
1151 | |
1152 | /* |
1153 | * set_foreignscan_references |
1154 | * Do set_plan_references processing on a ForeignScan |
1155 | */ |
1156 | static void |
1157 | set_foreignscan_references(PlannerInfo *root, |
1158 | ForeignScan *fscan, |
1159 | int rtoffset) |
1160 | { |
1161 | /* Adjust scanrelid if it's valid */ |
1162 | if (fscan->scan.scanrelid > 0) |
1163 | fscan->scan.scanrelid += rtoffset; |
1164 | |
1165 | if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0) |
1166 | { |
1167 | /* |
1168 | * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference |
1169 | * foreign scan tuple |
1170 | */ |
1171 | indexed_tlist *itlist = build_tlist_index(fscan->fdw_scan_tlist); |
1172 | |
1173 | fscan->scan.plan.targetlist = (List *) |
1174 | fix_upper_expr(root, |
1175 | (Node *) fscan->scan.plan.targetlist, |
1176 | itlist, |
1177 | INDEX_VAR, |
1178 | rtoffset); |
1179 | fscan->scan.plan.qual = (List *) |
1180 | fix_upper_expr(root, |
1181 | (Node *) fscan->scan.plan.qual, |
1182 | itlist, |
1183 | INDEX_VAR, |
1184 | rtoffset); |
1185 | fscan->fdw_exprs = (List *) |
1186 | fix_upper_expr(root, |
1187 | (Node *) fscan->fdw_exprs, |
1188 | itlist, |
1189 | INDEX_VAR, |
1190 | rtoffset); |
1191 | fscan->fdw_recheck_quals = (List *) |
1192 | fix_upper_expr(root, |
1193 | (Node *) fscan->fdw_recheck_quals, |
1194 | itlist, |
1195 | INDEX_VAR, |
1196 | rtoffset); |
1197 | pfree(itlist); |
1198 | /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */ |
1199 | fscan->fdw_scan_tlist = |
1200 | fix_scan_list(root, fscan->fdw_scan_tlist, rtoffset); |
1201 | } |
1202 | else |
1203 | { |
1204 | /* |
1205 | * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard |
1206 | * way |
1207 | */ |
1208 | fscan->scan.plan.targetlist = |
1209 | fix_scan_list(root, fscan->scan.plan.targetlist, rtoffset); |
1210 | fscan->scan.plan.qual = |
1211 | fix_scan_list(root, fscan->scan.plan.qual, rtoffset); |
1212 | fscan->fdw_exprs = |
1213 | fix_scan_list(root, fscan->fdw_exprs, rtoffset); |
1214 | fscan->fdw_recheck_quals = |
1215 | fix_scan_list(root, fscan->fdw_recheck_quals, rtoffset); |
1216 | } |
1217 | |
1218 | /* Adjust fs_relids if needed */ |
1219 | if (rtoffset > 0) |
1220 | { |
1221 | Bitmapset *tempset = NULL; |
1222 | int x = -1; |
1223 | |
1224 | while ((x = bms_next_member(fscan->fs_relids, x)) >= 0) |
1225 | tempset = bms_add_member(tempset, x + rtoffset); |
1226 | fscan->fs_relids = tempset; |
1227 | } |
1228 | } |
1229 | |
1230 | /* |
1231 | * set_customscan_references |
1232 | * Do set_plan_references processing on a CustomScan |
1233 | */ |
1234 | static void |
1235 | set_customscan_references(PlannerInfo *root, |
1236 | CustomScan *cscan, |
1237 | int rtoffset) |
1238 | { |
1239 | ListCell *lc; |
1240 | |
1241 | /* Adjust scanrelid if it's valid */ |
1242 | if (cscan->scan.scanrelid > 0) |
1243 | cscan->scan.scanrelid += rtoffset; |
1244 | |
1245 | if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0) |
1246 | { |
1247 | /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */ |
1248 | indexed_tlist *itlist = build_tlist_index(cscan->custom_scan_tlist); |
1249 | |
1250 | cscan->scan.plan.targetlist = (List *) |
1251 | fix_upper_expr(root, |
1252 | (Node *) cscan->scan.plan.targetlist, |
1253 | itlist, |
1254 | INDEX_VAR, |
1255 | rtoffset); |
1256 | cscan->scan.plan.qual = (List *) |
1257 | fix_upper_expr(root, |
1258 | (Node *) cscan->scan.plan.qual, |
1259 | itlist, |
1260 | INDEX_VAR, |
1261 | rtoffset); |
1262 | cscan->custom_exprs = (List *) |
1263 | fix_upper_expr(root, |
1264 | (Node *) cscan->custom_exprs, |
1265 | itlist, |
1266 | INDEX_VAR, |
1267 | rtoffset); |
1268 | pfree(itlist); |
1269 | /* custom_scan_tlist itself just needs fix_scan_list() adjustments */ |
1270 | cscan->custom_scan_tlist = |
1271 | fix_scan_list(root, cscan->custom_scan_tlist, rtoffset); |
1272 | } |
1273 | else |
1274 | { |
1275 | /* Adjust tlist, qual, custom_exprs in the standard way */ |
1276 | cscan->scan.plan.targetlist = |
1277 | fix_scan_list(root, cscan->scan.plan.targetlist, rtoffset); |
1278 | cscan->scan.plan.qual = |
1279 | fix_scan_list(root, cscan->scan.plan.qual, rtoffset); |
1280 | cscan->custom_exprs = |
1281 | fix_scan_list(root, cscan->custom_exprs, rtoffset); |
1282 | } |
1283 | |
1284 | /* Adjust child plan-nodes recursively, if needed */ |
1285 | foreach(lc, cscan->custom_plans) |
1286 | { |
1287 | lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset); |
1288 | } |
1289 | |
1290 | /* Adjust custom_relids if needed */ |
1291 | if (rtoffset > 0) |
1292 | { |
1293 | Bitmapset *tempset = NULL; |
1294 | int x = -1; |
1295 | |
1296 | while ((x = bms_next_member(cscan->custom_relids, x)) >= 0) |
1297 | tempset = bms_add_member(tempset, x + rtoffset); |
1298 | cscan->custom_relids = tempset; |
1299 | } |
1300 | } |
1301 | |
1302 | /* |
1303 | * set_append_references |
1304 | * Do set_plan_references processing on an Append |
1305 | * |
1306 | * We try to strip out the Append entirely; if we can't, we have |
1307 | * to do the normal processing on it. |
1308 | */ |
1309 | static Plan * |
1310 | set_append_references(PlannerInfo *root, |
1311 | Append *aplan, |
1312 | int rtoffset) |
1313 | { |
1314 | ListCell *l; |
1315 | |
1316 | /* |
1317 | * Append, like Sort et al, doesn't actually evaluate its targetlist or |
1318 | * check quals. If it's got exactly one child plan, then it's not doing |
1319 | * anything useful at all, and we can strip it out. |
1320 | */ |
1321 | Assert(aplan->plan.qual == NIL); |
1322 | |
1323 | /* First, we gotta recurse on the children */ |
1324 | foreach(l, aplan->appendplans) |
1325 | { |
1326 | lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset); |
1327 | } |
1328 | |
1329 | /* Now, if there's just one, forget the Append and return that child */ |
1330 | if (list_length(aplan->appendplans) == 1) |
1331 | return clean_up_removed_plan_level((Plan *) aplan, |
1332 | (Plan *) linitial(aplan->appendplans)); |
1333 | |
1334 | /* |
1335 | * Otherwise, clean up the Append as needed. It's okay to do this after |
1336 | * recursing to the children, because set_dummy_tlist_references doesn't |
1337 | * look at those. |
1338 | */ |
1339 | set_dummy_tlist_references((Plan *) aplan, rtoffset); |
1340 | |
1341 | if (aplan->part_prune_info) |
1342 | { |
1343 | foreach(l, aplan->part_prune_info->prune_infos) |
1344 | { |
1345 | List *prune_infos = lfirst(l); |
1346 | ListCell *l2; |
1347 | |
1348 | foreach(l2, prune_infos) |
1349 | { |
1350 | PartitionedRelPruneInfo *pinfo = lfirst(l2); |
1351 | |
1352 | pinfo->rtindex += rtoffset; |
1353 | } |
1354 | } |
1355 | } |
1356 | |
1357 | /* We don't need to recurse to lefttree or righttree ... */ |
1358 | Assert(aplan->plan.lefttree == NULL); |
1359 | Assert(aplan->plan.righttree == NULL); |
1360 | |
1361 | return (Plan *) aplan; |
1362 | } |
1363 | |
1364 | /* |
1365 | * set_mergeappend_references |
1366 | * Do set_plan_references processing on a MergeAppend |
1367 | * |
1368 | * We try to strip out the MergeAppend entirely; if we can't, we have |
1369 | * to do the normal processing on it. |
1370 | */ |
1371 | static Plan * |
1372 | set_mergeappend_references(PlannerInfo *root, |
1373 | MergeAppend *mplan, |
1374 | int rtoffset) |
1375 | { |
1376 | ListCell *l; |
1377 | |
1378 | /* |
1379 | * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist |
1380 | * or check quals. If it's got exactly one child plan, then it's not |
1381 | * doing anything useful at all, and we can strip it out. |
1382 | */ |
1383 | Assert(mplan->plan.qual == NIL); |
1384 | |
1385 | /* First, we gotta recurse on the children */ |
1386 | foreach(l, mplan->mergeplans) |
1387 | { |
1388 | lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset); |
1389 | } |
1390 | |
1391 | /* Now, if there's just one, forget the MergeAppend and return that child */ |
1392 | if (list_length(mplan->mergeplans) == 1) |
1393 | return clean_up_removed_plan_level((Plan *) mplan, |
1394 | (Plan *) linitial(mplan->mergeplans)); |
1395 | |
1396 | /* |
1397 | * Otherwise, clean up the MergeAppend as needed. It's okay to do this |
1398 | * after recursing to the children, because set_dummy_tlist_references |
1399 | * doesn't look at those. |
1400 | */ |
1401 | set_dummy_tlist_references((Plan *) mplan, rtoffset); |
1402 | |
1403 | if (mplan->part_prune_info) |
1404 | { |
1405 | foreach(l, mplan->part_prune_info->prune_infos) |
1406 | { |
1407 | List *prune_infos = lfirst(l); |
1408 | ListCell *l2; |
1409 | |
1410 | foreach(l2, prune_infos) |
1411 | { |
1412 | PartitionedRelPruneInfo *pinfo = lfirst(l2); |
1413 | |
1414 | pinfo->rtindex += rtoffset; |
1415 | } |
1416 | } |
1417 | } |
1418 | |
1419 | /* We don't need to recurse to lefttree or righttree ... */ |
1420 | Assert(mplan->plan.lefttree == NULL); |
1421 | Assert(mplan->plan.righttree == NULL); |
1422 | |
1423 | return (Plan *) mplan; |
1424 | } |
1425 | |
1426 | /* |
1427 | * set_hash_references |
1428 | * Do set_plan_references processing on a Hash node |
1429 | */ |
1430 | static void |
1431 | set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset) |
1432 | { |
1433 | Hash *hplan = (Hash *) plan; |
1434 | Plan *outer_plan = plan->lefttree; |
1435 | indexed_tlist *outer_itlist; |
1436 | |
1437 | /* |
1438 | * Hash's hashkeys are used when feeding tuples into the hashtable, |
1439 | * therefore have them reference Hash's outer plan (which itself is the |
1440 | * inner plan of the HashJoin). |
1441 | */ |
1442 | outer_itlist = build_tlist_index(outer_plan->targetlist); |
1443 | hplan->hashkeys = (List *) |
1444 | fix_upper_expr(root, |
1445 | (Node *) hplan->hashkeys, |
1446 | outer_itlist, |
1447 | OUTER_VAR, |
1448 | rtoffset); |
1449 | |
1450 | /* Hash doesn't project */ |
1451 | set_dummy_tlist_references(plan, rtoffset); |
1452 | |
1453 | /* Hash nodes don't have their own quals */ |
1454 | Assert(plan->qual == NIL); |
1455 | } |
1456 | |
1457 | /* |
1458 | * copyVar |
1459 | * Copy a Var node. |
1460 | * |
1461 | * fix_scan_expr and friends do this enough times that it's worth having |
1462 | * a bespoke routine instead of using the generic copyObject() function. |
1463 | */ |
1464 | static inline Var * |
1465 | copyVar(Var *var) |
1466 | { |
1467 | Var *newvar = (Var *) palloc(sizeof(Var)); |
1468 | |
1469 | *newvar = *var; |
1470 | return newvar; |
1471 | } |
1472 | |
1473 | /* |
1474 | * fix_expr_common |
1475 | * Do generic set_plan_references processing on an expression node |
1476 | * |
1477 | * This is code that is common to all variants of expression-fixing. |
1478 | * We must look up operator opcode info for OpExpr and related nodes, |
1479 | * add OIDs from regclass Const nodes into root->glob->relationOids, and |
1480 | * add PlanInvalItems for user-defined functions into root->glob->invalItems. |
1481 | * We also fill in column index lists for GROUPING() expressions. |
1482 | * |
1483 | * We assume it's okay to update opcode info in-place. So this could possibly |
1484 | * scribble on the planner's input data structures, but it's OK. |
1485 | */ |
1486 | static void |
1487 | fix_expr_common(PlannerInfo *root, Node *node) |
1488 | { |
1489 | /* We assume callers won't call us on a NULL pointer */ |
1490 | if (IsA(node, Aggref)) |
1491 | { |
1492 | record_plan_function_dependency(root, |
1493 | ((Aggref *) node)->aggfnoid); |
1494 | } |
1495 | else if (IsA(node, WindowFunc)) |
1496 | { |
1497 | record_plan_function_dependency(root, |
1498 | ((WindowFunc *) node)->winfnoid); |
1499 | } |
1500 | else if (IsA(node, FuncExpr)) |
1501 | { |
1502 | record_plan_function_dependency(root, |
1503 | ((FuncExpr *) node)->funcid); |
1504 | } |
1505 | else if (IsA(node, OpExpr)) |
1506 | { |
1507 | set_opfuncid((OpExpr *) node); |
1508 | record_plan_function_dependency(root, |
1509 | ((OpExpr *) node)->opfuncid); |
1510 | } |
1511 | else if (IsA(node, DistinctExpr)) |
1512 | { |
1513 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
1514 | record_plan_function_dependency(root, |
1515 | ((DistinctExpr *) node)->opfuncid); |
1516 | } |
1517 | else if (IsA(node, NullIfExpr)) |
1518 | { |
1519 | set_opfuncid((OpExpr *) node); /* rely on struct equivalence */ |
1520 | record_plan_function_dependency(root, |
1521 | ((NullIfExpr *) node)->opfuncid); |
1522 | } |
1523 | else if (IsA(node, ScalarArrayOpExpr)) |
1524 | { |
1525 | set_sa_opfuncid((ScalarArrayOpExpr *) node); |
1526 | record_plan_function_dependency(root, |
1527 | ((ScalarArrayOpExpr *) node)->opfuncid); |
1528 | } |
1529 | else if (IsA(node, Const)) |
1530 | { |
1531 | Const *con = (Const *) node; |
1532 | |
1533 | /* Check for regclass reference */ |
1534 | if (ISREGCLASSCONST(con)) |
1535 | root->glob->relationOids = |
1536 | lappend_oid(root->glob->relationOids, |
1537 | DatumGetObjectId(con->constvalue)); |
1538 | } |
1539 | else if (IsA(node, GroupingFunc)) |
1540 | { |
1541 | GroupingFunc *g = (GroupingFunc *) node; |
1542 | AttrNumber *grouping_map = root->grouping_map; |
1543 | |
1544 | /* If there are no grouping sets, we don't need this. */ |
1545 | |
1546 | Assert(grouping_map || g->cols == NIL); |
1547 | |
1548 | if (grouping_map) |
1549 | { |
1550 | ListCell *lc; |
1551 | List *cols = NIL; |
1552 | |
1553 | foreach(lc, g->refs) |
1554 | { |
1555 | cols = lappend_int(cols, grouping_map[lfirst_int(lc)]); |
1556 | } |
1557 | |
1558 | Assert(!g->cols || equal(cols, g->cols)); |
1559 | |
1560 | if (!g->cols) |
1561 | g->cols = cols; |
1562 | } |
1563 | } |
1564 | } |
1565 | |
1566 | /* |
1567 | * fix_param_node |
1568 | * Do set_plan_references processing on a Param |
1569 | * |
1570 | * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from |
1571 | * root->multiexpr_params; otherwise no change is needed. |
1572 | * Just for paranoia's sake, we make a copy of the node in either case. |
1573 | */ |
1574 | static Node * |
1575 | fix_param_node(PlannerInfo *root, Param *p) |
1576 | { |
1577 | if (p->paramkind == PARAM_MULTIEXPR) |
1578 | { |
1579 | int subqueryid = p->paramid >> 16; |
1580 | int colno = p->paramid & 0xFFFF; |
1581 | List *params; |
1582 | |
1583 | if (subqueryid <= 0 || |
1584 | subqueryid > list_length(root->multiexpr_params)) |
1585 | elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d" , p->paramid); |
1586 | params = (List *) list_nth(root->multiexpr_params, subqueryid - 1); |
1587 | if (colno <= 0 || colno > list_length(params)) |
1588 | elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d" , p->paramid); |
1589 | return copyObject(list_nth(params, colno - 1)); |
1590 | } |
1591 | return (Node *) copyObject(p); |
1592 | } |
1593 | |
1594 | /* |
1595 | * fix_scan_expr |
1596 | * Do set_plan_references processing on a scan-level expression |
1597 | * |
1598 | * This consists of incrementing all Vars' varnos by rtoffset, |
1599 | * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars, |
1600 | * replacing Aggref nodes that should be replaced by initplan output Params, |
1601 | * looking up operator opcode info for OpExpr and related nodes, |
1602 | * and adding OIDs from regclass Const nodes into root->glob->relationOids. |
1603 | */ |
1604 | static Node * |
1605 | fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset) |
1606 | { |
1607 | fix_scan_expr_context context; |
1608 | |
1609 | context.root = root; |
1610 | context.rtoffset = rtoffset; |
1611 | |
1612 | if (rtoffset != 0 || |
1613 | root->multiexpr_params != NIL || |
1614 | root->glob->lastPHId != 0 || |
1615 | root->minmax_aggs != NIL) |
1616 | { |
1617 | return fix_scan_expr_mutator(node, &context); |
1618 | } |
1619 | else |
1620 | { |
1621 | /* |
1622 | * If rtoffset == 0, we don't need to change any Vars, and if there |
1623 | * are no MULTIEXPR subqueries then we don't need to replace |
1624 | * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere |
1625 | * we won't need to remove them, and if there are no minmax Aggrefs we |
1626 | * won't need to replace them. Then it's OK to just scribble on the |
1627 | * input node tree instead of copying (since the only change, filling |
1628 | * in any unset opfuncid fields, is harmless). This saves just enough |
1629 | * cycles to be noticeable on trivial queries. |
1630 | */ |
1631 | (void) fix_scan_expr_walker(node, &context); |
1632 | return node; |
1633 | } |
1634 | } |
1635 | |
1636 | static Node * |
1637 | fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context) |
1638 | { |
1639 | if (node == NULL) |
1640 | return NULL; |
1641 | if (IsA(node, Var)) |
1642 | { |
1643 | Var *var = copyVar((Var *) node); |
1644 | |
1645 | Assert(var->varlevelsup == 0); |
1646 | |
1647 | /* |
1648 | * We should not see any Vars marked INNER_VAR or OUTER_VAR. But an |
1649 | * indexqual expression could contain INDEX_VAR Vars. |
1650 | */ |
1651 | Assert(var->varno != INNER_VAR); |
1652 | Assert(var->varno != OUTER_VAR); |
1653 | if (!IS_SPECIAL_VARNO(var->varno)) |
1654 | var->varno += context->rtoffset; |
1655 | if (var->varnoold > 0) |
1656 | var->varnoold += context->rtoffset; |
1657 | return (Node *) var; |
1658 | } |
1659 | if (IsA(node, Param)) |
1660 | return fix_param_node(context->root, (Param *) node); |
1661 | if (IsA(node, Aggref)) |
1662 | { |
1663 | Aggref *aggref = (Aggref *) node; |
1664 | |
1665 | /* See if the Aggref should be replaced by a Param */ |
1666 | if (context->root->minmax_aggs != NIL && |
1667 | list_length(aggref->args) == 1) |
1668 | { |
1669 | TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args); |
1670 | ListCell *lc; |
1671 | |
1672 | foreach(lc, context->root->minmax_aggs) |
1673 | { |
1674 | MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc); |
1675 | |
1676 | if (mminfo->aggfnoid == aggref->aggfnoid && |
1677 | equal(mminfo->target, curTarget->expr)) |
1678 | return (Node *) copyObject(mminfo->param); |
1679 | } |
1680 | } |
1681 | /* If no match, just fall through to process it normally */ |
1682 | } |
1683 | if (IsA(node, CurrentOfExpr)) |
1684 | { |
1685 | CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node); |
1686 | |
1687 | Assert(cexpr->cvarno != INNER_VAR); |
1688 | Assert(cexpr->cvarno != OUTER_VAR); |
1689 | if (!IS_SPECIAL_VARNO(cexpr->cvarno)) |
1690 | cexpr->cvarno += context->rtoffset; |
1691 | return (Node *) cexpr; |
1692 | } |
1693 | if (IsA(node, PlaceHolderVar)) |
1694 | { |
1695 | /* At scan level, we should always just evaluate the contained expr */ |
1696 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
1697 | |
1698 | return fix_scan_expr_mutator((Node *) phv->phexpr, context); |
1699 | } |
1700 | fix_expr_common(context->root, node); |
1701 | return expression_tree_mutator(node, fix_scan_expr_mutator, |
1702 | (void *) context); |
1703 | } |
1704 | |
1705 | static bool |
1706 | fix_scan_expr_walker(Node *node, fix_scan_expr_context *context) |
1707 | { |
1708 | if (node == NULL) |
1709 | return false; |
1710 | Assert(!IsA(node, PlaceHolderVar)); |
1711 | fix_expr_common(context->root, node); |
1712 | return expression_tree_walker(node, fix_scan_expr_walker, |
1713 | (void *) context); |
1714 | } |
1715 | |
1716 | /* |
1717 | * set_join_references |
1718 | * Modify the target list and quals of a join node to reference its |
1719 | * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting |
1720 | * attno values to the result domain number of either the corresponding |
1721 | * outer or inner join tuple item. Also perform opcode lookup for these |
1722 | * expressions, and add regclass OIDs to root->glob->relationOids. |
1723 | */ |
1724 | static void |
1725 | set_join_references(PlannerInfo *root, Join *join, int rtoffset) |
1726 | { |
1727 | Plan *outer_plan = join->plan.lefttree; |
1728 | Plan *inner_plan = join->plan.righttree; |
1729 | indexed_tlist *outer_itlist; |
1730 | indexed_tlist *inner_itlist; |
1731 | |
1732 | outer_itlist = build_tlist_index(outer_plan->targetlist); |
1733 | inner_itlist = build_tlist_index(inner_plan->targetlist); |
1734 | |
1735 | /* |
1736 | * First process the joinquals (including merge or hash clauses). These |
1737 | * are logically below the join so they can always use all values |
1738 | * available from the input tlists. It's okay to also handle |
1739 | * NestLoopParams now, because those couldn't refer to nullable |
1740 | * subexpressions. |
1741 | */ |
1742 | join->joinqual = fix_join_expr(root, |
1743 | join->joinqual, |
1744 | outer_itlist, |
1745 | inner_itlist, |
1746 | (Index) 0, |
1747 | rtoffset); |
1748 | |
1749 | /* Now do join-type-specific stuff */ |
1750 | if (IsA(join, NestLoop)) |
1751 | { |
1752 | NestLoop *nl = (NestLoop *) join; |
1753 | ListCell *lc; |
1754 | |
1755 | foreach(lc, nl->nestParams) |
1756 | { |
1757 | NestLoopParam *nlp = (NestLoopParam *) lfirst(lc); |
1758 | |
1759 | nlp->paramval = (Var *) fix_upper_expr(root, |
1760 | (Node *) nlp->paramval, |
1761 | outer_itlist, |
1762 | OUTER_VAR, |
1763 | rtoffset); |
1764 | /* Check we replaced any PlaceHolderVar with simple Var */ |
1765 | if (!(IsA(nlp->paramval, Var) && |
1766 | nlp->paramval->varno == OUTER_VAR)) |
1767 | elog(ERROR, "NestLoopParam was not reduced to a simple Var" ); |
1768 | } |
1769 | } |
1770 | else if (IsA(join, MergeJoin)) |
1771 | { |
1772 | MergeJoin *mj = (MergeJoin *) join; |
1773 | |
1774 | mj->mergeclauses = fix_join_expr(root, |
1775 | mj->mergeclauses, |
1776 | outer_itlist, |
1777 | inner_itlist, |
1778 | (Index) 0, |
1779 | rtoffset); |
1780 | } |
1781 | else if (IsA(join, HashJoin)) |
1782 | { |
1783 | HashJoin *hj = (HashJoin *) join; |
1784 | |
1785 | hj->hashclauses = fix_join_expr(root, |
1786 | hj->hashclauses, |
1787 | outer_itlist, |
1788 | inner_itlist, |
1789 | (Index) 0, |
1790 | rtoffset); |
1791 | |
1792 | /* |
1793 | * HashJoin's hashkeys are used to look for matching tuples from its |
1794 | * outer plan (not the Hash node!) in the hashtable. |
1795 | */ |
1796 | hj->hashkeys = (List *) fix_upper_expr(root, |
1797 | (Node *) hj->hashkeys, |
1798 | outer_itlist, |
1799 | OUTER_VAR, |
1800 | rtoffset); |
1801 | } |
1802 | |
1803 | /* |
1804 | * Now we need to fix up the targetlist and qpqual, which are logically |
1805 | * above the join. This means they should not re-use any input expression |
1806 | * that was computed in the nullable side of an outer join. Vars and |
1807 | * PlaceHolderVars are fine, so we can implement this restriction just by |
1808 | * clearing has_non_vars in the indexed_tlist structs. |
1809 | * |
1810 | * XXX This is a grotty workaround for the fact that we don't clearly |
1811 | * distinguish between a Var appearing below an outer join and the "same" |
1812 | * Var appearing above it. If we did, we'd not need to hack the matching |
1813 | * rules this way. |
1814 | */ |
1815 | switch (join->jointype) |
1816 | { |
1817 | case JOIN_LEFT: |
1818 | case JOIN_SEMI: |
1819 | case JOIN_ANTI: |
1820 | inner_itlist->has_non_vars = false; |
1821 | break; |
1822 | case JOIN_RIGHT: |
1823 | outer_itlist->has_non_vars = false; |
1824 | break; |
1825 | case JOIN_FULL: |
1826 | outer_itlist->has_non_vars = false; |
1827 | inner_itlist->has_non_vars = false; |
1828 | break; |
1829 | default: |
1830 | break; |
1831 | } |
1832 | |
1833 | join->plan.targetlist = fix_join_expr(root, |
1834 | join->plan.targetlist, |
1835 | outer_itlist, |
1836 | inner_itlist, |
1837 | (Index) 0, |
1838 | rtoffset); |
1839 | join->plan.qual = fix_join_expr(root, |
1840 | join->plan.qual, |
1841 | outer_itlist, |
1842 | inner_itlist, |
1843 | (Index) 0, |
1844 | rtoffset); |
1845 | |
1846 | pfree(outer_itlist); |
1847 | pfree(inner_itlist); |
1848 | } |
1849 | |
1850 | /* |
1851 | * set_upper_references |
1852 | * Update the targetlist and quals of an upper-level plan node |
1853 | * to refer to the tuples returned by its lefttree subplan. |
1854 | * Also perform opcode lookup for these expressions, and |
1855 | * add regclass OIDs to root->glob->relationOids. |
1856 | * |
1857 | * This is used for single-input plan types like Agg, Group, Result. |
1858 | * |
1859 | * In most cases, we have to match up individual Vars in the tlist and |
1860 | * qual expressions with elements of the subplan's tlist (which was |
1861 | * generated by flattening these selfsame expressions, so it should have all |
1862 | * the required variables). There is an important exception, however: |
1863 | * depending on where we are in the plan tree, sort/group columns may have |
1864 | * been pushed into the subplan tlist unflattened. If these values are also |
1865 | * needed in the output then we want to reference the subplan tlist element |
1866 | * rather than recomputing the expression. |
1867 | */ |
1868 | static void |
1869 | set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset) |
1870 | { |
1871 | Plan *subplan = plan->lefttree; |
1872 | indexed_tlist *subplan_itlist; |
1873 | List *output_targetlist; |
1874 | ListCell *l; |
1875 | |
1876 | subplan_itlist = build_tlist_index(subplan->targetlist); |
1877 | |
1878 | output_targetlist = NIL; |
1879 | foreach(l, plan->targetlist) |
1880 | { |
1881 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
1882 | Node *newexpr; |
1883 | |
1884 | /* If it's a sort/group item, first try to match by sortref */ |
1885 | if (tle->ressortgroupref != 0) |
1886 | { |
1887 | newexpr = (Node *) |
1888 | search_indexed_tlist_for_sortgroupref(tle->expr, |
1889 | tle->ressortgroupref, |
1890 | subplan_itlist, |
1891 | OUTER_VAR); |
1892 | if (!newexpr) |
1893 | newexpr = fix_upper_expr(root, |
1894 | (Node *) tle->expr, |
1895 | subplan_itlist, |
1896 | OUTER_VAR, |
1897 | rtoffset); |
1898 | } |
1899 | else |
1900 | newexpr = fix_upper_expr(root, |
1901 | (Node *) tle->expr, |
1902 | subplan_itlist, |
1903 | OUTER_VAR, |
1904 | rtoffset); |
1905 | tle = flatCopyTargetEntry(tle); |
1906 | tle->expr = (Expr *) newexpr; |
1907 | output_targetlist = lappend(output_targetlist, tle); |
1908 | } |
1909 | plan->targetlist = output_targetlist; |
1910 | |
1911 | plan->qual = (List *) |
1912 | fix_upper_expr(root, |
1913 | (Node *) plan->qual, |
1914 | subplan_itlist, |
1915 | OUTER_VAR, |
1916 | rtoffset); |
1917 | |
1918 | pfree(subplan_itlist); |
1919 | } |
1920 | |
1921 | /* |
1922 | * set_param_references |
1923 | * Initialize the initParam list in Gather or Gather merge node such that |
1924 | * it contains reference of all the params that needs to be evaluated |
1925 | * before execution of the node. It contains the initplan params that are |
1926 | * being passed to the plan nodes below it. |
1927 | */ |
1928 | static void |
1929 | set_param_references(PlannerInfo *root, Plan *plan) |
1930 | { |
1931 | Assert(IsA(plan, Gather) ||IsA(plan, GatherMerge)); |
1932 | |
1933 | if (plan->lefttree->extParam) |
1934 | { |
1935 | PlannerInfo *proot; |
1936 | Bitmapset *initSetParam = NULL; |
1937 | ListCell *l; |
1938 | |
1939 | for (proot = root; proot != NULL; proot = proot->parent_root) |
1940 | { |
1941 | foreach(l, proot->init_plans) |
1942 | { |
1943 | SubPlan *initsubplan = (SubPlan *) lfirst(l); |
1944 | ListCell *l2; |
1945 | |
1946 | foreach(l2, initsubplan->setParam) |
1947 | { |
1948 | initSetParam = bms_add_member(initSetParam, lfirst_int(l2)); |
1949 | } |
1950 | } |
1951 | } |
1952 | |
1953 | /* |
1954 | * Remember the list of all external initplan params that are used by |
1955 | * the children of Gather or Gather merge node. |
1956 | */ |
1957 | if (IsA(plan, Gather)) |
1958 | ((Gather *) plan)->initParam = |
1959 | bms_intersect(plan->lefttree->extParam, initSetParam); |
1960 | else |
1961 | ((GatherMerge *) plan)->initParam = |
1962 | bms_intersect(plan->lefttree->extParam, initSetParam); |
1963 | } |
1964 | } |
1965 | |
1966 | /* |
1967 | * Recursively scan an expression tree and convert Aggrefs to the proper |
1968 | * intermediate form for combining aggregates. This means (1) replacing each |
1969 | * one's argument list with a single argument that is the original Aggref |
1970 | * modified to show partial aggregation and (2) changing the upper Aggref to |
1971 | * show combining aggregation. |
1972 | * |
1973 | * After this step, set_upper_references will replace the partial Aggrefs |
1974 | * with Vars referencing the lower Agg plan node's outputs, so that the final |
1975 | * form seen by the executor is a combining Aggref with a Var as input. |
1976 | * |
1977 | * It's rather messy to postpone this step until setrefs.c; ideally it'd be |
1978 | * done in createplan.c. The difficulty is that once we modify the Aggref |
1979 | * expressions, they will no longer be equal() to their original form and |
1980 | * so cross-plan-node-level matches will fail. So this has to happen after |
1981 | * the plan node above the Agg has resolved its subplan references. |
1982 | */ |
1983 | static Node * |
1984 | convert_combining_aggrefs(Node *node, void *context) |
1985 | { |
1986 | if (node == NULL) |
1987 | return NULL; |
1988 | if (IsA(node, Aggref)) |
1989 | { |
1990 | Aggref *orig_agg = (Aggref *) node; |
1991 | Aggref *child_agg; |
1992 | Aggref *parent_agg; |
1993 | |
1994 | /* Assert we've not chosen to partial-ize any unsupported cases */ |
1995 | Assert(orig_agg->aggorder == NIL); |
1996 | Assert(orig_agg->aggdistinct == NIL); |
1997 | |
1998 | /* |
1999 | * Since aggregate calls can't be nested, we needn't recurse into the |
2000 | * arguments. But for safety, flat-copy the Aggref node itself rather |
2001 | * than modifying it in-place. |
2002 | */ |
2003 | child_agg = makeNode(Aggref); |
2004 | memcpy(child_agg, orig_agg, sizeof(Aggref)); |
2005 | |
2006 | /* |
2007 | * For the parent Aggref, we want to copy all the fields of the |
2008 | * original aggregate *except* the args list, which we'll replace |
2009 | * below, and the aggfilter expression, which should be applied only |
2010 | * by the child not the parent. Rather than explicitly knowing about |
2011 | * all the other fields here, we can momentarily modify child_agg to |
2012 | * provide a suitable source for copyObject. |
2013 | */ |
2014 | child_agg->args = NIL; |
2015 | child_agg->aggfilter = NULL; |
2016 | parent_agg = copyObject(child_agg); |
2017 | child_agg->args = orig_agg->args; |
2018 | child_agg->aggfilter = orig_agg->aggfilter; |
2019 | |
2020 | /* |
2021 | * Now, set up child_agg to represent the first phase of partial |
2022 | * aggregation. For now, assume serialization is required. |
2023 | */ |
2024 | mark_partial_aggref(child_agg, AGGSPLIT_INITIAL_SERIAL); |
2025 | |
2026 | /* |
2027 | * And set up parent_agg to represent the second phase. |
2028 | */ |
2029 | parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg, |
2030 | 1, NULL, false)); |
2031 | mark_partial_aggref(parent_agg, AGGSPLIT_FINAL_DESERIAL); |
2032 | |
2033 | return (Node *) parent_agg; |
2034 | } |
2035 | return expression_tree_mutator(node, convert_combining_aggrefs, |
2036 | (void *) context); |
2037 | } |
2038 | |
2039 | /* |
2040 | * set_dummy_tlist_references |
2041 | * Replace the targetlist of an upper-level plan node with a simple |
2042 | * list of OUTER_VAR references to its child. |
2043 | * |
2044 | * This is used for plan types like Sort and Append that don't evaluate |
2045 | * their targetlists. Although the executor doesn't care at all what's in |
2046 | * the tlist, EXPLAIN needs it to be realistic. |
2047 | * |
2048 | * Note: we could almost use set_upper_references() here, but it fails for |
2049 | * Append for lack of a lefttree subplan. Single-purpose code is faster |
2050 | * anyway. |
2051 | */ |
2052 | static void |
2053 | set_dummy_tlist_references(Plan *plan, int rtoffset) |
2054 | { |
2055 | List *output_targetlist; |
2056 | ListCell *l; |
2057 | |
2058 | output_targetlist = NIL; |
2059 | foreach(l, plan->targetlist) |
2060 | { |
2061 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
2062 | Var *oldvar = (Var *) tle->expr; |
2063 | Var *newvar; |
2064 | |
2065 | /* |
2066 | * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts |
2067 | * as Consts, not Vars referencing Consts. Here, there's no speed |
2068 | * advantage to be had, but it makes EXPLAIN output look cleaner, and |
2069 | * again it avoids confusing the executor. |
2070 | */ |
2071 | if (IsA(oldvar, Const)) |
2072 | { |
2073 | /* just reuse the existing TLE node */ |
2074 | output_targetlist = lappend(output_targetlist, tle); |
2075 | continue; |
2076 | } |
2077 | |
2078 | newvar = makeVar(OUTER_VAR, |
2079 | tle->resno, |
2080 | exprType((Node *) oldvar), |
2081 | exprTypmod((Node *) oldvar), |
2082 | exprCollation((Node *) oldvar), |
2083 | 0); |
2084 | if (IsA(oldvar, Var)) |
2085 | { |
2086 | newvar->varnoold = oldvar->varno + rtoffset; |
2087 | newvar->varoattno = oldvar->varattno; |
2088 | } |
2089 | else |
2090 | { |
2091 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
2092 | newvar->varoattno = 0; |
2093 | } |
2094 | |
2095 | tle = flatCopyTargetEntry(tle); |
2096 | tle->expr = (Expr *) newvar; |
2097 | output_targetlist = lappend(output_targetlist, tle); |
2098 | } |
2099 | plan->targetlist = output_targetlist; |
2100 | |
2101 | /* We don't touch plan->qual here */ |
2102 | } |
2103 | |
2104 | |
2105 | /* |
2106 | * build_tlist_index --- build an index data structure for a child tlist |
2107 | * |
2108 | * In most cases, subplan tlists will be "flat" tlists with only Vars, |
2109 | * so we try to optimize that case by extracting information about Vars |
2110 | * in advance. Matching a parent tlist to a child is still an O(N^2) |
2111 | * operation, but at least with a much smaller constant factor than plain |
2112 | * tlist_member() searches. |
2113 | * |
2114 | * The result of this function is an indexed_tlist struct to pass to |
2115 | * search_indexed_tlist_for_var() or search_indexed_tlist_for_non_var(). |
2116 | * When done, the indexed_tlist may be freed with a single pfree(). |
2117 | */ |
2118 | static indexed_tlist * |
2119 | build_tlist_index(List *tlist) |
2120 | { |
2121 | indexed_tlist *itlist; |
2122 | tlist_vinfo *vinfo; |
2123 | ListCell *l; |
2124 | |
2125 | /* Create data structure with enough slots for all tlist entries */ |
2126 | itlist = (indexed_tlist *) |
2127 | palloc(offsetof(indexed_tlist, vars) + |
2128 | list_length(tlist) * sizeof(tlist_vinfo)); |
2129 | |
2130 | itlist->tlist = tlist; |
2131 | itlist->has_ph_vars = false; |
2132 | itlist->has_non_vars = false; |
2133 | |
2134 | /* Find the Vars and fill in the index array */ |
2135 | vinfo = itlist->vars; |
2136 | foreach(l, tlist) |
2137 | { |
2138 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
2139 | |
2140 | if (tle->expr && IsA(tle->expr, Var)) |
2141 | { |
2142 | Var *var = (Var *) tle->expr; |
2143 | |
2144 | vinfo->varno = var->varno; |
2145 | vinfo->varattno = var->varattno; |
2146 | vinfo->resno = tle->resno; |
2147 | vinfo++; |
2148 | } |
2149 | else if (tle->expr && IsA(tle->expr, PlaceHolderVar)) |
2150 | itlist->has_ph_vars = true; |
2151 | else |
2152 | itlist->has_non_vars = true; |
2153 | } |
2154 | |
2155 | itlist->num_vars = (vinfo - itlist->vars); |
2156 | |
2157 | return itlist; |
2158 | } |
2159 | |
2160 | /* |
2161 | * build_tlist_index_other_vars --- build a restricted tlist index |
2162 | * |
2163 | * This is like build_tlist_index, but we only index tlist entries that |
2164 | * are Vars belonging to some rel other than the one specified. We will set |
2165 | * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars |
2166 | * (so nothing other than Vars and PlaceHolderVars can be matched). |
2167 | */ |
2168 | static indexed_tlist * |
2169 | build_tlist_index_other_vars(List *tlist, Index ignore_rel) |
2170 | { |
2171 | indexed_tlist *itlist; |
2172 | tlist_vinfo *vinfo; |
2173 | ListCell *l; |
2174 | |
2175 | /* Create data structure with enough slots for all tlist entries */ |
2176 | itlist = (indexed_tlist *) |
2177 | palloc(offsetof(indexed_tlist, vars) + |
2178 | list_length(tlist) * sizeof(tlist_vinfo)); |
2179 | |
2180 | itlist->tlist = tlist; |
2181 | itlist->has_ph_vars = false; |
2182 | itlist->has_non_vars = false; |
2183 | |
2184 | /* Find the desired Vars and fill in the index array */ |
2185 | vinfo = itlist->vars; |
2186 | foreach(l, tlist) |
2187 | { |
2188 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
2189 | |
2190 | if (tle->expr && IsA(tle->expr, Var)) |
2191 | { |
2192 | Var *var = (Var *) tle->expr; |
2193 | |
2194 | if (var->varno != ignore_rel) |
2195 | { |
2196 | vinfo->varno = var->varno; |
2197 | vinfo->varattno = var->varattno; |
2198 | vinfo->resno = tle->resno; |
2199 | vinfo++; |
2200 | } |
2201 | } |
2202 | else if (tle->expr && IsA(tle->expr, PlaceHolderVar)) |
2203 | itlist->has_ph_vars = true; |
2204 | } |
2205 | |
2206 | itlist->num_vars = (vinfo - itlist->vars); |
2207 | |
2208 | return itlist; |
2209 | } |
2210 | |
2211 | /* |
2212 | * search_indexed_tlist_for_var --- find a Var in an indexed tlist |
2213 | * |
2214 | * If a match is found, return a copy of the given Var with suitably |
2215 | * modified varno/varattno (to wit, newvarno and the resno of the TLE entry). |
2216 | * Also ensure that varnoold is incremented by rtoffset. |
2217 | * If no match, return NULL. |
2218 | */ |
2219 | static Var * |
2220 | search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist, |
2221 | Index newvarno, int rtoffset) |
2222 | { |
2223 | Index varno = var->varno; |
2224 | AttrNumber varattno = var->varattno; |
2225 | tlist_vinfo *vinfo; |
2226 | int i; |
2227 | |
2228 | vinfo = itlist->vars; |
2229 | i = itlist->num_vars; |
2230 | while (i-- > 0) |
2231 | { |
2232 | if (vinfo->varno == varno && vinfo->varattno == varattno) |
2233 | { |
2234 | /* Found a match */ |
2235 | Var *newvar = copyVar(var); |
2236 | |
2237 | newvar->varno = newvarno; |
2238 | newvar->varattno = vinfo->resno; |
2239 | if (newvar->varnoold > 0) |
2240 | newvar->varnoold += rtoffset; |
2241 | return newvar; |
2242 | } |
2243 | vinfo++; |
2244 | } |
2245 | return NULL; /* no match */ |
2246 | } |
2247 | |
2248 | /* |
2249 | * search_indexed_tlist_for_non_var --- find a non-Var in an indexed tlist |
2250 | * |
2251 | * If a match is found, return a Var constructed to reference the tlist item. |
2252 | * If no match, return NULL. |
2253 | * |
2254 | * NOTE: it is a waste of time to call this unless itlist->has_ph_vars or |
2255 | * itlist->has_non_vars. Furthermore, set_join_references() relies on being |
2256 | * able to prevent matching of non-Vars by clearing itlist->has_non_vars, |
2257 | * so there's a correctness reason not to call it unless that's set. |
2258 | */ |
2259 | static Var * |
2260 | search_indexed_tlist_for_non_var(Expr *node, |
2261 | indexed_tlist *itlist, Index newvarno) |
2262 | { |
2263 | TargetEntry *tle; |
2264 | |
2265 | /* |
2266 | * If it's a simple Const, replacing it with a Var is silly, even if there |
2267 | * happens to be an identical Const below; a Var is more expensive to |
2268 | * execute than a Const. What's more, replacing it could confuse some |
2269 | * places in the executor that expect to see simple Consts for, eg, |
2270 | * dropped columns. |
2271 | */ |
2272 | if (IsA(node, Const)) |
2273 | return NULL; |
2274 | |
2275 | tle = tlist_member(node, itlist->tlist); |
2276 | if (tle) |
2277 | { |
2278 | /* Found a matching subplan output expression */ |
2279 | Var *newvar; |
2280 | |
2281 | newvar = makeVarFromTargetEntry(newvarno, tle); |
2282 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
2283 | newvar->varoattno = 0; |
2284 | return newvar; |
2285 | } |
2286 | return NULL; /* no match */ |
2287 | } |
2288 | |
2289 | /* |
2290 | * search_indexed_tlist_for_sortgroupref --- find a sort/group expression |
2291 | * |
2292 | * If a match is found, return a Var constructed to reference the tlist item. |
2293 | * If no match, return NULL. |
2294 | * |
2295 | * This is needed to ensure that we select the right subplan TLE in cases |
2296 | * where there are multiple textually-equal()-but-volatile sort expressions. |
2297 | * And it's also faster than search_indexed_tlist_for_non_var. |
2298 | */ |
2299 | static Var * |
2300 | search_indexed_tlist_for_sortgroupref(Expr *node, |
2301 | Index sortgroupref, |
2302 | indexed_tlist *itlist, |
2303 | Index newvarno) |
2304 | { |
2305 | ListCell *lc; |
2306 | |
2307 | foreach(lc, itlist->tlist) |
2308 | { |
2309 | TargetEntry *tle = (TargetEntry *) lfirst(lc); |
2310 | |
2311 | /* The equal() check should be redundant, but let's be paranoid */ |
2312 | if (tle->ressortgroupref == sortgroupref && |
2313 | equal(node, tle->expr)) |
2314 | { |
2315 | /* Found a matching subplan output expression */ |
2316 | Var *newvar; |
2317 | |
2318 | newvar = makeVarFromTargetEntry(newvarno, tle); |
2319 | newvar->varnoold = 0; /* wasn't ever a plain Var */ |
2320 | newvar->varoattno = 0; |
2321 | return newvar; |
2322 | } |
2323 | } |
2324 | return NULL; /* no match */ |
2325 | } |
2326 | |
2327 | /* |
2328 | * fix_join_expr |
2329 | * Create a new set of targetlist entries or join qual clauses by |
2330 | * changing the varno/varattno values of variables in the clauses |
2331 | * to reference target list values from the outer and inner join |
2332 | * relation target lists. Also perform opcode lookup and add |
2333 | * regclass OIDs to root->glob->relationOids. |
2334 | * |
2335 | * This is used in three different scenarios: |
2336 | * 1) a normal join clause, where all the Vars in the clause *must* be |
2337 | * replaced by OUTER_VAR or INNER_VAR references. In this case |
2338 | * acceptable_rel should be zero so that any failure to match a Var will be |
2339 | * reported as an error. |
2340 | * 2) RETURNING clauses, which may contain both Vars of the target relation |
2341 | * and Vars of other relations. In this case we want to replace the |
2342 | * other-relation Vars by OUTER_VAR references, while leaving target Vars |
2343 | * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the |
2344 | * target relation should be passed. |
2345 | * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are |
2346 | * to be replaced with INNER_VAR references, while leaving target Vars (the |
2347 | * to-be-updated relation) alone. Correspondingly inner_itlist is to be |
2348 | * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target |
2349 | * relation. |
2350 | * |
2351 | * 'clauses' is the targetlist or list of join clauses |
2352 | * 'outer_itlist' is the indexed target list of the outer join relation, |
2353 | * or NULL |
2354 | * 'inner_itlist' is the indexed target list of the inner join relation, |
2355 | * or NULL |
2356 | * 'acceptable_rel' is either zero or the rangetable index of a relation |
2357 | * whose Vars may appear in the clause without provoking an error |
2358 | * 'rtoffset': how much to increment varnoold by |
2359 | * |
2360 | * Returns the new expression tree. The original clause structure is |
2361 | * not modified. |
2362 | */ |
2363 | static List * |
2364 | fix_join_expr(PlannerInfo *root, |
2365 | List *clauses, |
2366 | indexed_tlist *outer_itlist, |
2367 | indexed_tlist *inner_itlist, |
2368 | Index acceptable_rel, |
2369 | int rtoffset) |
2370 | { |
2371 | fix_join_expr_context context; |
2372 | |
2373 | context.root = root; |
2374 | context.outer_itlist = outer_itlist; |
2375 | context.inner_itlist = inner_itlist; |
2376 | context.acceptable_rel = acceptable_rel; |
2377 | context.rtoffset = rtoffset; |
2378 | return (List *) fix_join_expr_mutator((Node *) clauses, &context); |
2379 | } |
2380 | |
2381 | static Node * |
2382 | fix_join_expr_mutator(Node *node, fix_join_expr_context *context) |
2383 | { |
2384 | Var *newvar; |
2385 | |
2386 | if (node == NULL) |
2387 | return NULL; |
2388 | if (IsA(node, Var)) |
2389 | { |
2390 | Var *var = (Var *) node; |
2391 | |
2392 | /* Look for the var in the input tlists, first in the outer */ |
2393 | if (context->outer_itlist) |
2394 | { |
2395 | newvar = search_indexed_tlist_for_var(var, |
2396 | context->outer_itlist, |
2397 | OUTER_VAR, |
2398 | context->rtoffset); |
2399 | if (newvar) |
2400 | return (Node *) newvar; |
2401 | } |
2402 | |
2403 | /* then in the inner. */ |
2404 | if (context->inner_itlist) |
2405 | { |
2406 | newvar = search_indexed_tlist_for_var(var, |
2407 | context->inner_itlist, |
2408 | INNER_VAR, |
2409 | context->rtoffset); |
2410 | if (newvar) |
2411 | return (Node *) newvar; |
2412 | } |
2413 | |
2414 | /* If it's for acceptable_rel, adjust and return it */ |
2415 | if (var->varno == context->acceptable_rel) |
2416 | { |
2417 | var = copyVar(var); |
2418 | var->varno += context->rtoffset; |
2419 | if (var->varnoold > 0) |
2420 | var->varnoold += context->rtoffset; |
2421 | return (Node *) var; |
2422 | } |
2423 | |
2424 | /* No referent found for Var */ |
2425 | elog(ERROR, "variable not found in subplan target lists" ); |
2426 | } |
2427 | if (IsA(node, PlaceHolderVar)) |
2428 | { |
2429 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
2430 | |
2431 | /* See if the PlaceHolderVar has bubbled up from a lower plan node */ |
2432 | if (context->outer_itlist && context->outer_itlist->has_ph_vars) |
2433 | { |
2434 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
2435 | context->outer_itlist, |
2436 | OUTER_VAR); |
2437 | if (newvar) |
2438 | return (Node *) newvar; |
2439 | } |
2440 | if (context->inner_itlist && context->inner_itlist->has_ph_vars) |
2441 | { |
2442 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
2443 | context->inner_itlist, |
2444 | INNER_VAR); |
2445 | if (newvar) |
2446 | return (Node *) newvar; |
2447 | } |
2448 | |
2449 | /* If not supplied by input plans, evaluate the contained expr */ |
2450 | return fix_join_expr_mutator((Node *) phv->phexpr, context); |
2451 | } |
2452 | /* Try matching more complex expressions too, if tlists have any */ |
2453 | if (context->outer_itlist && context->outer_itlist->has_non_vars) |
2454 | { |
2455 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
2456 | context->outer_itlist, |
2457 | OUTER_VAR); |
2458 | if (newvar) |
2459 | return (Node *) newvar; |
2460 | } |
2461 | if (context->inner_itlist && context->inner_itlist->has_non_vars) |
2462 | { |
2463 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
2464 | context->inner_itlist, |
2465 | INNER_VAR); |
2466 | if (newvar) |
2467 | return (Node *) newvar; |
2468 | } |
2469 | /* Special cases (apply only AFTER failing to match to lower tlist) */ |
2470 | if (IsA(node, Param)) |
2471 | return fix_param_node(context->root, (Param *) node); |
2472 | fix_expr_common(context->root, node); |
2473 | return expression_tree_mutator(node, |
2474 | fix_join_expr_mutator, |
2475 | (void *) context); |
2476 | } |
2477 | |
2478 | /* |
2479 | * fix_upper_expr |
2480 | * Modifies an expression tree so that all Var nodes reference outputs |
2481 | * of a subplan. Also looks for Aggref nodes that should be replaced |
2482 | * by initplan output Params. Also performs opcode lookup, and adds |
2483 | * regclass OIDs to root->glob->relationOids. |
2484 | * |
2485 | * This is used to fix up target and qual expressions of non-join upper-level |
2486 | * plan nodes, as well as index-only scan nodes. |
2487 | * |
2488 | * An error is raised if no matching var can be found in the subplan tlist |
2489 | * --- so this routine should only be applied to nodes whose subplans' |
2490 | * targetlists were generated by flattening the expressions used in the |
2491 | * parent node. |
2492 | * |
2493 | * If itlist->has_non_vars is true, then we try to match whole subexpressions |
2494 | * against elements of the subplan tlist, so that we can avoid recomputing |
2495 | * expressions that were already computed by the subplan. (This is relatively |
2496 | * expensive, so we don't want to try it in the common case where the |
2497 | * subplan tlist is just a flattened list of Vars.) |
2498 | * |
2499 | * 'node': the tree to be fixed (a target item or qual) |
2500 | * 'subplan_itlist': indexed target list for subplan (or index) |
2501 | * 'newvarno': varno to use for Vars referencing tlist elements |
2502 | * 'rtoffset': how much to increment varnoold by |
2503 | * |
2504 | * The resulting tree is a copy of the original in which all Var nodes have |
2505 | * varno = newvarno, varattno = resno of corresponding targetlist element. |
2506 | * The original tree is not modified. |
2507 | */ |
2508 | static Node * |
2509 | fix_upper_expr(PlannerInfo *root, |
2510 | Node *node, |
2511 | indexed_tlist *subplan_itlist, |
2512 | Index newvarno, |
2513 | int rtoffset) |
2514 | { |
2515 | fix_upper_expr_context context; |
2516 | |
2517 | context.root = root; |
2518 | context.subplan_itlist = subplan_itlist; |
2519 | context.newvarno = newvarno; |
2520 | context.rtoffset = rtoffset; |
2521 | return fix_upper_expr_mutator(node, &context); |
2522 | } |
2523 | |
2524 | static Node * |
2525 | fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context) |
2526 | { |
2527 | Var *newvar; |
2528 | |
2529 | if (node == NULL) |
2530 | return NULL; |
2531 | if (IsA(node, Var)) |
2532 | { |
2533 | Var *var = (Var *) node; |
2534 | |
2535 | newvar = search_indexed_tlist_for_var(var, |
2536 | context->subplan_itlist, |
2537 | context->newvarno, |
2538 | context->rtoffset); |
2539 | if (!newvar) |
2540 | elog(ERROR, "variable not found in subplan target list" ); |
2541 | return (Node *) newvar; |
2542 | } |
2543 | if (IsA(node, PlaceHolderVar)) |
2544 | { |
2545 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
2546 | |
2547 | /* See if the PlaceHolderVar has bubbled up from a lower plan node */ |
2548 | if (context->subplan_itlist->has_ph_vars) |
2549 | { |
2550 | newvar = search_indexed_tlist_for_non_var((Expr *) phv, |
2551 | context->subplan_itlist, |
2552 | context->newvarno); |
2553 | if (newvar) |
2554 | return (Node *) newvar; |
2555 | } |
2556 | /* If not supplied by input plan, evaluate the contained expr */ |
2557 | return fix_upper_expr_mutator((Node *) phv->phexpr, context); |
2558 | } |
2559 | /* Try matching more complex expressions too, if tlist has any */ |
2560 | if (context->subplan_itlist->has_non_vars) |
2561 | { |
2562 | newvar = search_indexed_tlist_for_non_var((Expr *) node, |
2563 | context->subplan_itlist, |
2564 | context->newvarno); |
2565 | if (newvar) |
2566 | return (Node *) newvar; |
2567 | } |
2568 | /* Special cases (apply only AFTER failing to match to lower tlist) */ |
2569 | if (IsA(node, Param)) |
2570 | return fix_param_node(context->root, (Param *) node); |
2571 | if (IsA(node, Aggref)) |
2572 | { |
2573 | Aggref *aggref = (Aggref *) node; |
2574 | |
2575 | /* See if the Aggref should be replaced by a Param */ |
2576 | if (context->root->minmax_aggs != NIL && |
2577 | list_length(aggref->args) == 1) |
2578 | { |
2579 | TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args); |
2580 | ListCell *lc; |
2581 | |
2582 | foreach(lc, context->root->minmax_aggs) |
2583 | { |
2584 | MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc); |
2585 | |
2586 | if (mminfo->aggfnoid == aggref->aggfnoid && |
2587 | equal(mminfo->target, curTarget->expr)) |
2588 | return (Node *) copyObject(mminfo->param); |
2589 | } |
2590 | } |
2591 | /* If no match, just fall through to process it normally */ |
2592 | } |
2593 | fix_expr_common(context->root, node); |
2594 | return expression_tree_mutator(node, |
2595 | fix_upper_expr_mutator, |
2596 | (void *) context); |
2597 | } |
2598 | |
2599 | /* |
2600 | * set_returning_clause_references |
2601 | * Perform setrefs.c's work on a RETURNING targetlist |
2602 | * |
2603 | * If the query involves more than just the result table, we have to |
2604 | * adjust any Vars that refer to other tables to reference junk tlist |
2605 | * entries in the top subplan's targetlist. Vars referencing the result |
2606 | * table should be left alone, however (the executor will evaluate them |
2607 | * using the actual heap tuple, after firing triggers if any). In the |
2608 | * adjusted RETURNING list, result-table Vars will have their original |
2609 | * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR. |
2610 | * |
2611 | * We also must perform opcode lookup and add regclass OIDs to |
2612 | * root->glob->relationOids. |
2613 | * |
2614 | * 'rlist': the RETURNING targetlist to be fixed |
2615 | * 'topplan': the top subplan node that will be just below the ModifyTable |
2616 | * node (note it's not yet passed through set_plan_refs) |
2617 | * 'resultRelation': RT index of the associated result relation |
2618 | * 'rtoffset': how much to increment varnos by |
2619 | * |
2620 | * Note: the given 'root' is for the parent query level, not the 'topplan'. |
2621 | * This does not matter currently since we only access the dependency-item |
2622 | * lists in root->glob, but it would need some hacking if we wanted a root |
2623 | * that actually matches the subplan. |
2624 | * |
2625 | * Note: resultRelation is not yet adjusted by rtoffset. |
2626 | */ |
2627 | static List * |
2628 | set_returning_clause_references(PlannerInfo *root, |
2629 | List *rlist, |
2630 | Plan *topplan, |
2631 | Index resultRelation, |
2632 | int rtoffset) |
2633 | { |
2634 | indexed_tlist *itlist; |
2635 | |
2636 | /* |
2637 | * We can perform the desired Var fixup by abusing the fix_join_expr |
2638 | * machinery that formerly handled inner indexscan fixup. We search the |
2639 | * top plan's targetlist for Vars of non-result relations, and use |
2640 | * fix_join_expr to convert RETURNING Vars into references to those tlist |
2641 | * entries, while leaving result-rel Vars as-is. |
2642 | * |
2643 | * PlaceHolderVars will also be sought in the targetlist, but no |
2644 | * more-complex expressions will be. Note that it is not possible for a |
2645 | * PlaceHolderVar to refer to the result relation, since the result is |
2646 | * never below an outer join. If that case could happen, we'd have to be |
2647 | * prepared to pick apart the PlaceHolderVar and evaluate its contained |
2648 | * expression instead. |
2649 | */ |
2650 | itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation); |
2651 | |
2652 | rlist = fix_join_expr(root, |
2653 | rlist, |
2654 | itlist, |
2655 | NULL, |
2656 | resultRelation, |
2657 | rtoffset); |
2658 | |
2659 | pfree(itlist); |
2660 | |
2661 | return rlist; |
2662 | } |
2663 | |
2664 | |
2665 | /***************************************************************************** |
2666 | * QUERY DEPENDENCY MANAGEMENT |
2667 | *****************************************************************************/ |
2668 | |
2669 | /* |
2670 | * record_plan_function_dependency |
2671 | * Mark the current plan as depending on a particular function. |
2672 | * |
2673 | * This is exported so that the function-inlining code can record a |
2674 | * dependency on a function that it's removed from the plan tree. |
2675 | */ |
2676 | void |
2677 | record_plan_function_dependency(PlannerInfo *root, Oid funcid) |
2678 | { |
2679 | /* |
2680 | * For performance reasons, we don't bother to track built-in functions; |
2681 | * we just assume they'll never change (or at least not in ways that'd |
2682 | * invalidate plans using them). For this purpose we can consider a |
2683 | * built-in function to be one with OID less than FirstBootstrapObjectId. |
2684 | * Note that the OID generator guarantees never to generate such an OID |
2685 | * after startup, even at OID wraparound. |
2686 | */ |
2687 | if (funcid >= (Oid) FirstBootstrapObjectId) |
2688 | { |
2689 | PlanInvalItem *inval_item = makeNode(PlanInvalItem); |
2690 | |
2691 | /* |
2692 | * It would work to use any syscache on pg_proc, but the easiest is |
2693 | * PROCOID since we already have the function's OID at hand. Note |
2694 | * that plancache.c knows we use PROCOID. |
2695 | */ |
2696 | inval_item->cacheId = PROCOID; |
2697 | inval_item->hashValue = GetSysCacheHashValue1(PROCOID, |
2698 | ObjectIdGetDatum(funcid)); |
2699 | |
2700 | root->glob->invalItems = lappend(root->glob->invalItems, inval_item); |
2701 | } |
2702 | } |
2703 | |
2704 | /* |
2705 | * record_plan_type_dependency |
2706 | * Mark the current plan as depending on a particular type. |
2707 | * |
2708 | * This is exported so that eval_const_expressions can record a |
2709 | * dependency on a domain that it's removed a CoerceToDomain node for. |
2710 | * |
2711 | * We don't currently need to record dependencies on domains that the |
2712 | * plan contains CoerceToDomain nodes for, though that might change in |
2713 | * future. Hence, this isn't actually called in this module, though |
2714 | * someday fix_expr_common might call it. |
2715 | */ |
2716 | void |
2717 | record_plan_type_dependency(PlannerInfo *root, Oid typid) |
2718 | { |
2719 | /* |
2720 | * As in record_plan_function_dependency, ignore the possibility that |
2721 | * someone would change a built-in domain. |
2722 | */ |
2723 | if (typid >= (Oid) FirstBootstrapObjectId) |
2724 | { |
2725 | PlanInvalItem *inval_item = makeNode(PlanInvalItem); |
2726 | |
2727 | /* |
2728 | * It would work to use any syscache on pg_type, but the easiest is |
2729 | * TYPEOID since we already have the type's OID at hand. Note that |
2730 | * plancache.c knows we use TYPEOID. |
2731 | */ |
2732 | inval_item->cacheId = TYPEOID; |
2733 | inval_item->hashValue = GetSysCacheHashValue1(TYPEOID, |
2734 | ObjectIdGetDatum(typid)); |
2735 | |
2736 | root->glob->invalItems = lappend(root->glob->invalItems, inval_item); |
2737 | } |
2738 | } |
2739 | |
2740 | /* |
2741 | * extract_query_dependencies |
2742 | * Given a rewritten, but not yet planned, query or queries |
2743 | * (i.e. a Query node or list of Query nodes), extract dependencies |
2744 | * just as set_plan_references would do. Also detect whether any |
2745 | * rewrite steps were affected by RLS. |
2746 | * |
2747 | * This is needed by plancache.c to handle invalidation of cached unplanned |
2748 | * queries. |
2749 | * |
2750 | * Note: this does not go through eval_const_expressions, and hence doesn't |
2751 | * reflect its additions of inlined functions and elided CoerceToDomain nodes |
2752 | * to the invalItems list. This is obviously OK for functions, since we'll |
2753 | * see them in the original query tree anyway. For domains, it's OK because |
2754 | * we don't care about domains unless they get elided. That is, a plan might |
2755 | * have domain dependencies that the query tree doesn't. |
2756 | */ |
2757 | void |
2758 | (Node *query, |
2759 | List **relationOids, |
2760 | List **invalItems, |
2761 | bool *hasRowSecurity) |
2762 | { |
2763 | PlannerGlobal glob; |
2764 | PlannerInfo root; |
2765 | |
2766 | /* Make up dummy planner state so we can use this module's machinery */ |
2767 | MemSet(&glob, 0, sizeof(glob)); |
2768 | glob.type = T_PlannerGlobal; |
2769 | glob.relationOids = NIL; |
2770 | glob.invalItems = NIL; |
2771 | /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */ |
2772 | glob.dependsOnRole = false; |
2773 | |
2774 | MemSet(&root, 0, sizeof(root)); |
2775 | root.type = T_PlannerInfo; |
2776 | root.glob = &glob; |
2777 | |
2778 | (void) extract_query_dependencies_walker(query, &root); |
2779 | |
2780 | *relationOids = glob.relationOids; |
2781 | *invalItems = glob.invalItems; |
2782 | *hasRowSecurity = glob.dependsOnRole; |
2783 | } |
2784 | |
2785 | /* |
2786 | * Tree walker for extract_query_dependencies. |
2787 | * |
2788 | * This is exported so that expression_planner_with_deps can call it on |
2789 | * simple expressions (post-planning, not before planning, in that case). |
2790 | * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids |
2791 | * and invalItems lists are added to as needed. |
2792 | */ |
2793 | bool |
2794 | (Node *node, PlannerInfo *context) |
2795 | { |
2796 | if (node == NULL) |
2797 | return false; |
2798 | Assert(!IsA(node, PlaceHolderVar)); |
2799 | if (IsA(node, Query)) |
2800 | { |
2801 | Query *query = (Query *) node; |
2802 | ListCell *lc; |
2803 | |
2804 | if (query->commandType == CMD_UTILITY) |
2805 | { |
2806 | /* |
2807 | * Ignore utility statements, except those (such as EXPLAIN) that |
2808 | * contain a parsed-but-not-planned query. |
2809 | */ |
2810 | query = UtilityContainsQuery(query->utilityStmt); |
2811 | if (query == NULL) |
2812 | return false; |
2813 | } |
2814 | |
2815 | /* Remember if any Query has RLS quals applied by rewriter */ |
2816 | if (query->hasRowSecurity) |
2817 | context->glob->dependsOnRole = true; |
2818 | |
2819 | /* Collect relation OIDs in this Query's rtable */ |
2820 | foreach(lc, query->rtable) |
2821 | { |
2822 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
2823 | |
2824 | if (rte->rtekind == RTE_RELATION) |
2825 | context->glob->relationOids = |
2826 | lappend_oid(context->glob->relationOids, rte->relid); |
2827 | else if (rte->rtekind == RTE_NAMEDTUPLESTORE && |
2828 | OidIsValid(rte->relid)) |
2829 | context->glob->relationOids = |
2830 | lappend_oid(context->glob->relationOids, |
2831 | rte->relid); |
2832 | } |
2833 | |
2834 | /* And recurse into the query's subexpressions */ |
2835 | return query_tree_walker(query, extract_query_dependencies_walker, |
2836 | (void *) context, 0); |
2837 | } |
2838 | /* Extract function dependencies and check for regclass Consts */ |
2839 | fix_expr_common(context, node); |
2840 | return expression_tree_walker(node, extract_query_dependencies_walker, |
2841 | (void *) context); |
2842 | } |
2843 | |