1 | /*------------------------------------------------------------------------- |
2 | * |
3 | * prepjointree.c |
4 | * Planner preprocessing for subqueries and join tree manipulation. |
5 | * |
6 | * NOTE: the intended sequence for invoking these operations is |
7 | * replace_empty_jointree |
8 | * pull_up_sublinks |
9 | * inline_set_returning_functions |
10 | * pull_up_subqueries |
11 | * flatten_simple_union_all |
12 | * do expression preprocessing (including flattening JOIN alias vars) |
13 | * reduce_outer_joins |
14 | * remove_useless_result_rtes |
15 | * |
16 | * |
17 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
18 | * Portions Copyright (c) 1994, Regents of the University of California |
19 | * |
20 | * |
21 | * IDENTIFICATION |
22 | * src/backend/optimizer/prep/prepjointree.c |
23 | * |
24 | *------------------------------------------------------------------------- |
25 | */ |
26 | #include "postgres.h" |
27 | |
28 | #include "catalog/pg_type.h" |
29 | #include "nodes/makefuncs.h" |
30 | #include "nodes/nodeFuncs.h" |
31 | #include "optimizer/clauses.h" |
32 | #include "optimizer/optimizer.h" |
33 | #include "optimizer/placeholder.h" |
34 | #include "optimizer/prep.h" |
35 | #include "optimizer/subselect.h" |
36 | #include "optimizer/tlist.h" |
37 | #include "parser/parse_relation.h" |
38 | #include "parser/parsetree.h" |
39 | #include "rewrite/rewriteManip.h" |
40 | |
41 | |
42 | typedef struct pullup_replace_vars_context |
43 | { |
44 | PlannerInfo *root; |
45 | List *targetlist; /* tlist of subquery being pulled up */ |
46 | RangeTblEntry *target_rte; /* RTE of subquery */ |
47 | Relids relids; /* relids within subquery, as numbered after |
48 | * pullup (set only if target_rte->lateral) */ |
49 | bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */ |
50 | int varno; /* varno of subquery */ |
51 | bool need_phvs; /* do we need PlaceHolderVars? */ |
52 | bool wrap_non_vars; /* do we need 'em on *all* non-Vars? */ |
53 | Node **rv_cache; /* cache for results with PHVs */ |
54 | } pullup_replace_vars_context; |
55 | |
56 | typedef struct reduce_outer_joins_state |
57 | { |
58 | Relids relids; /* base relids within this subtree */ |
59 | bool contains_outer; /* does subtree contain outer join(s)? */ |
60 | List *sub_states; /* List of states for subtree components */ |
61 | } reduce_outer_joins_state; |
62 | |
63 | static Node *pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, |
64 | Relids *relids); |
65 | static Node *pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, |
66 | Node **jtlink1, Relids available_rels1, |
67 | Node **jtlink2, Relids available_rels2); |
68 | static Node *pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, |
69 | JoinExpr *lowest_outer_join, |
70 | JoinExpr *lowest_nulling_outer_join, |
71 | AppendRelInfo *containing_appendrel); |
72 | static Node *pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, |
73 | RangeTblEntry *rte, |
74 | JoinExpr *lowest_outer_join, |
75 | JoinExpr *lowest_nulling_outer_join, |
76 | AppendRelInfo *containing_appendrel); |
77 | static Node *pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, |
78 | RangeTblEntry *rte); |
79 | static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, |
80 | int parentRTindex, Query *setOpQuery, |
81 | int childRToffset); |
82 | static void make_setop_translation_list(Query *query, Index newvarno, |
83 | List **translated_vars); |
84 | static bool is_simple_subquery(Query *subquery, RangeTblEntry *rte, |
85 | JoinExpr *lowest_outer_join); |
86 | static Node *pull_up_simple_values(PlannerInfo *root, Node *jtnode, |
87 | RangeTblEntry *rte); |
88 | static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte); |
89 | static bool is_simple_union_all(Query *subquery); |
90 | static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, |
91 | List *colTypes); |
92 | static bool is_safe_append_member(Query *subquery); |
93 | static bool jointree_contains_lateral_outer_refs(Node *jtnode, bool restricted, |
94 | Relids safe_upper_varnos); |
95 | static void replace_vars_in_jointree(Node *jtnode, |
96 | pullup_replace_vars_context *context, |
97 | JoinExpr *lowest_nulling_outer_join); |
98 | static Node *pullup_replace_vars(Node *expr, |
99 | pullup_replace_vars_context *context); |
100 | static Node *pullup_replace_vars_callback(Var *var, |
101 | replace_rte_variables_context *context); |
102 | static Query *pullup_replace_vars_subquery(Query *query, |
103 | pullup_replace_vars_context *context); |
104 | static reduce_outer_joins_state *reduce_outer_joins_pass1(Node *jtnode); |
105 | static void reduce_outer_joins_pass2(Node *jtnode, |
106 | reduce_outer_joins_state *state, |
107 | PlannerInfo *root, |
108 | Relids nonnullable_rels, |
109 | List *nonnullable_vars, |
110 | List *forced_null_vars); |
111 | static Node *remove_useless_results_recurse(PlannerInfo *root, Node *jtnode); |
112 | static int get_result_relid(PlannerInfo *root, Node *jtnode); |
113 | static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc); |
114 | static bool find_dependent_phvs(Node *node, int varno); |
115 | static void substitute_phv_relids(Node *node, |
116 | int varno, Relids subrelids); |
117 | static void fix_append_rel_relids(List *append_rel_list, int varno, |
118 | Relids subrelids); |
119 | static Node *find_jointree_node_for_rel(Node *jtnode, int relid); |
120 | |
121 | |
122 | /* |
123 | * replace_empty_jointree |
124 | * If the Query's jointree is empty, replace it with a dummy RTE_RESULT |
125 | * relation. |
126 | * |
127 | * By doing this, we can avoid a bunch of corner cases that formerly existed |
128 | * for SELECTs with omitted FROM clauses. An example is that a subquery |
129 | * with empty jointree previously could not be pulled up, because that would |
130 | * have resulted in an empty relid set, making the subquery not uniquely |
131 | * identifiable for join or PlaceHolderVar processing. |
132 | * |
133 | * Unlike most other functions in this file, this function doesn't recurse; |
134 | * we rely on other processing to invoke it on sub-queries at suitable times. |
135 | */ |
136 | void |
137 | replace_empty_jointree(Query *parse) |
138 | { |
139 | RangeTblEntry *rte; |
140 | Index rti; |
141 | RangeTblRef *rtr; |
142 | |
143 | /* Nothing to do if jointree is already nonempty */ |
144 | if (parse->jointree->fromlist != NIL) |
145 | return; |
146 | |
147 | /* We mustn't change it in the top level of a setop tree, either */ |
148 | if (parse->setOperations) |
149 | return; |
150 | |
151 | /* Create suitable RTE */ |
152 | rte = makeNode(RangeTblEntry); |
153 | rte->rtekind = RTE_RESULT; |
154 | rte->eref = makeAlias("*RESULT*" , NIL); |
155 | |
156 | /* Add it to rangetable */ |
157 | parse->rtable = lappend(parse->rtable, rte); |
158 | rti = list_length(parse->rtable); |
159 | |
160 | /* And jam a reference into the jointree */ |
161 | rtr = makeNode(RangeTblRef); |
162 | rtr->rtindex = rti; |
163 | parse->jointree->fromlist = list_make1(rtr); |
164 | } |
165 | |
166 | /* |
167 | * pull_up_sublinks |
168 | * Attempt to pull up ANY and EXISTS SubLinks to be treated as |
169 | * semijoins or anti-semijoins. |
170 | * |
171 | * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the |
172 | * sub-SELECT up to become a rangetable entry and treating the implied |
173 | * comparisons as quals of a semijoin. However, this optimization *only* |
174 | * works at the top level of WHERE or a JOIN/ON clause, because we cannot |
175 | * distinguish whether the ANY ought to return FALSE or NULL in cases |
176 | * involving NULL inputs. Also, in an outer join's ON clause we can only |
177 | * do this if the sublink is degenerate (ie, references only the nullable |
178 | * side of the join). In that case it is legal to push the semijoin |
179 | * down into the nullable side of the join. If the sublink references any |
180 | * nonnullable-side variables then it would have to be evaluated as part |
181 | * of the outer join, which makes things way too complicated. |
182 | * |
183 | * Under similar conditions, EXISTS and NOT EXISTS clauses can be handled |
184 | * by pulling up the sub-SELECT and creating a semijoin or anti-semijoin. |
185 | * |
186 | * This routine searches for such clauses and does the necessary parsetree |
187 | * transformations if any are found. |
188 | * |
189 | * This routine has to run before preprocess_expression(), so the quals |
190 | * clauses are not yet reduced to implicit-AND format, and are not guaranteed |
191 | * to be AND/OR-flat either. That means we need to recursively search through |
192 | * explicit AND clauses. We stop as soon as we hit a non-AND item. |
193 | */ |
194 | void |
195 | pull_up_sublinks(PlannerInfo *root) |
196 | { |
197 | Node *jtnode; |
198 | Relids relids; |
199 | |
200 | /* Begin recursion through the jointree */ |
201 | jtnode = pull_up_sublinks_jointree_recurse(root, |
202 | (Node *) root->parse->jointree, |
203 | &relids); |
204 | |
205 | /* |
206 | * root->parse->jointree must always be a FromExpr, so insert a dummy one |
207 | * if we got a bare RangeTblRef or JoinExpr out of the recursion. |
208 | */ |
209 | if (IsA(jtnode, FromExpr)) |
210 | root->parse->jointree = (FromExpr *) jtnode; |
211 | else |
212 | root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL); |
213 | } |
214 | |
215 | /* |
216 | * Recurse through jointree nodes for pull_up_sublinks() |
217 | * |
218 | * In addition to returning the possibly-modified jointree node, we return |
219 | * a relids set of the contained rels into *relids. |
220 | */ |
221 | static Node * |
222 | pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, |
223 | Relids *relids) |
224 | { |
225 | if (jtnode == NULL) |
226 | { |
227 | *relids = NULL; |
228 | } |
229 | else if (IsA(jtnode, RangeTblRef)) |
230 | { |
231 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
232 | |
233 | *relids = bms_make_singleton(varno); |
234 | /* jtnode is returned unmodified */ |
235 | } |
236 | else if (IsA(jtnode, FromExpr)) |
237 | { |
238 | FromExpr *f = (FromExpr *) jtnode; |
239 | List *newfromlist = NIL; |
240 | Relids frelids = NULL; |
241 | FromExpr *newf; |
242 | Node *jtlink; |
243 | ListCell *l; |
244 | |
245 | /* First, recurse to process children and collect their relids */ |
246 | foreach(l, f->fromlist) |
247 | { |
248 | Node *newchild; |
249 | Relids childrelids; |
250 | |
251 | newchild = pull_up_sublinks_jointree_recurse(root, |
252 | lfirst(l), |
253 | &childrelids); |
254 | newfromlist = lappend(newfromlist, newchild); |
255 | frelids = bms_join(frelids, childrelids); |
256 | } |
257 | /* Build the replacement FromExpr; no quals yet */ |
258 | newf = makeFromExpr(newfromlist, NULL); |
259 | /* Set up a link representing the rebuilt jointree */ |
260 | jtlink = (Node *) newf; |
261 | /* Now process qual --- all children are available for use */ |
262 | newf->quals = pull_up_sublinks_qual_recurse(root, f->quals, |
263 | &jtlink, frelids, |
264 | NULL, NULL); |
265 | |
266 | /* |
267 | * Note that the result will be either newf, or a stack of JoinExprs |
268 | * with newf at the base. We rely on subsequent optimization steps to |
269 | * flatten this and rearrange the joins as needed. |
270 | * |
271 | * Although we could include the pulled-up subqueries in the returned |
272 | * relids, there's no need since upper quals couldn't refer to their |
273 | * outputs anyway. |
274 | */ |
275 | *relids = frelids; |
276 | jtnode = jtlink; |
277 | } |
278 | else if (IsA(jtnode, JoinExpr)) |
279 | { |
280 | JoinExpr *j; |
281 | Relids leftrelids; |
282 | Relids rightrelids; |
283 | Node *jtlink; |
284 | |
285 | /* |
286 | * Make a modifiable copy of join node, but don't bother copying its |
287 | * subnodes (yet). |
288 | */ |
289 | j = (JoinExpr *) palloc(sizeof(JoinExpr)); |
290 | memcpy(j, jtnode, sizeof(JoinExpr)); |
291 | jtlink = (Node *) j; |
292 | |
293 | /* Recurse to process children and collect their relids */ |
294 | j->larg = pull_up_sublinks_jointree_recurse(root, j->larg, |
295 | &leftrelids); |
296 | j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, |
297 | &rightrelids); |
298 | |
299 | /* |
300 | * Now process qual, showing appropriate child relids as available, |
301 | * and attach any pulled-up jointree items at the right place. In the |
302 | * inner-join case we put new JoinExprs above the existing one (much |
303 | * as for a FromExpr-style join). In outer-join cases the new |
304 | * JoinExprs must go into the nullable side of the outer join. The |
305 | * point of the available_rels machinations is to ensure that we only |
306 | * pull up quals for which that's okay. |
307 | * |
308 | * We don't expect to see any pre-existing JOIN_SEMI or JOIN_ANTI |
309 | * nodes here. |
310 | */ |
311 | switch (j->jointype) |
312 | { |
313 | case JOIN_INNER: |
314 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
315 | &jtlink, |
316 | bms_union(leftrelids, |
317 | rightrelids), |
318 | NULL, NULL); |
319 | break; |
320 | case JOIN_LEFT: |
321 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
322 | &j->rarg, |
323 | rightrelids, |
324 | NULL, NULL); |
325 | break; |
326 | case JOIN_FULL: |
327 | /* can't do anything with full-join quals */ |
328 | break; |
329 | case JOIN_RIGHT: |
330 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
331 | &j->larg, |
332 | leftrelids, |
333 | NULL, NULL); |
334 | break; |
335 | default: |
336 | elog(ERROR, "unrecognized join type: %d" , |
337 | (int) j->jointype); |
338 | break; |
339 | } |
340 | |
341 | /* |
342 | * Although we could include the pulled-up subqueries in the returned |
343 | * relids, there's no need since upper quals couldn't refer to their |
344 | * outputs anyway. But we *do* need to include the join's own rtindex |
345 | * because we haven't yet collapsed join alias variables, so upper |
346 | * levels would mistakenly think they couldn't use references to this |
347 | * join. |
348 | */ |
349 | *relids = bms_join(leftrelids, rightrelids); |
350 | if (j->rtindex) |
351 | *relids = bms_add_member(*relids, j->rtindex); |
352 | jtnode = jtlink; |
353 | } |
354 | else |
355 | elog(ERROR, "unrecognized node type: %d" , |
356 | (int) nodeTag(jtnode)); |
357 | return jtnode; |
358 | } |
359 | |
360 | /* |
361 | * Recurse through top-level qual nodes for pull_up_sublinks() |
362 | * |
363 | * jtlink1 points to the link in the jointree where any new JoinExprs should |
364 | * be inserted if they reference available_rels1 (i.e., available_rels1 |
365 | * denotes the relations present underneath jtlink1). Optionally, jtlink2 can |
366 | * point to a second link where new JoinExprs should be inserted if they |
367 | * reference available_rels2 (pass NULL for both those arguments if not used). |
368 | * Note that SubLinks referencing both sets of variables cannot be optimized. |
369 | * If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1 |
370 | * and/or jtlink2 in the order we encounter them. We rely on subsequent |
371 | * optimization to rearrange the stack if appropriate. |
372 | * |
373 | * Returns the replacement qual node, or NULL if the qual should be removed. |
374 | */ |
375 | static Node * |
376 | pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, |
377 | Node **jtlink1, Relids available_rels1, |
378 | Node **jtlink2, Relids available_rels2) |
379 | { |
380 | if (node == NULL) |
381 | return NULL; |
382 | if (IsA(node, SubLink)) |
383 | { |
384 | SubLink *sublink = (SubLink *) node; |
385 | JoinExpr *j; |
386 | Relids child_rels; |
387 | |
388 | /* Is it a convertible ANY or EXISTS clause? */ |
389 | if (sublink->subLinkType == ANY_SUBLINK) |
390 | { |
391 | if ((j = convert_ANY_sublink_to_join(root, sublink, |
392 | available_rels1)) != NULL) |
393 | { |
394 | /* Yes; insert the new join node into the join tree */ |
395 | j->larg = *jtlink1; |
396 | *jtlink1 = (Node *) j; |
397 | /* Recursively process pulled-up jointree nodes */ |
398 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
399 | j->rarg, |
400 | &child_rels); |
401 | |
402 | /* |
403 | * Now recursively process the pulled-up quals. Any inserted |
404 | * joins can get stacked onto either j->larg or j->rarg, |
405 | * depending on which rels they reference. |
406 | */ |
407 | j->quals = pull_up_sublinks_qual_recurse(root, |
408 | j->quals, |
409 | &j->larg, |
410 | available_rels1, |
411 | &j->rarg, |
412 | child_rels); |
413 | /* Return NULL representing constant TRUE */ |
414 | return NULL; |
415 | } |
416 | if (available_rels2 != NULL && |
417 | (j = convert_ANY_sublink_to_join(root, sublink, |
418 | available_rels2)) != NULL) |
419 | { |
420 | /* Yes; insert the new join node into the join tree */ |
421 | j->larg = *jtlink2; |
422 | *jtlink2 = (Node *) j; |
423 | /* Recursively process pulled-up jointree nodes */ |
424 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
425 | j->rarg, |
426 | &child_rels); |
427 | |
428 | /* |
429 | * Now recursively process the pulled-up quals. Any inserted |
430 | * joins can get stacked onto either j->larg or j->rarg, |
431 | * depending on which rels they reference. |
432 | */ |
433 | j->quals = pull_up_sublinks_qual_recurse(root, |
434 | j->quals, |
435 | &j->larg, |
436 | available_rels2, |
437 | &j->rarg, |
438 | child_rels); |
439 | /* Return NULL representing constant TRUE */ |
440 | return NULL; |
441 | } |
442 | } |
443 | else if (sublink->subLinkType == EXISTS_SUBLINK) |
444 | { |
445 | if ((j = convert_EXISTS_sublink_to_join(root, sublink, false, |
446 | available_rels1)) != NULL) |
447 | { |
448 | /* Yes; insert the new join node into the join tree */ |
449 | j->larg = *jtlink1; |
450 | *jtlink1 = (Node *) j; |
451 | /* Recursively process pulled-up jointree nodes */ |
452 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
453 | j->rarg, |
454 | &child_rels); |
455 | |
456 | /* |
457 | * Now recursively process the pulled-up quals. Any inserted |
458 | * joins can get stacked onto either j->larg or j->rarg, |
459 | * depending on which rels they reference. |
460 | */ |
461 | j->quals = pull_up_sublinks_qual_recurse(root, |
462 | j->quals, |
463 | &j->larg, |
464 | available_rels1, |
465 | &j->rarg, |
466 | child_rels); |
467 | /* Return NULL representing constant TRUE */ |
468 | return NULL; |
469 | } |
470 | if (available_rels2 != NULL && |
471 | (j = convert_EXISTS_sublink_to_join(root, sublink, false, |
472 | available_rels2)) != NULL) |
473 | { |
474 | /* Yes; insert the new join node into the join tree */ |
475 | j->larg = *jtlink2; |
476 | *jtlink2 = (Node *) j; |
477 | /* Recursively process pulled-up jointree nodes */ |
478 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
479 | j->rarg, |
480 | &child_rels); |
481 | |
482 | /* |
483 | * Now recursively process the pulled-up quals. Any inserted |
484 | * joins can get stacked onto either j->larg or j->rarg, |
485 | * depending on which rels they reference. |
486 | */ |
487 | j->quals = pull_up_sublinks_qual_recurse(root, |
488 | j->quals, |
489 | &j->larg, |
490 | available_rels2, |
491 | &j->rarg, |
492 | child_rels); |
493 | /* Return NULL representing constant TRUE */ |
494 | return NULL; |
495 | } |
496 | } |
497 | /* Else return it unmodified */ |
498 | return node; |
499 | } |
500 | if (is_notclause(node)) |
501 | { |
502 | /* If the immediate argument of NOT is EXISTS, try to convert */ |
503 | SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node); |
504 | JoinExpr *j; |
505 | Relids child_rels; |
506 | |
507 | if (sublink && IsA(sublink, SubLink)) |
508 | { |
509 | if (sublink->subLinkType == EXISTS_SUBLINK) |
510 | { |
511 | if ((j = convert_EXISTS_sublink_to_join(root, sublink, true, |
512 | available_rels1)) != NULL) |
513 | { |
514 | /* Yes; insert the new join node into the join tree */ |
515 | j->larg = *jtlink1; |
516 | *jtlink1 = (Node *) j; |
517 | /* Recursively process pulled-up jointree nodes */ |
518 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
519 | j->rarg, |
520 | &child_rels); |
521 | |
522 | /* |
523 | * Now recursively process the pulled-up quals. Because |
524 | * we are underneath a NOT, we can't pull up sublinks that |
525 | * reference the left-hand stuff, but it's still okay to |
526 | * pull up sublinks referencing j->rarg. |
527 | */ |
528 | j->quals = pull_up_sublinks_qual_recurse(root, |
529 | j->quals, |
530 | &j->rarg, |
531 | child_rels, |
532 | NULL, NULL); |
533 | /* Return NULL representing constant TRUE */ |
534 | return NULL; |
535 | } |
536 | if (available_rels2 != NULL && |
537 | (j = convert_EXISTS_sublink_to_join(root, sublink, true, |
538 | available_rels2)) != NULL) |
539 | { |
540 | /* Yes; insert the new join node into the join tree */ |
541 | j->larg = *jtlink2; |
542 | *jtlink2 = (Node *) j; |
543 | /* Recursively process pulled-up jointree nodes */ |
544 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
545 | j->rarg, |
546 | &child_rels); |
547 | |
548 | /* |
549 | * Now recursively process the pulled-up quals. Because |
550 | * we are underneath a NOT, we can't pull up sublinks that |
551 | * reference the left-hand stuff, but it's still okay to |
552 | * pull up sublinks referencing j->rarg. |
553 | */ |
554 | j->quals = pull_up_sublinks_qual_recurse(root, |
555 | j->quals, |
556 | &j->rarg, |
557 | child_rels, |
558 | NULL, NULL); |
559 | /* Return NULL representing constant TRUE */ |
560 | return NULL; |
561 | } |
562 | } |
563 | } |
564 | /* Else return it unmodified */ |
565 | return node; |
566 | } |
567 | if (is_andclause(node)) |
568 | { |
569 | /* Recurse into AND clause */ |
570 | List *newclauses = NIL; |
571 | ListCell *l; |
572 | |
573 | foreach(l, ((BoolExpr *) node)->args) |
574 | { |
575 | Node *oldclause = (Node *) lfirst(l); |
576 | Node *newclause; |
577 | |
578 | newclause = pull_up_sublinks_qual_recurse(root, |
579 | oldclause, |
580 | jtlink1, |
581 | available_rels1, |
582 | jtlink2, |
583 | available_rels2); |
584 | if (newclause) |
585 | newclauses = lappend(newclauses, newclause); |
586 | } |
587 | /* We might have got back fewer clauses than we started with */ |
588 | if (newclauses == NIL) |
589 | return NULL; |
590 | else if (list_length(newclauses) == 1) |
591 | return (Node *) linitial(newclauses); |
592 | else |
593 | return (Node *) make_andclause(newclauses); |
594 | } |
595 | /* Stop if not an AND */ |
596 | return node; |
597 | } |
598 | |
599 | /* |
600 | * inline_set_returning_functions |
601 | * Attempt to "inline" set-returning functions in the FROM clause. |
602 | * |
603 | * If an RTE_FUNCTION rtable entry invokes a set-returning function that |
604 | * contains just a simple SELECT, we can convert the rtable entry to an |
605 | * RTE_SUBQUERY entry exposing the SELECT directly. This is especially |
606 | * useful if the subquery can then be "pulled up" for further optimization, |
607 | * but we do it even if not, to reduce executor overhead. |
608 | * |
609 | * This has to be done before we have started to do any optimization of |
610 | * subqueries, else any such steps wouldn't get applied to subqueries |
611 | * obtained via inlining. However, we do it after pull_up_sublinks |
612 | * so that we can inline any functions used in SubLink subselects. |
613 | * |
614 | * Like most of the planner, this feels free to scribble on its input data |
615 | * structure. |
616 | */ |
617 | void |
618 | inline_set_returning_functions(PlannerInfo *root) |
619 | { |
620 | ListCell *rt; |
621 | |
622 | foreach(rt, root->parse->rtable) |
623 | { |
624 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
625 | |
626 | if (rte->rtekind == RTE_FUNCTION) |
627 | { |
628 | Query *funcquery; |
629 | |
630 | /* Check safety of expansion, and expand if possible */ |
631 | funcquery = inline_set_returning_function(root, rte); |
632 | if (funcquery) |
633 | { |
634 | /* Successful expansion, convert the RTE to a subquery */ |
635 | rte->rtekind = RTE_SUBQUERY; |
636 | rte->subquery = funcquery; |
637 | rte->security_barrier = false; |
638 | /* Clear fields that should not be set in a subquery RTE */ |
639 | rte->functions = NIL; |
640 | rte->funcordinality = false; |
641 | } |
642 | } |
643 | } |
644 | } |
645 | |
646 | /* |
647 | * pull_up_subqueries |
648 | * Look for subqueries in the rangetable that can be pulled up into |
649 | * the parent query. If the subquery has no special features like |
650 | * grouping/aggregation then we can merge it into the parent's jointree. |
651 | * Also, subqueries that are simple UNION ALL structures can be |
652 | * converted into "append relations". |
653 | */ |
654 | void |
655 | pull_up_subqueries(PlannerInfo *root) |
656 | { |
657 | /* Top level of jointree must always be a FromExpr */ |
658 | Assert(IsA(root->parse->jointree, FromExpr)); |
659 | /* Recursion starts with no containing join nor appendrel */ |
660 | root->parse->jointree = (FromExpr *) |
661 | pull_up_subqueries_recurse(root, (Node *) root->parse->jointree, |
662 | NULL, NULL, NULL); |
663 | /* We should still have a FromExpr */ |
664 | Assert(IsA(root->parse->jointree, FromExpr)); |
665 | } |
666 | |
667 | /* |
668 | * pull_up_subqueries_recurse |
669 | * Recursive guts of pull_up_subqueries. |
670 | * |
671 | * This recursively processes the jointree and returns a modified jointree. |
672 | * |
673 | * If this jointree node is within either side of an outer join, then |
674 | * lowest_outer_join references the lowest such JoinExpr node; otherwise |
675 | * it is NULL. We use this to constrain the effects of LATERAL subqueries. |
676 | * |
677 | * If this jointree node is within the nullable side of an outer join, then |
678 | * lowest_nulling_outer_join references the lowest such JoinExpr node; |
679 | * otherwise it is NULL. This forces use of the PlaceHolderVar mechanism for |
680 | * references to non-nullable targetlist items, but only for references above |
681 | * that join. |
682 | * |
683 | * If we are looking at a member subquery of an append relation, |
684 | * containing_appendrel describes that relation; else it is NULL. |
685 | * This forces use of the PlaceHolderVar mechanism for all non-Var targetlist |
686 | * items, and puts some additional restrictions on what can be pulled up. |
687 | * |
688 | * A tricky aspect of this code is that if we pull up a subquery we have |
689 | * to replace Vars that reference the subquery's outputs throughout the |
690 | * parent query, including quals attached to jointree nodes above the one |
691 | * we are currently processing! We handle this by being careful to maintain |
692 | * validity of the jointree structure while recursing, in the following sense: |
693 | * whenever we recurse, all qual expressions in the tree must be reachable |
694 | * from the top level, in case the recursive call needs to modify them. |
695 | * |
696 | * Notice also that we can't turn pullup_replace_vars loose on the whole |
697 | * jointree, because it'd return a mutated copy of the tree; we have to |
698 | * invoke it just on the quals, instead. This behavior is what makes it |
699 | * reasonable to pass lowest_outer_join and lowest_nulling_outer_join as |
700 | * pointers rather than some more-indirect way of identifying the lowest |
701 | * OJs. Likewise, we don't replace append_rel_list members but only their |
702 | * substructure, so the containing_appendrel reference is safe to use. |
703 | */ |
704 | static Node * |
705 | pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, |
706 | JoinExpr *lowest_outer_join, |
707 | JoinExpr *lowest_nulling_outer_join, |
708 | AppendRelInfo *containing_appendrel) |
709 | { |
710 | Assert(jtnode != NULL); |
711 | if (IsA(jtnode, RangeTblRef)) |
712 | { |
713 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
714 | RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable); |
715 | |
716 | /* |
717 | * Is this a subquery RTE, and if so, is the subquery simple enough to |
718 | * pull up? |
719 | * |
720 | * If we are looking at an append-relation member, we can't pull it up |
721 | * unless is_safe_append_member says so. |
722 | */ |
723 | if (rte->rtekind == RTE_SUBQUERY && |
724 | is_simple_subquery(rte->subquery, rte, lowest_outer_join) && |
725 | (containing_appendrel == NULL || |
726 | is_safe_append_member(rte->subquery))) |
727 | return pull_up_simple_subquery(root, jtnode, rte, |
728 | lowest_outer_join, |
729 | lowest_nulling_outer_join, |
730 | containing_appendrel); |
731 | |
732 | /* |
733 | * Alternatively, is it a simple UNION ALL subquery? If so, flatten |
734 | * into an "append relation". |
735 | * |
736 | * It's safe to do this regardless of whether this query is itself an |
737 | * appendrel member. (If you're thinking we should try to flatten the |
738 | * two levels of appendrel together, you're right; but we handle that |
739 | * in set_append_rel_pathlist, not here.) |
740 | */ |
741 | if (rte->rtekind == RTE_SUBQUERY && |
742 | is_simple_union_all(rte->subquery)) |
743 | return pull_up_simple_union_all(root, jtnode, rte); |
744 | |
745 | /* |
746 | * Or perhaps it's a simple VALUES RTE? |
747 | * |
748 | * We don't allow VALUES pullup below an outer join nor into an |
749 | * appendrel (such cases are impossible anyway at the moment). |
750 | */ |
751 | if (rte->rtekind == RTE_VALUES && |
752 | lowest_outer_join == NULL && |
753 | containing_appendrel == NULL && |
754 | is_simple_values(root, rte)) |
755 | return pull_up_simple_values(root, jtnode, rte); |
756 | |
757 | /* Otherwise, do nothing at this node. */ |
758 | } |
759 | else if (IsA(jtnode, FromExpr)) |
760 | { |
761 | FromExpr *f = (FromExpr *) jtnode; |
762 | ListCell *l; |
763 | |
764 | Assert(containing_appendrel == NULL); |
765 | /* Recursively transform all the child nodes */ |
766 | foreach(l, f->fromlist) |
767 | { |
768 | lfirst(l) = pull_up_subqueries_recurse(root, lfirst(l), |
769 | lowest_outer_join, |
770 | lowest_nulling_outer_join, |
771 | NULL); |
772 | } |
773 | } |
774 | else if (IsA(jtnode, JoinExpr)) |
775 | { |
776 | JoinExpr *j = (JoinExpr *) jtnode; |
777 | |
778 | Assert(containing_appendrel == NULL); |
779 | /* Recurse, being careful to tell myself when inside outer join */ |
780 | switch (j->jointype) |
781 | { |
782 | case JOIN_INNER: |
783 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
784 | lowest_outer_join, |
785 | lowest_nulling_outer_join, |
786 | NULL); |
787 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
788 | lowest_outer_join, |
789 | lowest_nulling_outer_join, |
790 | NULL); |
791 | break; |
792 | case JOIN_LEFT: |
793 | case JOIN_SEMI: |
794 | case JOIN_ANTI: |
795 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
796 | j, |
797 | lowest_nulling_outer_join, |
798 | NULL); |
799 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
800 | j, |
801 | j, |
802 | NULL); |
803 | break; |
804 | case JOIN_FULL: |
805 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
806 | j, |
807 | j, |
808 | NULL); |
809 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
810 | j, |
811 | j, |
812 | NULL); |
813 | break; |
814 | case JOIN_RIGHT: |
815 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
816 | j, |
817 | j, |
818 | NULL); |
819 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
820 | j, |
821 | lowest_nulling_outer_join, |
822 | NULL); |
823 | break; |
824 | default: |
825 | elog(ERROR, "unrecognized join type: %d" , |
826 | (int) j->jointype); |
827 | break; |
828 | } |
829 | } |
830 | else |
831 | elog(ERROR, "unrecognized node type: %d" , |
832 | (int) nodeTag(jtnode)); |
833 | return jtnode; |
834 | } |
835 | |
836 | /* |
837 | * pull_up_simple_subquery |
838 | * Attempt to pull up a single simple subquery. |
839 | * |
840 | * jtnode is a RangeTblRef that has been tentatively identified as a simple |
841 | * subquery by pull_up_subqueries. We return the replacement jointree node, |
842 | * or jtnode itself if we determine that the subquery can't be pulled up |
843 | * after all. |
844 | * |
845 | * rte is the RangeTblEntry referenced by jtnode. Remaining parameters are |
846 | * as for pull_up_subqueries_recurse. |
847 | */ |
848 | static Node * |
849 | pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, |
850 | JoinExpr *lowest_outer_join, |
851 | JoinExpr *lowest_nulling_outer_join, |
852 | AppendRelInfo *containing_appendrel) |
853 | { |
854 | Query *parse = root->parse; |
855 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
856 | Query *subquery; |
857 | PlannerInfo *subroot; |
858 | int rtoffset; |
859 | pullup_replace_vars_context rvcontext; |
860 | ListCell *lc; |
861 | |
862 | /* |
863 | * Need a modifiable copy of the subquery to hack on. Even if we didn't |
864 | * sometimes choose not to pull up below, we must do this to avoid |
865 | * problems if the same subquery is referenced from multiple jointree |
866 | * items (which can't happen normally, but might after rule rewriting). |
867 | */ |
868 | subquery = copyObject(rte->subquery); |
869 | |
870 | /* |
871 | * Create a PlannerInfo data structure for this subquery. |
872 | * |
873 | * NOTE: the next few steps should match the first processing in |
874 | * subquery_planner(). Can we refactor to avoid code duplication, or |
875 | * would that just make things uglier? |
876 | */ |
877 | subroot = makeNode(PlannerInfo); |
878 | subroot->parse = subquery; |
879 | subroot->glob = root->glob; |
880 | subroot->query_level = root->query_level; |
881 | subroot->parent_root = root->parent_root; |
882 | subroot->plan_params = NIL; |
883 | subroot->outer_params = NULL; |
884 | subroot->planner_cxt = CurrentMemoryContext; |
885 | subroot->init_plans = NIL; |
886 | subroot->cte_plan_ids = NIL; |
887 | subroot->multiexpr_params = NIL; |
888 | subroot->eq_classes = NIL; |
889 | subroot->append_rel_list = NIL; |
890 | subroot->rowMarks = NIL; |
891 | memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels)); |
892 | memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets)); |
893 | subroot->processed_tlist = NIL; |
894 | subroot->grouping_map = NULL; |
895 | subroot->minmax_aggs = NIL; |
896 | subroot->qual_security_level = 0; |
897 | subroot->inhTargetKind = INHKIND_NONE; |
898 | subroot->hasRecursion = false; |
899 | subroot->wt_param_id = -1; |
900 | subroot->non_recursive_path = NULL; |
901 | |
902 | /* No CTEs to worry about */ |
903 | Assert(subquery->cteList == NIL); |
904 | |
905 | /* |
906 | * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so |
907 | * that we don't need so many special cases to deal with that situation. |
908 | */ |
909 | replace_empty_jointree(subquery); |
910 | |
911 | /* |
912 | * Pull up any SubLinks within the subquery's quals, so that we don't |
913 | * leave unoptimized SubLinks behind. |
914 | */ |
915 | if (subquery->hasSubLinks) |
916 | pull_up_sublinks(subroot); |
917 | |
918 | /* |
919 | * Similarly, inline any set-returning functions in its rangetable. |
920 | */ |
921 | inline_set_returning_functions(subroot); |
922 | |
923 | /* |
924 | * Recursively pull up the subquery's subqueries, so that |
925 | * pull_up_subqueries' processing is complete for its jointree and |
926 | * rangetable. |
927 | * |
928 | * Note: it's okay that the subquery's recursion starts with NULL for |
929 | * containing-join info, even if we are within an outer join in the upper |
930 | * query; the lower query starts with a clean slate for outer-join |
931 | * semantics. Likewise, we needn't pass down appendrel state. |
932 | */ |
933 | pull_up_subqueries(subroot); |
934 | |
935 | /* |
936 | * Now we must recheck whether the subquery is still simple enough to pull |
937 | * up. If not, abandon processing it. |
938 | * |
939 | * We don't really need to recheck all the conditions involved, but it's |
940 | * easier just to keep this "if" looking the same as the one in |
941 | * pull_up_subqueries_recurse. |
942 | */ |
943 | if (is_simple_subquery(subquery, rte, lowest_outer_join) && |
944 | (containing_appendrel == NULL || is_safe_append_member(subquery))) |
945 | { |
946 | /* good to go */ |
947 | } |
948 | else |
949 | { |
950 | /* |
951 | * Give up, return unmodified RangeTblRef. |
952 | * |
953 | * Note: The work we just did will be redone when the subquery gets |
954 | * planned on its own. Perhaps we could avoid that by storing the |
955 | * modified subquery back into the rangetable, but I'm not gonna risk |
956 | * it now. |
957 | */ |
958 | return jtnode; |
959 | } |
960 | |
961 | /* |
962 | * We must flatten any join alias Vars in the subquery's targetlist, |
963 | * because pulling up the subquery's subqueries might have changed their |
964 | * expansions into arbitrary expressions, which could affect |
965 | * pullup_replace_vars' decisions about whether PlaceHolderVar wrappers |
966 | * are needed for tlist entries. (Likely it'd be better to do |
967 | * flatten_join_alias_vars on the whole query tree at some earlier stage, |
968 | * maybe even in the rewriter; but for now let's just fix this case here.) |
969 | */ |
970 | subquery->targetList = (List *) |
971 | flatten_join_alias_vars(subroot->parse, (Node *) subquery->targetList); |
972 | |
973 | /* |
974 | * Adjust level-0 varnos in subquery so that we can append its rangetable |
975 | * to upper query's. We have to fix the subquery's append_rel_list as |
976 | * well. |
977 | */ |
978 | rtoffset = list_length(parse->rtable); |
979 | OffsetVarNodes((Node *) subquery, rtoffset, 0); |
980 | OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0); |
981 | |
982 | /* |
983 | * Upper-level vars in subquery are now one level closer to their parent |
984 | * than before. |
985 | */ |
986 | IncrementVarSublevelsUp((Node *) subquery, -1, 1); |
987 | IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1); |
988 | |
989 | /* |
990 | * The subquery's targetlist items are now in the appropriate form to |
991 | * insert into the top query, except that we may need to wrap them in |
992 | * PlaceHolderVars. Set up required context data for pullup_replace_vars. |
993 | */ |
994 | rvcontext.root = root; |
995 | rvcontext.targetlist = subquery->targetList; |
996 | rvcontext.target_rte = rte; |
997 | if (rte->lateral) |
998 | rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree, |
999 | true); |
1000 | else /* won't need relids */ |
1001 | rvcontext.relids = NULL; |
1002 | rvcontext.outer_hasSubLinks = &parse->hasSubLinks; |
1003 | rvcontext.varno = varno; |
1004 | /* these flags will be set below, if needed */ |
1005 | rvcontext.need_phvs = false; |
1006 | rvcontext.wrap_non_vars = false; |
1007 | /* initialize cache array with indexes 0 .. length(tlist) */ |
1008 | rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) * |
1009 | sizeof(Node *)); |
1010 | |
1011 | /* |
1012 | * If we are under an outer join then non-nullable items and lateral |
1013 | * references may have to be turned into PlaceHolderVars. |
1014 | */ |
1015 | if (lowest_nulling_outer_join != NULL) |
1016 | rvcontext.need_phvs = true; |
1017 | |
1018 | /* |
1019 | * If we are dealing with an appendrel member then anything that's not a |
1020 | * simple Var has to be turned into a PlaceHolderVar. We force this to |
1021 | * ensure that what we pull up doesn't get merged into a surrounding |
1022 | * expression during later processing and then fail to match the |
1023 | * expression actually available from the appendrel. |
1024 | */ |
1025 | if (containing_appendrel != NULL) |
1026 | { |
1027 | rvcontext.need_phvs = true; |
1028 | rvcontext.wrap_non_vars = true; |
1029 | } |
1030 | |
1031 | /* |
1032 | * If the parent query uses grouping sets, we need a PlaceHolderVar for |
1033 | * anything that's not a simple Var. Again, this ensures that expressions |
1034 | * retain their separate identity so that they will match grouping set |
1035 | * columns when appropriate. (It'd be sufficient to wrap values used in |
1036 | * grouping set columns, and do so only in non-aggregated portions of the |
1037 | * tlist and havingQual, but that would require a lot of infrastructure |
1038 | * that pullup_replace_vars hasn't currently got.) |
1039 | */ |
1040 | if (parse->groupingSets) |
1041 | { |
1042 | rvcontext.need_phvs = true; |
1043 | rvcontext.wrap_non_vars = true; |
1044 | } |
1045 | |
1046 | /* |
1047 | * Replace all of the top query's references to the subquery's outputs |
1048 | * with copies of the adjusted subtlist items, being careful not to |
1049 | * replace any of the jointree structure. (This'd be a lot cleaner if we |
1050 | * could use query_tree_mutator.) We have to use PHVs in the targetList, |
1051 | * returningList, and havingQual, since those are certainly above any |
1052 | * outer join. replace_vars_in_jointree tracks its location in the |
1053 | * jointree and uses PHVs or not appropriately. |
1054 | */ |
1055 | parse->targetList = (List *) |
1056 | pullup_replace_vars((Node *) parse->targetList, &rvcontext); |
1057 | parse->returningList = (List *) |
1058 | pullup_replace_vars((Node *) parse->returningList, &rvcontext); |
1059 | if (parse->onConflict) |
1060 | { |
1061 | parse->onConflict->onConflictSet = (List *) |
1062 | pullup_replace_vars((Node *) parse->onConflict->onConflictSet, |
1063 | &rvcontext); |
1064 | parse->onConflict->onConflictWhere = |
1065 | pullup_replace_vars(parse->onConflict->onConflictWhere, |
1066 | &rvcontext); |
1067 | |
1068 | /* |
1069 | * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist |
1070 | * can't contain any references to a subquery |
1071 | */ |
1072 | } |
1073 | replace_vars_in_jointree((Node *) parse->jointree, &rvcontext, |
1074 | lowest_nulling_outer_join); |
1075 | Assert(parse->setOperations == NULL); |
1076 | parse->havingQual = pullup_replace_vars(parse->havingQual, &rvcontext); |
1077 | |
1078 | /* |
1079 | * Replace references in the translated_vars lists of appendrels. When |
1080 | * pulling up an appendrel member, we do not need PHVs in the list of the |
1081 | * parent appendrel --- there isn't any outer join between. Elsewhere, use |
1082 | * PHVs for safety. (This analysis could be made tighter but it seems |
1083 | * unlikely to be worth much trouble.) |
1084 | */ |
1085 | foreach(lc, root->append_rel_list) |
1086 | { |
1087 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc); |
1088 | bool save_need_phvs = rvcontext.need_phvs; |
1089 | |
1090 | if (appinfo == containing_appendrel) |
1091 | rvcontext.need_phvs = false; |
1092 | appinfo->translated_vars = (List *) |
1093 | pullup_replace_vars((Node *) appinfo->translated_vars, &rvcontext); |
1094 | rvcontext.need_phvs = save_need_phvs; |
1095 | } |
1096 | |
1097 | /* |
1098 | * Replace references in the joinaliasvars lists of join RTEs. |
1099 | * |
1100 | * You might think that we could avoid using PHVs for alias vars of joins |
1101 | * below lowest_nulling_outer_join, but that doesn't work because the |
1102 | * alias vars could be referenced above that join; we need the PHVs to be |
1103 | * present in such references after the alias vars get flattened. (It |
1104 | * might be worth trying to be smarter here, someday.) |
1105 | */ |
1106 | foreach(lc, parse->rtable) |
1107 | { |
1108 | RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc); |
1109 | |
1110 | if (otherrte->rtekind == RTE_JOIN) |
1111 | otherrte->joinaliasvars = (List *) |
1112 | pullup_replace_vars((Node *) otherrte->joinaliasvars, |
1113 | &rvcontext); |
1114 | } |
1115 | |
1116 | /* |
1117 | * If the subquery had a LATERAL marker, propagate that to any of its |
1118 | * child RTEs that could possibly now contain lateral cross-references. |
1119 | * The children might or might not contain any actual lateral |
1120 | * cross-references, but we have to mark the pulled-up child RTEs so that |
1121 | * later planner stages will check for such. |
1122 | */ |
1123 | if (rte->lateral) |
1124 | { |
1125 | foreach(lc, subquery->rtable) |
1126 | { |
1127 | RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc); |
1128 | |
1129 | switch (child_rte->rtekind) |
1130 | { |
1131 | case RTE_RELATION: |
1132 | if (child_rte->tablesample) |
1133 | child_rte->lateral = true; |
1134 | break; |
1135 | case RTE_SUBQUERY: |
1136 | case RTE_FUNCTION: |
1137 | case RTE_VALUES: |
1138 | case RTE_TABLEFUNC: |
1139 | child_rte->lateral = true; |
1140 | break; |
1141 | case RTE_JOIN: |
1142 | case RTE_CTE: |
1143 | case RTE_NAMEDTUPLESTORE: |
1144 | case RTE_RESULT: |
1145 | /* these can't contain any lateral references */ |
1146 | break; |
1147 | } |
1148 | } |
1149 | } |
1150 | |
1151 | /* |
1152 | * Now append the adjusted rtable entries to upper query. (We hold off |
1153 | * until after fixing the upper rtable entries; no point in running that |
1154 | * code on the subquery ones too.) |
1155 | */ |
1156 | parse->rtable = list_concat(parse->rtable, subquery->rtable); |
1157 | |
1158 | /* |
1159 | * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already |
1160 | * adjusted the marker rtindexes, so just concat the lists.) |
1161 | */ |
1162 | parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks); |
1163 | |
1164 | /* |
1165 | * We also have to fix the relid sets of any PlaceHolderVar nodes in the |
1166 | * parent query. (This could perhaps be done by pullup_replace_vars(), |
1167 | * but it seems cleaner to use two passes.) Note in particular that any |
1168 | * PlaceHolderVar nodes just created by pullup_replace_vars() will be |
1169 | * adjusted, so having created them with the subquery's varno is correct. |
1170 | * |
1171 | * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We |
1172 | * already checked that this won't require introducing multiple subrelids |
1173 | * into the single-slot AppendRelInfo structs. |
1174 | */ |
1175 | if (parse->hasSubLinks || root->glob->lastPHId != 0 || |
1176 | root->append_rel_list) |
1177 | { |
1178 | Relids subrelids; |
1179 | |
1180 | subrelids = get_relids_in_jointree((Node *) subquery->jointree, false); |
1181 | substitute_phv_relids((Node *) parse, varno, subrelids); |
1182 | fix_append_rel_relids(root->append_rel_list, varno, subrelids); |
1183 | } |
1184 | |
1185 | /* |
1186 | * And now add subquery's AppendRelInfos to our list. |
1187 | */ |
1188 | root->append_rel_list = list_concat(root->append_rel_list, |
1189 | subroot->append_rel_list); |
1190 | |
1191 | /* |
1192 | * We don't have to do the equivalent bookkeeping for outer-join info, |
1193 | * because that hasn't been set up yet. placeholder_list likewise. |
1194 | */ |
1195 | Assert(root->join_info_list == NIL); |
1196 | Assert(subroot->join_info_list == NIL); |
1197 | Assert(root->placeholder_list == NIL); |
1198 | Assert(subroot->placeholder_list == NIL); |
1199 | |
1200 | /* |
1201 | * Miscellaneous housekeeping. |
1202 | * |
1203 | * Although replace_rte_variables() faithfully updated parse->hasSubLinks |
1204 | * if it copied any SubLinks out of the subquery's targetlist, we still |
1205 | * could have SubLinks added to the query in the expressions of FUNCTION |
1206 | * and VALUES RTEs copied up from the subquery. So it's necessary to copy |
1207 | * subquery->hasSubLinks anyway. Perhaps this can be improved someday. |
1208 | */ |
1209 | parse->hasSubLinks |= subquery->hasSubLinks; |
1210 | |
1211 | /* If subquery had any RLS conditions, now main query does too */ |
1212 | parse->hasRowSecurity |= subquery->hasRowSecurity; |
1213 | |
1214 | /* |
1215 | * subquery won't be pulled up if it hasAggs, hasWindowFuncs, or |
1216 | * hasTargetSRFs, so no work needed on those flags |
1217 | */ |
1218 | |
1219 | /* |
1220 | * Return the adjusted subquery jointree to replace the RangeTblRef entry |
1221 | * in parent's jointree; or, if the FromExpr is degenerate, just return |
1222 | * its single member. |
1223 | */ |
1224 | Assert(IsA(subquery->jointree, FromExpr)); |
1225 | Assert(subquery->jointree->fromlist != NIL); |
1226 | if (subquery->jointree->quals == NULL && |
1227 | list_length(subquery->jointree->fromlist) == 1) |
1228 | return (Node *) linitial(subquery->jointree->fromlist); |
1229 | |
1230 | return (Node *) subquery->jointree; |
1231 | } |
1232 | |
1233 | /* |
1234 | * pull_up_simple_union_all |
1235 | * Pull up a single simple UNION ALL subquery. |
1236 | * |
1237 | * jtnode is a RangeTblRef that has been identified as a simple UNION ALL |
1238 | * subquery by pull_up_subqueries. We pull up the leaf subqueries and |
1239 | * build an "append relation" for the union set. The result value is just |
1240 | * jtnode, since we don't actually need to change the query jointree. |
1241 | */ |
1242 | static Node * |
1243 | pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte) |
1244 | { |
1245 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
1246 | Query *subquery = rte->subquery; |
1247 | int rtoffset = list_length(root->parse->rtable); |
1248 | List *rtable; |
1249 | |
1250 | /* |
1251 | * Make a modifiable copy of the subquery's rtable, so we can adjust |
1252 | * upper-level Vars in it. There are no such Vars in the setOperations |
1253 | * tree proper, so fixing the rtable should be sufficient. |
1254 | */ |
1255 | rtable = copyObject(subquery->rtable); |
1256 | |
1257 | /* |
1258 | * Upper-level vars in subquery are now one level closer to their parent |
1259 | * than before. We don't have to worry about offsetting varnos, though, |
1260 | * because the UNION leaf queries can't cross-reference each other. |
1261 | */ |
1262 | IncrementVarSublevelsUp_rtable(rtable, -1, 1); |
1263 | |
1264 | /* |
1265 | * If the UNION ALL subquery had a LATERAL marker, propagate that to all |
1266 | * its children. The individual children might or might not contain any |
1267 | * actual lateral cross-references, but we have to mark the pulled-up |
1268 | * child RTEs so that later planner stages will check for such. |
1269 | */ |
1270 | if (rte->lateral) |
1271 | { |
1272 | ListCell *rt; |
1273 | |
1274 | foreach(rt, rtable) |
1275 | { |
1276 | RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt); |
1277 | |
1278 | Assert(child_rte->rtekind == RTE_SUBQUERY); |
1279 | child_rte->lateral = true; |
1280 | } |
1281 | } |
1282 | |
1283 | /* |
1284 | * Append child RTEs to parent rtable. |
1285 | */ |
1286 | root->parse->rtable = list_concat(root->parse->rtable, rtable); |
1287 | |
1288 | /* |
1289 | * Recursively scan the subquery's setOperations tree and add |
1290 | * AppendRelInfo nodes for leaf subqueries to the parent's |
1291 | * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries. |
1292 | */ |
1293 | Assert(subquery->setOperations); |
1294 | pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery, |
1295 | rtoffset); |
1296 | |
1297 | /* |
1298 | * Mark the parent as an append relation. |
1299 | */ |
1300 | rte->inh = true; |
1301 | |
1302 | return jtnode; |
1303 | } |
1304 | |
1305 | /* |
1306 | * pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all |
1307 | * |
1308 | * Build an AppendRelInfo for each leaf query in the setop tree, and then |
1309 | * apply pull_up_subqueries to the leaf query. |
1310 | * |
1311 | * Note that setOpQuery is the Query containing the setOp node, whose tlist |
1312 | * contains references to all the setop output columns. When called from |
1313 | * pull_up_simple_union_all, this is *not* the same as root->parse, which is |
1314 | * the parent Query we are pulling up into. |
1315 | * |
1316 | * parentRTindex is the appendrel parent's index in root->parse->rtable. |
1317 | * |
1318 | * The child RTEs have already been copied to the parent. childRToffset |
1319 | * tells us where in the parent's range table they were copied. When called |
1320 | * from flatten_simple_union_all, childRToffset is 0 since the child RTEs |
1321 | * were already in root->parse->rtable and no RT index adjustment is needed. |
1322 | */ |
1323 | static void |
1324 | pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex, |
1325 | Query *setOpQuery, int childRToffset) |
1326 | { |
1327 | if (IsA(setOp, RangeTblRef)) |
1328 | { |
1329 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
1330 | int childRTindex; |
1331 | AppendRelInfo *appinfo; |
1332 | |
1333 | /* |
1334 | * Calculate the index in the parent's range table |
1335 | */ |
1336 | childRTindex = childRToffset + rtr->rtindex; |
1337 | |
1338 | /* |
1339 | * Build a suitable AppendRelInfo, and attach to parent's list. |
1340 | */ |
1341 | appinfo = makeNode(AppendRelInfo); |
1342 | appinfo->parent_relid = parentRTindex; |
1343 | appinfo->child_relid = childRTindex; |
1344 | appinfo->parent_reltype = InvalidOid; |
1345 | appinfo->child_reltype = InvalidOid; |
1346 | make_setop_translation_list(setOpQuery, childRTindex, |
1347 | &appinfo->translated_vars); |
1348 | appinfo->parent_reloid = InvalidOid; |
1349 | root->append_rel_list = lappend(root->append_rel_list, appinfo); |
1350 | |
1351 | /* |
1352 | * Recursively apply pull_up_subqueries to the new child RTE. (We |
1353 | * must build the AppendRelInfo first, because this will modify it.) |
1354 | * Note that we can pass NULL for containing-join info even if we're |
1355 | * actually under an outer join, because the child's expressions |
1356 | * aren't going to propagate up to the join. Also, we ignore the |
1357 | * possibility that pull_up_subqueries_recurse() returns a different |
1358 | * jointree node than what we pass it; if it does, the important thing |
1359 | * is that it replaced the child relid in the AppendRelInfo node. |
1360 | */ |
1361 | rtr = makeNode(RangeTblRef); |
1362 | rtr->rtindex = childRTindex; |
1363 | (void) pull_up_subqueries_recurse(root, (Node *) rtr, |
1364 | NULL, NULL, appinfo); |
1365 | } |
1366 | else if (IsA(setOp, SetOperationStmt)) |
1367 | { |
1368 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
1369 | |
1370 | /* Recurse to reach leaf queries */ |
1371 | pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery, |
1372 | childRToffset); |
1373 | pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery, |
1374 | childRToffset); |
1375 | } |
1376 | else |
1377 | { |
1378 | elog(ERROR, "unrecognized node type: %d" , |
1379 | (int) nodeTag(setOp)); |
1380 | } |
1381 | } |
1382 | |
1383 | /* |
1384 | * make_setop_translation_list |
1385 | * Build the list of translations from parent Vars to child Vars for |
1386 | * a UNION ALL member. (At this point it's just a simple list of |
1387 | * referencing Vars, but if we succeed in pulling up the member |
1388 | * subquery, the Vars will get replaced by pulled-up expressions.) |
1389 | */ |
1390 | static void |
1391 | make_setop_translation_list(Query *query, Index newvarno, |
1392 | List **translated_vars) |
1393 | { |
1394 | List *vars = NIL; |
1395 | ListCell *l; |
1396 | |
1397 | foreach(l, query->targetList) |
1398 | { |
1399 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
1400 | |
1401 | if (tle->resjunk) |
1402 | continue; |
1403 | |
1404 | vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle)); |
1405 | } |
1406 | |
1407 | *translated_vars = vars; |
1408 | } |
1409 | |
1410 | /* |
1411 | * is_simple_subquery |
1412 | * Check a subquery in the range table to see if it's simple enough |
1413 | * to pull up into the parent query. |
1414 | * |
1415 | * rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery. |
1416 | * (Note subquery is not necessarily equal to rte->subquery; it could be a |
1417 | * processed copy of that.) |
1418 | * lowest_outer_join is the lowest outer join above the subquery, or NULL. |
1419 | */ |
1420 | static bool |
1421 | is_simple_subquery(Query *subquery, RangeTblEntry *rte, |
1422 | JoinExpr *lowest_outer_join) |
1423 | { |
1424 | /* |
1425 | * Let's just make sure it's a valid subselect ... |
1426 | */ |
1427 | if (!IsA(subquery, Query) || |
1428 | subquery->commandType != CMD_SELECT) |
1429 | elog(ERROR, "subquery is bogus" ); |
1430 | |
1431 | /* |
1432 | * Can't currently pull up a query with setops (unless it's simple UNION |
1433 | * ALL, which is handled by a different code path). Maybe after querytree |
1434 | * redesign... |
1435 | */ |
1436 | if (subquery->setOperations) |
1437 | return false; |
1438 | |
1439 | /* |
1440 | * Can't pull up a subquery involving grouping, aggregation, SRFs, |
1441 | * sorting, limiting, or WITH. (XXX WITH could possibly be allowed later) |
1442 | * |
1443 | * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE |
1444 | * clauses, because pullup would cause the locking to occur semantically |
1445 | * higher than it should. Implicit FOR UPDATE/SHARE is okay because in |
1446 | * that case the locking was originally declared in the upper query |
1447 | * anyway. |
1448 | */ |
1449 | if (subquery->hasAggs || |
1450 | subquery->hasWindowFuncs || |
1451 | subquery->hasTargetSRFs || |
1452 | subquery->groupClause || |
1453 | subquery->groupingSets || |
1454 | subquery->havingQual || |
1455 | subquery->sortClause || |
1456 | subquery->distinctClause || |
1457 | subquery->limitOffset || |
1458 | subquery->limitCount || |
1459 | subquery->hasForUpdate || |
1460 | subquery->cteList) |
1461 | return false; |
1462 | |
1463 | /* |
1464 | * Don't pull up if the RTE represents a security-barrier view; we |
1465 | * couldn't prevent information leakage once the RTE's Vars are scattered |
1466 | * about in the upper query. |
1467 | */ |
1468 | if (rte->security_barrier) |
1469 | return false; |
1470 | |
1471 | /* |
1472 | * If the subquery is LATERAL, check for pullup restrictions from that. |
1473 | */ |
1474 | if (rte->lateral) |
1475 | { |
1476 | bool restricted; |
1477 | Relids safe_upper_varnos; |
1478 | |
1479 | /* |
1480 | * The subquery's WHERE and JOIN/ON quals mustn't contain any lateral |
1481 | * references to rels outside a higher outer join (including the case |
1482 | * where the outer join is within the subquery itself). In such a |
1483 | * case, pulling up would result in a situation where we need to |
1484 | * postpone quals from below an outer join to above it, which is |
1485 | * probably completely wrong and in any case is a complication that |
1486 | * doesn't seem worth addressing at the moment. |
1487 | */ |
1488 | if (lowest_outer_join != NULL) |
1489 | { |
1490 | restricted = true; |
1491 | safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join, |
1492 | true); |
1493 | } |
1494 | else |
1495 | { |
1496 | restricted = false; |
1497 | safe_upper_varnos = NULL; /* doesn't matter */ |
1498 | } |
1499 | |
1500 | if (jointree_contains_lateral_outer_refs((Node *) subquery->jointree, |
1501 | restricted, safe_upper_varnos)) |
1502 | return false; |
1503 | |
1504 | /* |
1505 | * If there's an outer join above the LATERAL subquery, also disallow |
1506 | * pullup if the subquery's targetlist has any references to rels |
1507 | * outside the outer join, since these might get pulled into quals |
1508 | * above the subquery (but in or below the outer join) and then lead |
1509 | * to qual-postponement issues similar to the case checked for above. |
1510 | * (We wouldn't need to prevent pullup if no such references appear in |
1511 | * outer-query quals, but we don't have enough info here to check |
1512 | * that. Also, maybe this restriction could be removed if we forced |
1513 | * such refs to be wrapped in PlaceHolderVars, even when they're below |
1514 | * the nearest outer join? But it's a pretty hokey usage, so not |
1515 | * clear this is worth sweating over.) |
1516 | */ |
1517 | if (lowest_outer_join != NULL) |
1518 | { |
1519 | Relids lvarnos = pull_varnos_of_level((Node *) subquery->targetList, 1); |
1520 | |
1521 | if (!bms_is_subset(lvarnos, safe_upper_varnos)) |
1522 | return false; |
1523 | } |
1524 | } |
1525 | |
1526 | /* |
1527 | * Don't pull up a subquery that has any volatile functions in its |
1528 | * targetlist. Otherwise we might introduce multiple evaluations of these |
1529 | * functions, if they get copied to multiple places in the upper query, |
1530 | * leading to surprising results. (Note: the PlaceHolderVar mechanism |
1531 | * doesn't quite guarantee single evaluation; else we could pull up anyway |
1532 | * and just wrap such items in PlaceHolderVars ...) |
1533 | */ |
1534 | if (contain_volatile_functions((Node *) subquery->targetList)) |
1535 | return false; |
1536 | |
1537 | return true; |
1538 | } |
1539 | |
1540 | /* |
1541 | * pull_up_simple_values |
1542 | * Pull up a single simple VALUES RTE. |
1543 | * |
1544 | * jtnode is a RangeTblRef that has been identified as a simple VALUES RTE |
1545 | * by pull_up_subqueries. We always return a RangeTblRef representing a |
1546 | * RESULT RTE to replace it (all failure cases should have been detected by |
1547 | * is_simple_values()). Actually, what we return is just jtnode, because |
1548 | * we replace the VALUES RTE in the rangetable with the RESULT RTE. |
1549 | * |
1550 | * rte is the RangeTblEntry referenced by jtnode. Because of the limited |
1551 | * possible usage of VALUES RTEs, we do not need the remaining parameters |
1552 | * of pull_up_subqueries_recurse. |
1553 | */ |
1554 | static Node * |
1555 | pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte) |
1556 | { |
1557 | Query *parse = root->parse; |
1558 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
1559 | List *values_list; |
1560 | List *tlist; |
1561 | AttrNumber attrno; |
1562 | pullup_replace_vars_context rvcontext; |
1563 | ListCell *lc; |
1564 | |
1565 | Assert(rte->rtekind == RTE_VALUES); |
1566 | Assert(list_length(rte->values_lists) == 1); |
1567 | |
1568 | /* |
1569 | * Need a modifiable copy of the VALUES list to hack on, just in case it's |
1570 | * multiply referenced. |
1571 | */ |
1572 | values_list = copyObject(linitial(rte->values_lists)); |
1573 | |
1574 | /* |
1575 | * The VALUES RTE can't contain any Vars of level zero, let alone any that |
1576 | * are join aliases, so no need to flatten join alias Vars. |
1577 | */ |
1578 | Assert(!contain_vars_of_level((Node *) values_list, 0)); |
1579 | |
1580 | /* |
1581 | * Set up required context data for pullup_replace_vars. In particular, |
1582 | * we have to make the VALUES list look like a subquery targetlist. |
1583 | */ |
1584 | tlist = NIL; |
1585 | attrno = 1; |
1586 | foreach(lc, values_list) |
1587 | { |
1588 | tlist = lappend(tlist, |
1589 | makeTargetEntry((Expr *) lfirst(lc), |
1590 | attrno, |
1591 | NULL, |
1592 | false)); |
1593 | attrno++; |
1594 | } |
1595 | rvcontext.root = root; |
1596 | rvcontext.targetlist = tlist; |
1597 | rvcontext.target_rte = rte; |
1598 | rvcontext.relids = NULL; |
1599 | rvcontext.outer_hasSubLinks = &parse->hasSubLinks; |
1600 | rvcontext.varno = varno; |
1601 | rvcontext.need_phvs = false; |
1602 | rvcontext.wrap_non_vars = false; |
1603 | /* initialize cache array with indexes 0 .. length(tlist) */ |
1604 | rvcontext.rv_cache = palloc0((list_length(tlist) + 1) * |
1605 | sizeof(Node *)); |
1606 | |
1607 | /* |
1608 | * Replace all of the top query's references to the RTE's outputs with |
1609 | * copies of the adjusted VALUES expressions, being careful not to replace |
1610 | * any of the jointree structure. (This'd be a lot cleaner if we could use |
1611 | * query_tree_mutator.) Much of this should be no-ops in the dummy Query |
1612 | * that surrounds a VALUES RTE, but it's not enough code to be worth |
1613 | * removing. |
1614 | */ |
1615 | parse->targetList = (List *) |
1616 | pullup_replace_vars((Node *) parse->targetList, &rvcontext); |
1617 | parse->returningList = (List *) |
1618 | pullup_replace_vars((Node *) parse->returningList, &rvcontext); |
1619 | if (parse->onConflict) |
1620 | { |
1621 | parse->onConflict->onConflictSet = (List *) |
1622 | pullup_replace_vars((Node *) parse->onConflict->onConflictSet, |
1623 | &rvcontext); |
1624 | parse->onConflict->onConflictWhere = |
1625 | pullup_replace_vars(parse->onConflict->onConflictWhere, |
1626 | &rvcontext); |
1627 | |
1628 | /* |
1629 | * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist |
1630 | * can't contain any references to a subquery |
1631 | */ |
1632 | } |
1633 | replace_vars_in_jointree((Node *) parse->jointree, &rvcontext, NULL); |
1634 | Assert(parse->setOperations == NULL); |
1635 | parse->havingQual = pullup_replace_vars(parse->havingQual, &rvcontext); |
1636 | |
1637 | /* |
1638 | * There should be no appendrels to fix, nor any join alias Vars, nor any |
1639 | * outer joins and hence no PlaceHolderVars. |
1640 | */ |
1641 | Assert(root->append_rel_list == NIL); |
1642 | Assert(list_length(parse->rtable) == 1); |
1643 | Assert(root->join_info_list == NIL); |
1644 | Assert(root->placeholder_list == NIL); |
1645 | |
1646 | /* |
1647 | * Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only |
1648 | * rtable entry in the current query level, so this is easy. |
1649 | */ |
1650 | Assert(list_length(parse->rtable) == 1); |
1651 | |
1652 | /* Create suitable RTE */ |
1653 | rte = makeNode(RangeTblEntry); |
1654 | rte->rtekind = RTE_RESULT; |
1655 | rte->eref = makeAlias("*RESULT*" , NIL); |
1656 | |
1657 | /* Replace rangetable */ |
1658 | parse->rtable = list_make1(rte); |
1659 | |
1660 | /* We could manufacture a new RangeTblRef, but the one we have is fine */ |
1661 | Assert(varno == 1); |
1662 | |
1663 | return jtnode; |
1664 | } |
1665 | |
1666 | /* |
1667 | * is_simple_values |
1668 | * Check a VALUES RTE in the range table to see if it's simple enough |
1669 | * to pull up into the parent query. |
1670 | * |
1671 | * rte is the RTE_VALUES RangeTblEntry to check. |
1672 | */ |
1673 | static bool |
1674 | is_simple_values(PlannerInfo *root, RangeTblEntry *rte) |
1675 | { |
1676 | Assert(rte->rtekind == RTE_VALUES); |
1677 | |
1678 | /* |
1679 | * There must be exactly one VALUES list, else it's not semantically |
1680 | * correct to replace the VALUES RTE with a RESULT RTE, nor would we have |
1681 | * a unique set of expressions to substitute into the parent query. |
1682 | */ |
1683 | if (list_length(rte->values_lists) != 1) |
1684 | return false; |
1685 | |
1686 | /* |
1687 | * Because VALUES can't appear under an outer join (or at least, we won't |
1688 | * try to pull it up if it does), we need not worry about LATERAL, nor |
1689 | * about validity of PHVs for the VALUES' outputs. |
1690 | */ |
1691 | |
1692 | /* |
1693 | * Don't pull up a VALUES that contains any set-returning or volatile |
1694 | * functions. The considerations here are basically identical to the |
1695 | * restrictions on a pull-able subquery's targetlist. |
1696 | */ |
1697 | if (expression_returns_set((Node *) rte->values_lists) || |
1698 | contain_volatile_functions((Node *) rte->values_lists)) |
1699 | return false; |
1700 | |
1701 | /* |
1702 | * Do not pull up a VALUES that's not the only RTE in its parent query. |
1703 | * This is actually the only case that the parser will generate at the |
1704 | * moment, and assuming this is true greatly simplifies |
1705 | * pull_up_simple_values(). |
1706 | */ |
1707 | if (list_length(root->parse->rtable) != 1 || |
1708 | rte != (RangeTblEntry *) linitial(root->parse->rtable)) |
1709 | return false; |
1710 | |
1711 | return true; |
1712 | } |
1713 | |
1714 | /* |
1715 | * is_simple_union_all |
1716 | * Check a subquery to see if it's a simple UNION ALL. |
1717 | * |
1718 | * We require all the setops to be UNION ALL (no mixing) and there can't be |
1719 | * any datatype coercions involved, ie, all the leaf queries must emit the |
1720 | * same datatypes. |
1721 | */ |
1722 | static bool |
1723 | is_simple_union_all(Query *subquery) |
1724 | { |
1725 | SetOperationStmt *topop; |
1726 | |
1727 | /* Let's just make sure it's a valid subselect ... */ |
1728 | if (!IsA(subquery, Query) || |
1729 | subquery->commandType != CMD_SELECT) |
1730 | elog(ERROR, "subquery is bogus" ); |
1731 | |
1732 | /* Is it a set-operation query at all? */ |
1733 | topop = castNode(SetOperationStmt, subquery->setOperations); |
1734 | if (!topop) |
1735 | return false; |
1736 | |
1737 | /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */ |
1738 | if (subquery->sortClause || |
1739 | subquery->limitOffset || |
1740 | subquery->limitCount || |
1741 | subquery->rowMarks || |
1742 | subquery->cteList) |
1743 | return false; |
1744 | |
1745 | /* Recursively check the tree of set operations */ |
1746 | return is_simple_union_all_recurse((Node *) topop, subquery, |
1747 | topop->colTypes); |
1748 | } |
1749 | |
1750 | static bool |
1751 | is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes) |
1752 | { |
1753 | if (IsA(setOp, RangeTblRef)) |
1754 | { |
1755 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
1756 | RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable); |
1757 | Query *subquery = rte->subquery; |
1758 | |
1759 | Assert(subquery != NULL); |
1760 | |
1761 | /* Leaf nodes are OK if they match the toplevel column types */ |
1762 | /* We don't have to compare typmods or collations here */ |
1763 | return tlist_same_datatypes(subquery->targetList, colTypes, true); |
1764 | } |
1765 | else if (IsA(setOp, SetOperationStmt)) |
1766 | { |
1767 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
1768 | |
1769 | /* Must be UNION ALL */ |
1770 | if (op->op != SETOP_UNION || !op->all) |
1771 | return false; |
1772 | |
1773 | /* Recurse to check inputs */ |
1774 | return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) && |
1775 | is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes); |
1776 | } |
1777 | else |
1778 | { |
1779 | elog(ERROR, "unrecognized node type: %d" , |
1780 | (int) nodeTag(setOp)); |
1781 | return false; /* keep compiler quiet */ |
1782 | } |
1783 | } |
1784 | |
1785 | /* |
1786 | * is_safe_append_member |
1787 | * Check a subquery that is a leaf of a UNION ALL appendrel to see if it's |
1788 | * safe to pull up. |
1789 | */ |
1790 | static bool |
1791 | is_safe_append_member(Query *subquery) |
1792 | { |
1793 | FromExpr *jtnode; |
1794 | |
1795 | /* |
1796 | * It's only safe to pull up the child if its jointree contains exactly |
1797 | * one RTE, else the AppendRelInfo data structure breaks. The one base RTE |
1798 | * could be buried in several levels of FromExpr, however. Also, if the |
1799 | * child's jointree is completely empty, we can pull up because |
1800 | * pull_up_simple_subquery will insert a single RTE_RESULT RTE instead. |
1801 | * |
1802 | * Also, the child can't have any WHERE quals because there's no place to |
1803 | * put them in an appendrel. (This is a bit annoying...) If we didn't |
1804 | * need to check this, we'd just test whether get_relids_in_jointree() |
1805 | * yields a singleton set, to be more consistent with the coding of |
1806 | * fix_append_rel_relids(). |
1807 | */ |
1808 | jtnode = subquery->jointree; |
1809 | Assert(IsA(jtnode, FromExpr)); |
1810 | /* Check the completely-empty case */ |
1811 | if (jtnode->fromlist == NIL && jtnode->quals == NULL) |
1812 | return true; |
1813 | /* Check the more general case */ |
1814 | while (IsA(jtnode, FromExpr)) |
1815 | { |
1816 | if (jtnode->quals != NULL) |
1817 | return false; |
1818 | if (list_length(jtnode->fromlist) != 1) |
1819 | return false; |
1820 | jtnode = linitial(jtnode->fromlist); |
1821 | } |
1822 | if (!IsA(jtnode, RangeTblRef)) |
1823 | return false; |
1824 | |
1825 | return true; |
1826 | } |
1827 | |
1828 | /* |
1829 | * jointree_contains_lateral_outer_refs |
1830 | * Check for disallowed lateral references in a jointree's quals |
1831 | * |
1832 | * If restricted is false, all level-1 Vars are allowed (but we still must |
1833 | * search the jointree, since it might contain outer joins below which there |
1834 | * will be restrictions). If restricted is true, return true when any qual |
1835 | * in the jointree contains level-1 Vars coming from outside the rels listed |
1836 | * in safe_upper_varnos. |
1837 | */ |
1838 | static bool |
1839 | jointree_contains_lateral_outer_refs(Node *jtnode, bool restricted, |
1840 | Relids safe_upper_varnos) |
1841 | { |
1842 | if (jtnode == NULL) |
1843 | return false; |
1844 | if (IsA(jtnode, RangeTblRef)) |
1845 | return false; |
1846 | else if (IsA(jtnode, FromExpr)) |
1847 | { |
1848 | FromExpr *f = (FromExpr *) jtnode; |
1849 | ListCell *l; |
1850 | |
1851 | /* First, recurse to check child joins */ |
1852 | foreach(l, f->fromlist) |
1853 | { |
1854 | if (jointree_contains_lateral_outer_refs(lfirst(l), |
1855 | restricted, |
1856 | safe_upper_varnos)) |
1857 | return true; |
1858 | } |
1859 | |
1860 | /* Then check the top-level quals */ |
1861 | if (restricted && |
1862 | !bms_is_subset(pull_varnos_of_level(f->quals, 1), |
1863 | safe_upper_varnos)) |
1864 | return true; |
1865 | } |
1866 | else if (IsA(jtnode, JoinExpr)) |
1867 | { |
1868 | JoinExpr *j = (JoinExpr *) jtnode; |
1869 | |
1870 | /* |
1871 | * If this is an outer join, we mustn't allow any upper lateral |
1872 | * references in or below it. |
1873 | */ |
1874 | if (j->jointype != JOIN_INNER) |
1875 | { |
1876 | restricted = true; |
1877 | safe_upper_varnos = NULL; |
1878 | } |
1879 | |
1880 | /* Check the child joins */ |
1881 | if (jointree_contains_lateral_outer_refs(j->larg, |
1882 | restricted, |
1883 | safe_upper_varnos)) |
1884 | return true; |
1885 | if (jointree_contains_lateral_outer_refs(j->rarg, |
1886 | restricted, |
1887 | safe_upper_varnos)) |
1888 | return true; |
1889 | |
1890 | /* Check the JOIN's qual clauses */ |
1891 | if (restricted && |
1892 | !bms_is_subset(pull_varnos_of_level(j->quals, 1), |
1893 | safe_upper_varnos)) |
1894 | return true; |
1895 | } |
1896 | else |
1897 | elog(ERROR, "unrecognized node type: %d" , |
1898 | (int) nodeTag(jtnode)); |
1899 | return false; |
1900 | } |
1901 | |
1902 | /* |
1903 | * Helper routine for pull_up_subqueries: do pullup_replace_vars on every |
1904 | * expression in the jointree, without changing the jointree structure itself. |
1905 | * Ugly, but there's no other way... |
1906 | * |
1907 | * If we are at or below lowest_nulling_outer_join, we can suppress use of |
1908 | * PlaceHolderVars wrapped around the replacement expressions. |
1909 | */ |
1910 | static void |
1911 | replace_vars_in_jointree(Node *jtnode, |
1912 | pullup_replace_vars_context *context, |
1913 | JoinExpr *lowest_nulling_outer_join) |
1914 | { |
1915 | if (jtnode == NULL) |
1916 | return; |
1917 | if (IsA(jtnode, RangeTblRef)) |
1918 | { |
1919 | /* |
1920 | * If the RangeTblRef refers to a LATERAL subquery (that isn't the |
1921 | * same subquery we're pulling up), it might contain references to the |
1922 | * target subquery, which we must replace. We drive this from the |
1923 | * jointree scan, rather than a scan of the rtable, for a couple of |
1924 | * reasons: we can avoid processing no-longer-referenced RTEs, and we |
1925 | * can use the appropriate setting of need_phvs depending on whether |
1926 | * the RTE is above possibly-nulling outer joins or not. |
1927 | */ |
1928 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
1929 | |
1930 | if (varno != context->varno) /* ignore target subquery itself */ |
1931 | { |
1932 | RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable); |
1933 | |
1934 | Assert(rte != context->target_rte); |
1935 | if (rte->lateral) |
1936 | { |
1937 | switch (rte->rtekind) |
1938 | { |
1939 | case RTE_RELATION: |
1940 | /* shouldn't be marked LATERAL unless tablesample */ |
1941 | Assert(rte->tablesample); |
1942 | rte->tablesample = (TableSampleClause *) |
1943 | pullup_replace_vars((Node *) rte->tablesample, |
1944 | context); |
1945 | break; |
1946 | case RTE_SUBQUERY: |
1947 | rte->subquery = |
1948 | pullup_replace_vars_subquery(rte->subquery, |
1949 | context); |
1950 | break; |
1951 | case RTE_FUNCTION: |
1952 | rte->functions = (List *) |
1953 | pullup_replace_vars((Node *) rte->functions, |
1954 | context); |
1955 | break; |
1956 | case RTE_TABLEFUNC: |
1957 | rte->tablefunc = (TableFunc *) |
1958 | pullup_replace_vars((Node *) rte->tablefunc, |
1959 | context); |
1960 | break; |
1961 | case RTE_VALUES: |
1962 | rte->values_lists = (List *) |
1963 | pullup_replace_vars((Node *) rte->values_lists, |
1964 | context); |
1965 | break; |
1966 | case RTE_JOIN: |
1967 | case RTE_CTE: |
1968 | case RTE_NAMEDTUPLESTORE: |
1969 | case RTE_RESULT: |
1970 | /* these shouldn't be marked LATERAL */ |
1971 | Assert(false); |
1972 | break; |
1973 | } |
1974 | } |
1975 | } |
1976 | } |
1977 | else if (IsA(jtnode, FromExpr)) |
1978 | { |
1979 | FromExpr *f = (FromExpr *) jtnode; |
1980 | ListCell *l; |
1981 | |
1982 | foreach(l, f->fromlist) |
1983 | replace_vars_in_jointree(lfirst(l), context, |
1984 | lowest_nulling_outer_join); |
1985 | f->quals = pullup_replace_vars(f->quals, context); |
1986 | } |
1987 | else if (IsA(jtnode, JoinExpr)) |
1988 | { |
1989 | JoinExpr *j = (JoinExpr *) jtnode; |
1990 | bool save_need_phvs = context->need_phvs; |
1991 | |
1992 | if (j == lowest_nulling_outer_join) |
1993 | { |
1994 | /* no more PHVs in or below this join */ |
1995 | context->need_phvs = false; |
1996 | lowest_nulling_outer_join = NULL; |
1997 | } |
1998 | replace_vars_in_jointree(j->larg, context, lowest_nulling_outer_join); |
1999 | replace_vars_in_jointree(j->rarg, context, lowest_nulling_outer_join); |
2000 | |
2001 | /* |
2002 | * Use PHVs within the join quals of a full join, even when it's the |
2003 | * lowest nulling outer join. Otherwise, we cannot identify which |
2004 | * side of the join a pulled-up var-free expression came from, which |
2005 | * can lead to failure to make a plan at all because none of the quals |
2006 | * appear to be mergeable or hashable conditions. For this purpose we |
2007 | * don't care about the state of wrap_non_vars, so leave it alone. |
2008 | */ |
2009 | if (j->jointype == JOIN_FULL) |
2010 | context->need_phvs = true; |
2011 | |
2012 | j->quals = pullup_replace_vars(j->quals, context); |
2013 | |
2014 | /* |
2015 | * We don't bother to update the colvars list, since it won't be used |
2016 | * again ... |
2017 | */ |
2018 | context->need_phvs = save_need_phvs; |
2019 | } |
2020 | else |
2021 | elog(ERROR, "unrecognized node type: %d" , |
2022 | (int) nodeTag(jtnode)); |
2023 | } |
2024 | |
2025 | /* |
2026 | * Apply pullup variable replacement throughout an expression tree |
2027 | * |
2028 | * Returns a modified copy of the tree, so this can't be used where we |
2029 | * need to do in-place replacement. |
2030 | */ |
2031 | static Node * |
2032 | pullup_replace_vars(Node *expr, pullup_replace_vars_context *context) |
2033 | { |
2034 | return replace_rte_variables(expr, |
2035 | context->varno, 0, |
2036 | pullup_replace_vars_callback, |
2037 | (void *) context, |
2038 | context->outer_hasSubLinks); |
2039 | } |
2040 | |
2041 | static Node * |
2042 | pullup_replace_vars_callback(Var *var, |
2043 | replace_rte_variables_context *context) |
2044 | { |
2045 | pullup_replace_vars_context *rcon = (pullup_replace_vars_context *) context->callback_arg; |
2046 | int varattno = var->varattno; |
2047 | Node *newnode; |
2048 | |
2049 | /* |
2050 | * If PlaceHolderVars are needed, we cache the modified expressions in |
2051 | * rcon->rv_cache[]. This is not in hopes of any material speed gain |
2052 | * within this function, but to avoid generating identical PHVs with |
2053 | * different IDs. That would result in duplicate evaluations at runtime, |
2054 | * and possibly prevent optimizations that rely on recognizing different |
2055 | * references to the same subquery output as being equal(). So it's worth |
2056 | * a bit of extra effort to avoid it. |
2057 | */ |
2058 | if (rcon->need_phvs && |
2059 | varattno >= InvalidAttrNumber && |
2060 | varattno <= list_length(rcon->targetlist) && |
2061 | rcon->rv_cache[varattno] != NULL) |
2062 | { |
2063 | /* Just copy the entry and fall through to adjust its varlevelsup */ |
2064 | newnode = copyObject(rcon->rv_cache[varattno]); |
2065 | } |
2066 | else if (varattno == InvalidAttrNumber) |
2067 | { |
2068 | /* Must expand whole-tuple reference into RowExpr */ |
2069 | RowExpr *rowexpr; |
2070 | List *colnames; |
2071 | List *fields; |
2072 | bool save_need_phvs = rcon->need_phvs; |
2073 | int save_sublevelsup = context->sublevels_up; |
2074 | |
2075 | /* |
2076 | * If generating an expansion for a var of a named rowtype (ie, this |
2077 | * is a plain relation RTE), then we must include dummy items for |
2078 | * dropped columns. If the var is RECORD (ie, this is a JOIN), then |
2079 | * omit dropped columns. Either way, attach column names to the |
2080 | * RowExpr for use of ruleutils.c. |
2081 | * |
2082 | * In order to be able to cache the results, we always generate the |
2083 | * expansion with varlevelsup = 0, and then adjust if needed. |
2084 | */ |
2085 | expandRTE(rcon->target_rte, |
2086 | var->varno, 0 /* not varlevelsup */ , var->location, |
2087 | (var->vartype != RECORDOID), |
2088 | &colnames, &fields); |
2089 | /* Adjust the generated per-field Vars, but don't insert PHVs */ |
2090 | rcon->need_phvs = false; |
2091 | context->sublevels_up = 0; /* to match the expandRTE output */ |
2092 | fields = (List *) replace_rte_variables_mutator((Node *) fields, |
2093 | context); |
2094 | rcon->need_phvs = save_need_phvs; |
2095 | context->sublevels_up = save_sublevelsup; |
2096 | |
2097 | rowexpr = makeNode(RowExpr); |
2098 | rowexpr->args = fields; |
2099 | rowexpr->row_typeid = var->vartype; |
2100 | rowexpr->row_format = COERCE_IMPLICIT_CAST; |
2101 | rowexpr->colnames = colnames; |
2102 | rowexpr->location = var->location; |
2103 | newnode = (Node *) rowexpr; |
2104 | |
2105 | /* |
2106 | * Insert PlaceHolderVar if needed. Notice that we are wrapping one |
2107 | * PlaceHolderVar around the whole RowExpr, rather than putting one |
2108 | * around each element of the row. This is because we need the |
2109 | * expression to yield NULL, not ROW(NULL,NULL,...) when it is forced |
2110 | * to null by an outer join. |
2111 | */ |
2112 | if (rcon->need_phvs) |
2113 | { |
2114 | /* RowExpr is certainly not strict, so always need PHV */ |
2115 | newnode = (Node *) |
2116 | make_placeholder_expr(rcon->root, |
2117 | (Expr *) newnode, |
2118 | bms_make_singleton(rcon->varno)); |
2119 | /* cache it with the PHV, and with varlevelsup still zero */ |
2120 | rcon->rv_cache[InvalidAttrNumber] = copyObject(newnode); |
2121 | } |
2122 | } |
2123 | else |
2124 | { |
2125 | /* Normal case referencing one targetlist element */ |
2126 | TargetEntry *tle = get_tle_by_resno(rcon->targetlist, varattno); |
2127 | |
2128 | if (tle == NULL) /* shouldn't happen */ |
2129 | elog(ERROR, "could not find attribute %d in subquery targetlist" , |
2130 | varattno); |
2131 | |
2132 | /* Make a copy of the tlist item to return */ |
2133 | newnode = (Node *) copyObject(tle->expr); |
2134 | |
2135 | /* Insert PlaceHolderVar if needed */ |
2136 | if (rcon->need_phvs) |
2137 | { |
2138 | bool wrap; |
2139 | |
2140 | if (newnode && IsA(newnode, Var) && |
2141 | ((Var *) newnode)->varlevelsup == 0) |
2142 | { |
2143 | /* |
2144 | * Simple Vars always escape being wrapped, unless they are |
2145 | * lateral references to something outside the subquery being |
2146 | * pulled up. (Even then, we could omit the PlaceHolderVar if |
2147 | * the referenced rel is under the same lowest outer join, but |
2148 | * it doesn't seem worth the trouble to check that.) |
2149 | */ |
2150 | if (rcon->target_rte->lateral && |
2151 | !bms_is_member(((Var *) newnode)->varno, rcon->relids)) |
2152 | wrap = true; |
2153 | else |
2154 | wrap = false; |
2155 | } |
2156 | else if (newnode && IsA(newnode, PlaceHolderVar) && |
2157 | ((PlaceHolderVar *) newnode)->phlevelsup == 0) |
2158 | { |
2159 | /* No need to wrap a PlaceHolderVar with another one, either */ |
2160 | wrap = false; |
2161 | } |
2162 | else if (rcon->wrap_non_vars) |
2163 | { |
2164 | /* Wrap all non-Vars in a PlaceHolderVar */ |
2165 | wrap = true; |
2166 | } |
2167 | else |
2168 | { |
2169 | /* |
2170 | * If it contains a Var of the subquery being pulled up, and |
2171 | * does not contain any non-strict constructs, then it's |
2172 | * certainly nullable so we don't need to insert a |
2173 | * PlaceHolderVar. |
2174 | * |
2175 | * This analysis could be tighter: in particular, a non-strict |
2176 | * construct hidden within a lower-level PlaceHolderVar is not |
2177 | * reason to add another PHV. But for now it doesn't seem |
2178 | * worth the code to be more exact. |
2179 | * |
2180 | * Note: in future maybe we should insert a PlaceHolderVar |
2181 | * anyway, if the tlist item is expensive to evaluate? |
2182 | * |
2183 | * For a LATERAL subquery, we have to check the actual var |
2184 | * membership of the node, but if it's non-lateral then any |
2185 | * level-zero var must belong to the subquery. |
2186 | */ |
2187 | if ((rcon->target_rte->lateral ? |
2188 | bms_overlap(pull_varnos((Node *) newnode), rcon->relids) : |
2189 | contain_vars_of_level((Node *) newnode, 0)) && |
2190 | !contain_nonstrict_functions((Node *) newnode)) |
2191 | { |
2192 | /* No wrap needed */ |
2193 | wrap = false; |
2194 | } |
2195 | else |
2196 | { |
2197 | /* Else wrap it in a PlaceHolderVar */ |
2198 | wrap = true; |
2199 | } |
2200 | } |
2201 | |
2202 | if (wrap) |
2203 | newnode = (Node *) |
2204 | make_placeholder_expr(rcon->root, |
2205 | (Expr *) newnode, |
2206 | bms_make_singleton(rcon->varno)); |
2207 | |
2208 | /* |
2209 | * Cache it if possible (ie, if the attno is in range, which it |
2210 | * probably always should be). We can cache the value even if we |
2211 | * decided we didn't need a PHV, since this result will be |
2212 | * suitable for any request that has need_phvs. |
2213 | */ |
2214 | if (varattno > InvalidAttrNumber && |
2215 | varattno <= list_length(rcon->targetlist)) |
2216 | rcon->rv_cache[varattno] = copyObject(newnode); |
2217 | } |
2218 | } |
2219 | |
2220 | /* Must adjust varlevelsup if tlist item is from higher query */ |
2221 | if (var->varlevelsup > 0) |
2222 | IncrementVarSublevelsUp(newnode, var->varlevelsup, 0); |
2223 | |
2224 | return newnode; |
2225 | } |
2226 | |
2227 | /* |
2228 | * Apply pullup variable replacement to a subquery |
2229 | * |
2230 | * This needs to be different from pullup_replace_vars() because |
2231 | * replace_rte_variables will think that it shouldn't increment sublevels_up |
2232 | * before entering the Query; so we need to call it with sublevels_up == 1. |
2233 | */ |
2234 | static Query * |
2235 | pullup_replace_vars_subquery(Query *query, |
2236 | pullup_replace_vars_context *context) |
2237 | { |
2238 | Assert(IsA(query, Query)); |
2239 | return (Query *) replace_rte_variables((Node *) query, |
2240 | context->varno, 1, |
2241 | pullup_replace_vars_callback, |
2242 | (void *) context, |
2243 | NULL); |
2244 | } |
2245 | |
2246 | |
2247 | /* |
2248 | * flatten_simple_union_all |
2249 | * Try to optimize top-level UNION ALL structure into an appendrel |
2250 | * |
2251 | * If a query's setOperations tree consists entirely of simple UNION ALL |
2252 | * operations, flatten it into an append relation, which we can process more |
2253 | * intelligently than the general setops case. Otherwise, do nothing. |
2254 | * |
2255 | * In most cases, this can succeed only for a top-level query, because for a |
2256 | * subquery in FROM, the parent query's invocation of pull_up_subqueries would |
2257 | * already have flattened the UNION via pull_up_simple_union_all. But there |
2258 | * are a few cases we can support here but not in that code path, for example |
2259 | * when the subquery also contains ORDER BY. |
2260 | */ |
2261 | void |
2262 | flatten_simple_union_all(PlannerInfo *root) |
2263 | { |
2264 | Query *parse = root->parse; |
2265 | SetOperationStmt *topop; |
2266 | Node *leftmostjtnode; |
2267 | int leftmostRTI; |
2268 | RangeTblEntry *leftmostRTE; |
2269 | int childRTI; |
2270 | RangeTblEntry *childRTE; |
2271 | RangeTblRef *rtr; |
2272 | |
2273 | /* Shouldn't be called unless query has setops */ |
2274 | topop = castNode(SetOperationStmt, parse->setOperations); |
2275 | Assert(topop); |
2276 | |
2277 | /* Can't optimize away a recursive UNION */ |
2278 | if (root->hasRecursion) |
2279 | return; |
2280 | |
2281 | /* |
2282 | * Recursively check the tree of set operations. If not all UNION ALL |
2283 | * with identical column types, punt. |
2284 | */ |
2285 | if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes)) |
2286 | return; |
2287 | |
2288 | /* |
2289 | * Locate the leftmost leaf query in the setops tree. The upper query's |
2290 | * Vars all refer to this RTE (see transformSetOperationStmt). |
2291 | */ |
2292 | leftmostjtnode = topop->larg; |
2293 | while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt)) |
2294 | leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg; |
2295 | Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef)); |
2296 | leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex; |
2297 | leftmostRTE = rt_fetch(leftmostRTI, parse->rtable); |
2298 | Assert(leftmostRTE->rtekind == RTE_SUBQUERY); |
2299 | |
2300 | /* |
2301 | * Make a copy of the leftmost RTE and add it to the rtable. This copy |
2302 | * will represent the leftmost leaf query in its capacity as a member of |
2303 | * the appendrel. The original will represent the appendrel as a whole. |
2304 | * (We must do things this way because the upper query's Vars have to be |
2305 | * seen as referring to the whole appendrel.) |
2306 | */ |
2307 | childRTE = copyObject(leftmostRTE); |
2308 | parse->rtable = lappend(parse->rtable, childRTE); |
2309 | childRTI = list_length(parse->rtable); |
2310 | |
2311 | /* Modify the setops tree to reference the child copy */ |
2312 | ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI; |
2313 | |
2314 | /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */ |
2315 | leftmostRTE->inh = true; |
2316 | |
2317 | /* |
2318 | * Form a RangeTblRef for the appendrel, and insert it into FROM. The top |
2319 | * Query of a setops tree should have had an empty FromClause initially. |
2320 | */ |
2321 | rtr = makeNode(RangeTblRef); |
2322 | rtr->rtindex = leftmostRTI; |
2323 | Assert(parse->jointree->fromlist == NIL); |
2324 | parse->jointree->fromlist = list_make1(rtr); |
2325 | |
2326 | /* |
2327 | * Now pretend the query has no setops. We must do this before trying to |
2328 | * do subquery pullup, because of Assert in pull_up_simple_subquery. |
2329 | */ |
2330 | parse->setOperations = NULL; |
2331 | |
2332 | /* |
2333 | * Build AppendRelInfo information, and apply pull_up_subqueries to the |
2334 | * leaf queries of the UNION ALL. (We must do that now because they |
2335 | * weren't previously referenced by the jointree, and so were missed by |
2336 | * the main invocation of pull_up_subqueries.) |
2337 | */ |
2338 | pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0); |
2339 | } |
2340 | |
2341 | |
2342 | /* |
2343 | * reduce_outer_joins |
2344 | * Attempt to reduce outer joins to plain inner joins. |
2345 | * |
2346 | * The idea here is that given a query like |
2347 | * SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42; |
2348 | * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE |
2349 | * is strict. The strict operator will always return NULL, causing the outer |
2350 | * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's |
2351 | * columns. Therefore, there's no need for the join to produce null-extended |
2352 | * rows in the first place --- which makes it a plain join not an outer join. |
2353 | * (This scenario may not be very likely in a query written out by hand, but |
2354 | * it's reasonably likely when pushing quals down into complex views.) |
2355 | * |
2356 | * More generally, an outer join can be reduced in strength if there is a |
2357 | * strict qual above it in the qual tree that constrains a Var from the |
2358 | * nullable side of the join to be non-null. (For FULL joins this applies |
2359 | * to each side separately.) |
2360 | * |
2361 | * Another transformation we apply here is to recognize cases like |
2362 | * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL; |
2363 | * If the join clause is strict for b.y, then only null-extended rows could |
2364 | * pass the upper WHERE, and we can conclude that what the query is really |
2365 | * specifying is an anti-semijoin. We change the join type from JOIN_LEFT |
2366 | * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be |
2367 | * removed to prevent bogus selectivity calculations, but we leave it to |
2368 | * distribute_qual_to_rels to get rid of such clauses. |
2369 | * |
2370 | * Also, we get rid of JOIN_RIGHT cases by flipping them around to become |
2371 | * JOIN_LEFT. This saves some code here and in some later planner routines, |
2372 | * but the main reason to do it is to not need to invent a JOIN_REVERSE_ANTI |
2373 | * join type. |
2374 | * |
2375 | * To ease recognition of strict qual clauses, we require this routine to be |
2376 | * run after expression preprocessing (i.e., qual canonicalization and JOIN |
2377 | * alias-var expansion). |
2378 | */ |
2379 | void |
2380 | reduce_outer_joins(PlannerInfo *root) |
2381 | { |
2382 | reduce_outer_joins_state *state; |
2383 | |
2384 | /* |
2385 | * To avoid doing strictness checks on more quals than necessary, we want |
2386 | * to stop descending the jointree as soon as there are no outer joins |
2387 | * below our current point. This consideration forces a two-pass process. |
2388 | * The first pass gathers information about which base rels appear below |
2389 | * each side of each join clause, and about whether there are outer |
2390 | * join(s) below each side of each join clause. The second pass examines |
2391 | * qual clauses and changes join types as it descends the tree. |
2392 | */ |
2393 | state = reduce_outer_joins_pass1((Node *) root->parse->jointree); |
2394 | |
2395 | /* planner.c shouldn't have called me if no outer joins */ |
2396 | if (state == NULL || !state->contains_outer) |
2397 | elog(ERROR, "so where are the outer joins?" ); |
2398 | |
2399 | reduce_outer_joins_pass2((Node *) root->parse->jointree, |
2400 | state, root, NULL, NIL, NIL); |
2401 | } |
2402 | |
2403 | /* |
2404 | * reduce_outer_joins_pass1 - phase 1 data collection |
2405 | * |
2406 | * Returns a state node describing the given jointree node. |
2407 | */ |
2408 | static reduce_outer_joins_state * |
2409 | reduce_outer_joins_pass1(Node *jtnode) |
2410 | { |
2411 | reduce_outer_joins_state *result; |
2412 | |
2413 | result = (reduce_outer_joins_state *) |
2414 | palloc(sizeof(reduce_outer_joins_state)); |
2415 | result->relids = NULL; |
2416 | result->contains_outer = false; |
2417 | result->sub_states = NIL; |
2418 | |
2419 | if (jtnode == NULL) |
2420 | return result; |
2421 | if (IsA(jtnode, RangeTblRef)) |
2422 | { |
2423 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
2424 | |
2425 | result->relids = bms_make_singleton(varno); |
2426 | } |
2427 | else if (IsA(jtnode, FromExpr)) |
2428 | { |
2429 | FromExpr *f = (FromExpr *) jtnode; |
2430 | ListCell *l; |
2431 | |
2432 | foreach(l, f->fromlist) |
2433 | { |
2434 | reduce_outer_joins_state *sub_state; |
2435 | |
2436 | sub_state = reduce_outer_joins_pass1(lfirst(l)); |
2437 | result->relids = bms_add_members(result->relids, |
2438 | sub_state->relids); |
2439 | result->contains_outer |= sub_state->contains_outer; |
2440 | result->sub_states = lappend(result->sub_states, sub_state); |
2441 | } |
2442 | } |
2443 | else if (IsA(jtnode, JoinExpr)) |
2444 | { |
2445 | JoinExpr *j = (JoinExpr *) jtnode; |
2446 | reduce_outer_joins_state *sub_state; |
2447 | |
2448 | /* join's own RT index is not wanted in result->relids */ |
2449 | if (IS_OUTER_JOIN(j->jointype)) |
2450 | result->contains_outer = true; |
2451 | |
2452 | sub_state = reduce_outer_joins_pass1(j->larg); |
2453 | result->relids = bms_add_members(result->relids, |
2454 | sub_state->relids); |
2455 | result->contains_outer |= sub_state->contains_outer; |
2456 | result->sub_states = lappend(result->sub_states, sub_state); |
2457 | |
2458 | sub_state = reduce_outer_joins_pass1(j->rarg); |
2459 | result->relids = bms_add_members(result->relids, |
2460 | sub_state->relids); |
2461 | result->contains_outer |= sub_state->contains_outer; |
2462 | result->sub_states = lappend(result->sub_states, sub_state); |
2463 | } |
2464 | else |
2465 | elog(ERROR, "unrecognized node type: %d" , |
2466 | (int) nodeTag(jtnode)); |
2467 | return result; |
2468 | } |
2469 | |
2470 | /* |
2471 | * reduce_outer_joins_pass2 - phase 2 processing |
2472 | * |
2473 | * jtnode: current jointree node |
2474 | * state: state data collected by phase 1 for this node |
2475 | * root: toplevel planner state |
2476 | * nonnullable_rels: set of base relids forced non-null by upper quals |
2477 | * nonnullable_vars: list of Vars forced non-null by upper quals |
2478 | * forced_null_vars: list of Vars forced null by upper quals |
2479 | */ |
2480 | static void |
2481 | reduce_outer_joins_pass2(Node *jtnode, |
2482 | reduce_outer_joins_state *state, |
2483 | PlannerInfo *root, |
2484 | Relids nonnullable_rels, |
2485 | List *nonnullable_vars, |
2486 | List *forced_null_vars) |
2487 | { |
2488 | /* |
2489 | * pass 2 should never descend as far as an empty subnode or base rel, |
2490 | * because it's only called on subtrees marked as contains_outer. |
2491 | */ |
2492 | if (jtnode == NULL) |
2493 | elog(ERROR, "reached empty jointree" ); |
2494 | if (IsA(jtnode, RangeTblRef)) |
2495 | elog(ERROR, "reached base rel" ); |
2496 | else if (IsA(jtnode, FromExpr)) |
2497 | { |
2498 | FromExpr *f = (FromExpr *) jtnode; |
2499 | ListCell *l; |
2500 | ListCell *s; |
2501 | Relids pass_nonnullable_rels; |
2502 | List *pass_nonnullable_vars; |
2503 | List *pass_forced_null_vars; |
2504 | |
2505 | /* Scan quals to see if we can add any constraints */ |
2506 | pass_nonnullable_rels = find_nonnullable_rels(f->quals); |
2507 | pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels, |
2508 | nonnullable_rels); |
2509 | /* NB: we rely on list_concat to not damage its second argument */ |
2510 | pass_nonnullable_vars = find_nonnullable_vars(f->quals); |
2511 | pass_nonnullable_vars = list_concat(pass_nonnullable_vars, |
2512 | nonnullable_vars); |
2513 | pass_forced_null_vars = find_forced_null_vars(f->quals); |
2514 | pass_forced_null_vars = list_concat(pass_forced_null_vars, |
2515 | forced_null_vars); |
2516 | /* And recurse --- but only into interesting subtrees */ |
2517 | Assert(list_length(f->fromlist) == list_length(state->sub_states)); |
2518 | forboth(l, f->fromlist, s, state->sub_states) |
2519 | { |
2520 | reduce_outer_joins_state *sub_state = lfirst(s); |
2521 | |
2522 | if (sub_state->contains_outer) |
2523 | reduce_outer_joins_pass2(lfirst(l), sub_state, root, |
2524 | pass_nonnullable_rels, |
2525 | pass_nonnullable_vars, |
2526 | pass_forced_null_vars); |
2527 | } |
2528 | bms_free(pass_nonnullable_rels); |
2529 | /* can't so easily clean up var lists, unfortunately */ |
2530 | } |
2531 | else if (IsA(jtnode, JoinExpr)) |
2532 | { |
2533 | JoinExpr *j = (JoinExpr *) jtnode; |
2534 | int rtindex = j->rtindex; |
2535 | JoinType jointype = j->jointype; |
2536 | reduce_outer_joins_state *left_state = linitial(state->sub_states); |
2537 | reduce_outer_joins_state *right_state = lsecond(state->sub_states); |
2538 | List *local_nonnullable_vars = NIL; |
2539 | bool computed_local_nonnullable_vars = false; |
2540 | |
2541 | /* Can we simplify this join? */ |
2542 | switch (jointype) |
2543 | { |
2544 | case JOIN_INNER: |
2545 | break; |
2546 | case JOIN_LEFT: |
2547 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
2548 | jointype = JOIN_INNER; |
2549 | break; |
2550 | case JOIN_RIGHT: |
2551 | if (bms_overlap(nonnullable_rels, left_state->relids)) |
2552 | jointype = JOIN_INNER; |
2553 | break; |
2554 | case JOIN_FULL: |
2555 | if (bms_overlap(nonnullable_rels, left_state->relids)) |
2556 | { |
2557 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
2558 | jointype = JOIN_INNER; |
2559 | else |
2560 | jointype = JOIN_LEFT; |
2561 | } |
2562 | else |
2563 | { |
2564 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
2565 | jointype = JOIN_RIGHT; |
2566 | } |
2567 | break; |
2568 | case JOIN_SEMI: |
2569 | case JOIN_ANTI: |
2570 | |
2571 | /* |
2572 | * These could only have been introduced by pull_up_sublinks, |
2573 | * so there's no way that upper quals could refer to their |
2574 | * righthand sides, and no point in checking. |
2575 | */ |
2576 | break; |
2577 | default: |
2578 | elog(ERROR, "unrecognized join type: %d" , |
2579 | (int) jointype); |
2580 | break; |
2581 | } |
2582 | |
2583 | /* |
2584 | * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we |
2585 | * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no |
2586 | * longer matches the internal ordering of any CoalesceExpr's built to |
2587 | * represent merged join variables. We don't care about that at |
2588 | * present, but be wary of it ... |
2589 | */ |
2590 | if (jointype == JOIN_RIGHT) |
2591 | { |
2592 | Node *tmparg; |
2593 | |
2594 | tmparg = j->larg; |
2595 | j->larg = j->rarg; |
2596 | j->rarg = tmparg; |
2597 | jointype = JOIN_LEFT; |
2598 | right_state = linitial(state->sub_states); |
2599 | left_state = lsecond(state->sub_states); |
2600 | } |
2601 | |
2602 | /* |
2603 | * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if |
2604 | * the join's own quals are strict for any var that was forced null by |
2605 | * higher qual levels. NOTE: there are other ways that we could |
2606 | * detect an anti-join, in particular if we were to check whether Vars |
2607 | * coming from the RHS must be non-null because of table constraints. |
2608 | * That seems complicated and expensive though (in particular, one |
2609 | * would have to be wary of lower outer joins). For the moment this |
2610 | * seems sufficient. |
2611 | */ |
2612 | if (jointype == JOIN_LEFT) |
2613 | { |
2614 | List *overlap; |
2615 | |
2616 | local_nonnullable_vars = find_nonnullable_vars(j->quals); |
2617 | computed_local_nonnullable_vars = true; |
2618 | |
2619 | /* |
2620 | * It's not sufficient to check whether local_nonnullable_vars and |
2621 | * forced_null_vars overlap: we need to know if the overlap |
2622 | * includes any RHS variables. |
2623 | */ |
2624 | overlap = list_intersection(local_nonnullable_vars, |
2625 | forced_null_vars); |
2626 | if (overlap != NIL && |
2627 | bms_overlap(pull_varnos((Node *) overlap), |
2628 | right_state->relids)) |
2629 | jointype = JOIN_ANTI; |
2630 | } |
2631 | |
2632 | /* Apply the jointype change, if any, to both jointree node and RTE */ |
2633 | if (rtindex && jointype != j->jointype) |
2634 | { |
2635 | RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable); |
2636 | |
2637 | Assert(rte->rtekind == RTE_JOIN); |
2638 | Assert(rte->jointype == j->jointype); |
2639 | rte->jointype = jointype; |
2640 | } |
2641 | j->jointype = jointype; |
2642 | |
2643 | /* Only recurse if there's more to do below here */ |
2644 | if (left_state->contains_outer || right_state->contains_outer) |
2645 | { |
2646 | Relids local_nonnullable_rels; |
2647 | List *local_forced_null_vars; |
2648 | Relids pass_nonnullable_rels; |
2649 | List *pass_nonnullable_vars; |
2650 | List *pass_forced_null_vars; |
2651 | |
2652 | /* |
2653 | * If this join is (now) inner, we can add any constraints its |
2654 | * quals provide to those we got from above. But if it is outer, |
2655 | * we can pass down the local constraints only into the nullable |
2656 | * side, because an outer join never eliminates any rows from its |
2657 | * non-nullable side. Also, there is no point in passing upper |
2658 | * constraints into the nullable side, since if there were any |
2659 | * we'd have been able to reduce the join. (In the case of upper |
2660 | * forced-null constraints, we *must not* pass them into the |
2661 | * nullable side --- they either applied here, or not.) The upshot |
2662 | * is that we pass either the local or the upper constraints, |
2663 | * never both, to the children of an outer join. |
2664 | * |
2665 | * Note that a SEMI join works like an inner join here: it's okay |
2666 | * to pass down both local and upper constraints. (There can't be |
2667 | * any upper constraints affecting its inner side, but it's not |
2668 | * worth having a separate code path to avoid passing them.) |
2669 | * |
2670 | * At a FULL join we just punt and pass nothing down --- is it |
2671 | * possible to be smarter? |
2672 | */ |
2673 | if (jointype != JOIN_FULL) |
2674 | { |
2675 | local_nonnullable_rels = find_nonnullable_rels(j->quals); |
2676 | if (!computed_local_nonnullable_vars) |
2677 | local_nonnullable_vars = find_nonnullable_vars(j->quals); |
2678 | local_forced_null_vars = find_forced_null_vars(j->quals); |
2679 | if (jointype == JOIN_INNER || jointype == JOIN_SEMI) |
2680 | { |
2681 | /* OK to merge upper and local constraints */ |
2682 | local_nonnullable_rels = bms_add_members(local_nonnullable_rels, |
2683 | nonnullable_rels); |
2684 | local_nonnullable_vars = list_concat(local_nonnullable_vars, |
2685 | nonnullable_vars); |
2686 | local_forced_null_vars = list_concat(local_forced_null_vars, |
2687 | forced_null_vars); |
2688 | } |
2689 | } |
2690 | else |
2691 | { |
2692 | /* no use in calculating these */ |
2693 | local_nonnullable_rels = NULL; |
2694 | local_forced_null_vars = NIL; |
2695 | } |
2696 | |
2697 | if (left_state->contains_outer) |
2698 | { |
2699 | if (jointype == JOIN_INNER || jointype == JOIN_SEMI) |
2700 | { |
2701 | /* pass union of local and upper constraints */ |
2702 | pass_nonnullable_rels = local_nonnullable_rels; |
2703 | pass_nonnullable_vars = local_nonnullable_vars; |
2704 | pass_forced_null_vars = local_forced_null_vars; |
2705 | } |
2706 | else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */ |
2707 | { |
2708 | /* can't pass local constraints to non-nullable side */ |
2709 | pass_nonnullable_rels = nonnullable_rels; |
2710 | pass_nonnullable_vars = nonnullable_vars; |
2711 | pass_forced_null_vars = forced_null_vars; |
2712 | } |
2713 | else |
2714 | { |
2715 | /* no constraints pass through JOIN_FULL */ |
2716 | pass_nonnullable_rels = NULL; |
2717 | pass_nonnullable_vars = NIL; |
2718 | pass_forced_null_vars = NIL; |
2719 | } |
2720 | reduce_outer_joins_pass2(j->larg, left_state, root, |
2721 | pass_nonnullable_rels, |
2722 | pass_nonnullable_vars, |
2723 | pass_forced_null_vars); |
2724 | } |
2725 | |
2726 | if (right_state->contains_outer) |
2727 | { |
2728 | if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */ |
2729 | { |
2730 | /* pass appropriate constraints, per comment above */ |
2731 | pass_nonnullable_rels = local_nonnullable_rels; |
2732 | pass_nonnullable_vars = local_nonnullable_vars; |
2733 | pass_forced_null_vars = local_forced_null_vars; |
2734 | } |
2735 | else |
2736 | { |
2737 | /* no constraints pass through JOIN_FULL */ |
2738 | pass_nonnullable_rels = NULL; |
2739 | pass_nonnullable_vars = NIL; |
2740 | pass_forced_null_vars = NIL; |
2741 | } |
2742 | reduce_outer_joins_pass2(j->rarg, right_state, root, |
2743 | pass_nonnullable_rels, |
2744 | pass_nonnullable_vars, |
2745 | pass_forced_null_vars); |
2746 | } |
2747 | bms_free(local_nonnullable_rels); |
2748 | } |
2749 | } |
2750 | else |
2751 | elog(ERROR, "unrecognized node type: %d" , |
2752 | (int) nodeTag(jtnode)); |
2753 | } |
2754 | |
2755 | |
2756 | /* |
2757 | * remove_useless_result_rtes |
2758 | * Attempt to remove RTE_RESULT RTEs from the join tree. |
2759 | * |
2760 | * We can remove RTE_RESULT entries from the join tree using the knowledge |
2761 | * that RTE_RESULT returns exactly one row and has no output columns. Hence, |
2762 | * if one is inner-joined to anything else, we can delete it. Optimizations |
2763 | * are also possible for some outer-join cases, as detailed below. |
2764 | * |
2765 | * Some of these optimizations depend on recognizing empty (constant-true) |
2766 | * quals for FromExprs and JoinExprs. That makes it useful to apply this |
2767 | * optimization pass after expression preprocessing, since that will have |
2768 | * eliminated constant-true quals, allowing more cases to be recognized as |
2769 | * optimizable. What's more, the usual reason for an RTE_RESULT to be present |
2770 | * is that we pulled up a subquery or VALUES clause, thus very possibly |
2771 | * replacing Vars with constants, making it more likely that a qual can be |
2772 | * reduced to constant true. Also, because some optimizations depend on |
2773 | * the outer-join type, it's best to have done reduce_outer_joins() first. |
2774 | * |
2775 | * A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this |
2776 | * process: we must remove the RTE_RESULT's relid from the PHV's phrels, but |
2777 | * we must not reduce the phrels set to empty. If that would happen, and |
2778 | * the RTE_RESULT is an immediate child of an outer join, we have to give up |
2779 | * and not remove the RTE_RESULT: there is noplace else to evaluate the |
2780 | * PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output |
2781 | * columns.) But if the RTE_RESULT is an immediate child of an inner join, |
2782 | * we can change the PlaceHolderVar's phrels so as to evaluate it at the |
2783 | * inner join instead. This is OK because we really only care that PHVs are |
2784 | * evaluated above or below the correct outer joins. |
2785 | * |
2786 | * We used to try to do this work as part of pull_up_subqueries() where the |
2787 | * potentially-optimizable cases get introduced; but it's way simpler, and |
2788 | * more effective, to do it separately. |
2789 | */ |
2790 | void |
2791 | remove_useless_result_rtes(PlannerInfo *root) |
2792 | { |
2793 | ListCell *cell; |
2794 | ListCell *prev; |
2795 | ListCell *next; |
2796 | |
2797 | /* Top level of jointree must always be a FromExpr */ |
2798 | Assert(IsA(root->parse->jointree, FromExpr)); |
2799 | /* Recurse ... */ |
2800 | root->parse->jointree = (FromExpr *) |
2801 | remove_useless_results_recurse(root, (Node *) root->parse->jointree); |
2802 | /* We should still have a FromExpr */ |
2803 | Assert(IsA(root->parse->jointree, FromExpr)); |
2804 | |
2805 | /* |
2806 | * Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously |
2807 | * must do that for any RTE_RESULT that we just removed. But one for a |
2808 | * RTE that we did not remove can be dropped anyway: since the RTE has |
2809 | * only one possible output row, there is no need for EPQ to mark and |
2810 | * restore that row. |
2811 | * |
2812 | * It's necessary, not optional, to remove the PlanRowMark for a surviving |
2813 | * RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the |
2814 | * RTE_RESULT, which the executor has no support for. |
2815 | */ |
2816 | prev = NULL; |
2817 | for (cell = list_head(root->rowMarks); cell; cell = next) |
2818 | { |
2819 | PlanRowMark *rc = (PlanRowMark *) lfirst(cell); |
2820 | |
2821 | next = lnext(cell); |
2822 | if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT) |
2823 | root->rowMarks = list_delete_cell(root->rowMarks, cell, prev); |
2824 | else |
2825 | prev = cell; |
2826 | } |
2827 | } |
2828 | |
2829 | /* |
2830 | * remove_useless_results_recurse |
2831 | * Recursive guts of remove_useless_result_rtes. |
2832 | * |
2833 | * This recursively processes the jointree and returns a modified jointree. |
2834 | */ |
2835 | static Node * |
2836 | remove_useless_results_recurse(PlannerInfo *root, Node *jtnode) |
2837 | { |
2838 | Assert(jtnode != NULL); |
2839 | if (IsA(jtnode, RangeTblRef)) |
2840 | { |
2841 | /* Can't immediately do anything with a RangeTblRef */ |
2842 | } |
2843 | else if (IsA(jtnode, FromExpr)) |
2844 | { |
2845 | FromExpr *f = (FromExpr *) jtnode; |
2846 | Relids result_relids = NULL; |
2847 | ListCell *cell; |
2848 | ListCell *prev; |
2849 | ListCell *next; |
2850 | |
2851 | /* |
2852 | * We can drop RTE_RESULT rels from the fromlist so long as at least |
2853 | * one child remains, since joining to a one-row table changes |
2854 | * nothing. The easiest way to mechanize this rule is to modify the |
2855 | * list in-place, using list_delete_cell. |
2856 | */ |
2857 | prev = NULL; |
2858 | for (cell = list_head(f->fromlist); cell; cell = next) |
2859 | { |
2860 | Node *child = (Node *) lfirst(cell); |
2861 | int varno; |
2862 | |
2863 | /* Recursively transform child ... */ |
2864 | child = remove_useless_results_recurse(root, child); |
2865 | /* ... and stick it back into the tree */ |
2866 | lfirst(cell) = child; |
2867 | next = lnext(cell); |
2868 | |
2869 | /* |
2870 | * If it's an RTE_RESULT with at least one sibling, we can drop |
2871 | * it. We don't yet know what the inner join's final relid set |
2872 | * will be, so postpone cleanup of PHVs etc till after this loop. |
2873 | */ |
2874 | if (list_length(f->fromlist) > 1 && |
2875 | (varno = get_result_relid(root, child)) != 0) |
2876 | { |
2877 | f->fromlist = list_delete_cell(f->fromlist, cell, prev); |
2878 | result_relids = bms_add_member(result_relids, varno); |
2879 | } |
2880 | else |
2881 | prev = cell; |
2882 | } |
2883 | |
2884 | /* |
2885 | * Clean up if we dropped any RTE_RESULT RTEs. This is a bit |
2886 | * inefficient if there's more than one, but it seems better to |
2887 | * optimize the support code for the single-relid case. |
2888 | */ |
2889 | if (result_relids) |
2890 | { |
2891 | int varno = -1; |
2892 | |
2893 | while ((varno = bms_next_member(result_relids, varno)) >= 0) |
2894 | remove_result_refs(root, varno, (Node *) f); |
2895 | } |
2896 | |
2897 | /* |
2898 | * If we're not at the top of the jointree, it's valid to simplify a |
2899 | * degenerate FromExpr into its single child. (At the top, we must |
2900 | * keep the FromExpr since Query.jointree is required to point to a |
2901 | * FromExpr.) |
2902 | */ |
2903 | if (f != root->parse->jointree && |
2904 | f->quals == NULL && |
2905 | list_length(f->fromlist) == 1) |
2906 | return (Node *) linitial(f->fromlist); |
2907 | } |
2908 | else if (IsA(jtnode, JoinExpr)) |
2909 | { |
2910 | JoinExpr *j = (JoinExpr *) jtnode; |
2911 | int varno; |
2912 | |
2913 | /* First, recurse */ |
2914 | j->larg = remove_useless_results_recurse(root, j->larg); |
2915 | j->rarg = remove_useless_results_recurse(root, j->rarg); |
2916 | |
2917 | /* Apply join-type-specific optimization rules */ |
2918 | switch (j->jointype) |
2919 | { |
2920 | case JOIN_INNER: |
2921 | |
2922 | /* |
2923 | * An inner join is equivalent to a FromExpr, so if either |
2924 | * side was simplified to an RTE_RESULT rel, we can replace |
2925 | * the join with a FromExpr with just the other side; and if |
2926 | * the qual is empty (JOIN ON TRUE) then we can omit the |
2927 | * FromExpr as well. |
2928 | */ |
2929 | if ((varno = get_result_relid(root, j->larg)) != 0) |
2930 | { |
2931 | remove_result_refs(root, varno, j->rarg); |
2932 | if (j->quals) |
2933 | jtnode = (Node *) |
2934 | makeFromExpr(list_make1(j->rarg), j->quals); |
2935 | else |
2936 | jtnode = j->rarg; |
2937 | } |
2938 | else if ((varno = get_result_relid(root, j->rarg)) != 0) |
2939 | { |
2940 | remove_result_refs(root, varno, j->larg); |
2941 | if (j->quals) |
2942 | jtnode = (Node *) |
2943 | makeFromExpr(list_make1(j->larg), j->quals); |
2944 | else |
2945 | jtnode = j->larg; |
2946 | } |
2947 | break; |
2948 | case JOIN_LEFT: |
2949 | |
2950 | /* |
2951 | * We can simplify this case if the RHS is an RTE_RESULT, with |
2952 | * two different possibilities: |
2953 | * |
2954 | * If the qual is empty (JOIN ON TRUE), then the join can be |
2955 | * strength-reduced to a plain inner join, since each LHS row |
2956 | * necessarily has exactly one join partner. So we can always |
2957 | * discard the RHS, much as in the JOIN_INNER case above. |
2958 | * |
2959 | * Otherwise, it's still true that each LHS row should be |
2960 | * returned exactly once, and since the RHS returns no columns |
2961 | * (unless there are PHVs that have to be evaluated there), we |
2962 | * don't much care if it's null-extended or not. So in this |
2963 | * case also, we can just ignore the qual and discard the left |
2964 | * join. |
2965 | */ |
2966 | if ((varno = get_result_relid(root, j->rarg)) != 0 && |
2967 | (j->quals == NULL || |
2968 | !find_dependent_phvs((Node *) root->parse, varno))) |
2969 | { |
2970 | remove_result_refs(root, varno, j->larg); |
2971 | jtnode = j->larg; |
2972 | } |
2973 | break; |
2974 | case JOIN_RIGHT: |
2975 | /* Mirror-image of the JOIN_LEFT case */ |
2976 | if ((varno = get_result_relid(root, j->larg)) != 0 && |
2977 | (j->quals == NULL || |
2978 | !find_dependent_phvs((Node *) root->parse, varno))) |
2979 | { |
2980 | remove_result_refs(root, varno, j->rarg); |
2981 | jtnode = j->rarg; |
2982 | } |
2983 | break; |
2984 | case JOIN_SEMI: |
2985 | |
2986 | /* |
2987 | * We may simplify this case if the RHS is an RTE_RESULT; the |
2988 | * join qual becomes effectively just a filter qual for the |
2989 | * LHS, since we should either return the LHS row or not. For |
2990 | * simplicity we inject the filter qual into a new FromExpr. |
2991 | * |
2992 | * Unlike the LEFT/RIGHT cases, we just Assert that there are |
2993 | * no PHVs that need to be evaluated at the semijoin's RHS, |
2994 | * since the rest of the query couldn't reference any outputs |
2995 | * of the semijoin's RHS. |
2996 | */ |
2997 | if ((varno = get_result_relid(root, j->rarg)) != 0) |
2998 | { |
2999 | Assert(!find_dependent_phvs((Node *) root->parse, varno)); |
3000 | remove_result_refs(root, varno, j->larg); |
3001 | if (j->quals) |
3002 | jtnode = (Node *) |
3003 | makeFromExpr(list_make1(j->larg), j->quals); |
3004 | else |
3005 | jtnode = j->larg; |
3006 | } |
3007 | break; |
3008 | case JOIN_FULL: |
3009 | case JOIN_ANTI: |
3010 | /* We have no special smarts for these cases */ |
3011 | break; |
3012 | default: |
3013 | elog(ERROR, "unrecognized join type: %d" , |
3014 | (int) j->jointype); |
3015 | break; |
3016 | } |
3017 | } |
3018 | else |
3019 | elog(ERROR, "unrecognized node type: %d" , |
3020 | (int) nodeTag(jtnode)); |
3021 | return jtnode; |
3022 | } |
3023 | |
3024 | /* |
3025 | * get_result_relid |
3026 | * If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid; |
3027 | * otherwise return 0. |
3028 | */ |
3029 | static int |
3030 | get_result_relid(PlannerInfo *root, Node *jtnode) |
3031 | { |
3032 | int varno; |
3033 | |
3034 | if (!IsA(jtnode, RangeTblRef)) |
3035 | return 0; |
3036 | varno = ((RangeTblRef *) jtnode)->rtindex; |
3037 | if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT) |
3038 | return 0; |
3039 | return varno; |
3040 | } |
3041 | |
3042 | /* |
3043 | * remove_result_refs |
3044 | * Helper routine for dropping an unneeded RTE_RESULT RTE. |
3045 | * |
3046 | * This doesn't physically remove the RTE from the jointree, because that's |
3047 | * more easily handled in remove_useless_results_recurse. What it does do |
3048 | * is the necessary cleanup in the rest of the tree: we must adjust any PHVs |
3049 | * that may reference the RTE. Be sure to call this at a point where the |
3050 | * jointree is valid (no disconnected nodes). |
3051 | * |
3052 | * Note that we don't need to process the append_rel_list, since RTEs |
3053 | * referenced directly in the jointree won't be appendrel members. |
3054 | * |
3055 | * varno is the RTE_RESULT's relid. |
3056 | * newjtloc is the jointree location at which any PHVs referencing the |
3057 | * RTE_RESULT should be evaluated instead. |
3058 | */ |
3059 | static void |
3060 | remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc) |
3061 | { |
3062 | /* Fix up PlaceHolderVars as needed */ |
3063 | /* If there are no PHVs anywhere, we can skip this bit */ |
3064 | if (root->glob->lastPHId != 0) |
3065 | { |
3066 | Relids subrelids; |
3067 | |
3068 | subrelids = get_relids_in_jointree(newjtloc, false); |
3069 | Assert(!bms_is_empty(subrelids)); |
3070 | substitute_phv_relids((Node *) root->parse, varno, subrelids); |
3071 | } |
3072 | |
3073 | /* |
3074 | * We also need to remove any PlanRowMark referencing the RTE, but we |
3075 | * postpone that work until we return to remove_useless_result_rtes. |
3076 | */ |
3077 | } |
3078 | |
3079 | |
3080 | /* |
3081 | * find_dependent_phvs - are there any PlaceHolderVars whose relids are |
3082 | * exactly the given varno? |
3083 | */ |
3084 | |
3085 | typedef struct |
3086 | { |
3087 | Relids relids; |
3088 | int sublevels_up; |
3089 | } find_dependent_phvs_context; |
3090 | |
3091 | static bool |
3092 | find_dependent_phvs_walker(Node *node, |
3093 | find_dependent_phvs_context *context) |
3094 | { |
3095 | if (node == NULL) |
3096 | return false; |
3097 | if (IsA(node, PlaceHolderVar)) |
3098 | { |
3099 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
3100 | |
3101 | if (phv->phlevelsup == context->sublevels_up && |
3102 | bms_equal(context->relids, phv->phrels)) |
3103 | return true; |
3104 | /* fall through to examine children */ |
3105 | } |
3106 | if (IsA(node, Query)) |
3107 | { |
3108 | /* Recurse into subselects */ |
3109 | bool result; |
3110 | |
3111 | context->sublevels_up++; |
3112 | result = query_tree_walker((Query *) node, |
3113 | find_dependent_phvs_walker, |
3114 | (void *) context, 0); |
3115 | context->sublevels_up--; |
3116 | return result; |
3117 | } |
3118 | /* Shouldn't need to handle planner auxiliary nodes here */ |
3119 | Assert(!IsA(node, SpecialJoinInfo)); |
3120 | Assert(!IsA(node, AppendRelInfo)); |
3121 | Assert(!IsA(node, PlaceHolderInfo)); |
3122 | Assert(!IsA(node, MinMaxAggInfo)); |
3123 | |
3124 | return expression_tree_walker(node, find_dependent_phvs_walker, |
3125 | (void *) context); |
3126 | } |
3127 | |
3128 | static bool |
3129 | find_dependent_phvs(Node *node, int varno) |
3130 | { |
3131 | find_dependent_phvs_context context; |
3132 | |
3133 | context.relids = bms_make_singleton(varno); |
3134 | context.sublevels_up = 0; |
3135 | |
3136 | /* |
3137 | * Must be prepared to start with a Query or a bare expression tree. |
3138 | */ |
3139 | return query_or_expression_tree_walker(node, |
3140 | find_dependent_phvs_walker, |
3141 | (void *) &context, |
3142 | 0); |
3143 | } |
3144 | |
3145 | /* |
3146 | * substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up |
3147 | * a subquery or removing an RTE_RESULT jointree item |
3148 | * |
3149 | * Find any PlaceHolderVar nodes in the given tree that reference the |
3150 | * pulled-up relid, and change them to reference the replacement relid(s). |
3151 | * |
3152 | * NOTE: although this has the form of a walker, we cheat and modify the |
3153 | * nodes in-place. This should be OK since the tree was copied by |
3154 | * pullup_replace_vars earlier. Avoid scribbling on the original values of |
3155 | * the bitmapsets, though, because expression_tree_mutator doesn't copy those. |
3156 | */ |
3157 | |
3158 | typedef struct |
3159 | { |
3160 | int varno; |
3161 | int sublevels_up; |
3162 | Relids subrelids; |
3163 | } substitute_phv_relids_context; |
3164 | |
3165 | static bool |
3166 | substitute_phv_relids_walker(Node *node, |
3167 | substitute_phv_relids_context *context) |
3168 | { |
3169 | if (node == NULL) |
3170 | return false; |
3171 | if (IsA(node, PlaceHolderVar)) |
3172 | { |
3173 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
3174 | |
3175 | if (phv->phlevelsup == context->sublevels_up && |
3176 | bms_is_member(context->varno, phv->phrels)) |
3177 | { |
3178 | phv->phrels = bms_union(phv->phrels, |
3179 | context->subrelids); |
3180 | phv->phrels = bms_del_member(phv->phrels, |
3181 | context->varno); |
3182 | /* Assert we haven't broken the PHV */ |
3183 | Assert(!bms_is_empty(phv->phrels)); |
3184 | } |
3185 | /* fall through to examine children */ |
3186 | } |
3187 | if (IsA(node, Query)) |
3188 | { |
3189 | /* Recurse into subselects */ |
3190 | bool result; |
3191 | |
3192 | context->sublevels_up++; |
3193 | result = query_tree_walker((Query *) node, |
3194 | substitute_phv_relids_walker, |
3195 | (void *) context, 0); |
3196 | context->sublevels_up--; |
3197 | return result; |
3198 | } |
3199 | /* Shouldn't need to handle planner auxiliary nodes here */ |
3200 | Assert(!IsA(node, SpecialJoinInfo)); |
3201 | Assert(!IsA(node, AppendRelInfo)); |
3202 | Assert(!IsA(node, PlaceHolderInfo)); |
3203 | Assert(!IsA(node, MinMaxAggInfo)); |
3204 | |
3205 | return expression_tree_walker(node, substitute_phv_relids_walker, |
3206 | (void *) context); |
3207 | } |
3208 | |
3209 | static void |
3210 | substitute_phv_relids(Node *node, int varno, Relids subrelids) |
3211 | { |
3212 | substitute_phv_relids_context context; |
3213 | |
3214 | context.varno = varno; |
3215 | context.sublevels_up = 0; |
3216 | context.subrelids = subrelids; |
3217 | |
3218 | /* |
3219 | * Must be prepared to start with a Query or a bare expression tree. |
3220 | */ |
3221 | query_or_expression_tree_walker(node, |
3222 | substitute_phv_relids_walker, |
3223 | (void *) &context, |
3224 | 0); |
3225 | } |
3226 | |
3227 | /* |
3228 | * fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes |
3229 | * |
3230 | * When we pull up a subquery, any AppendRelInfo references to the subquery's |
3231 | * RT index have to be replaced by the substituted relid (and there had better |
3232 | * be only one). We also need to apply substitute_phv_relids to their |
3233 | * translated_vars lists, since those might contain PlaceHolderVars. |
3234 | * |
3235 | * We assume we may modify the AppendRelInfo nodes in-place. |
3236 | */ |
3237 | static void |
3238 | fix_append_rel_relids(List *append_rel_list, int varno, Relids subrelids) |
3239 | { |
3240 | ListCell *l; |
3241 | int subvarno = -1; |
3242 | |
3243 | /* |
3244 | * We only want to extract the member relid once, but we mustn't fail |
3245 | * immediately if there are multiple members; it could be that none of the |
3246 | * AppendRelInfo nodes refer to it. So compute it on first use. Note that |
3247 | * bms_singleton_member will complain if set is not singleton. |
3248 | */ |
3249 | foreach(l, append_rel_list) |
3250 | { |
3251 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); |
3252 | |
3253 | /* The parent_relid shouldn't ever be a pullup target */ |
3254 | Assert(appinfo->parent_relid != varno); |
3255 | |
3256 | if (appinfo->child_relid == varno) |
3257 | { |
3258 | if (subvarno < 0) |
3259 | subvarno = bms_singleton_member(subrelids); |
3260 | appinfo->child_relid = subvarno; |
3261 | } |
3262 | |
3263 | /* Also fix up any PHVs in its translated vars */ |
3264 | substitute_phv_relids((Node *) appinfo->translated_vars, |
3265 | varno, subrelids); |
3266 | } |
3267 | } |
3268 | |
3269 | /* |
3270 | * get_relids_in_jointree: get set of RT indexes present in a jointree |
3271 | * |
3272 | * If include_joins is true, join RT indexes are included; if false, |
3273 | * only base rels are included. |
3274 | */ |
3275 | Relids |
3276 | get_relids_in_jointree(Node *jtnode, bool include_joins) |
3277 | { |
3278 | Relids result = NULL; |
3279 | |
3280 | if (jtnode == NULL) |
3281 | return result; |
3282 | if (IsA(jtnode, RangeTblRef)) |
3283 | { |
3284 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
3285 | |
3286 | result = bms_make_singleton(varno); |
3287 | } |
3288 | else if (IsA(jtnode, FromExpr)) |
3289 | { |
3290 | FromExpr *f = (FromExpr *) jtnode; |
3291 | ListCell *l; |
3292 | |
3293 | foreach(l, f->fromlist) |
3294 | { |
3295 | result = bms_join(result, |
3296 | get_relids_in_jointree(lfirst(l), |
3297 | include_joins)); |
3298 | } |
3299 | } |
3300 | else if (IsA(jtnode, JoinExpr)) |
3301 | { |
3302 | JoinExpr *j = (JoinExpr *) jtnode; |
3303 | |
3304 | result = get_relids_in_jointree(j->larg, include_joins); |
3305 | result = bms_join(result, |
3306 | get_relids_in_jointree(j->rarg, include_joins)); |
3307 | if (include_joins && j->rtindex) |
3308 | result = bms_add_member(result, j->rtindex); |
3309 | } |
3310 | else |
3311 | elog(ERROR, "unrecognized node type: %d" , |
3312 | (int) nodeTag(jtnode)); |
3313 | return result; |
3314 | } |
3315 | |
3316 | /* |
3317 | * get_relids_for_join: get set of base RT indexes making up a join |
3318 | */ |
3319 | Relids |
3320 | get_relids_for_join(Query *query, int joinrelid) |
3321 | { |
3322 | Node *jtnode; |
3323 | |
3324 | jtnode = find_jointree_node_for_rel((Node *) query->jointree, |
3325 | joinrelid); |
3326 | if (!jtnode) |
3327 | elog(ERROR, "could not find join node %d" , joinrelid); |
3328 | return get_relids_in_jointree(jtnode, false); |
3329 | } |
3330 | |
3331 | /* |
3332 | * find_jointree_node_for_rel: locate jointree node for a base or join RT index |
3333 | * |
3334 | * Returns NULL if not found |
3335 | */ |
3336 | static Node * |
3337 | find_jointree_node_for_rel(Node *jtnode, int relid) |
3338 | { |
3339 | if (jtnode == NULL) |
3340 | return NULL; |
3341 | if (IsA(jtnode, RangeTblRef)) |
3342 | { |
3343 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
3344 | |
3345 | if (relid == varno) |
3346 | return jtnode; |
3347 | } |
3348 | else if (IsA(jtnode, FromExpr)) |
3349 | { |
3350 | FromExpr *f = (FromExpr *) jtnode; |
3351 | ListCell *l; |
3352 | |
3353 | foreach(l, f->fromlist) |
3354 | { |
3355 | jtnode = find_jointree_node_for_rel(lfirst(l), relid); |
3356 | if (jtnode) |
3357 | return jtnode; |
3358 | } |
3359 | } |
3360 | else if (IsA(jtnode, JoinExpr)) |
3361 | { |
3362 | JoinExpr *j = (JoinExpr *) jtnode; |
3363 | |
3364 | if (relid == j->rtindex) |
3365 | return jtnode; |
3366 | jtnode = find_jointree_node_for_rel(j->larg, relid); |
3367 | if (jtnode) |
3368 | return jtnode; |
3369 | jtnode = find_jointree_node_for_rel(j->rarg, relid); |
3370 | if (jtnode) |
3371 | return jtnode; |
3372 | } |
3373 | else |
3374 | elog(ERROR, "unrecognized node type: %d" , |
3375 | (int) nodeTag(jtnode)); |
3376 | return NULL; |
3377 | } |
3378 | |