| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * prepjointree.c |
| 4 | * Planner preprocessing for subqueries and join tree manipulation. |
| 5 | * |
| 6 | * NOTE: the intended sequence for invoking these operations is |
| 7 | * replace_empty_jointree |
| 8 | * pull_up_sublinks |
| 9 | * inline_set_returning_functions |
| 10 | * pull_up_subqueries |
| 11 | * flatten_simple_union_all |
| 12 | * do expression preprocessing (including flattening JOIN alias vars) |
| 13 | * reduce_outer_joins |
| 14 | * remove_useless_result_rtes |
| 15 | * |
| 16 | * |
| 17 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 18 | * Portions Copyright (c) 1994, Regents of the University of California |
| 19 | * |
| 20 | * |
| 21 | * IDENTIFICATION |
| 22 | * src/backend/optimizer/prep/prepjointree.c |
| 23 | * |
| 24 | *------------------------------------------------------------------------- |
| 25 | */ |
| 26 | #include "postgres.h" |
| 27 | |
| 28 | #include "catalog/pg_type.h" |
| 29 | #include "nodes/makefuncs.h" |
| 30 | #include "nodes/nodeFuncs.h" |
| 31 | #include "optimizer/clauses.h" |
| 32 | #include "optimizer/optimizer.h" |
| 33 | #include "optimizer/placeholder.h" |
| 34 | #include "optimizer/prep.h" |
| 35 | #include "optimizer/subselect.h" |
| 36 | #include "optimizer/tlist.h" |
| 37 | #include "parser/parse_relation.h" |
| 38 | #include "parser/parsetree.h" |
| 39 | #include "rewrite/rewriteManip.h" |
| 40 | |
| 41 | |
| 42 | typedef struct pullup_replace_vars_context |
| 43 | { |
| 44 | PlannerInfo *root; |
| 45 | List *targetlist; /* tlist of subquery being pulled up */ |
| 46 | RangeTblEntry *target_rte; /* RTE of subquery */ |
| 47 | Relids relids; /* relids within subquery, as numbered after |
| 48 | * pullup (set only if target_rte->lateral) */ |
| 49 | bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */ |
| 50 | int varno; /* varno of subquery */ |
| 51 | bool need_phvs; /* do we need PlaceHolderVars? */ |
| 52 | bool wrap_non_vars; /* do we need 'em on *all* non-Vars? */ |
| 53 | Node **rv_cache; /* cache for results with PHVs */ |
| 54 | } pullup_replace_vars_context; |
| 55 | |
| 56 | typedef struct reduce_outer_joins_state |
| 57 | { |
| 58 | Relids relids; /* base relids within this subtree */ |
| 59 | bool contains_outer; /* does subtree contain outer join(s)? */ |
| 60 | List *sub_states; /* List of states for subtree components */ |
| 61 | } reduce_outer_joins_state; |
| 62 | |
| 63 | static Node *pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, |
| 64 | Relids *relids); |
| 65 | static Node *pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, |
| 66 | Node **jtlink1, Relids available_rels1, |
| 67 | Node **jtlink2, Relids available_rels2); |
| 68 | static Node *pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, |
| 69 | JoinExpr *lowest_outer_join, |
| 70 | JoinExpr *lowest_nulling_outer_join, |
| 71 | AppendRelInfo *containing_appendrel); |
| 72 | static Node *pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, |
| 73 | RangeTblEntry *rte, |
| 74 | JoinExpr *lowest_outer_join, |
| 75 | JoinExpr *lowest_nulling_outer_join, |
| 76 | AppendRelInfo *containing_appendrel); |
| 77 | static Node *pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, |
| 78 | RangeTblEntry *rte); |
| 79 | static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, |
| 80 | int parentRTindex, Query *setOpQuery, |
| 81 | int childRToffset); |
| 82 | static void make_setop_translation_list(Query *query, Index newvarno, |
| 83 | List **translated_vars); |
| 84 | static bool is_simple_subquery(Query *subquery, RangeTblEntry *rte, |
| 85 | JoinExpr *lowest_outer_join); |
| 86 | static Node *pull_up_simple_values(PlannerInfo *root, Node *jtnode, |
| 87 | RangeTblEntry *rte); |
| 88 | static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte); |
| 89 | static bool is_simple_union_all(Query *subquery); |
| 90 | static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, |
| 91 | List *colTypes); |
| 92 | static bool is_safe_append_member(Query *subquery); |
| 93 | static bool jointree_contains_lateral_outer_refs(Node *jtnode, bool restricted, |
| 94 | Relids safe_upper_varnos); |
| 95 | static void replace_vars_in_jointree(Node *jtnode, |
| 96 | pullup_replace_vars_context *context, |
| 97 | JoinExpr *lowest_nulling_outer_join); |
| 98 | static Node *pullup_replace_vars(Node *expr, |
| 99 | pullup_replace_vars_context *context); |
| 100 | static Node *pullup_replace_vars_callback(Var *var, |
| 101 | replace_rte_variables_context *context); |
| 102 | static Query *pullup_replace_vars_subquery(Query *query, |
| 103 | pullup_replace_vars_context *context); |
| 104 | static reduce_outer_joins_state *reduce_outer_joins_pass1(Node *jtnode); |
| 105 | static void reduce_outer_joins_pass2(Node *jtnode, |
| 106 | reduce_outer_joins_state *state, |
| 107 | PlannerInfo *root, |
| 108 | Relids nonnullable_rels, |
| 109 | List *nonnullable_vars, |
| 110 | List *forced_null_vars); |
| 111 | static Node *remove_useless_results_recurse(PlannerInfo *root, Node *jtnode); |
| 112 | static int get_result_relid(PlannerInfo *root, Node *jtnode); |
| 113 | static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc); |
| 114 | static bool find_dependent_phvs(Node *node, int varno); |
| 115 | static void substitute_phv_relids(Node *node, |
| 116 | int varno, Relids subrelids); |
| 117 | static void fix_append_rel_relids(List *append_rel_list, int varno, |
| 118 | Relids subrelids); |
| 119 | static Node *find_jointree_node_for_rel(Node *jtnode, int relid); |
| 120 | |
| 121 | |
| 122 | /* |
| 123 | * replace_empty_jointree |
| 124 | * If the Query's jointree is empty, replace it with a dummy RTE_RESULT |
| 125 | * relation. |
| 126 | * |
| 127 | * By doing this, we can avoid a bunch of corner cases that formerly existed |
| 128 | * for SELECTs with omitted FROM clauses. An example is that a subquery |
| 129 | * with empty jointree previously could not be pulled up, because that would |
| 130 | * have resulted in an empty relid set, making the subquery not uniquely |
| 131 | * identifiable for join or PlaceHolderVar processing. |
| 132 | * |
| 133 | * Unlike most other functions in this file, this function doesn't recurse; |
| 134 | * we rely on other processing to invoke it on sub-queries at suitable times. |
| 135 | */ |
| 136 | void |
| 137 | replace_empty_jointree(Query *parse) |
| 138 | { |
| 139 | RangeTblEntry *rte; |
| 140 | Index rti; |
| 141 | RangeTblRef *rtr; |
| 142 | |
| 143 | /* Nothing to do if jointree is already nonempty */ |
| 144 | if (parse->jointree->fromlist != NIL) |
| 145 | return; |
| 146 | |
| 147 | /* We mustn't change it in the top level of a setop tree, either */ |
| 148 | if (parse->setOperations) |
| 149 | return; |
| 150 | |
| 151 | /* Create suitable RTE */ |
| 152 | rte = makeNode(RangeTblEntry); |
| 153 | rte->rtekind = RTE_RESULT; |
| 154 | rte->eref = makeAlias("*RESULT*" , NIL); |
| 155 | |
| 156 | /* Add it to rangetable */ |
| 157 | parse->rtable = lappend(parse->rtable, rte); |
| 158 | rti = list_length(parse->rtable); |
| 159 | |
| 160 | /* And jam a reference into the jointree */ |
| 161 | rtr = makeNode(RangeTblRef); |
| 162 | rtr->rtindex = rti; |
| 163 | parse->jointree->fromlist = list_make1(rtr); |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * pull_up_sublinks |
| 168 | * Attempt to pull up ANY and EXISTS SubLinks to be treated as |
| 169 | * semijoins or anti-semijoins. |
| 170 | * |
| 171 | * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the |
| 172 | * sub-SELECT up to become a rangetable entry and treating the implied |
| 173 | * comparisons as quals of a semijoin. However, this optimization *only* |
| 174 | * works at the top level of WHERE or a JOIN/ON clause, because we cannot |
| 175 | * distinguish whether the ANY ought to return FALSE or NULL in cases |
| 176 | * involving NULL inputs. Also, in an outer join's ON clause we can only |
| 177 | * do this if the sublink is degenerate (ie, references only the nullable |
| 178 | * side of the join). In that case it is legal to push the semijoin |
| 179 | * down into the nullable side of the join. If the sublink references any |
| 180 | * nonnullable-side variables then it would have to be evaluated as part |
| 181 | * of the outer join, which makes things way too complicated. |
| 182 | * |
| 183 | * Under similar conditions, EXISTS and NOT EXISTS clauses can be handled |
| 184 | * by pulling up the sub-SELECT and creating a semijoin or anti-semijoin. |
| 185 | * |
| 186 | * This routine searches for such clauses and does the necessary parsetree |
| 187 | * transformations if any are found. |
| 188 | * |
| 189 | * This routine has to run before preprocess_expression(), so the quals |
| 190 | * clauses are not yet reduced to implicit-AND format, and are not guaranteed |
| 191 | * to be AND/OR-flat either. That means we need to recursively search through |
| 192 | * explicit AND clauses. We stop as soon as we hit a non-AND item. |
| 193 | */ |
| 194 | void |
| 195 | pull_up_sublinks(PlannerInfo *root) |
| 196 | { |
| 197 | Node *jtnode; |
| 198 | Relids relids; |
| 199 | |
| 200 | /* Begin recursion through the jointree */ |
| 201 | jtnode = pull_up_sublinks_jointree_recurse(root, |
| 202 | (Node *) root->parse->jointree, |
| 203 | &relids); |
| 204 | |
| 205 | /* |
| 206 | * root->parse->jointree must always be a FromExpr, so insert a dummy one |
| 207 | * if we got a bare RangeTblRef or JoinExpr out of the recursion. |
| 208 | */ |
| 209 | if (IsA(jtnode, FromExpr)) |
| 210 | root->parse->jointree = (FromExpr *) jtnode; |
| 211 | else |
| 212 | root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Recurse through jointree nodes for pull_up_sublinks() |
| 217 | * |
| 218 | * In addition to returning the possibly-modified jointree node, we return |
| 219 | * a relids set of the contained rels into *relids. |
| 220 | */ |
| 221 | static Node * |
| 222 | pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, |
| 223 | Relids *relids) |
| 224 | { |
| 225 | if (jtnode == NULL) |
| 226 | { |
| 227 | *relids = NULL; |
| 228 | } |
| 229 | else if (IsA(jtnode, RangeTblRef)) |
| 230 | { |
| 231 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 232 | |
| 233 | *relids = bms_make_singleton(varno); |
| 234 | /* jtnode is returned unmodified */ |
| 235 | } |
| 236 | else if (IsA(jtnode, FromExpr)) |
| 237 | { |
| 238 | FromExpr *f = (FromExpr *) jtnode; |
| 239 | List *newfromlist = NIL; |
| 240 | Relids frelids = NULL; |
| 241 | FromExpr *newf; |
| 242 | Node *jtlink; |
| 243 | ListCell *l; |
| 244 | |
| 245 | /* First, recurse to process children and collect their relids */ |
| 246 | foreach(l, f->fromlist) |
| 247 | { |
| 248 | Node *newchild; |
| 249 | Relids childrelids; |
| 250 | |
| 251 | newchild = pull_up_sublinks_jointree_recurse(root, |
| 252 | lfirst(l), |
| 253 | &childrelids); |
| 254 | newfromlist = lappend(newfromlist, newchild); |
| 255 | frelids = bms_join(frelids, childrelids); |
| 256 | } |
| 257 | /* Build the replacement FromExpr; no quals yet */ |
| 258 | newf = makeFromExpr(newfromlist, NULL); |
| 259 | /* Set up a link representing the rebuilt jointree */ |
| 260 | jtlink = (Node *) newf; |
| 261 | /* Now process qual --- all children are available for use */ |
| 262 | newf->quals = pull_up_sublinks_qual_recurse(root, f->quals, |
| 263 | &jtlink, frelids, |
| 264 | NULL, NULL); |
| 265 | |
| 266 | /* |
| 267 | * Note that the result will be either newf, or a stack of JoinExprs |
| 268 | * with newf at the base. We rely on subsequent optimization steps to |
| 269 | * flatten this and rearrange the joins as needed. |
| 270 | * |
| 271 | * Although we could include the pulled-up subqueries in the returned |
| 272 | * relids, there's no need since upper quals couldn't refer to their |
| 273 | * outputs anyway. |
| 274 | */ |
| 275 | *relids = frelids; |
| 276 | jtnode = jtlink; |
| 277 | } |
| 278 | else if (IsA(jtnode, JoinExpr)) |
| 279 | { |
| 280 | JoinExpr *j; |
| 281 | Relids leftrelids; |
| 282 | Relids rightrelids; |
| 283 | Node *jtlink; |
| 284 | |
| 285 | /* |
| 286 | * Make a modifiable copy of join node, but don't bother copying its |
| 287 | * subnodes (yet). |
| 288 | */ |
| 289 | j = (JoinExpr *) palloc(sizeof(JoinExpr)); |
| 290 | memcpy(j, jtnode, sizeof(JoinExpr)); |
| 291 | jtlink = (Node *) j; |
| 292 | |
| 293 | /* Recurse to process children and collect their relids */ |
| 294 | j->larg = pull_up_sublinks_jointree_recurse(root, j->larg, |
| 295 | &leftrelids); |
| 296 | j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, |
| 297 | &rightrelids); |
| 298 | |
| 299 | /* |
| 300 | * Now process qual, showing appropriate child relids as available, |
| 301 | * and attach any pulled-up jointree items at the right place. In the |
| 302 | * inner-join case we put new JoinExprs above the existing one (much |
| 303 | * as for a FromExpr-style join). In outer-join cases the new |
| 304 | * JoinExprs must go into the nullable side of the outer join. The |
| 305 | * point of the available_rels machinations is to ensure that we only |
| 306 | * pull up quals for which that's okay. |
| 307 | * |
| 308 | * We don't expect to see any pre-existing JOIN_SEMI or JOIN_ANTI |
| 309 | * nodes here. |
| 310 | */ |
| 311 | switch (j->jointype) |
| 312 | { |
| 313 | case JOIN_INNER: |
| 314 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
| 315 | &jtlink, |
| 316 | bms_union(leftrelids, |
| 317 | rightrelids), |
| 318 | NULL, NULL); |
| 319 | break; |
| 320 | case JOIN_LEFT: |
| 321 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
| 322 | &j->rarg, |
| 323 | rightrelids, |
| 324 | NULL, NULL); |
| 325 | break; |
| 326 | case JOIN_FULL: |
| 327 | /* can't do anything with full-join quals */ |
| 328 | break; |
| 329 | case JOIN_RIGHT: |
| 330 | j->quals = pull_up_sublinks_qual_recurse(root, j->quals, |
| 331 | &j->larg, |
| 332 | leftrelids, |
| 333 | NULL, NULL); |
| 334 | break; |
| 335 | default: |
| 336 | elog(ERROR, "unrecognized join type: %d" , |
| 337 | (int) j->jointype); |
| 338 | break; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * Although we could include the pulled-up subqueries in the returned |
| 343 | * relids, there's no need since upper quals couldn't refer to their |
| 344 | * outputs anyway. But we *do* need to include the join's own rtindex |
| 345 | * because we haven't yet collapsed join alias variables, so upper |
| 346 | * levels would mistakenly think they couldn't use references to this |
| 347 | * join. |
| 348 | */ |
| 349 | *relids = bms_join(leftrelids, rightrelids); |
| 350 | if (j->rtindex) |
| 351 | *relids = bms_add_member(*relids, j->rtindex); |
| 352 | jtnode = jtlink; |
| 353 | } |
| 354 | else |
| 355 | elog(ERROR, "unrecognized node type: %d" , |
| 356 | (int) nodeTag(jtnode)); |
| 357 | return jtnode; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Recurse through top-level qual nodes for pull_up_sublinks() |
| 362 | * |
| 363 | * jtlink1 points to the link in the jointree where any new JoinExprs should |
| 364 | * be inserted if they reference available_rels1 (i.e., available_rels1 |
| 365 | * denotes the relations present underneath jtlink1). Optionally, jtlink2 can |
| 366 | * point to a second link where new JoinExprs should be inserted if they |
| 367 | * reference available_rels2 (pass NULL for both those arguments if not used). |
| 368 | * Note that SubLinks referencing both sets of variables cannot be optimized. |
| 369 | * If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1 |
| 370 | * and/or jtlink2 in the order we encounter them. We rely on subsequent |
| 371 | * optimization to rearrange the stack if appropriate. |
| 372 | * |
| 373 | * Returns the replacement qual node, or NULL if the qual should be removed. |
| 374 | */ |
| 375 | static Node * |
| 376 | pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, |
| 377 | Node **jtlink1, Relids available_rels1, |
| 378 | Node **jtlink2, Relids available_rels2) |
| 379 | { |
| 380 | if (node == NULL) |
| 381 | return NULL; |
| 382 | if (IsA(node, SubLink)) |
| 383 | { |
| 384 | SubLink *sublink = (SubLink *) node; |
| 385 | JoinExpr *j; |
| 386 | Relids child_rels; |
| 387 | |
| 388 | /* Is it a convertible ANY or EXISTS clause? */ |
| 389 | if (sublink->subLinkType == ANY_SUBLINK) |
| 390 | { |
| 391 | if ((j = convert_ANY_sublink_to_join(root, sublink, |
| 392 | available_rels1)) != NULL) |
| 393 | { |
| 394 | /* Yes; insert the new join node into the join tree */ |
| 395 | j->larg = *jtlink1; |
| 396 | *jtlink1 = (Node *) j; |
| 397 | /* Recursively process pulled-up jointree nodes */ |
| 398 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 399 | j->rarg, |
| 400 | &child_rels); |
| 401 | |
| 402 | /* |
| 403 | * Now recursively process the pulled-up quals. Any inserted |
| 404 | * joins can get stacked onto either j->larg or j->rarg, |
| 405 | * depending on which rels they reference. |
| 406 | */ |
| 407 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 408 | j->quals, |
| 409 | &j->larg, |
| 410 | available_rels1, |
| 411 | &j->rarg, |
| 412 | child_rels); |
| 413 | /* Return NULL representing constant TRUE */ |
| 414 | return NULL; |
| 415 | } |
| 416 | if (available_rels2 != NULL && |
| 417 | (j = convert_ANY_sublink_to_join(root, sublink, |
| 418 | available_rels2)) != NULL) |
| 419 | { |
| 420 | /* Yes; insert the new join node into the join tree */ |
| 421 | j->larg = *jtlink2; |
| 422 | *jtlink2 = (Node *) j; |
| 423 | /* Recursively process pulled-up jointree nodes */ |
| 424 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 425 | j->rarg, |
| 426 | &child_rels); |
| 427 | |
| 428 | /* |
| 429 | * Now recursively process the pulled-up quals. Any inserted |
| 430 | * joins can get stacked onto either j->larg or j->rarg, |
| 431 | * depending on which rels they reference. |
| 432 | */ |
| 433 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 434 | j->quals, |
| 435 | &j->larg, |
| 436 | available_rels2, |
| 437 | &j->rarg, |
| 438 | child_rels); |
| 439 | /* Return NULL representing constant TRUE */ |
| 440 | return NULL; |
| 441 | } |
| 442 | } |
| 443 | else if (sublink->subLinkType == EXISTS_SUBLINK) |
| 444 | { |
| 445 | if ((j = convert_EXISTS_sublink_to_join(root, sublink, false, |
| 446 | available_rels1)) != NULL) |
| 447 | { |
| 448 | /* Yes; insert the new join node into the join tree */ |
| 449 | j->larg = *jtlink1; |
| 450 | *jtlink1 = (Node *) j; |
| 451 | /* Recursively process pulled-up jointree nodes */ |
| 452 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 453 | j->rarg, |
| 454 | &child_rels); |
| 455 | |
| 456 | /* |
| 457 | * Now recursively process the pulled-up quals. Any inserted |
| 458 | * joins can get stacked onto either j->larg or j->rarg, |
| 459 | * depending on which rels they reference. |
| 460 | */ |
| 461 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 462 | j->quals, |
| 463 | &j->larg, |
| 464 | available_rels1, |
| 465 | &j->rarg, |
| 466 | child_rels); |
| 467 | /* Return NULL representing constant TRUE */ |
| 468 | return NULL; |
| 469 | } |
| 470 | if (available_rels2 != NULL && |
| 471 | (j = convert_EXISTS_sublink_to_join(root, sublink, false, |
| 472 | available_rels2)) != NULL) |
| 473 | { |
| 474 | /* Yes; insert the new join node into the join tree */ |
| 475 | j->larg = *jtlink2; |
| 476 | *jtlink2 = (Node *) j; |
| 477 | /* Recursively process pulled-up jointree nodes */ |
| 478 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 479 | j->rarg, |
| 480 | &child_rels); |
| 481 | |
| 482 | /* |
| 483 | * Now recursively process the pulled-up quals. Any inserted |
| 484 | * joins can get stacked onto either j->larg or j->rarg, |
| 485 | * depending on which rels they reference. |
| 486 | */ |
| 487 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 488 | j->quals, |
| 489 | &j->larg, |
| 490 | available_rels2, |
| 491 | &j->rarg, |
| 492 | child_rels); |
| 493 | /* Return NULL representing constant TRUE */ |
| 494 | return NULL; |
| 495 | } |
| 496 | } |
| 497 | /* Else return it unmodified */ |
| 498 | return node; |
| 499 | } |
| 500 | if (is_notclause(node)) |
| 501 | { |
| 502 | /* If the immediate argument of NOT is EXISTS, try to convert */ |
| 503 | SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node); |
| 504 | JoinExpr *j; |
| 505 | Relids child_rels; |
| 506 | |
| 507 | if (sublink && IsA(sublink, SubLink)) |
| 508 | { |
| 509 | if (sublink->subLinkType == EXISTS_SUBLINK) |
| 510 | { |
| 511 | if ((j = convert_EXISTS_sublink_to_join(root, sublink, true, |
| 512 | available_rels1)) != NULL) |
| 513 | { |
| 514 | /* Yes; insert the new join node into the join tree */ |
| 515 | j->larg = *jtlink1; |
| 516 | *jtlink1 = (Node *) j; |
| 517 | /* Recursively process pulled-up jointree nodes */ |
| 518 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 519 | j->rarg, |
| 520 | &child_rels); |
| 521 | |
| 522 | /* |
| 523 | * Now recursively process the pulled-up quals. Because |
| 524 | * we are underneath a NOT, we can't pull up sublinks that |
| 525 | * reference the left-hand stuff, but it's still okay to |
| 526 | * pull up sublinks referencing j->rarg. |
| 527 | */ |
| 528 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 529 | j->quals, |
| 530 | &j->rarg, |
| 531 | child_rels, |
| 532 | NULL, NULL); |
| 533 | /* Return NULL representing constant TRUE */ |
| 534 | return NULL; |
| 535 | } |
| 536 | if (available_rels2 != NULL && |
| 537 | (j = convert_EXISTS_sublink_to_join(root, sublink, true, |
| 538 | available_rels2)) != NULL) |
| 539 | { |
| 540 | /* Yes; insert the new join node into the join tree */ |
| 541 | j->larg = *jtlink2; |
| 542 | *jtlink2 = (Node *) j; |
| 543 | /* Recursively process pulled-up jointree nodes */ |
| 544 | j->rarg = pull_up_sublinks_jointree_recurse(root, |
| 545 | j->rarg, |
| 546 | &child_rels); |
| 547 | |
| 548 | /* |
| 549 | * Now recursively process the pulled-up quals. Because |
| 550 | * we are underneath a NOT, we can't pull up sublinks that |
| 551 | * reference the left-hand stuff, but it's still okay to |
| 552 | * pull up sublinks referencing j->rarg. |
| 553 | */ |
| 554 | j->quals = pull_up_sublinks_qual_recurse(root, |
| 555 | j->quals, |
| 556 | &j->rarg, |
| 557 | child_rels, |
| 558 | NULL, NULL); |
| 559 | /* Return NULL representing constant TRUE */ |
| 560 | return NULL; |
| 561 | } |
| 562 | } |
| 563 | } |
| 564 | /* Else return it unmodified */ |
| 565 | return node; |
| 566 | } |
| 567 | if (is_andclause(node)) |
| 568 | { |
| 569 | /* Recurse into AND clause */ |
| 570 | List *newclauses = NIL; |
| 571 | ListCell *l; |
| 572 | |
| 573 | foreach(l, ((BoolExpr *) node)->args) |
| 574 | { |
| 575 | Node *oldclause = (Node *) lfirst(l); |
| 576 | Node *newclause; |
| 577 | |
| 578 | newclause = pull_up_sublinks_qual_recurse(root, |
| 579 | oldclause, |
| 580 | jtlink1, |
| 581 | available_rels1, |
| 582 | jtlink2, |
| 583 | available_rels2); |
| 584 | if (newclause) |
| 585 | newclauses = lappend(newclauses, newclause); |
| 586 | } |
| 587 | /* We might have got back fewer clauses than we started with */ |
| 588 | if (newclauses == NIL) |
| 589 | return NULL; |
| 590 | else if (list_length(newclauses) == 1) |
| 591 | return (Node *) linitial(newclauses); |
| 592 | else |
| 593 | return (Node *) make_andclause(newclauses); |
| 594 | } |
| 595 | /* Stop if not an AND */ |
| 596 | return node; |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * inline_set_returning_functions |
| 601 | * Attempt to "inline" set-returning functions in the FROM clause. |
| 602 | * |
| 603 | * If an RTE_FUNCTION rtable entry invokes a set-returning function that |
| 604 | * contains just a simple SELECT, we can convert the rtable entry to an |
| 605 | * RTE_SUBQUERY entry exposing the SELECT directly. This is especially |
| 606 | * useful if the subquery can then be "pulled up" for further optimization, |
| 607 | * but we do it even if not, to reduce executor overhead. |
| 608 | * |
| 609 | * This has to be done before we have started to do any optimization of |
| 610 | * subqueries, else any such steps wouldn't get applied to subqueries |
| 611 | * obtained via inlining. However, we do it after pull_up_sublinks |
| 612 | * so that we can inline any functions used in SubLink subselects. |
| 613 | * |
| 614 | * Like most of the planner, this feels free to scribble on its input data |
| 615 | * structure. |
| 616 | */ |
| 617 | void |
| 618 | inline_set_returning_functions(PlannerInfo *root) |
| 619 | { |
| 620 | ListCell *rt; |
| 621 | |
| 622 | foreach(rt, root->parse->rtable) |
| 623 | { |
| 624 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); |
| 625 | |
| 626 | if (rte->rtekind == RTE_FUNCTION) |
| 627 | { |
| 628 | Query *funcquery; |
| 629 | |
| 630 | /* Check safety of expansion, and expand if possible */ |
| 631 | funcquery = inline_set_returning_function(root, rte); |
| 632 | if (funcquery) |
| 633 | { |
| 634 | /* Successful expansion, convert the RTE to a subquery */ |
| 635 | rte->rtekind = RTE_SUBQUERY; |
| 636 | rte->subquery = funcquery; |
| 637 | rte->security_barrier = false; |
| 638 | /* Clear fields that should not be set in a subquery RTE */ |
| 639 | rte->functions = NIL; |
| 640 | rte->funcordinality = false; |
| 641 | } |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * pull_up_subqueries |
| 648 | * Look for subqueries in the rangetable that can be pulled up into |
| 649 | * the parent query. If the subquery has no special features like |
| 650 | * grouping/aggregation then we can merge it into the parent's jointree. |
| 651 | * Also, subqueries that are simple UNION ALL structures can be |
| 652 | * converted into "append relations". |
| 653 | */ |
| 654 | void |
| 655 | pull_up_subqueries(PlannerInfo *root) |
| 656 | { |
| 657 | /* Top level of jointree must always be a FromExpr */ |
| 658 | Assert(IsA(root->parse->jointree, FromExpr)); |
| 659 | /* Recursion starts with no containing join nor appendrel */ |
| 660 | root->parse->jointree = (FromExpr *) |
| 661 | pull_up_subqueries_recurse(root, (Node *) root->parse->jointree, |
| 662 | NULL, NULL, NULL); |
| 663 | /* We should still have a FromExpr */ |
| 664 | Assert(IsA(root->parse->jointree, FromExpr)); |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * pull_up_subqueries_recurse |
| 669 | * Recursive guts of pull_up_subqueries. |
| 670 | * |
| 671 | * This recursively processes the jointree and returns a modified jointree. |
| 672 | * |
| 673 | * If this jointree node is within either side of an outer join, then |
| 674 | * lowest_outer_join references the lowest such JoinExpr node; otherwise |
| 675 | * it is NULL. We use this to constrain the effects of LATERAL subqueries. |
| 676 | * |
| 677 | * If this jointree node is within the nullable side of an outer join, then |
| 678 | * lowest_nulling_outer_join references the lowest such JoinExpr node; |
| 679 | * otherwise it is NULL. This forces use of the PlaceHolderVar mechanism for |
| 680 | * references to non-nullable targetlist items, but only for references above |
| 681 | * that join. |
| 682 | * |
| 683 | * If we are looking at a member subquery of an append relation, |
| 684 | * containing_appendrel describes that relation; else it is NULL. |
| 685 | * This forces use of the PlaceHolderVar mechanism for all non-Var targetlist |
| 686 | * items, and puts some additional restrictions on what can be pulled up. |
| 687 | * |
| 688 | * A tricky aspect of this code is that if we pull up a subquery we have |
| 689 | * to replace Vars that reference the subquery's outputs throughout the |
| 690 | * parent query, including quals attached to jointree nodes above the one |
| 691 | * we are currently processing! We handle this by being careful to maintain |
| 692 | * validity of the jointree structure while recursing, in the following sense: |
| 693 | * whenever we recurse, all qual expressions in the tree must be reachable |
| 694 | * from the top level, in case the recursive call needs to modify them. |
| 695 | * |
| 696 | * Notice also that we can't turn pullup_replace_vars loose on the whole |
| 697 | * jointree, because it'd return a mutated copy of the tree; we have to |
| 698 | * invoke it just on the quals, instead. This behavior is what makes it |
| 699 | * reasonable to pass lowest_outer_join and lowest_nulling_outer_join as |
| 700 | * pointers rather than some more-indirect way of identifying the lowest |
| 701 | * OJs. Likewise, we don't replace append_rel_list members but only their |
| 702 | * substructure, so the containing_appendrel reference is safe to use. |
| 703 | */ |
| 704 | static Node * |
| 705 | pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, |
| 706 | JoinExpr *lowest_outer_join, |
| 707 | JoinExpr *lowest_nulling_outer_join, |
| 708 | AppendRelInfo *containing_appendrel) |
| 709 | { |
| 710 | Assert(jtnode != NULL); |
| 711 | if (IsA(jtnode, RangeTblRef)) |
| 712 | { |
| 713 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 714 | RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable); |
| 715 | |
| 716 | /* |
| 717 | * Is this a subquery RTE, and if so, is the subquery simple enough to |
| 718 | * pull up? |
| 719 | * |
| 720 | * If we are looking at an append-relation member, we can't pull it up |
| 721 | * unless is_safe_append_member says so. |
| 722 | */ |
| 723 | if (rte->rtekind == RTE_SUBQUERY && |
| 724 | is_simple_subquery(rte->subquery, rte, lowest_outer_join) && |
| 725 | (containing_appendrel == NULL || |
| 726 | is_safe_append_member(rte->subquery))) |
| 727 | return pull_up_simple_subquery(root, jtnode, rte, |
| 728 | lowest_outer_join, |
| 729 | lowest_nulling_outer_join, |
| 730 | containing_appendrel); |
| 731 | |
| 732 | /* |
| 733 | * Alternatively, is it a simple UNION ALL subquery? If so, flatten |
| 734 | * into an "append relation". |
| 735 | * |
| 736 | * It's safe to do this regardless of whether this query is itself an |
| 737 | * appendrel member. (If you're thinking we should try to flatten the |
| 738 | * two levels of appendrel together, you're right; but we handle that |
| 739 | * in set_append_rel_pathlist, not here.) |
| 740 | */ |
| 741 | if (rte->rtekind == RTE_SUBQUERY && |
| 742 | is_simple_union_all(rte->subquery)) |
| 743 | return pull_up_simple_union_all(root, jtnode, rte); |
| 744 | |
| 745 | /* |
| 746 | * Or perhaps it's a simple VALUES RTE? |
| 747 | * |
| 748 | * We don't allow VALUES pullup below an outer join nor into an |
| 749 | * appendrel (such cases are impossible anyway at the moment). |
| 750 | */ |
| 751 | if (rte->rtekind == RTE_VALUES && |
| 752 | lowest_outer_join == NULL && |
| 753 | containing_appendrel == NULL && |
| 754 | is_simple_values(root, rte)) |
| 755 | return pull_up_simple_values(root, jtnode, rte); |
| 756 | |
| 757 | /* Otherwise, do nothing at this node. */ |
| 758 | } |
| 759 | else if (IsA(jtnode, FromExpr)) |
| 760 | { |
| 761 | FromExpr *f = (FromExpr *) jtnode; |
| 762 | ListCell *l; |
| 763 | |
| 764 | Assert(containing_appendrel == NULL); |
| 765 | /* Recursively transform all the child nodes */ |
| 766 | foreach(l, f->fromlist) |
| 767 | { |
| 768 | lfirst(l) = pull_up_subqueries_recurse(root, lfirst(l), |
| 769 | lowest_outer_join, |
| 770 | lowest_nulling_outer_join, |
| 771 | NULL); |
| 772 | } |
| 773 | } |
| 774 | else if (IsA(jtnode, JoinExpr)) |
| 775 | { |
| 776 | JoinExpr *j = (JoinExpr *) jtnode; |
| 777 | |
| 778 | Assert(containing_appendrel == NULL); |
| 779 | /* Recurse, being careful to tell myself when inside outer join */ |
| 780 | switch (j->jointype) |
| 781 | { |
| 782 | case JOIN_INNER: |
| 783 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
| 784 | lowest_outer_join, |
| 785 | lowest_nulling_outer_join, |
| 786 | NULL); |
| 787 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
| 788 | lowest_outer_join, |
| 789 | lowest_nulling_outer_join, |
| 790 | NULL); |
| 791 | break; |
| 792 | case JOIN_LEFT: |
| 793 | case JOIN_SEMI: |
| 794 | case JOIN_ANTI: |
| 795 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
| 796 | j, |
| 797 | lowest_nulling_outer_join, |
| 798 | NULL); |
| 799 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
| 800 | j, |
| 801 | j, |
| 802 | NULL); |
| 803 | break; |
| 804 | case JOIN_FULL: |
| 805 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
| 806 | j, |
| 807 | j, |
| 808 | NULL); |
| 809 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
| 810 | j, |
| 811 | j, |
| 812 | NULL); |
| 813 | break; |
| 814 | case JOIN_RIGHT: |
| 815 | j->larg = pull_up_subqueries_recurse(root, j->larg, |
| 816 | j, |
| 817 | j, |
| 818 | NULL); |
| 819 | j->rarg = pull_up_subqueries_recurse(root, j->rarg, |
| 820 | j, |
| 821 | lowest_nulling_outer_join, |
| 822 | NULL); |
| 823 | break; |
| 824 | default: |
| 825 | elog(ERROR, "unrecognized join type: %d" , |
| 826 | (int) j->jointype); |
| 827 | break; |
| 828 | } |
| 829 | } |
| 830 | else |
| 831 | elog(ERROR, "unrecognized node type: %d" , |
| 832 | (int) nodeTag(jtnode)); |
| 833 | return jtnode; |
| 834 | } |
| 835 | |
| 836 | /* |
| 837 | * pull_up_simple_subquery |
| 838 | * Attempt to pull up a single simple subquery. |
| 839 | * |
| 840 | * jtnode is a RangeTblRef that has been tentatively identified as a simple |
| 841 | * subquery by pull_up_subqueries. We return the replacement jointree node, |
| 842 | * or jtnode itself if we determine that the subquery can't be pulled up |
| 843 | * after all. |
| 844 | * |
| 845 | * rte is the RangeTblEntry referenced by jtnode. Remaining parameters are |
| 846 | * as for pull_up_subqueries_recurse. |
| 847 | */ |
| 848 | static Node * |
| 849 | pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, |
| 850 | JoinExpr *lowest_outer_join, |
| 851 | JoinExpr *lowest_nulling_outer_join, |
| 852 | AppendRelInfo *containing_appendrel) |
| 853 | { |
| 854 | Query *parse = root->parse; |
| 855 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 856 | Query *subquery; |
| 857 | PlannerInfo *subroot; |
| 858 | int rtoffset; |
| 859 | pullup_replace_vars_context rvcontext; |
| 860 | ListCell *lc; |
| 861 | |
| 862 | /* |
| 863 | * Need a modifiable copy of the subquery to hack on. Even if we didn't |
| 864 | * sometimes choose not to pull up below, we must do this to avoid |
| 865 | * problems if the same subquery is referenced from multiple jointree |
| 866 | * items (which can't happen normally, but might after rule rewriting). |
| 867 | */ |
| 868 | subquery = copyObject(rte->subquery); |
| 869 | |
| 870 | /* |
| 871 | * Create a PlannerInfo data structure for this subquery. |
| 872 | * |
| 873 | * NOTE: the next few steps should match the first processing in |
| 874 | * subquery_planner(). Can we refactor to avoid code duplication, or |
| 875 | * would that just make things uglier? |
| 876 | */ |
| 877 | subroot = makeNode(PlannerInfo); |
| 878 | subroot->parse = subquery; |
| 879 | subroot->glob = root->glob; |
| 880 | subroot->query_level = root->query_level; |
| 881 | subroot->parent_root = root->parent_root; |
| 882 | subroot->plan_params = NIL; |
| 883 | subroot->outer_params = NULL; |
| 884 | subroot->planner_cxt = CurrentMemoryContext; |
| 885 | subroot->init_plans = NIL; |
| 886 | subroot->cte_plan_ids = NIL; |
| 887 | subroot->multiexpr_params = NIL; |
| 888 | subroot->eq_classes = NIL; |
| 889 | subroot->append_rel_list = NIL; |
| 890 | subroot->rowMarks = NIL; |
| 891 | memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels)); |
| 892 | memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets)); |
| 893 | subroot->processed_tlist = NIL; |
| 894 | subroot->grouping_map = NULL; |
| 895 | subroot->minmax_aggs = NIL; |
| 896 | subroot->qual_security_level = 0; |
| 897 | subroot->inhTargetKind = INHKIND_NONE; |
| 898 | subroot->hasRecursion = false; |
| 899 | subroot->wt_param_id = -1; |
| 900 | subroot->non_recursive_path = NULL; |
| 901 | |
| 902 | /* No CTEs to worry about */ |
| 903 | Assert(subquery->cteList == NIL); |
| 904 | |
| 905 | /* |
| 906 | * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so |
| 907 | * that we don't need so many special cases to deal with that situation. |
| 908 | */ |
| 909 | replace_empty_jointree(subquery); |
| 910 | |
| 911 | /* |
| 912 | * Pull up any SubLinks within the subquery's quals, so that we don't |
| 913 | * leave unoptimized SubLinks behind. |
| 914 | */ |
| 915 | if (subquery->hasSubLinks) |
| 916 | pull_up_sublinks(subroot); |
| 917 | |
| 918 | /* |
| 919 | * Similarly, inline any set-returning functions in its rangetable. |
| 920 | */ |
| 921 | inline_set_returning_functions(subroot); |
| 922 | |
| 923 | /* |
| 924 | * Recursively pull up the subquery's subqueries, so that |
| 925 | * pull_up_subqueries' processing is complete for its jointree and |
| 926 | * rangetable. |
| 927 | * |
| 928 | * Note: it's okay that the subquery's recursion starts with NULL for |
| 929 | * containing-join info, even if we are within an outer join in the upper |
| 930 | * query; the lower query starts with a clean slate for outer-join |
| 931 | * semantics. Likewise, we needn't pass down appendrel state. |
| 932 | */ |
| 933 | pull_up_subqueries(subroot); |
| 934 | |
| 935 | /* |
| 936 | * Now we must recheck whether the subquery is still simple enough to pull |
| 937 | * up. If not, abandon processing it. |
| 938 | * |
| 939 | * We don't really need to recheck all the conditions involved, but it's |
| 940 | * easier just to keep this "if" looking the same as the one in |
| 941 | * pull_up_subqueries_recurse. |
| 942 | */ |
| 943 | if (is_simple_subquery(subquery, rte, lowest_outer_join) && |
| 944 | (containing_appendrel == NULL || is_safe_append_member(subquery))) |
| 945 | { |
| 946 | /* good to go */ |
| 947 | } |
| 948 | else |
| 949 | { |
| 950 | /* |
| 951 | * Give up, return unmodified RangeTblRef. |
| 952 | * |
| 953 | * Note: The work we just did will be redone when the subquery gets |
| 954 | * planned on its own. Perhaps we could avoid that by storing the |
| 955 | * modified subquery back into the rangetable, but I'm not gonna risk |
| 956 | * it now. |
| 957 | */ |
| 958 | return jtnode; |
| 959 | } |
| 960 | |
| 961 | /* |
| 962 | * We must flatten any join alias Vars in the subquery's targetlist, |
| 963 | * because pulling up the subquery's subqueries might have changed their |
| 964 | * expansions into arbitrary expressions, which could affect |
| 965 | * pullup_replace_vars' decisions about whether PlaceHolderVar wrappers |
| 966 | * are needed for tlist entries. (Likely it'd be better to do |
| 967 | * flatten_join_alias_vars on the whole query tree at some earlier stage, |
| 968 | * maybe even in the rewriter; but for now let's just fix this case here.) |
| 969 | */ |
| 970 | subquery->targetList = (List *) |
| 971 | flatten_join_alias_vars(subroot->parse, (Node *) subquery->targetList); |
| 972 | |
| 973 | /* |
| 974 | * Adjust level-0 varnos in subquery so that we can append its rangetable |
| 975 | * to upper query's. We have to fix the subquery's append_rel_list as |
| 976 | * well. |
| 977 | */ |
| 978 | rtoffset = list_length(parse->rtable); |
| 979 | OffsetVarNodes((Node *) subquery, rtoffset, 0); |
| 980 | OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0); |
| 981 | |
| 982 | /* |
| 983 | * Upper-level vars in subquery are now one level closer to their parent |
| 984 | * than before. |
| 985 | */ |
| 986 | IncrementVarSublevelsUp((Node *) subquery, -1, 1); |
| 987 | IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1); |
| 988 | |
| 989 | /* |
| 990 | * The subquery's targetlist items are now in the appropriate form to |
| 991 | * insert into the top query, except that we may need to wrap them in |
| 992 | * PlaceHolderVars. Set up required context data for pullup_replace_vars. |
| 993 | */ |
| 994 | rvcontext.root = root; |
| 995 | rvcontext.targetlist = subquery->targetList; |
| 996 | rvcontext.target_rte = rte; |
| 997 | if (rte->lateral) |
| 998 | rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree, |
| 999 | true); |
| 1000 | else /* won't need relids */ |
| 1001 | rvcontext.relids = NULL; |
| 1002 | rvcontext.outer_hasSubLinks = &parse->hasSubLinks; |
| 1003 | rvcontext.varno = varno; |
| 1004 | /* these flags will be set below, if needed */ |
| 1005 | rvcontext.need_phvs = false; |
| 1006 | rvcontext.wrap_non_vars = false; |
| 1007 | /* initialize cache array with indexes 0 .. length(tlist) */ |
| 1008 | rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) * |
| 1009 | sizeof(Node *)); |
| 1010 | |
| 1011 | /* |
| 1012 | * If we are under an outer join then non-nullable items and lateral |
| 1013 | * references may have to be turned into PlaceHolderVars. |
| 1014 | */ |
| 1015 | if (lowest_nulling_outer_join != NULL) |
| 1016 | rvcontext.need_phvs = true; |
| 1017 | |
| 1018 | /* |
| 1019 | * If we are dealing with an appendrel member then anything that's not a |
| 1020 | * simple Var has to be turned into a PlaceHolderVar. We force this to |
| 1021 | * ensure that what we pull up doesn't get merged into a surrounding |
| 1022 | * expression during later processing and then fail to match the |
| 1023 | * expression actually available from the appendrel. |
| 1024 | */ |
| 1025 | if (containing_appendrel != NULL) |
| 1026 | { |
| 1027 | rvcontext.need_phvs = true; |
| 1028 | rvcontext.wrap_non_vars = true; |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * If the parent query uses grouping sets, we need a PlaceHolderVar for |
| 1033 | * anything that's not a simple Var. Again, this ensures that expressions |
| 1034 | * retain their separate identity so that they will match grouping set |
| 1035 | * columns when appropriate. (It'd be sufficient to wrap values used in |
| 1036 | * grouping set columns, and do so only in non-aggregated portions of the |
| 1037 | * tlist and havingQual, but that would require a lot of infrastructure |
| 1038 | * that pullup_replace_vars hasn't currently got.) |
| 1039 | */ |
| 1040 | if (parse->groupingSets) |
| 1041 | { |
| 1042 | rvcontext.need_phvs = true; |
| 1043 | rvcontext.wrap_non_vars = true; |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * Replace all of the top query's references to the subquery's outputs |
| 1048 | * with copies of the adjusted subtlist items, being careful not to |
| 1049 | * replace any of the jointree structure. (This'd be a lot cleaner if we |
| 1050 | * could use query_tree_mutator.) We have to use PHVs in the targetList, |
| 1051 | * returningList, and havingQual, since those are certainly above any |
| 1052 | * outer join. replace_vars_in_jointree tracks its location in the |
| 1053 | * jointree and uses PHVs or not appropriately. |
| 1054 | */ |
| 1055 | parse->targetList = (List *) |
| 1056 | pullup_replace_vars((Node *) parse->targetList, &rvcontext); |
| 1057 | parse->returningList = (List *) |
| 1058 | pullup_replace_vars((Node *) parse->returningList, &rvcontext); |
| 1059 | if (parse->onConflict) |
| 1060 | { |
| 1061 | parse->onConflict->onConflictSet = (List *) |
| 1062 | pullup_replace_vars((Node *) parse->onConflict->onConflictSet, |
| 1063 | &rvcontext); |
| 1064 | parse->onConflict->onConflictWhere = |
| 1065 | pullup_replace_vars(parse->onConflict->onConflictWhere, |
| 1066 | &rvcontext); |
| 1067 | |
| 1068 | /* |
| 1069 | * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist |
| 1070 | * can't contain any references to a subquery |
| 1071 | */ |
| 1072 | } |
| 1073 | replace_vars_in_jointree((Node *) parse->jointree, &rvcontext, |
| 1074 | lowest_nulling_outer_join); |
| 1075 | Assert(parse->setOperations == NULL); |
| 1076 | parse->havingQual = pullup_replace_vars(parse->havingQual, &rvcontext); |
| 1077 | |
| 1078 | /* |
| 1079 | * Replace references in the translated_vars lists of appendrels. When |
| 1080 | * pulling up an appendrel member, we do not need PHVs in the list of the |
| 1081 | * parent appendrel --- there isn't any outer join between. Elsewhere, use |
| 1082 | * PHVs for safety. (This analysis could be made tighter but it seems |
| 1083 | * unlikely to be worth much trouble.) |
| 1084 | */ |
| 1085 | foreach(lc, root->append_rel_list) |
| 1086 | { |
| 1087 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc); |
| 1088 | bool save_need_phvs = rvcontext.need_phvs; |
| 1089 | |
| 1090 | if (appinfo == containing_appendrel) |
| 1091 | rvcontext.need_phvs = false; |
| 1092 | appinfo->translated_vars = (List *) |
| 1093 | pullup_replace_vars((Node *) appinfo->translated_vars, &rvcontext); |
| 1094 | rvcontext.need_phvs = save_need_phvs; |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * Replace references in the joinaliasvars lists of join RTEs. |
| 1099 | * |
| 1100 | * You might think that we could avoid using PHVs for alias vars of joins |
| 1101 | * below lowest_nulling_outer_join, but that doesn't work because the |
| 1102 | * alias vars could be referenced above that join; we need the PHVs to be |
| 1103 | * present in such references after the alias vars get flattened. (It |
| 1104 | * might be worth trying to be smarter here, someday.) |
| 1105 | */ |
| 1106 | foreach(lc, parse->rtable) |
| 1107 | { |
| 1108 | RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc); |
| 1109 | |
| 1110 | if (otherrte->rtekind == RTE_JOIN) |
| 1111 | otherrte->joinaliasvars = (List *) |
| 1112 | pullup_replace_vars((Node *) otherrte->joinaliasvars, |
| 1113 | &rvcontext); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * If the subquery had a LATERAL marker, propagate that to any of its |
| 1118 | * child RTEs that could possibly now contain lateral cross-references. |
| 1119 | * The children might or might not contain any actual lateral |
| 1120 | * cross-references, but we have to mark the pulled-up child RTEs so that |
| 1121 | * later planner stages will check for such. |
| 1122 | */ |
| 1123 | if (rte->lateral) |
| 1124 | { |
| 1125 | foreach(lc, subquery->rtable) |
| 1126 | { |
| 1127 | RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc); |
| 1128 | |
| 1129 | switch (child_rte->rtekind) |
| 1130 | { |
| 1131 | case RTE_RELATION: |
| 1132 | if (child_rte->tablesample) |
| 1133 | child_rte->lateral = true; |
| 1134 | break; |
| 1135 | case RTE_SUBQUERY: |
| 1136 | case RTE_FUNCTION: |
| 1137 | case RTE_VALUES: |
| 1138 | case RTE_TABLEFUNC: |
| 1139 | child_rte->lateral = true; |
| 1140 | break; |
| 1141 | case RTE_JOIN: |
| 1142 | case RTE_CTE: |
| 1143 | case RTE_NAMEDTUPLESTORE: |
| 1144 | case RTE_RESULT: |
| 1145 | /* these can't contain any lateral references */ |
| 1146 | break; |
| 1147 | } |
| 1148 | } |
| 1149 | } |
| 1150 | |
| 1151 | /* |
| 1152 | * Now append the adjusted rtable entries to upper query. (We hold off |
| 1153 | * until after fixing the upper rtable entries; no point in running that |
| 1154 | * code on the subquery ones too.) |
| 1155 | */ |
| 1156 | parse->rtable = list_concat(parse->rtable, subquery->rtable); |
| 1157 | |
| 1158 | /* |
| 1159 | * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already |
| 1160 | * adjusted the marker rtindexes, so just concat the lists.) |
| 1161 | */ |
| 1162 | parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks); |
| 1163 | |
| 1164 | /* |
| 1165 | * We also have to fix the relid sets of any PlaceHolderVar nodes in the |
| 1166 | * parent query. (This could perhaps be done by pullup_replace_vars(), |
| 1167 | * but it seems cleaner to use two passes.) Note in particular that any |
| 1168 | * PlaceHolderVar nodes just created by pullup_replace_vars() will be |
| 1169 | * adjusted, so having created them with the subquery's varno is correct. |
| 1170 | * |
| 1171 | * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We |
| 1172 | * already checked that this won't require introducing multiple subrelids |
| 1173 | * into the single-slot AppendRelInfo structs. |
| 1174 | */ |
| 1175 | if (parse->hasSubLinks || root->glob->lastPHId != 0 || |
| 1176 | root->append_rel_list) |
| 1177 | { |
| 1178 | Relids subrelids; |
| 1179 | |
| 1180 | subrelids = get_relids_in_jointree((Node *) subquery->jointree, false); |
| 1181 | substitute_phv_relids((Node *) parse, varno, subrelids); |
| 1182 | fix_append_rel_relids(root->append_rel_list, varno, subrelids); |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * And now add subquery's AppendRelInfos to our list. |
| 1187 | */ |
| 1188 | root->append_rel_list = list_concat(root->append_rel_list, |
| 1189 | subroot->append_rel_list); |
| 1190 | |
| 1191 | /* |
| 1192 | * We don't have to do the equivalent bookkeeping for outer-join info, |
| 1193 | * because that hasn't been set up yet. placeholder_list likewise. |
| 1194 | */ |
| 1195 | Assert(root->join_info_list == NIL); |
| 1196 | Assert(subroot->join_info_list == NIL); |
| 1197 | Assert(root->placeholder_list == NIL); |
| 1198 | Assert(subroot->placeholder_list == NIL); |
| 1199 | |
| 1200 | /* |
| 1201 | * Miscellaneous housekeeping. |
| 1202 | * |
| 1203 | * Although replace_rte_variables() faithfully updated parse->hasSubLinks |
| 1204 | * if it copied any SubLinks out of the subquery's targetlist, we still |
| 1205 | * could have SubLinks added to the query in the expressions of FUNCTION |
| 1206 | * and VALUES RTEs copied up from the subquery. So it's necessary to copy |
| 1207 | * subquery->hasSubLinks anyway. Perhaps this can be improved someday. |
| 1208 | */ |
| 1209 | parse->hasSubLinks |= subquery->hasSubLinks; |
| 1210 | |
| 1211 | /* If subquery had any RLS conditions, now main query does too */ |
| 1212 | parse->hasRowSecurity |= subquery->hasRowSecurity; |
| 1213 | |
| 1214 | /* |
| 1215 | * subquery won't be pulled up if it hasAggs, hasWindowFuncs, or |
| 1216 | * hasTargetSRFs, so no work needed on those flags |
| 1217 | */ |
| 1218 | |
| 1219 | /* |
| 1220 | * Return the adjusted subquery jointree to replace the RangeTblRef entry |
| 1221 | * in parent's jointree; or, if the FromExpr is degenerate, just return |
| 1222 | * its single member. |
| 1223 | */ |
| 1224 | Assert(IsA(subquery->jointree, FromExpr)); |
| 1225 | Assert(subquery->jointree->fromlist != NIL); |
| 1226 | if (subquery->jointree->quals == NULL && |
| 1227 | list_length(subquery->jointree->fromlist) == 1) |
| 1228 | return (Node *) linitial(subquery->jointree->fromlist); |
| 1229 | |
| 1230 | return (Node *) subquery->jointree; |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * pull_up_simple_union_all |
| 1235 | * Pull up a single simple UNION ALL subquery. |
| 1236 | * |
| 1237 | * jtnode is a RangeTblRef that has been identified as a simple UNION ALL |
| 1238 | * subquery by pull_up_subqueries. We pull up the leaf subqueries and |
| 1239 | * build an "append relation" for the union set. The result value is just |
| 1240 | * jtnode, since we don't actually need to change the query jointree. |
| 1241 | */ |
| 1242 | static Node * |
| 1243 | pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte) |
| 1244 | { |
| 1245 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 1246 | Query *subquery = rte->subquery; |
| 1247 | int rtoffset = list_length(root->parse->rtable); |
| 1248 | List *rtable; |
| 1249 | |
| 1250 | /* |
| 1251 | * Make a modifiable copy of the subquery's rtable, so we can adjust |
| 1252 | * upper-level Vars in it. There are no such Vars in the setOperations |
| 1253 | * tree proper, so fixing the rtable should be sufficient. |
| 1254 | */ |
| 1255 | rtable = copyObject(subquery->rtable); |
| 1256 | |
| 1257 | /* |
| 1258 | * Upper-level vars in subquery are now one level closer to their parent |
| 1259 | * than before. We don't have to worry about offsetting varnos, though, |
| 1260 | * because the UNION leaf queries can't cross-reference each other. |
| 1261 | */ |
| 1262 | IncrementVarSublevelsUp_rtable(rtable, -1, 1); |
| 1263 | |
| 1264 | /* |
| 1265 | * If the UNION ALL subquery had a LATERAL marker, propagate that to all |
| 1266 | * its children. The individual children might or might not contain any |
| 1267 | * actual lateral cross-references, but we have to mark the pulled-up |
| 1268 | * child RTEs so that later planner stages will check for such. |
| 1269 | */ |
| 1270 | if (rte->lateral) |
| 1271 | { |
| 1272 | ListCell *rt; |
| 1273 | |
| 1274 | foreach(rt, rtable) |
| 1275 | { |
| 1276 | RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt); |
| 1277 | |
| 1278 | Assert(child_rte->rtekind == RTE_SUBQUERY); |
| 1279 | child_rte->lateral = true; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | /* |
| 1284 | * Append child RTEs to parent rtable. |
| 1285 | */ |
| 1286 | root->parse->rtable = list_concat(root->parse->rtable, rtable); |
| 1287 | |
| 1288 | /* |
| 1289 | * Recursively scan the subquery's setOperations tree and add |
| 1290 | * AppendRelInfo nodes for leaf subqueries to the parent's |
| 1291 | * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries. |
| 1292 | */ |
| 1293 | Assert(subquery->setOperations); |
| 1294 | pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery, |
| 1295 | rtoffset); |
| 1296 | |
| 1297 | /* |
| 1298 | * Mark the parent as an append relation. |
| 1299 | */ |
| 1300 | rte->inh = true; |
| 1301 | |
| 1302 | return jtnode; |
| 1303 | } |
| 1304 | |
| 1305 | /* |
| 1306 | * pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all |
| 1307 | * |
| 1308 | * Build an AppendRelInfo for each leaf query in the setop tree, and then |
| 1309 | * apply pull_up_subqueries to the leaf query. |
| 1310 | * |
| 1311 | * Note that setOpQuery is the Query containing the setOp node, whose tlist |
| 1312 | * contains references to all the setop output columns. When called from |
| 1313 | * pull_up_simple_union_all, this is *not* the same as root->parse, which is |
| 1314 | * the parent Query we are pulling up into. |
| 1315 | * |
| 1316 | * parentRTindex is the appendrel parent's index in root->parse->rtable. |
| 1317 | * |
| 1318 | * The child RTEs have already been copied to the parent. childRToffset |
| 1319 | * tells us where in the parent's range table they were copied. When called |
| 1320 | * from flatten_simple_union_all, childRToffset is 0 since the child RTEs |
| 1321 | * were already in root->parse->rtable and no RT index adjustment is needed. |
| 1322 | */ |
| 1323 | static void |
| 1324 | pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex, |
| 1325 | Query *setOpQuery, int childRToffset) |
| 1326 | { |
| 1327 | if (IsA(setOp, RangeTblRef)) |
| 1328 | { |
| 1329 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
| 1330 | int childRTindex; |
| 1331 | AppendRelInfo *appinfo; |
| 1332 | |
| 1333 | /* |
| 1334 | * Calculate the index in the parent's range table |
| 1335 | */ |
| 1336 | childRTindex = childRToffset + rtr->rtindex; |
| 1337 | |
| 1338 | /* |
| 1339 | * Build a suitable AppendRelInfo, and attach to parent's list. |
| 1340 | */ |
| 1341 | appinfo = makeNode(AppendRelInfo); |
| 1342 | appinfo->parent_relid = parentRTindex; |
| 1343 | appinfo->child_relid = childRTindex; |
| 1344 | appinfo->parent_reltype = InvalidOid; |
| 1345 | appinfo->child_reltype = InvalidOid; |
| 1346 | make_setop_translation_list(setOpQuery, childRTindex, |
| 1347 | &appinfo->translated_vars); |
| 1348 | appinfo->parent_reloid = InvalidOid; |
| 1349 | root->append_rel_list = lappend(root->append_rel_list, appinfo); |
| 1350 | |
| 1351 | /* |
| 1352 | * Recursively apply pull_up_subqueries to the new child RTE. (We |
| 1353 | * must build the AppendRelInfo first, because this will modify it.) |
| 1354 | * Note that we can pass NULL for containing-join info even if we're |
| 1355 | * actually under an outer join, because the child's expressions |
| 1356 | * aren't going to propagate up to the join. Also, we ignore the |
| 1357 | * possibility that pull_up_subqueries_recurse() returns a different |
| 1358 | * jointree node than what we pass it; if it does, the important thing |
| 1359 | * is that it replaced the child relid in the AppendRelInfo node. |
| 1360 | */ |
| 1361 | rtr = makeNode(RangeTblRef); |
| 1362 | rtr->rtindex = childRTindex; |
| 1363 | (void) pull_up_subqueries_recurse(root, (Node *) rtr, |
| 1364 | NULL, NULL, appinfo); |
| 1365 | } |
| 1366 | else if (IsA(setOp, SetOperationStmt)) |
| 1367 | { |
| 1368 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 1369 | |
| 1370 | /* Recurse to reach leaf queries */ |
| 1371 | pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery, |
| 1372 | childRToffset); |
| 1373 | pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery, |
| 1374 | childRToffset); |
| 1375 | } |
| 1376 | else |
| 1377 | { |
| 1378 | elog(ERROR, "unrecognized node type: %d" , |
| 1379 | (int) nodeTag(setOp)); |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | /* |
| 1384 | * make_setop_translation_list |
| 1385 | * Build the list of translations from parent Vars to child Vars for |
| 1386 | * a UNION ALL member. (At this point it's just a simple list of |
| 1387 | * referencing Vars, but if we succeed in pulling up the member |
| 1388 | * subquery, the Vars will get replaced by pulled-up expressions.) |
| 1389 | */ |
| 1390 | static void |
| 1391 | make_setop_translation_list(Query *query, Index newvarno, |
| 1392 | List **translated_vars) |
| 1393 | { |
| 1394 | List *vars = NIL; |
| 1395 | ListCell *l; |
| 1396 | |
| 1397 | foreach(l, query->targetList) |
| 1398 | { |
| 1399 | TargetEntry *tle = (TargetEntry *) lfirst(l); |
| 1400 | |
| 1401 | if (tle->resjunk) |
| 1402 | continue; |
| 1403 | |
| 1404 | vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle)); |
| 1405 | } |
| 1406 | |
| 1407 | *translated_vars = vars; |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * is_simple_subquery |
| 1412 | * Check a subquery in the range table to see if it's simple enough |
| 1413 | * to pull up into the parent query. |
| 1414 | * |
| 1415 | * rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery. |
| 1416 | * (Note subquery is not necessarily equal to rte->subquery; it could be a |
| 1417 | * processed copy of that.) |
| 1418 | * lowest_outer_join is the lowest outer join above the subquery, or NULL. |
| 1419 | */ |
| 1420 | static bool |
| 1421 | is_simple_subquery(Query *subquery, RangeTblEntry *rte, |
| 1422 | JoinExpr *lowest_outer_join) |
| 1423 | { |
| 1424 | /* |
| 1425 | * Let's just make sure it's a valid subselect ... |
| 1426 | */ |
| 1427 | if (!IsA(subquery, Query) || |
| 1428 | subquery->commandType != CMD_SELECT) |
| 1429 | elog(ERROR, "subquery is bogus" ); |
| 1430 | |
| 1431 | /* |
| 1432 | * Can't currently pull up a query with setops (unless it's simple UNION |
| 1433 | * ALL, which is handled by a different code path). Maybe after querytree |
| 1434 | * redesign... |
| 1435 | */ |
| 1436 | if (subquery->setOperations) |
| 1437 | return false; |
| 1438 | |
| 1439 | /* |
| 1440 | * Can't pull up a subquery involving grouping, aggregation, SRFs, |
| 1441 | * sorting, limiting, or WITH. (XXX WITH could possibly be allowed later) |
| 1442 | * |
| 1443 | * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE |
| 1444 | * clauses, because pullup would cause the locking to occur semantically |
| 1445 | * higher than it should. Implicit FOR UPDATE/SHARE is okay because in |
| 1446 | * that case the locking was originally declared in the upper query |
| 1447 | * anyway. |
| 1448 | */ |
| 1449 | if (subquery->hasAggs || |
| 1450 | subquery->hasWindowFuncs || |
| 1451 | subquery->hasTargetSRFs || |
| 1452 | subquery->groupClause || |
| 1453 | subquery->groupingSets || |
| 1454 | subquery->havingQual || |
| 1455 | subquery->sortClause || |
| 1456 | subquery->distinctClause || |
| 1457 | subquery->limitOffset || |
| 1458 | subquery->limitCount || |
| 1459 | subquery->hasForUpdate || |
| 1460 | subquery->cteList) |
| 1461 | return false; |
| 1462 | |
| 1463 | /* |
| 1464 | * Don't pull up if the RTE represents a security-barrier view; we |
| 1465 | * couldn't prevent information leakage once the RTE's Vars are scattered |
| 1466 | * about in the upper query. |
| 1467 | */ |
| 1468 | if (rte->security_barrier) |
| 1469 | return false; |
| 1470 | |
| 1471 | /* |
| 1472 | * If the subquery is LATERAL, check for pullup restrictions from that. |
| 1473 | */ |
| 1474 | if (rte->lateral) |
| 1475 | { |
| 1476 | bool restricted; |
| 1477 | Relids safe_upper_varnos; |
| 1478 | |
| 1479 | /* |
| 1480 | * The subquery's WHERE and JOIN/ON quals mustn't contain any lateral |
| 1481 | * references to rels outside a higher outer join (including the case |
| 1482 | * where the outer join is within the subquery itself). In such a |
| 1483 | * case, pulling up would result in a situation where we need to |
| 1484 | * postpone quals from below an outer join to above it, which is |
| 1485 | * probably completely wrong and in any case is a complication that |
| 1486 | * doesn't seem worth addressing at the moment. |
| 1487 | */ |
| 1488 | if (lowest_outer_join != NULL) |
| 1489 | { |
| 1490 | restricted = true; |
| 1491 | safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join, |
| 1492 | true); |
| 1493 | } |
| 1494 | else |
| 1495 | { |
| 1496 | restricted = false; |
| 1497 | safe_upper_varnos = NULL; /* doesn't matter */ |
| 1498 | } |
| 1499 | |
| 1500 | if (jointree_contains_lateral_outer_refs((Node *) subquery->jointree, |
| 1501 | restricted, safe_upper_varnos)) |
| 1502 | return false; |
| 1503 | |
| 1504 | /* |
| 1505 | * If there's an outer join above the LATERAL subquery, also disallow |
| 1506 | * pullup if the subquery's targetlist has any references to rels |
| 1507 | * outside the outer join, since these might get pulled into quals |
| 1508 | * above the subquery (but in or below the outer join) and then lead |
| 1509 | * to qual-postponement issues similar to the case checked for above. |
| 1510 | * (We wouldn't need to prevent pullup if no such references appear in |
| 1511 | * outer-query quals, but we don't have enough info here to check |
| 1512 | * that. Also, maybe this restriction could be removed if we forced |
| 1513 | * such refs to be wrapped in PlaceHolderVars, even when they're below |
| 1514 | * the nearest outer join? But it's a pretty hokey usage, so not |
| 1515 | * clear this is worth sweating over.) |
| 1516 | */ |
| 1517 | if (lowest_outer_join != NULL) |
| 1518 | { |
| 1519 | Relids lvarnos = pull_varnos_of_level((Node *) subquery->targetList, 1); |
| 1520 | |
| 1521 | if (!bms_is_subset(lvarnos, safe_upper_varnos)) |
| 1522 | return false; |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | /* |
| 1527 | * Don't pull up a subquery that has any volatile functions in its |
| 1528 | * targetlist. Otherwise we might introduce multiple evaluations of these |
| 1529 | * functions, if they get copied to multiple places in the upper query, |
| 1530 | * leading to surprising results. (Note: the PlaceHolderVar mechanism |
| 1531 | * doesn't quite guarantee single evaluation; else we could pull up anyway |
| 1532 | * and just wrap such items in PlaceHolderVars ...) |
| 1533 | */ |
| 1534 | if (contain_volatile_functions((Node *) subquery->targetList)) |
| 1535 | return false; |
| 1536 | |
| 1537 | return true; |
| 1538 | } |
| 1539 | |
| 1540 | /* |
| 1541 | * pull_up_simple_values |
| 1542 | * Pull up a single simple VALUES RTE. |
| 1543 | * |
| 1544 | * jtnode is a RangeTblRef that has been identified as a simple VALUES RTE |
| 1545 | * by pull_up_subqueries. We always return a RangeTblRef representing a |
| 1546 | * RESULT RTE to replace it (all failure cases should have been detected by |
| 1547 | * is_simple_values()). Actually, what we return is just jtnode, because |
| 1548 | * we replace the VALUES RTE in the rangetable with the RESULT RTE. |
| 1549 | * |
| 1550 | * rte is the RangeTblEntry referenced by jtnode. Because of the limited |
| 1551 | * possible usage of VALUES RTEs, we do not need the remaining parameters |
| 1552 | * of pull_up_subqueries_recurse. |
| 1553 | */ |
| 1554 | static Node * |
| 1555 | pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte) |
| 1556 | { |
| 1557 | Query *parse = root->parse; |
| 1558 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 1559 | List *values_list; |
| 1560 | List *tlist; |
| 1561 | AttrNumber attrno; |
| 1562 | pullup_replace_vars_context rvcontext; |
| 1563 | ListCell *lc; |
| 1564 | |
| 1565 | Assert(rte->rtekind == RTE_VALUES); |
| 1566 | Assert(list_length(rte->values_lists) == 1); |
| 1567 | |
| 1568 | /* |
| 1569 | * Need a modifiable copy of the VALUES list to hack on, just in case it's |
| 1570 | * multiply referenced. |
| 1571 | */ |
| 1572 | values_list = copyObject(linitial(rte->values_lists)); |
| 1573 | |
| 1574 | /* |
| 1575 | * The VALUES RTE can't contain any Vars of level zero, let alone any that |
| 1576 | * are join aliases, so no need to flatten join alias Vars. |
| 1577 | */ |
| 1578 | Assert(!contain_vars_of_level((Node *) values_list, 0)); |
| 1579 | |
| 1580 | /* |
| 1581 | * Set up required context data for pullup_replace_vars. In particular, |
| 1582 | * we have to make the VALUES list look like a subquery targetlist. |
| 1583 | */ |
| 1584 | tlist = NIL; |
| 1585 | attrno = 1; |
| 1586 | foreach(lc, values_list) |
| 1587 | { |
| 1588 | tlist = lappend(tlist, |
| 1589 | makeTargetEntry((Expr *) lfirst(lc), |
| 1590 | attrno, |
| 1591 | NULL, |
| 1592 | false)); |
| 1593 | attrno++; |
| 1594 | } |
| 1595 | rvcontext.root = root; |
| 1596 | rvcontext.targetlist = tlist; |
| 1597 | rvcontext.target_rte = rte; |
| 1598 | rvcontext.relids = NULL; |
| 1599 | rvcontext.outer_hasSubLinks = &parse->hasSubLinks; |
| 1600 | rvcontext.varno = varno; |
| 1601 | rvcontext.need_phvs = false; |
| 1602 | rvcontext.wrap_non_vars = false; |
| 1603 | /* initialize cache array with indexes 0 .. length(tlist) */ |
| 1604 | rvcontext.rv_cache = palloc0((list_length(tlist) + 1) * |
| 1605 | sizeof(Node *)); |
| 1606 | |
| 1607 | /* |
| 1608 | * Replace all of the top query's references to the RTE's outputs with |
| 1609 | * copies of the adjusted VALUES expressions, being careful not to replace |
| 1610 | * any of the jointree structure. (This'd be a lot cleaner if we could use |
| 1611 | * query_tree_mutator.) Much of this should be no-ops in the dummy Query |
| 1612 | * that surrounds a VALUES RTE, but it's not enough code to be worth |
| 1613 | * removing. |
| 1614 | */ |
| 1615 | parse->targetList = (List *) |
| 1616 | pullup_replace_vars((Node *) parse->targetList, &rvcontext); |
| 1617 | parse->returningList = (List *) |
| 1618 | pullup_replace_vars((Node *) parse->returningList, &rvcontext); |
| 1619 | if (parse->onConflict) |
| 1620 | { |
| 1621 | parse->onConflict->onConflictSet = (List *) |
| 1622 | pullup_replace_vars((Node *) parse->onConflict->onConflictSet, |
| 1623 | &rvcontext); |
| 1624 | parse->onConflict->onConflictWhere = |
| 1625 | pullup_replace_vars(parse->onConflict->onConflictWhere, |
| 1626 | &rvcontext); |
| 1627 | |
| 1628 | /* |
| 1629 | * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist |
| 1630 | * can't contain any references to a subquery |
| 1631 | */ |
| 1632 | } |
| 1633 | replace_vars_in_jointree((Node *) parse->jointree, &rvcontext, NULL); |
| 1634 | Assert(parse->setOperations == NULL); |
| 1635 | parse->havingQual = pullup_replace_vars(parse->havingQual, &rvcontext); |
| 1636 | |
| 1637 | /* |
| 1638 | * There should be no appendrels to fix, nor any join alias Vars, nor any |
| 1639 | * outer joins and hence no PlaceHolderVars. |
| 1640 | */ |
| 1641 | Assert(root->append_rel_list == NIL); |
| 1642 | Assert(list_length(parse->rtable) == 1); |
| 1643 | Assert(root->join_info_list == NIL); |
| 1644 | Assert(root->placeholder_list == NIL); |
| 1645 | |
| 1646 | /* |
| 1647 | * Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only |
| 1648 | * rtable entry in the current query level, so this is easy. |
| 1649 | */ |
| 1650 | Assert(list_length(parse->rtable) == 1); |
| 1651 | |
| 1652 | /* Create suitable RTE */ |
| 1653 | rte = makeNode(RangeTblEntry); |
| 1654 | rte->rtekind = RTE_RESULT; |
| 1655 | rte->eref = makeAlias("*RESULT*" , NIL); |
| 1656 | |
| 1657 | /* Replace rangetable */ |
| 1658 | parse->rtable = list_make1(rte); |
| 1659 | |
| 1660 | /* We could manufacture a new RangeTblRef, but the one we have is fine */ |
| 1661 | Assert(varno == 1); |
| 1662 | |
| 1663 | return jtnode; |
| 1664 | } |
| 1665 | |
| 1666 | /* |
| 1667 | * is_simple_values |
| 1668 | * Check a VALUES RTE in the range table to see if it's simple enough |
| 1669 | * to pull up into the parent query. |
| 1670 | * |
| 1671 | * rte is the RTE_VALUES RangeTblEntry to check. |
| 1672 | */ |
| 1673 | static bool |
| 1674 | is_simple_values(PlannerInfo *root, RangeTblEntry *rte) |
| 1675 | { |
| 1676 | Assert(rte->rtekind == RTE_VALUES); |
| 1677 | |
| 1678 | /* |
| 1679 | * There must be exactly one VALUES list, else it's not semantically |
| 1680 | * correct to replace the VALUES RTE with a RESULT RTE, nor would we have |
| 1681 | * a unique set of expressions to substitute into the parent query. |
| 1682 | */ |
| 1683 | if (list_length(rte->values_lists) != 1) |
| 1684 | return false; |
| 1685 | |
| 1686 | /* |
| 1687 | * Because VALUES can't appear under an outer join (or at least, we won't |
| 1688 | * try to pull it up if it does), we need not worry about LATERAL, nor |
| 1689 | * about validity of PHVs for the VALUES' outputs. |
| 1690 | */ |
| 1691 | |
| 1692 | /* |
| 1693 | * Don't pull up a VALUES that contains any set-returning or volatile |
| 1694 | * functions. The considerations here are basically identical to the |
| 1695 | * restrictions on a pull-able subquery's targetlist. |
| 1696 | */ |
| 1697 | if (expression_returns_set((Node *) rte->values_lists) || |
| 1698 | contain_volatile_functions((Node *) rte->values_lists)) |
| 1699 | return false; |
| 1700 | |
| 1701 | /* |
| 1702 | * Do not pull up a VALUES that's not the only RTE in its parent query. |
| 1703 | * This is actually the only case that the parser will generate at the |
| 1704 | * moment, and assuming this is true greatly simplifies |
| 1705 | * pull_up_simple_values(). |
| 1706 | */ |
| 1707 | if (list_length(root->parse->rtable) != 1 || |
| 1708 | rte != (RangeTblEntry *) linitial(root->parse->rtable)) |
| 1709 | return false; |
| 1710 | |
| 1711 | return true; |
| 1712 | } |
| 1713 | |
| 1714 | /* |
| 1715 | * is_simple_union_all |
| 1716 | * Check a subquery to see if it's a simple UNION ALL. |
| 1717 | * |
| 1718 | * We require all the setops to be UNION ALL (no mixing) and there can't be |
| 1719 | * any datatype coercions involved, ie, all the leaf queries must emit the |
| 1720 | * same datatypes. |
| 1721 | */ |
| 1722 | static bool |
| 1723 | is_simple_union_all(Query *subquery) |
| 1724 | { |
| 1725 | SetOperationStmt *topop; |
| 1726 | |
| 1727 | /* Let's just make sure it's a valid subselect ... */ |
| 1728 | if (!IsA(subquery, Query) || |
| 1729 | subquery->commandType != CMD_SELECT) |
| 1730 | elog(ERROR, "subquery is bogus" ); |
| 1731 | |
| 1732 | /* Is it a set-operation query at all? */ |
| 1733 | topop = castNode(SetOperationStmt, subquery->setOperations); |
| 1734 | if (!topop) |
| 1735 | return false; |
| 1736 | |
| 1737 | /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */ |
| 1738 | if (subquery->sortClause || |
| 1739 | subquery->limitOffset || |
| 1740 | subquery->limitCount || |
| 1741 | subquery->rowMarks || |
| 1742 | subquery->cteList) |
| 1743 | return false; |
| 1744 | |
| 1745 | /* Recursively check the tree of set operations */ |
| 1746 | return is_simple_union_all_recurse((Node *) topop, subquery, |
| 1747 | topop->colTypes); |
| 1748 | } |
| 1749 | |
| 1750 | static bool |
| 1751 | is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes) |
| 1752 | { |
| 1753 | if (IsA(setOp, RangeTblRef)) |
| 1754 | { |
| 1755 | RangeTblRef *rtr = (RangeTblRef *) setOp; |
| 1756 | RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable); |
| 1757 | Query *subquery = rte->subquery; |
| 1758 | |
| 1759 | Assert(subquery != NULL); |
| 1760 | |
| 1761 | /* Leaf nodes are OK if they match the toplevel column types */ |
| 1762 | /* We don't have to compare typmods or collations here */ |
| 1763 | return tlist_same_datatypes(subquery->targetList, colTypes, true); |
| 1764 | } |
| 1765 | else if (IsA(setOp, SetOperationStmt)) |
| 1766 | { |
| 1767 | SetOperationStmt *op = (SetOperationStmt *) setOp; |
| 1768 | |
| 1769 | /* Must be UNION ALL */ |
| 1770 | if (op->op != SETOP_UNION || !op->all) |
| 1771 | return false; |
| 1772 | |
| 1773 | /* Recurse to check inputs */ |
| 1774 | return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) && |
| 1775 | is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes); |
| 1776 | } |
| 1777 | else |
| 1778 | { |
| 1779 | elog(ERROR, "unrecognized node type: %d" , |
| 1780 | (int) nodeTag(setOp)); |
| 1781 | return false; /* keep compiler quiet */ |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * is_safe_append_member |
| 1787 | * Check a subquery that is a leaf of a UNION ALL appendrel to see if it's |
| 1788 | * safe to pull up. |
| 1789 | */ |
| 1790 | static bool |
| 1791 | is_safe_append_member(Query *subquery) |
| 1792 | { |
| 1793 | FromExpr *jtnode; |
| 1794 | |
| 1795 | /* |
| 1796 | * It's only safe to pull up the child if its jointree contains exactly |
| 1797 | * one RTE, else the AppendRelInfo data structure breaks. The one base RTE |
| 1798 | * could be buried in several levels of FromExpr, however. Also, if the |
| 1799 | * child's jointree is completely empty, we can pull up because |
| 1800 | * pull_up_simple_subquery will insert a single RTE_RESULT RTE instead. |
| 1801 | * |
| 1802 | * Also, the child can't have any WHERE quals because there's no place to |
| 1803 | * put them in an appendrel. (This is a bit annoying...) If we didn't |
| 1804 | * need to check this, we'd just test whether get_relids_in_jointree() |
| 1805 | * yields a singleton set, to be more consistent with the coding of |
| 1806 | * fix_append_rel_relids(). |
| 1807 | */ |
| 1808 | jtnode = subquery->jointree; |
| 1809 | Assert(IsA(jtnode, FromExpr)); |
| 1810 | /* Check the completely-empty case */ |
| 1811 | if (jtnode->fromlist == NIL && jtnode->quals == NULL) |
| 1812 | return true; |
| 1813 | /* Check the more general case */ |
| 1814 | while (IsA(jtnode, FromExpr)) |
| 1815 | { |
| 1816 | if (jtnode->quals != NULL) |
| 1817 | return false; |
| 1818 | if (list_length(jtnode->fromlist) != 1) |
| 1819 | return false; |
| 1820 | jtnode = linitial(jtnode->fromlist); |
| 1821 | } |
| 1822 | if (!IsA(jtnode, RangeTblRef)) |
| 1823 | return false; |
| 1824 | |
| 1825 | return true; |
| 1826 | } |
| 1827 | |
| 1828 | /* |
| 1829 | * jointree_contains_lateral_outer_refs |
| 1830 | * Check for disallowed lateral references in a jointree's quals |
| 1831 | * |
| 1832 | * If restricted is false, all level-1 Vars are allowed (but we still must |
| 1833 | * search the jointree, since it might contain outer joins below which there |
| 1834 | * will be restrictions). If restricted is true, return true when any qual |
| 1835 | * in the jointree contains level-1 Vars coming from outside the rels listed |
| 1836 | * in safe_upper_varnos. |
| 1837 | */ |
| 1838 | static bool |
| 1839 | jointree_contains_lateral_outer_refs(Node *jtnode, bool restricted, |
| 1840 | Relids safe_upper_varnos) |
| 1841 | { |
| 1842 | if (jtnode == NULL) |
| 1843 | return false; |
| 1844 | if (IsA(jtnode, RangeTblRef)) |
| 1845 | return false; |
| 1846 | else if (IsA(jtnode, FromExpr)) |
| 1847 | { |
| 1848 | FromExpr *f = (FromExpr *) jtnode; |
| 1849 | ListCell *l; |
| 1850 | |
| 1851 | /* First, recurse to check child joins */ |
| 1852 | foreach(l, f->fromlist) |
| 1853 | { |
| 1854 | if (jointree_contains_lateral_outer_refs(lfirst(l), |
| 1855 | restricted, |
| 1856 | safe_upper_varnos)) |
| 1857 | return true; |
| 1858 | } |
| 1859 | |
| 1860 | /* Then check the top-level quals */ |
| 1861 | if (restricted && |
| 1862 | !bms_is_subset(pull_varnos_of_level(f->quals, 1), |
| 1863 | safe_upper_varnos)) |
| 1864 | return true; |
| 1865 | } |
| 1866 | else if (IsA(jtnode, JoinExpr)) |
| 1867 | { |
| 1868 | JoinExpr *j = (JoinExpr *) jtnode; |
| 1869 | |
| 1870 | /* |
| 1871 | * If this is an outer join, we mustn't allow any upper lateral |
| 1872 | * references in or below it. |
| 1873 | */ |
| 1874 | if (j->jointype != JOIN_INNER) |
| 1875 | { |
| 1876 | restricted = true; |
| 1877 | safe_upper_varnos = NULL; |
| 1878 | } |
| 1879 | |
| 1880 | /* Check the child joins */ |
| 1881 | if (jointree_contains_lateral_outer_refs(j->larg, |
| 1882 | restricted, |
| 1883 | safe_upper_varnos)) |
| 1884 | return true; |
| 1885 | if (jointree_contains_lateral_outer_refs(j->rarg, |
| 1886 | restricted, |
| 1887 | safe_upper_varnos)) |
| 1888 | return true; |
| 1889 | |
| 1890 | /* Check the JOIN's qual clauses */ |
| 1891 | if (restricted && |
| 1892 | !bms_is_subset(pull_varnos_of_level(j->quals, 1), |
| 1893 | safe_upper_varnos)) |
| 1894 | return true; |
| 1895 | } |
| 1896 | else |
| 1897 | elog(ERROR, "unrecognized node type: %d" , |
| 1898 | (int) nodeTag(jtnode)); |
| 1899 | return false; |
| 1900 | } |
| 1901 | |
| 1902 | /* |
| 1903 | * Helper routine for pull_up_subqueries: do pullup_replace_vars on every |
| 1904 | * expression in the jointree, without changing the jointree structure itself. |
| 1905 | * Ugly, but there's no other way... |
| 1906 | * |
| 1907 | * If we are at or below lowest_nulling_outer_join, we can suppress use of |
| 1908 | * PlaceHolderVars wrapped around the replacement expressions. |
| 1909 | */ |
| 1910 | static void |
| 1911 | replace_vars_in_jointree(Node *jtnode, |
| 1912 | pullup_replace_vars_context *context, |
| 1913 | JoinExpr *lowest_nulling_outer_join) |
| 1914 | { |
| 1915 | if (jtnode == NULL) |
| 1916 | return; |
| 1917 | if (IsA(jtnode, RangeTblRef)) |
| 1918 | { |
| 1919 | /* |
| 1920 | * If the RangeTblRef refers to a LATERAL subquery (that isn't the |
| 1921 | * same subquery we're pulling up), it might contain references to the |
| 1922 | * target subquery, which we must replace. We drive this from the |
| 1923 | * jointree scan, rather than a scan of the rtable, for a couple of |
| 1924 | * reasons: we can avoid processing no-longer-referenced RTEs, and we |
| 1925 | * can use the appropriate setting of need_phvs depending on whether |
| 1926 | * the RTE is above possibly-nulling outer joins or not. |
| 1927 | */ |
| 1928 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 1929 | |
| 1930 | if (varno != context->varno) /* ignore target subquery itself */ |
| 1931 | { |
| 1932 | RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable); |
| 1933 | |
| 1934 | Assert(rte != context->target_rte); |
| 1935 | if (rte->lateral) |
| 1936 | { |
| 1937 | switch (rte->rtekind) |
| 1938 | { |
| 1939 | case RTE_RELATION: |
| 1940 | /* shouldn't be marked LATERAL unless tablesample */ |
| 1941 | Assert(rte->tablesample); |
| 1942 | rte->tablesample = (TableSampleClause *) |
| 1943 | pullup_replace_vars((Node *) rte->tablesample, |
| 1944 | context); |
| 1945 | break; |
| 1946 | case RTE_SUBQUERY: |
| 1947 | rte->subquery = |
| 1948 | pullup_replace_vars_subquery(rte->subquery, |
| 1949 | context); |
| 1950 | break; |
| 1951 | case RTE_FUNCTION: |
| 1952 | rte->functions = (List *) |
| 1953 | pullup_replace_vars((Node *) rte->functions, |
| 1954 | context); |
| 1955 | break; |
| 1956 | case RTE_TABLEFUNC: |
| 1957 | rte->tablefunc = (TableFunc *) |
| 1958 | pullup_replace_vars((Node *) rte->tablefunc, |
| 1959 | context); |
| 1960 | break; |
| 1961 | case RTE_VALUES: |
| 1962 | rte->values_lists = (List *) |
| 1963 | pullup_replace_vars((Node *) rte->values_lists, |
| 1964 | context); |
| 1965 | break; |
| 1966 | case RTE_JOIN: |
| 1967 | case RTE_CTE: |
| 1968 | case RTE_NAMEDTUPLESTORE: |
| 1969 | case RTE_RESULT: |
| 1970 | /* these shouldn't be marked LATERAL */ |
| 1971 | Assert(false); |
| 1972 | break; |
| 1973 | } |
| 1974 | } |
| 1975 | } |
| 1976 | } |
| 1977 | else if (IsA(jtnode, FromExpr)) |
| 1978 | { |
| 1979 | FromExpr *f = (FromExpr *) jtnode; |
| 1980 | ListCell *l; |
| 1981 | |
| 1982 | foreach(l, f->fromlist) |
| 1983 | replace_vars_in_jointree(lfirst(l), context, |
| 1984 | lowest_nulling_outer_join); |
| 1985 | f->quals = pullup_replace_vars(f->quals, context); |
| 1986 | } |
| 1987 | else if (IsA(jtnode, JoinExpr)) |
| 1988 | { |
| 1989 | JoinExpr *j = (JoinExpr *) jtnode; |
| 1990 | bool save_need_phvs = context->need_phvs; |
| 1991 | |
| 1992 | if (j == lowest_nulling_outer_join) |
| 1993 | { |
| 1994 | /* no more PHVs in or below this join */ |
| 1995 | context->need_phvs = false; |
| 1996 | lowest_nulling_outer_join = NULL; |
| 1997 | } |
| 1998 | replace_vars_in_jointree(j->larg, context, lowest_nulling_outer_join); |
| 1999 | replace_vars_in_jointree(j->rarg, context, lowest_nulling_outer_join); |
| 2000 | |
| 2001 | /* |
| 2002 | * Use PHVs within the join quals of a full join, even when it's the |
| 2003 | * lowest nulling outer join. Otherwise, we cannot identify which |
| 2004 | * side of the join a pulled-up var-free expression came from, which |
| 2005 | * can lead to failure to make a plan at all because none of the quals |
| 2006 | * appear to be mergeable or hashable conditions. For this purpose we |
| 2007 | * don't care about the state of wrap_non_vars, so leave it alone. |
| 2008 | */ |
| 2009 | if (j->jointype == JOIN_FULL) |
| 2010 | context->need_phvs = true; |
| 2011 | |
| 2012 | j->quals = pullup_replace_vars(j->quals, context); |
| 2013 | |
| 2014 | /* |
| 2015 | * We don't bother to update the colvars list, since it won't be used |
| 2016 | * again ... |
| 2017 | */ |
| 2018 | context->need_phvs = save_need_phvs; |
| 2019 | } |
| 2020 | else |
| 2021 | elog(ERROR, "unrecognized node type: %d" , |
| 2022 | (int) nodeTag(jtnode)); |
| 2023 | } |
| 2024 | |
| 2025 | /* |
| 2026 | * Apply pullup variable replacement throughout an expression tree |
| 2027 | * |
| 2028 | * Returns a modified copy of the tree, so this can't be used where we |
| 2029 | * need to do in-place replacement. |
| 2030 | */ |
| 2031 | static Node * |
| 2032 | pullup_replace_vars(Node *expr, pullup_replace_vars_context *context) |
| 2033 | { |
| 2034 | return replace_rte_variables(expr, |
| 2035 | context->varno, 0, |
| 2036 | pullup_replace_vars_callback, |
| 2037 | (void *) context, |
| 2038 | context->outer_hasSubLinks); |
| 2039 | } |
| 2040 | |
| 2041 | static Node * |
| 2042 | pullup_replace_vars_callback(Var *var, |
| 2043 | replace_rte_variables_context *context) |
| 2044 | { |
| 2045 | pullup_replace_vars_context *rcon = (pullup_replace_vars_context *) context->callback_arg; |
| 2046 | int varattno = var->varattno; |
| 2047 | Node *newnode; |
| 2048 | |
| 2049 | /* |
| 2050 | * If PlaceHolderVars are needed, we cache the modified expressions in |
| 2051 | * rcon->rv_cache[]. This is not in hopes of any material speed gain |
| 2052 | * within this function, but to avoid generating identical PHVs with |
| 2053 | * different IDs. That would result in duplicate evaluations at runtime, |
| 2054 | * and possibly prevent optimizations that rely on recognizing different |
| 2055 | * references to the same subquery output as being equal(). So it's worth |
| 2056 | * a bit of extra effort to avoid it. |
| 2057 | */ |
| 2058 | if (rcon->need_phvs && |
| 2059 | varattno >= InvalidAttrNumber && |
| 2060 | varattno <= list_length(rcon->targetlist) && |
| 2061 | rcon->rv_cache[varattno] != NULL) |
| 2062 | { |
| 2063 | /* Just copy the entry and fall through to adjust its varlevelsup */ |
| 2064 | newnode = copyObject(rcon->rv_cache[varattno]); |
| 2065 | } |
| 2066 | else if (varattno == InvalidAttrNumber) |
| 2067 | { |
| 2068 | /* Must expand whole-tuple reference into RowExpr */ |
| 2069 | RowExpr *rowexpr; |
| 2070 | List *colnames; |
| 2071 | List *fields; |
| 2072 | bool save_need_phvs = rcon->need_phvs; |
| 2073 | int save_sublevelsup = context->sublevels_up; |
| 2074 | |
| 2075 | /* |
| 2076 | * If generating an expansion for a var of a named rowtype (ie, this |
| 2077 | * is a plain relation RTE), then we must include dummy items for |
| 2078 | * dropped columns. If the var is RECORD (ie, this is a JOIN), then |
| 2079 | * omit dropped columns. Either way, attach column names to the |
| 2080 | * RowExpr for use of ruleutils.c. |
| 2081 | * |
| 2082 | * In order to be able to cache the results, we always generate the |
| 2083 | * expansion with varlevelsup = 0, and then adjust if needed. |
| 2084 | */ |
| 2085 | expandRTE(rcon->target_rte, |
| 2086 | var->varno, 0 /* not varlevelsup */ , var->location, |
| 2087 | (var->vartype != RECORDOID), |
| 2088 | &colnames, &fields); |
| 2089 | /* Adjust the generated per-field Vars, but don't insert PHVs */ |
| 2090 | rcon->need_phvs = false; |
| 2091 | context->sublevels_up = 0; /* to match the expandRTE output */ |
| 2092 | fields = (List *) replace_rte_variables_mutator((Node *) fields, |
| 2093 | context); |
| 2094 | rcon->need_phvs = save_need_phvs; |
| 2095 | context->sublevels_up = save_sublevelsup; |
| 2096 | |
| 2097 | rowexpr = makeNode(RowExpr); |
| 2098 | rowexpr->args = fields; |
| 2099 | rowexpr->row_typeid = var->vartype; |
| 2100 | rowexpr->row_format = COERCE_IMPLICIT_CAST; |
| 2101 | rowexpr->colnames = colnames; |
| 2102 | rowexpr->location = var->location; |
| 2103 | newnode = (Node *) rowexpr; |
| 2104 | |
| 2105 | /* |
| 2106 | * Insert PlaceHolderVar if needed. Notice that we are wrapping one |
| 2107 | * PlaceHolderVar around the whole RowExpr, rather than putting one |
| 2108 | * around each element of the row. This is because we need the |
| 2109 | * expression to yield NULL, not ROW(NULL,NULL,...) when it is forced |
| 2110 | * to null by an outer join. |
| 2111 | */ |
| 2112 | if (rcon->need_phvs) |
| 2113 | { |
| 2114 | /* RowExpr is certainly not strict, so always need PHV */ |
| 2115 | newnode = (Node *) |
| 2116 | make_placeholder_expr(rcon->root, |
| 2117 | (Expr *) newnode, |
| 2118 | bms_make_singleton(rcon->varno)); |
| 2119 | /* cache it with the PHV, and with varlevelsup still zero */ |
| 2120 | rcon->rv_cache[InvalidAttrNumber] = copyObject(newnode); |
| 2121 | } |
| 2122 | } |
| 2123 | else |
| 2124 | { |
| 2125 | /* Normal case referencing one targetlist element */ |
| 2126 | TargetEntry *tle = get_tle_by_resno(rcon->targetlist, varattno); |
| 2127 | |
| 2128 | if (tle == NULL) /* shouldn't happen */ |
| 2129 | elog(ERROR, "could not find attribute %d in subquery targetlist" , |
| 2130 | varattno); |
| 2131 | |
| 2132 | /* Make a copy of the tlist item to return */ |
| 2133 | newnode = (Node *) copyObject(tle->expr); |
| 2134 | |
| 2135 | /* Insert PlaceHolderVar if needed */ |
| 2136 | if (rcon->need_phvs) |
| 2137 | { |
| 2138 | bool wrap; |
| 2139 | |
| 2140 | if (newnode && IsA(newnode, Var) && |
| 2141 | ((Var *) newnode)->varlevelsup == 0) |
| 2142 | { |
| 2143 | /* |
| 2144 | * Simple Vars always escape being wrapped, unless they are |
| 2145 | * lateral references to something outside the subquery being |
| 2146 | * pulled up. (Even then, we could omit the PlaceHolderVar if |
| 2147 | * the referenced rel is under the same lowest outer join, but |
| 2148 | * it doesn't seem worth the trouble to check that.) |
| 2149 | */ |
| 2150 | if (rcon->target_rte->lateral && |
| 2151 | !bms_is_member(((Var *) newnode)->varno, rcon->relids)) |
| 2152 | wrap = true; |
| 2153 | else |
| 2154 | wrap = false; |
| 2155 | } |
| 2156 | else if (newnode && IsA(newnode, PlaceHolderVar) && |
| 2157 | ((PlaceHolderVar *) newnode)->phlevelsup == 0) |
| 2158 | { |
| 2159 | /* No need to wrap a PlaceHolderVar with another one, either */ |
| 2160 | wrap = false; |
| 2161 | } |
| 2162 | else if (rcon->wrap_non_vars) |
| 2163 | { |
| 2164 | /* Wrap all non-Vars in a PlaceHolderVar */ |
| 2165 | wrap = true; |
| 2166 | } |
| 2167 | else |
| 2168 | { |
| 2169 | /* |
| 2170 | * If it contains a Var of the subquery being pulled up, and |
| 2171 | * does not contain any non-strict constructs, then it's |
| 2172 | * certainly nullable so we don't need to insert a |
| 2173 | * PlaceHolderVar. |
| 2174 | * |
| 2175 | * This analysis could be tighter: in particular, a non-strict |
| 2176 | * construct hidden within a lower-level PlaceHolderVar is not |
| 2177 | * reason to add another PHV. But for now it doesn't seem |
| 2178 | * worth the code to be more exact. |
| 2179 | * |
| 2180 | * Note: in future maybe we should insert a PlaceHolderVar |
| 2181 | * anyway, if the tlist item is expensive to evaluate? |
| 2182 | * |
| 2183 | * For a LATERAL subquery, we have to check the actual var |
| 2184 | * membership of the node, but if it's non-lateral then any |
| 2185 | * level-zero var must belong to the subquery. |
| 2186 | */ |
| 2187 | if ((rcon->target_rte->lateral ? |
| 2188 | bms_overlap(pull_varnos((Node *) newnode), rcon->relids) : |
| 2189 | contain_vars_of_level((Node *) newnode, 0)) && |
| 2190 | !contain_nonstrict_functions((Node *) newnode)) |
| 2191 | { |
| 2192 | /* No wrap needed */ |
| 2193 | wrap = false; |
| 2194 | } |
| 2195 | else |
| 2196 | { |
| 2197 | /* Else wrap it in a PlaceHolderVar */ |
| 2198 | wrap = true; |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | if (wrap) |
| 2203 | newnode = (Node *) |
| 2204 | make_placeholder_expr(rcon->root, |
| 2205 | (Expr *) newnode, |
| 2206 | bms_make_singleton(rcon->varno)); |
| 2207 | |
| 2208 | /* |
| 2209 | * Cache it if possible (ie, if the attno is in range, which it |
| 2210 | * probably always should be). We can cache the value even if we |
| 2211 | * decided we didn't need a PHV, since this result will be |
| 2212 | * suitable for any request that has need_phvs. |
| 2213 | */ |
| 2214 | if (varattno > InvalidAttrNumber && |
| 2215 | varattno <= list_length(rcon->targetlist)) |
| 2216 | rcon->rv_cache[varattno] = copyObject(newnode); |
| 2217 | } |
| 2218 | } |
| 2219 | |
| 2220 | /* Must adjust varlevelsup if tlist item is from higher query */ |
| 2221 | if (var->varlevelsup > 0) |
| 2222 | IncrementVarSublevelsUp(newnode, var->varlevelsup, 0); |
| 2223 | |
| 2224 | return newnode; |
| 2225 | } |
| 2226 | |
| 2227 | /* |
| 2228 | * Apply pullup variable replacement to a subquery |
| 2229 | * |
| 2230 | * This needs to be different from pullup_replace_vars() because |
| 2231 | * replace_rte_variables will think that it shouldn't increment sublevels_up |
| 2232 | * before entering the Query; so we need to call it with sublevels_up == 1. |
| 2233 | */ |
| 2234 | static Query * |
| 2235 | pullup_replace_vars_subquery(Query *query, |
| 2236 | pullup_replace_vars_context *context) |
| 2237 | { |
| 2238 | Assert(IsA(query, Query)); |
| 2239 | return (Query *) replace_rte_variables((Node *) query, |
| 2240 | context->varno, 1, |
| 2241 | pullup_replace_vars_callback, |
| 2242 | (void *) context, |
| 2243 | NULL); |
| 2244 | } |
| 2245 | |
| 2246 | |
| 2247 | /* |
| 2248 | * flatten_simple_union_all |
| 2249 | * Try to optimize top-level UNION ALL structure into an appendrel |
| 2250 | * |
| 2251 | * If a query's setOperations tree consists entirely of simple UNION ALL |
| 2252 | * operations, flatten it into an append relation, which we can process more |
| 2253 | * intelligently than the general setops case. Otherwise, do nothing. |
| 2254 | * |
| 2255 | * In most cases, this can succeed only for a top-level query, because for a |
| 2256 | * subquery in FROM, the parent query's invocation of pull_up_subqueries would |
| 2257 | * already have flattened the UNION via pull_up_simple_union_all. But there |
| 2258 | * are a few cases we can support here but not in that code path, for example |
| 2259 | * when the subquery also contains ORDER BY. |
| 2260 | */ |
| 2261 | void |
| 2262 | flatten_simple_union_all(PlannerInfo *root) |
| 2263 | { |
| 2264 | Query *parse = root->parse; |
| 2265 | SetOperationStmt *topop; |
| 2266 | Node *leftmostjtnode; |
| 2267 | int leftmostRTI; |
| 2268 | RangeTblEntry *leftmostRTE; |
| 2269 | int childRTI; |
| 2270 | RangeTblEntry *childRTE; |
| 2271 | RangeTblRef *rtr; |
| 2272 | |
| 2273 | /* Shouldn't be called unless query has setops */ |
| 2274 | topop = castNode(SetOperationStmt, parse->setOperations); |
| 2275 | Assert(topop); |
| 2276 | |
| 2277 | /* Can't optimize away a recursive UNION */ |
| 2278 | if (root->hasRecursion) |
| 2279 | return; |
| 2280 | |
| 2281 | /* |
| 2282 | * Recursively check the tree of set operations. If not all UNION ALL |
| 2283 | * with identical column types, punt. |
| 2284 | */ |
| 2285 | if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes)) |
| 2286 | return; |
| 2287 | |
| 2288 | /* |
| 2289 | * Locate the leftmost leaf query in the setops tree. The upper query's |
| 2290 | * Vars all refer to this RTE (see transformSetOperationStmt). |
| 2291 | */ |
| 2292 | leftmostjtnode = topop->larg; |
| 2293 | while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt)) |
| 2294 | leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg; |
| 2295 | Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef)); |
| 2296 | leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex; |
| 2297 | leftmostRTE = rt_fetch(leftmostRTI, parse->rtable); |
| 2298 | Assert(leftmostRTE->rtekind == RTE_SUBQUERY); |
| 2299 | |
| 2300 | /* |
| 2301 | * Make a copy of the leftmost RTE and add it to the rtable. This copy |
| 2302 | * will represent the leftmost leaf query in its capacity as a member of |
| 2303 | * the appendrel. The original will represent the appendrel as a whole. |
| 2304 | * (We must do things this way because the upper query's Vars have to be |
| 2305 | * seen as referring to the whole appendrel.) |
| 2306 | */ |
| 2307 | childRTE = copyObject(leftmostRTE); |
| 2308 | parse->rtable = lappend(parse->rtable, childRTE); |
| 2309 | childRTI = list_length(parse->rtable); |
| 2310 | |
| 2311 | /* Modify the setops tree to reference the child copy */ |
| 2312 | ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI; |
| 2313 | |
| 2314 | /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */ |
| 2315 | leftmostRTE->inh = true; |
| 2316 | |
| 2317 | /* |
| 2318 | * Form a RangeTblRef for the appendrel, and insert it into FROM. The top |
| 2319 | * Query of a setops tree should have had an empty FromClause initially. |
| 2320 | */ |
| 2321 | rtr = makeNode(RangeTblRef); |
| 2322 | rtr->rtindex = leftmostRTI; |
| 2323 | Assert(parse->jointree->fromlist == NIL); |
| 2324 | parse->jointree->fromlist = list_make1(rtr); |
| 2325 | |
| 2326 | /* |
| 2327 | * Now pretend the query has no setops. We must do this before trying to |
| 2328 | * do subquery pullup, because of Assert in pull_up_simple_subquery. |
| 2329 | */ |
| 2330 | parse->setOperations = NULL; |
| 2331 | |
| 2332 | /* |
| 2333 | * Build AppendRelInfo information, and apply pull_up_subqueries to the |
| 2334 | * leaf queries of the UNION ALL. (We must do that now because they |
| 2335 | * weren't previously referenced by the jointree, and so were missed by |
| 2336 | * the main invocation of pull_up_subqueries.) |
| 2337 | */ |
| 2338 | pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0); |
| 2339 | } |
| 2340 | |
| 2341 | |
| 2342 | /* |
| 2343 | * reduce_outer_joins |
| 2344 | * Attempt to reduce outer joins to plain inner joins. |
| 2345 | * |
| 2346 | * The idea here is that given a query like |
| 2347 | * SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42; |
| 2348 | * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE |
| 2349 | * is strict. The strict operator will always return NULL, causing the outer |
| 2350 | * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's |
| 2351 | * columns. Therefore, there's no need for the join to produce null-extended |
| 2352 | * rows in the first place --- which makes it a plain join not an outer join. |
| 2353 | * (This scenario may not be very likely in a query written out by hand, but |
| 2354 | * it's reasonably likely when pushing quals down into complex views.) |
| 2355 | * |
| 2356 | * More generally, an outer join can be reduced in strength if there is a |
| 2357 | * strict qual above it in the qual tree that constrains a Var from the |
| 2358 | * nullable side of the join to be non-null. (For FULL joins this applies |
| 2359 | * to each side separately.) |
| 2360 | * |
| 2361 | * Another transformation we apply here is to recognize cases like |
| 2362 | * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL; |
| 2363 | * If the join clause is strict for b.y, then only null-extended rows could |
| 2364 | * pass the upper WHERE, and we can conclude that what the query is really |
| 2365 | * specifying is an anti-semijoin. We change the join type from JOIN_LEFT |
| 2366 | * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be |
| 2367 | * removed to prevent bogus selectivity calculations, but we leave it to |
| 2368 | * distribute_qual_to_rels to get rid of such clauses. |
| 2369 | * |
| 2370 | * Also, we get rid of JOIN_RIGHT cases by flipping them around to become |
| 2371 | * JOIN_LEFT. This saves some code here and in some later planner routines, |
| 2372 | * but the main reason to do it is to not need to invent a JOIN_REVERSE_ANTI |
| 2373 | * join type. |
| 2374 | * |
| 2375 | * To ease recognition of strict qual clauses, we require this routine to be |
| 2376 | * run after expression preprocessing (i.e., qual canonicalization and JOIN |
| 2377 | * alias-var expansion). |
| 2378 | */ |
| 2379 | void |
| 2380 | reduce_outer_joins(PlannerInfo *root) |
| 2381 | { |
| 2382 | reduce_outer_joins_state *state; |
| 2383 | |
| 2384 | /* |
| 2385 | * To avoid doing strictness checks on more quals than necessary, we want |
| 2386 | * to stop descending the jointree as soon as there are no outer joins |
| 2387 | * below our current point. This consideration forces a two-pass process. |
| 2388 | * The first pass gathers information about which base rels appear below |
| 2389 | * each side of each join clause, and about whether there are outer |
| 2390 | * join(s) below each side of each join clause. The second pass examines |
| 2391 | * qual clauses and changes join types as it descends the tree. |
| 2392 | */ |
| 2393 | state = reduce_outer_joins_pass1((Node *) root->parse->jointree); |
| 2394 | |
| 2395 | /* planner.c shouldn't have called me if no outer joins */ |
| 2396 | if (state == NULL || !state->contains_outer) |
| 2397 | elog(ERROR, "so where are the outer joins?" ); |
| 2398 | |
| 2399 | reduce_outer_joins_pass2((Node *) root->parse->jointree, |
| 2400 | state, root, NULL, NIL, NIL); |
| 2401 | } |
| 2402 | |
| 2403 | /* |
| 2404 | * reduce_outer_joins_pass1 - phase 1 data collection |
| 2405 | * |
| 2406 | * Returns a state node describing the given jointree node. |
| 2407 | */ |
| 2408 | static reduce_outer_joins_state * |
| 2409 | reduce_outer_joins_pass1(Node *jtnode) |
| 2410 | { |
| 2411 | reduce_outer_joins_state *result; |
| 2412 | |
| 2413 | result = (reduce_outer_joins_state *) |
| 2414 | palloc(sizeof(reduce_outer_joins_state)); |
| 2415 | result->relids = NULL; |
| 2416 | result->contains_outer = false; |
| 2417 | result->sub_states = NIL; |
| 2418 | |
| 2419 | if (jtnode == NULL) |
| 2420 | return result; |
| 2421 | if (IsA(jtnode, RangeTblRef)) |
| 2422 | { |
| 2423 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 2424 | |
| 2425 | result->relids = bms_make_singleton(varno); |
| 2426 | } |
| 2427 | else if (IsA(jtnode, FromExpr)) |
| 2428 | { |
| 2429 | FromExpr *f = (FromExpr *) jtnode; |
| 2430 | ListCell *l; |
| 2431 | |
| 2432 | foreach(l, f->fromlist) |
| 2433 | { |
| 2434 | reduce_outer_joins_state *sub_state; |
| 2435 | |
| 2436 | sub_state = reduce_outer_joins_pass1(lfirst(l)); |
| 2437 | result->relids = bms_add_members(result->relids, |
| 2438 | sub_state->relids); |
| 2439 | result->contains_outer |= sub_state->contains_outer; |
| 2440 | result->sub_states = lappend(result->sub_states, sub_state); |
| 2441 | } |
| 2442 | } |
| 2443 | else if (IsA(jtnode, JoinExpr)) |
| 2444 | { |
| 2445 | JoinExpr *j = (JoinExpr *) jtnode; |
| 2446 | reduce_outer_joins_state *sub_state; |
| 2447 | |
| 2448 | /* join's own RT index is not wanted in result->relids */ |
| 2449 | if (IS_OUTER_JOIN(j->jointype)) |
| 2450 | result->contains_outer = true; |
| 2451 | |
| 2452 | sub_state = reduce_outer_joins_pass1(j->larg); |
| 2453 | result->relids = bms_add_members(result->relids, |
| 2454 | sub_state->relids); |
| 2455 | result->contains_outer |= sub_state->contains_outer; |
| 2456 | result->sub_states = lappend(result->sub_states, sub_state); |
| 2457 | |
| 2458 | sub_state = reduce_outer_joins_pass1(j->rarg); |
| 2459 | result->relids = bms_add_members(result->relids, |
| 2460 | sub_state->relids); |
| 2461 | result->contains_outer |= sub_state->contains_outer; |
| 2462 | result->sub_states = lappend(result->sub_states, sub_state); |
| 2463 | } |
| 2464 | else |
| 2465 | elog(ERROR, "unrecognized node type: %d" , |
| 2466 | (int) nodeTag(jtnode)); |
| 2467 | return result; |
| 2468 | } |
| 2469 | |
| 2470 | /* |
| 2471 | * reduce_outer_joins_pass2 - phase 2 processing |
| 2472 | * |
| 2473 | * jtnode: current jointree node |
| 2474 | * state: state data collected by phase 1 for this node |
| 2475 | * root: toplevel planner state |
| 2476 | * nonnullable_rels: set of base relids forced non-null by upper quals |
| 2477 | * nonnullable_vars: list of Vars forced non-null by upper quals |
| 2478 | * forced_null_vars: list of Vars forced null by upper quals |
| 2479 | */ |
| 2480 | static void |
| 2481 | reduce_outer_joins_pass2(Node *jtnode, |
| 2482 | reduce_outer_joins_state *state, |
| 2483 | PlannerInfo *root, |
| 2484 | Relids nonnullable_rels, |
| 2485 | List *nonnullable_vars, |
| 2486 | List *forced_null_vars) |
| 2487 | { |
| 2488 | /* |
| 2489 | * pass 2 should never descend as far as an empty subnode or base rel, |
| 2490 | * because it's only called on subtrees marked as contains_outer. |
| 2491 | */ |
| 2492 | if (jtnode == NULL) |
| 2493 | elog(ERROR, "reached empty jointree" ); |
| 2494 | if (IsA(jtnode, RangeTblRef)) |
| 2495 | elog(ERROR, "reached base rel" ); |
| 2496 | else if (IsA(jtnode, FromExpr)) |
| 2497 | { |
| 2498 | FromExpr *f = (FromExpr *) jtnode; |
| 2499 | ListCell *l; |
| 2500 | ListCell *s; |
| 2501 | Relids pass_nonnullable_rels; |
| 2502 | List *pass_nonnullable_vars; |
| 2503 | List *pass_forced_null_vars; |
| 2504 | |
| 2505 | /* Scan quals to see if we can add any constraints */ |
| 2506 | pass_nonnullable_rels = find_nonnullable_rels(f->quals); |
| 2507 | pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels, |
| 2508 | nonnullable_rels); |
| 2509 | /* NB: we rely on list_concat to not damage its second argument */ |
| 2510 | pass_nonnullable_vars = find_nonnullable_vars(f->quals); |
| 2511 | pass_nonnullable_vars = list_concat(pass_nonnullable_vars, |
| 2512 | nonnullable_vars); |
| 2513 | pass_forced_null_vars = find_forced_null_vars(f->quals); |
| 2514 | pass_forced_null_vars = list_concat(pass_forced_null_vars, |
| 2515 | forced_null_vars); |
| 2516 | /* And recurse --- but only into interesting subtrees */ |
| 2517 | Assert(list_length(f->fromlist) == list_length(state->sub_states)); |
| 2518 | forboth(l, f->fromlist, s, state->sub_states) |
| 2519 | { |
| 2520 | reduce_outer_joins_state *sub_state = lfirst(s); |
| 2521 | |
| 2522 | if (sub_state->contains_outer) |
| 2523 | reduce_outer_joins_pass2(lfirst(l), sub_state, root, |
| 2524 | pass_nonnullable_rels, |
| 2525 | pass_nonnullable_vars, |
| 2526 | pass_forced_null_vars); |
| 2527 | } |
| 2528 | bms_free(pass_nonnullable_rels); |
| 2529 | /* can't so easily clean up var lists, unfortunately */ |
| 2530 | } |
| 2531 | else if (IsA(jtnode, JoinExpr)) |
| 2532 | { |
| 2533 | JoinExpr *j = (JoinExpr *) jtnode; |
| 2534 | int rtindex = j->rtindex; |
| 2535 | JoinType jointype = j->jointype; |
| 2536 | reduce_outer_joins_state *left_state = linitial(state->sub_states); |
| 2537 | reduce_outer_joins_state *right_state = lsecond(state->sub_states); |
| 2538 | List *local_nonnullable_vars = NIL; |
| 2539 | bool computed_local_nonnullable_vars = false; |
| 2540 | |
| 2541 | /* Can we simplify this join? */ |
| 2542 | switch (jointype) |
| 2543 | { |
| 2544 | case JOIN_INNER: |
| 2545 | break; |
| 2546 | case JOIN_LEFT: |
| 2547 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
| 2548 | jointype = JOIN_INNER; |
| 2549 | break; |
| 2550 | case JOIN_RIGHT: |
| 2551 | if (bms_overlap(nonnullable_rels, left_state->relids)) |
| 2552 | jointype = JOIN_INNER; |
| 2553 | break; |
| 2554 | case JOIN_FULL: |
| 2555 | if (bms_overlap(nonnullable_rels, left_state->relids)) |
| 2556 | { |
| 2557 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
| 2558 | jointype = JOIN_INNER; |
| 2559 | else |
| 2560 | jointype = JOIN_LEFT; |
| 2561 | } |
| 2562 | else |
| 2563 | { |
| 2564 | if (bms_overlap(nonnullable_rels, right_state->relids)) |
| 2565 | jointype = JOIN_RIGHT; |
| 2566 | } |
| 2567 | break; |
| 2568 | case JOIN_SEMI: |
| 2569 | case JOIN_ANTI: |
| 2570 | |
| 2571 | /* |
| 2572 | * These could only have been introduced by pull_up_sublinks, |
| 2573 | * so there's no way that upper quals could refer to their |
| 2574 | * righthand sides, and no point in checking. |
| 2575 | */ |
| 2576 | break; |
| 2577 | default: |
| 2578 | elog(ERROR, "unrecognized join type: %d" , |
| 2579 | (int) jointype); |
| 2580 | break; |
| 2581 | } |
| 2582 | |
| 2583 | /* |
| 2584 | * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we |
| 2585 | * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no |
| 2586 | * longer matches the internal ordering of any CoalesceExpr's built to |
| 2587 | * represent merged join variables. We don't care about that at |
| 2588 | * present, but be wary of it ... |
| 2589 | */ |
| 2590 | if (jointype == JOIN_RIGHT) |
| 2591 | { |
| 2592 | Node *tmparg; |
| 2593 | |
| 2594 | tmparg = j->larg; |
| 2595 | j->larg = j->rarg; |
| 2596 | j->rarg = tmparg; |
| 2597 | jointype = JOIN_LEFT; |
| 2598 | right_state = linitial(state->sub_states); |
| 2599 | left_state = lsecond(state->sub_states); |
| 2600 | } |
| 2601 | |
| 2602 | /* |
| 2603 | * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if |
| 2604 | * the join's own quals are strict for any var that was forced null by |
| 2605 | * higher qual levels. NOTE: there are other ways that we could |
| 2606 | * detect an anti-join, in particular if we were to check whether Vars |
| 2607 | * coming from the RHS must be non-null because of table constraints. |
| 2608 | * That seems complicated and expensive though (in particular, one |
| 2609 | * would have to be wary of lower outer joins). For the moment this |
| 2610 | * seems sufficient. |
| 2611 | */ |
| 2612 | if (jointype == JOIN_LEFT) |
| 2613 | { |
| 2614 | List *overlap; |
| 2615 | |
| 2616 | local_nonnullable_vars = find_nonnullable_vars(j->quals); |
| 2617 | computed_local_nonnullable_vars = true; |
| 2618 | |
| 2619 | /* |
| 2620 | * It's not sufficient to check whether local_nonnullable_vars and |
| 2621 | * forced_null_vars overlap: we need to know if the overlap |
| 2622 | * includes any RHS variables. |
| 2623 | */ |
| 2624 | overlap = list_intersection(local_nonnullable_vars, |
| 2625 | forced_null_vars); |
| 2626 | if (overlap != NIL && |
| 2627 | bms_overlap(pull_varnos((Node *) overlap), |
| 2628 | right_state->relids)) |
| 2629 | jointype = JOIN_ANTI; |
| 2630 | } |
| 2631 | |
| 2632 | /* Apply the jointype change, if any, to both jointree node and RTE */ |
| 2633 | if (rtindex && jointype != j->jointype) |
| 2634 | { |
| 2635 | RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable); |
| 2636 | |
| 2637 | Assert(rte->rtekind == RTE_JOIN); |
| 2638 | Assert(rte->jointype == j->jointype); |
| 2639 | rte->jointype = jointype; |
| 2640 | } |
| 2641 | j->jointype = jointype; |
| 2642 | |
| 2643 | /* Only recurse if there's more to do below here */ |
| 2644 | if (left_state->contains_outer || right_state->contains_outer) |
| 2645 | { |
| 2646 | Relids local_nonnullable_rels; |
| 2647 | List *local_forced_null_vars; |
| 2648 | Relids pass_nonnullable_rels; |
| 2649 | List *pass_nonnullable_vars; |
| 2650 | List *pass_forced_null_vars; |
| 2651 | |
| 2652 | /* |
| 2653 | * If this join is (now) inner, we can add any constraints its |
| 2654 | * quals provide to those we got from above. But if it is outer, |
| 2655 | * we can pass down the local constraints only into the nullable |
| 2656 | * side, because an outer join never eliminates any rows from its |
| 2657 | * non-nullable side. Also, there is no point in passing upper |
| 2658 | * constraints into the nullable side, since if there were any |
| 2659 | * we'd have been able to reduce the join. (In the case of upper |
| 2660 | * forced-null constraints, we *must not* pass them into the |
| 2661 | * nullable side --- they either applied here, or not.) The upshot |
| 2662 | * is that we pass either the local or the upper constraints, |
| 2663 | * never both, to the children of an outer join. |
| 2664 | * |
| 2665 | * Note that a SEMI join works like an inner join here: it's okay |
| 2666 | * to pass down both local and upper constraints. (There can't be |
| 2667 | * any upper constraints affecting its inner side, but it's not |
| 2668 | * worth having a separate code path to avoid passing them.) |
| 2669 | * |
| 2670 | * At a FULL join we just punt and pass nothing down --- is it |
| 2671 | * possible to be smarter? |
| 2672 | */ |
| 2673 | if (jointype != JOIN_FULL) |
| 2674 | { |
| 2675 | local_nonnullable_rels = find_nonnullable_rels(j->quals); |
| 2676 | if (!computed_local_nonnullable_vars) |
| 2677 | local_nonnullable_vars = find_nonnullable_vars(j->quals); |
| 2678 | local_forced_null_vars = find_forced_null_vars(j->quals); |
| 2679 | if (jointype == JOIN_INNER || jointype == JOIN_SEMI) |
| 2680 | { |
| 2681 | /* OK to merge upper and local constraints */ |
| 2682 | local_nonnullable_rels = bms_add_members(local_nonnullable_rels, |
| 2683 | nonnullable_rels); |
| 2684 | local_nonnullable_vars = list_concat(local_nonnullable_vars, |
| 2685 | nonnullable_vars); |
| 2686 | local_forced_null_vars = list_concat(local_forced_null_vars, |
| 2687 | forced_null_vars); |
| 2688 | } |
| 2689 | } |
| 2690 | else |
| 2691 | { |
| 2692 | /* no use in calculating these */ |
| 2693 | local_nonnullable_rels = NULL; |
| 2694 | local_forced_null_vars = NIL; |
| 2695 | } |
| 2696 | |
| 2697 | if (left_state->contains_outer) |
| 2698 | { |
| 2699 | if (jointype == JOIN_INNER || jointype == JOIN_SEMI) |
| 2700 | { |
| 2701 | /* pass union of local and upper constraints */ |
| 2702 | pass_nonnullable_rels = local_nonnullable_rels; |
| 2703 | pass_nonnullable_vars = local_nonnullable_vars; |
| 2704 | pass_forced_null_vars = local_forced_null_vars; |
| 2705 | } |
| 2706 | else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */ |
| 2707 | { |
| 2708 | /* can't pass local constraints to non-nullable side */ |
| 2709 | pass_nonnullable_rels = nonnullable_rels; |
| 2710 | pass_nonnullable_vars = nonnullable_vars; |
| 2711 | pass_forced_null_vars = forced_null_vars; |
| 2712 | } |
| 2713 | else |
| 2714 | { |
| 2715 | /* no constraints pass through JOIN_FULL */ |
| 2716 | pass_nonnullable_rels = NULL; |
| 2717 | pass_nonnullable_vars = NIL; |
| 2718 | pass_forced_null_vars = NIL; |
| 2719 | } |
| 2720 | reduce_outer_joins_pass2(j->larg, left_state, root, |
| 2721 | pass_nonnullable_rels, |
| 2722 | pass_nonnullable_vars, |
| 2723 | pass_forced_null_vars); |
| 2724 | } |
| 2725 | |
| 2726 | if (right_state->contains_outer) |
| 2727 | { |
| 2728 | if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */ |
| 2729 | { |
| 2730 | /* pass appropriate constraints, per comment above */ |
| 2731 | pass_nonnullable_rels = local_nonnullable_rels; |
| 2732 | pass_nonnullable_vars = local_nonnullable_vars; |
| 2733 | pass_forced_null_vars = local_forced_null_vars; |
| 2734 | } |
| 2735 | else |
| 2736 | { |
| 2737 | /* no constraints pass through JOIN_FULL */ |
| 2738 | pass_nonnullable_rels = NULL; |
| 2739 | pass_nonnullable_vars = NIL; |
| 2740 | pass_forced_null_vars = NIL; |
| 2741 | } |
| 2742 | reduce_outer_joins_pass2(j->rarg, right_state, root, |
| 2743 | pass_nonnullable_rels, |
| 2744 | pass_nonnullable_vars, |
| 2745 | pass_forced_null_vars); |
| 2746 | } |
| 2747 | bms_free(local_nonnullable_rels); |
| 2748 | } |
| 2749 | } |
| 2750 | else |
| 2751 | elog(ERROR, "unrecognized node type: %d" , |
| 2752 | (int) nodeTag(jtnode)); |
| 2753 | } |
| 2754 | |
| 2755 | |
| 2756 | /* |
| 2757 | * remove_useless_result_rtes |
| 2758 | * Attempt to remove RTE_RESULT RTEs from the join tree. |
| 2759 | * |
| 2760 | * We can remove RTE_RESULT entries from the join tree using the knowledge |
| 2761 | * that RTE_RESULT returns exactly one row and has no output columns. Hence, |
| 2762 | * if one is inner-joined to anything else, we can delete it. Optimizations |
| 2763 | * are also possible for some outer-join cases, as detailed below. |
| 2764 | * |
| 2765 | * Some of these optimizations depend on recognizing empty (constant-true) |
| 2766 | * quals for FromExprs and JoinExprs. That makes it useful to apply this |
| 2767 | * optimization pass after expression preprocessing, since that will have |
| 2768 | * eliminated constant-true quals, allowing more cases to be recognized as |
| 2769 | * optimizable. What's more, the usual reason for an RTE_RESULT to be present |
| 2770 | * is that we pulled up a subquery or VALUES clause, thus very possibly |
| 2771 | * replacing Vars with constants, making it more likely that a qual can be |
| 2772 | * reduced to constant true. Also, because some optimizations depend on |
| 2773 | * the outer-join type, it's best to have done reduce_outer_joins() first. |
| 2774 | * |
| 2775 | * A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this |
| 2776 | * process: we must remove the RTE_RESULT's relid from the PHV's phrels, but |
| 2777 | * we must not reduce the phrels set to empty. If that would happen, and |
| 2778 | * the RTE_RESULT is an immediate child of an outer join, we have to give up |
| 2779 | * and not remove the RTE_RESULT: there is noplace else to evaluate the |
| 2780 | * PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output |
| 2781 | * columns.) But if the RTE_RESULT is an immediate child of an inner join, |
| 2782 | * we can change the PlaceHolderVar's phrels so as to evaluate it at the |
| 2783 | * inner join instead. This is OK because we really only care that PHVs are |
| 2784 | * evaluated above or below the correct outer joins. |
| 2785 | * |
| 2786 | * We used to try to do this work as part of pull_up_subqueries() where the |
| 2787 | * potentially-optimizable cases get introduced; but it's way simpler, and |
| 2788 | * more effective, to do it separately. |
| 2789 | */ |
| 2790 | void |
| 2791 | remove_useless_result_rtes(PlannerInfo *root) |
| 2792 | { |
| 2793 | ListCell *cell; |
| 2794 | ListCell *prev; |
| 2795 | ListCell *next; |
| 2796 | |
| 2797 | /* Top level of jointree must always be a FromExpr */ |
| 2798 | Assert(IsA(root->parse->jointree, FromExpr)); |
| 2799 | /* Recurse ... */ |
| 2800 | root->parse->jointree = (FromExpr *) |
| 2801 | remove_useless_results_recurse(root, (Node *) root->parse->jointree); |
| 2802 | /* We should still have a FromExpr */ |
| 2803 | Assert(IsA(root->parse->jointree, FromExpr)); |
| 2804 | |
| 2805 | /* |
| 2806 | * Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously |
| 2807 | * must do that for any RTE_RESULT that we just removed. But one for a |
| 2808 | * RTE that we did not remove can be dropped anyway: since the RTE has |
| 2809 | * only one possible output row, there is no need for EPQ to mark and |
| 2810 | * restore that row. |
| 2811 | * |
| 2812 | * It's necessary, not optional, to remove the PlanRowMark for a surviving |
| 2813 | * RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the |
| 2814 | * RTE_RESULT, which the executor has no support for. |
| 2815 | */ |
| 2816 | prev = NULL; |
| 2817 | for (cell = list_head(root->rowMarks); cell; cell = next) |
| 2818 | { |
| 2819 | PlanRowMark *rc = (PlanRowMark *) lfirst(cell); |
| 2820 | |
| 2821 | next = lnext(cell); |
| 2822 | if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT) |
| 2823 | root->rowMarks = list_delete_cell(root->rowMarks, cell, prev); |
| 2824 | else |
| 2825 | prev = cell; |
| 2826 | } |
| 2827 | } |
| 2828 | |
| 2829 | /* |
| 2830 | * remove_useless_results_recurse |
| 2831 | * Recursive guts of remove_useless_result_rtes. |
| 2832 | * |
| 2833 | * This recursively processes the jointree and returns a modified jointree. |
| 2834 | */ |
| 2835 | static Node * |
| 2836 | remove_useless_results_recurse(PlannerInfo *root, Node *jtnode) |
| 2837 | { |
| 2838 | Assert(jtnode != NULL); |
| 2839 | if (IsA(jtnode, RangeTblRef)) |
| 2840 | { |
| 2841 | /* Can't immediately do anything with a RangeTblRef */ |
| 2842 | } |
| 2843 | else if (IsA(jtnode, FromExpr)) |
| 2844 | { |
| 2845 | FromExpr *f = (FromExpr *) jtnode; |
| 2846 | Relids result_relids = NULL; |
| 2847 | ListCell *cell; |
| 2848 | ListCell *prev; |
| 2849 | ListCell *next; |
| 2850 | |
| 2851 | /* |
| 2852 | * We can drop RTE_RESULT rels from the fromlist so long as at least |
| 2853 | * one child remains, since joining to a one-row table changes |
| 2854 | * nothing. The easiest way to mechanize this rule is to modify the |
| 2855 | * list in-place, using list_delete_cell. |
| 2856 | */ |
| 2857 | prev = NULL; |
| 2858 | for (cell = list_head(f->fromlist); cell; cell = next) |
| 2859 | { |
| 2860 | Node *child = (Node *) lfirst(cell); |
| 2861 | int varno; |
| 2862 | |
| 2863 | /* Recursively transform child ... */ |
| 2864 | child = remove_useless_results_recurse(root, child); |
| 2865 | /* ... and stick it back into the tree */ |
| 2866 | lfirst(cell) = child; |
| 2867 | next = lnext(cell); |
| 2868 | |
| 2869 | /* |
| 2870 | * If it's an RTE_RESULT with at least one sibling, we can drop |
| 2871 | * it. We don't yet know what the inner join's final relid set |
| 2872 | * will be, so postpone cleanup of PHVs etc till after this loop. |
| 2873 | */ |
| 2874 | if (list_length(f->fromlist) > 1 && |
| 2875 | (varno = get_result_relid(root, child)) != 0) |
| 2876 | { |
| 2877 | f->fromlist = list_delete_cell(f->fromlist, cell, prev); |
| 2878 | result_relids = bms_add_member(result_relids, varno); |
| 2879 | } |
| 2880 | else |
| 2881 | prev = cell; |
| 2882 | } |
| 2883 | |
| 2884 | /* |
| 2885 | * Clean up if we dropped any RTE_RESULT RTEs. This is a bit |
| 2886 | * inefficient if there's more than one, but it seems better to |
| 2887 | * optimize the support code for the single-relid case. |
| 2888 | */ |
| 2889 | if (result_relids) |
| 2890 | { |
| 2891 | int varno = -1; |
| 2892 | |
| 2893 | while ((varno = bms_next_member(result_relids, varno)) >= 0) |
| 2894 | remove_result_refs(root, varno, (Node *) f); |
| 2895 | } |
| 2896 | |
| 2897 | /* |
| 2898 | * If we're not at the top of the jointree, it's valid to simplify a |
| 2899 | * degenerate FromExpr into its single child. (At the top, we must |
| 2900 | * keep the FromExpr since Query.jointree is required to point to a |
| 2901 | * FromExpr.) |
| 2902 | */ |
| 2903 | if (f != root->parse->jointree && |
| 2904 | f->quals == NULL && |
| 2905 | list_length(f->fromlist) == 1) |
| 2906 | return (Node *) linitial(f->fromlist); |
| 2907 | } |
| 2908 | else if (IsA(jtnode, JoinExpr)) |
| 2909 | { |
| 2910 | JoinExpr *j = (JoinExpr *) jtnode; |
| 2911 | int varno; |
| 2912 | |
| 2913 | /* First, recurse */ |
| 2914 | j->larg = remove_useless_results_recurse(root, j->larg); |
| 2915 | j->rarg = remove_useless_results_recurse(root, j->rarg); |
| 2916 | |
| 2917 | /* Apply join-type-specific optimization rules */ |
| 2918 | switch (j->jointype) |
| 2919 | { |
| 2920 | case JOIN_INNER: |
| 2921 | |
| 2922 | /* |
| 2923 | * An inner join is equivalent to a FromExpr, so if either |
| 2924 | * side was simplified to an RTE_RESULT rel, we can replace |
| 2925 | * the join with a FromExpr with just the other side; and if |
| 2926 | * the qual is empty (JOIN ON TRUE) then we can omit the |
| 2927 | * FromExpr as well. |
| 2928 | */ |
| 2929 | if ((varno = get_result_relid(root, j->larg)) != 0) |
| 2930 | { |
| 2931 | remove_result_refs(root, varno, j->rarg); |
| 2932 | if (j->quals) |
| 2933 | jtnode = (Node *) |
| 2934 | makeFromExpr(list_make1(j->rarg), j->quals); |
| 2935 | else |
| 2936 | jtnode = j->rarg; |
| 2937 | } |
| 2938 | else if ((varno = get_result_relid(root, j->rarg)) != 0) |
| 2939 | { |
| 2940 | remove_result_refs(root, varno, j->larg); |
| 2941 | if (j->quals) |
| 2942 | jtnode = (Node *) |
| 2943 | makeFromExpr(list_make1(j->larg), j->quals); |
| 2944 | else |
| 2945 | jtnode = j->larg; |
| 2946 | } |
| 2947 | break; |
| 2948 | case JOIN_LEFT: |
| 2949 | |
| 2950 | /* |
| 2951 | * We can simplify this case if the RHS is an RTE_RESULT, with |
| 2952 | * two different possibilities: |
| 2953 | * |
| 2954 | * If the qual is empty (JOIN ON TRUE), then the join can be |
| 2955 | * strength-reduced to a plain inner join, since each LHS row |
| 2956 | * necessarily has exactly one join partner. So we can always |
| 2957 | * discard the RHS, much as in the JOIN_INNER case above. |
| 2958 | * |
| 2959 | * Otherwise, it's still true that each LHS row should be |
| 2960 | * returned exactly once, and since the RHS returns no columns |
| 2961 | * (unless there are PHVs that have to be evaluated there), we |
| 2962 | * don't much care if it's null-extended or not. So in this |
| 2963 | * case also, we can just ignore the qual and discard the left |
| 2964 | * join. |
| 2965 | */ |
| 2966 | if ((varno = get_result_relid(root, j->rarg)) != 0 && |
| 2967 | (j->quals == NULL || |
| 2968 | !find_dependent_phvs((Node *) root->parse, varno))) |
| 2969 | { |
| 2970 | remove_result_refs(root, varno, j->larg); |
| 2971 | jtnode = j->larg; |
| 2972 | } |
| 2973 | break; |
| 2974 | case JOIN_RIGHT: |
| 2975 | /* Mirror-image of the JOIN_LEFT case */ |
| 2976 | if ((varno = get_result_relid(root, j->larg)) != 0 && |
| 2977 | (j->quals == NULL || |
| 2978 | !find_dependent_phvs((Node *) root->parse, varno))) |
| 2979 | { |
| 2980 | remove_result_refs(root, varno, j->rarg); |
| 2981 | jtnode = j->rarg; |
| 2982 | } |
| 2983 | break; |
| 2984 | case JOIN_SEMI: |
| 2985 | |
| 2986 | /* |
| 2987 | * We may simplify this case if the RHS is an RTE_RESULT; the |
| 2988 | * join qual becomes effectively just a filter qual for the |
| 2989 | * LHS, since we should either return the LHS row or not. For |
| 2990 | * simplicity we inject the filter qual into a new FromExpr. |
| 2991 | * |
| 2992 | * Unlike the LEFT/RIGHT cases, we just Assert that there are |
| 2993 | * no PHVs that need to be evaluated at the semijoin's RHS, |
| 2994 | * since the rest of the query couldn't reference any outputs |
| 2995 | * of the semijoin's RHS. |
| 2996 | */ |
| 2997 | if ((varno = get_result_relid(root, j->rarg)) != 0) |
| 2998 | { |
| 2999 | Assert(!find_dependent_phvs((Node *) root->parse, varno)); |
| 3000 | remove_result_refs(root, varno, j->larg); |
| 3001 | if (j->quals) |
| 3002 | jtnode = (Node *) |
| 3003 | makeFromExpr(list_make1(j->larg), j->quals); |
| 3004 | else |
| 3005 | jtnode = j->larg; |
| 3006 | } |
| 3007 | break; |
| 3008 | case JOIN_FULL: |
| 3009 | case JOIN_ANTI: |
| 3010 | /* We have no special smarts for these cases */ |
| 3011 | break; |
| 3012 | default: |
| 3013 | elog(ERROR, "unrecognized join type: %d" , |
| 3014 | (int) j->jointype); |
| 3015 | break; |
| 3016 | } |
| 3017 | } |
| 3018 | else |
| 3019 | elog(ERROR, "unrecognized node type: %d" , |
| 3020 | (int) nodeTag(jtnode)); |
| 3021 | return jtnode; |
| 3022 | } |
| 3023 | |
| 3024 | /* |
| 3025 | * get_result_relid |
| 3026 | * If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid; |
| 3027 | * otherwise return 0. |
| 3028 | */ |
| 3029 | static int |
| 3030 | get_result_relid(PlannerInfo *root, Node *jtnode) |
| 3031 | { |
| 3032 | int varno; |
| 3033 | |
| 3034 | if (!IsA(jtnode, RangeTblRef)) |
| 3035 | return 0; |
| 3036 | varno = ((RangeTblRef *) jtnode)->rtindex; |
| 3037 | if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT) |
| 3038 | return 0; |
| 3039 | return varno; |
| 3040 | } |
| 3041 | |
| 3042 | /* |
| 3043 | * remove_result_refs |
| 3044 | * Helper routine for dropping an unneeded RTE_RESULT RTE. |
| 3045 | * |
| 3046 | * This doesn't physically remove the RTE from the jointree, because that's |
| 3047 | * more easily handled in remove_useless_results_recurse. What it does do |
| 3048 | * is the necessary cleanup in the rest of the tree: we must adjust any PHVs |
| 3049 | * that may reference the RTE. Be sure to call this at a point where the |
| 3050 | * jointree is valid (no disconnected nodes). |
| 3051 | * |
| 3052 | * Note that we don't need to process the append_rel_list, since RTEs |
| 3053 | * referenced directly in the jointree won't be appendrel members. |
| 3054 | * |
| 3055 | * varno is the RTE_RESULT's relid. |
| 3056 | * newjtloc is the jointree location at which any PHVs referencing the |
| 3057 | * RTE_RESULT should be evaluated instead. |
| 3058 | */ |
| 3059 | static void |
| 3060 | remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc) |
| 3061 | { |
| 3062 | /* Fix up PlaceHolderVars as needed */ |
| 3063 | /* If there are no PHVs anywhere, we can skip this bit */ |
| 3064 | if (root->glob->lastPHId != 0) |
| 3065 | { |
| 3066 | Relids subrelids; |
| 3067 | |
| 3068 | subrelids = get_relids_in_jointree(newjtloc, false); |
| 3069 | Assert(!bms_is_empty(subrelids)); |
| 3070 | substitute_phv_relids((Node *) root->parse, varno, subrelids); |
| 3071 | } |
| 3072 | |
| 3073 | /* |
| 3074 | * We also need to remove any PlanRowMark referencing the RTE, but we |
| 3075 | * postpone that work until we return to remove_useless_result_rtes. |
| 3076 | */ |
| 3077 | } |
| 3078 | |
| 3079 | |
| 3080 | /* |
| 3081 | * find_dependent_phvs - are there any PlaceHolderVars whose relids are |
| 3082 | * exactly the given varno? |
| 3083 | */ |
| 3084 | |
| 3085 | typedef struct |
| 3086 | { |
| 3087 | Relids relids; |
| 3088 | int sublevels_up; |
| 3089 | } find_dependent_phvs_context; |
| 3090 | |
| 3091 | static bool |
| 3092 | find_dependent_phvs_walker(Node *node, |
| 3093 | find_dependent_phvs_context *context) |
| 3094 | { |
| 3095 | if (node == NULL) |
| 3096 | return false; |
| 3097 | if (IsA(node, PlaceHolderVar)) |
| 3098 | { |
| 3099 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 3100 | |
| 3101 | if (phv->phlevelsup == context->sublevels_up && |
| 3102 | bms_equal(context->relids, phv->phrels)) |
| 3103 | return true; |
| 3104 | /* fall through to examine children */ |
| 3105 | } |
| 3106 | if (IsA(node, Query)) |
| 3107 | { |
| 3108 | /* Recurse into subselects */ |
| 3109 | bool result; |
| 3110 | |
| 3111 | context->sublevels_up++; |
| 3112 | result = query_tree_walker((Query *) node, |
| 3113 | find_dependent_phvs_walker, |
| 3114 | (void *) context, 0); |
| 3115 | context->sublevels_up--; |
| 3116 | return result; |
| 3117 | } |
| 3118 | /* Shouldn't need to handle planner auxiliary nodes here */ |
| 3119 | Assert(!IsA(node, SpecialJoinInfo)); |
| 3120 | Assert(!IsA(node, AppendRelInfo)); |
| 3121 | Assert(!IsA(node, PlaceHolderInfo)); |
| 3122 | Assert(!IsA(node, MinMaxAggInfo)); |
| 3123 | |
| 3124 | return expression_tree_walker(node, find_dependent_phvs_walker, |
| 3125 | (void *) context); |
| 3126 | } |
| 3127 | |
| 3128 | static bool |
| 3129 | find_dependent_phvs(Node *node, int varno) |
| 3130 | { |
| 3131 | find_dependent_phvs_context context; |
| 3132 | |
| 3133 | context.relids = bms_make_singleton(varno); |
| 3134 | context.sublevels_up = 0; |
| 3135 | |
| 3136 | /* |
| 3137 | * Must be prepared to start with a Query or a bare expression tree. |
| 3138 | */ |
| 3139 | return query_or_expression_tree_walker(node, |
| 3140 | find_dependent_phvs_walker, |
| 3141 | (void *) &context, |
| 3142 | 0); |
| 3143 | } |
| 3144 | |
| 3145 | /* |
| 3146 | * substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up |
| 3147 | * a subquery or removing an RTE_RESULT jointree item |
| 3148 | * |
| 3149 | * Find any PlaceHolderVar nodes in the given tree that reference the |
| 3150 | * pulled-up relid, and change them to reference the replacement relid(s). |
| 3151 | * |
| 3152 | * NOTE: although this has the form of a walker, we cheat and modify the |
| 3153 | * nodes in-place. This should be OK since the tree was copied by |
| 3154 | * pullup_replace_vars earlier. Avoid scribbling on the original values of |
| 3155 | * the bitmapsets, though, because expression_tree_mutator doesn't copy those. |
| 3156 | */ |
| 3157 | |
| 3158 | typedef struct |
| 3159 | { |
| 3160 | int varno; |
| 3161 | int sublevels_up; |
| 3162 | Relids subrelids; |
| 3163 | } substitute_phv_relids_context; |
| 3164 | |
| 3165 | static bool |
| 3166 | substitute_phv_relids_walker(Node *node, |
| 3167 | substitute_phv_relids_context *context) |
| 3168 | { |
| 3169 | if (node == NULL) |
| 3170 | return false; |
| 3171 | if (IsA(node, PlaceHolderVar)) |
| 3172 | { |
| 3173 | PlaceHolderVar *phv = (PlaceHolderVar *) node; |
| 3174 | |
| 3175 | if (phv->phlevelsup == context->sublevels_up && |
| 3176 | bms_is_member(context->varno, phv->phrels)) |
| 3177 | { |
| 3178 | phv->phrels = bms_union(phv->phrels, |
| 3179 | context->subrelids); |
| 3180 | phv->phrels = bms_del_member(phv->phrels, |
| 3181 | context->varno); |
| 3182 | /* Assert we haven't broken the PHV */ |
| 3183 | Assert(!bms_is_empty(phv->phrels)); |
| 3184 | } |
| 3185 | /* fall through to examine children */ |
| 3186 | } |
| 3187 | if (IsA(node, Query)) |
| 3188 | { |
| 3189 | /* Recurse into subselects */ |
| 3190 | bool result; |
| 3191 | |
| 3192 | context->sublevels_up++; |
| 3193 | result = query_tree_walker((Query *) node, |
| 3194 | substitute_phv_relids_walker, |
| 3195 | (void *) context, 0); |
| 3196 | context->sublevels_up--; |
| 3197 | return result; |
| 3198 | } |
| 3199 | /* Shouldn't need to handle planner auxiliary nodes here */ |
| 3200 | Assert(!IsA(node, SpecialJoinInfo)); |
| 3201 | Assert(!IsA(node, AppendRelInfo)); |
| 3202 | Assert(!IsA(node, PlaceHolderInfo)); |
| 3203 | Assert(!IsA(node, MinMaxAggInfo)); |
| 3204 | |
| 3205 | return expression_tree_walker(node, substitute_phv_relids_walker, |
| 3206 | (void *) context); |
| 3207 | } |
| 3208 | |
| 3209 | static void |
| 3210 | substitute_phv_relids(Node *node, int varno, Relids subrelids) |
| 3211 | { |
| 3212 | substitute_phv_relids_context context; |
| 3213 | |
| 3214 | context.varno = varno; |
| 3215 | context.sublevels_up = 0; |
| 3216 | context.subrelids = subrelids; |
| 3217 | |
| 3218 | /* |
| 3219 | * Must be prepared to start with a Query or a bare expression tree. |
| 3220 | */ |
| 3221 | query_or_expression_tree_walker(node, |
| 3222 | substitute_phv_relids_walker, |
| 3223 | (void *) &context, |
| 3224 | 0); |
| 3225 | } |
| 3226 | |
| 3227 | /* |
| 3228 | * fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes |
| 3229 | * |
| 3230 | * When we pull up a subquery, any AppendRelInfo references to the subquery's |
| 3231 | * RT index have to be replaced by the substituted relid (and there had better |
| 3232 | * be only one). We also need to apply substitute_phv_relids to their |
| 3233 | * translated_vars lists, since those might contain PlaceHolderVars. |
| 3234 | * |
| 3235 | * We assume we may modify the AppendRelInfo nodes in-place. |
| 3236 | */ |
| 3237 | static void |
| 3238 | fix_append_rel_relids(List *append_rel_list, int varno, Relids subrelids) |
| 3239 | { |
| 3240 | ListCell *l; |
| 3241 | int subvarno = -1; |
| 3242 | |
| 3243 | /* |
| 3244 | * We only want to extract the member relid once, but we mustn't fail |
| 3245 | * immediately if there are multiple members; it could be that none of the |
| 3246 | * AppendRelInfo nodes refer to it. So compute it on first use. Note that |
| 3247 | * bms_singleton_member will complain if set is not singleton. |
| 3248 | */ |
| 3249 | foreach(l, append_rel_list) |
| 3250 | { |
| 3251 | AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); |
| 3252 | |
| 3253 | /* The parent_relid shouldn't ever be a pullup target */ |
| 3254 | Assert(appinfo->parent_relid != varno); |
| 3255 | |
| 3256 | if (appinfo->child_relid == varno) |
| 3257 | { |
| 3258 | if (subvarno < 0) |
| 3259 | subvarno = bms_singleton_member(subrelids); |
| 3260 | appinfo->child_relid = subvarno; |
| 3261 | } |
| 3262 | |
| 3263 | /* Also fix up any PHVs in its translated vars */ |
| 3264 | substitute_phv_relids((Node *) appinfo->translated_vars, |
| 3265 | varno, subrelids); |
| 3266 | } |
| 3267 | } |
| 3268 | |
| 3269 | /* |
| 3270 | * get_relids_in_jointree: get set of RT indexes present in a jointree |
| 3271 | * |
| 3272 | * If include_joins is true, join RT indexes are included; if false, |
| 3273 | * only base rels are included. |
| 3274 | */ |
| 3275 | Relids |
| 3276 | get_relids_in_jointree(Node *jtnode, bool include_joins) |
| 3277 | { |
| 3278 | Relids result = NULL; |
| 3279 | |
| 3280 | if (jtnode == NULL) |
| 3281 | return result; |
| 3282 | if (IsA(jtnode, RangeTblRef)) |
| 3283 | { |
| 3284 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 3285 | |
| 3286 | result = bms_make_singleton(varno); |
| 3287 | } |
| 3288 | else if (IsA(jtnode, FromExpr)) |
| 3289 | { |
| 3290 | FromExpr *f = (FromExpr *) jtnode; |
| 3291 | ListCell *l; |
| 3292 | |
| 3293 | foreach(l, f->fromlist) |
| 3294 | { |
| 3295 | result = bms_join(result, |
| 3296 | get_relids_in_jointree(lfirst(l), |
| 3297 | include_joins)); |
| 3298 | } |
| 3299 | } |
| 3300 | else if (IsA(jtnode, JoinExpr)) |
| 3301 | { |
| 3302 | JoinExpr *j = (JoinExpr *) jtnode; |
| 3303 | |
| 3304 | result = get_relids_in_jointree(j->larg, include_joins); |
| 3305 | result = bms_join(result, |
| 3306 | get_relids_in_jointree(j->rarg, include_joins)); |
| 3307 | if (include_joins && j->rtindex) |
| 3308 | result = bms_add_member(result, j->rtindex); |
| 3309 | } |
| 3310 | else |
| 3311 | elog(ERROR, "unrecognized node type: %d" , |
| 3312 | (int) nodeTag(jtnode)); |
| 3313 | return result; |
| 3314 | } |
| 3315 | |
| 3316 | /* |
| 3317 | * get_relids_for_join: get set of base RT indexes making up a join |
| 3318 | */ |
| 3319 | Relids |
| 3320 | get_relids_for_join(Query *query, int joinrelid) |
| 3321 | { |
| 3322 | Node *jtnode; |
| 3323 | |
| 3324 | jtnode = find_jointree_node_for_rel((Node *) query->jointree, |
| 3325 | joinrelid); |
| 3326 | if (!jtnode) |
| 3327 | elog(ERROR, "could not find join node %d" , joinrelid); |
| 3328 | return get_relids_in_jointree(jtnode, false); |
| 3329 | } |
| 3330 | |
| 3331 | /* |
| 3332 | * find_jointree_node_for_rel: locate jointree node for a base or join RT index |
| 3333 | * |
| 3334 | * Returns NULL if not found |
| 3335 | */ |
| 3336 | static Node * |
| 3337 | find_jointree_node_for_rel(Node *jtnode, int relid) |
| 3338 | { |
| 3339 | if (jtnode == NULL) |
| 3340 | return NULL; |
| 3341 | if (IsA(jtnode, RangeTblRef)) |
| 3342 | { |
| 3343 | int varno = ((RangeTblRef *) jtnode)->rtindex; |
| 3344 | |
| 3345 | if (relid == varno) |
| 3346 | return jtnode; |
| 3347 | } |
| 3348 | else if (IsA(jtnode, FromExpr)) |
| 3349 | { |
| 3350 | FromExpr *f = (FromExpr *) jtnode; |
| 3351 | ListCell *l; |
| 3352 | |
| 3353 | foreach(l, f->fromlist) |
| 3354 | { |
| 3355 | jtnode = find_jointree_node_for_rel(lfirst(l), relid); |
| 3356 | if (jtnode) |
| 3357 | return jtnode; |
| 3358 | } |
| 3359 | } |
| 3360 | else if (IsA(jtnode, JoinExpr)) |
| 3361 | { |
| 3362 | JoinExpr *j = (JoinExpr *) jtnode; |
| 3363 | |
| 3364 | if (relid == j->rtindex) |
| 3365 | return jtnode; |
| 3366 | jtnode = find_jointree_node_for_rel(j->larg, relid); |
| 3367 | if (jtnode) |
| 3368 | return jtnode; |
| 3369 | jtnode = find_jointree_node_for_rel(j->rarg, relid); |
| 3370 | if (jtnode) |
| 3371 | return jtnode; |
| 3372 | } |
| 3373 | else |
| 3374 | elog(ERROR, "unrecognized node type: %d" , |
| 3375 | (int) nodeTag(jtnode)); |
| 3376 | return NULL; |
| 3377 | } |
| 3378 | |