| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * predtest.c |
| 4 | * Routines to attempt to prove logical implications between predicate |
| 5 | * expressions. |
| 6 | * |
| 7 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 8 | * Portions Copyright (c) 1994, Regents of the University of California |
| 9 | * |
| 10 | * |
| 11 | * IDENTIFICATION |
| 12 | * src/backend/optimizer/util/predtest.c |
| 13 | * |
| 14 | *------------------------------------------------------------------------- |
| 15 | */ |
| 16 | #include "postgres.h" |
| 17 | |
| 18 | #include "catalog/pg_proc.h" |
| 19 | #include "catalog/pg_type.h" |
| 20 | #include "executor/executor.h" |
| 21 | #include "miscadmin.h" |
| 22 | #include "nodes/makefuncs.h" |
| 23 | #include "nodes/nodeFuncs.h" |
| 24 | #include "nodes/pathnodes.h" |
| 25 | #include "optimizer/optimizer.h" |
| 26 | #include "utils/array.h" |
| 27 | #include "utils/inval.h" |
| 28 | #include "utils/lsyscache.h" |
| 29 | #include "utils/syscache.h" |
| 30 | |
| 31 | |
| 32 | /* |
| 33 | * Proof attempts involving large arrays in ScalarArrayOpExpr nodes are |
| 34 | * likely to require O(N^2) time, and more often than not fail anyway. |
| 35 | * So we set an arbitrary limit on the number of array elements that |
| 36 | * we will allow to be treated as an AND or OR clause. |
| 37 | * XXX is it worth exposing this as a GUC knob? |
| 38 | */ |
| 39 | #define MAX_SAOP_ARRAY_SIZE 100 |
| 40 | |
| 41 | /* |
| 42 | * To avoid redundant coding in predicate_implied_by_recurse and |
| 43 | * predicate_refuted_by_recurse, we need to abstract out the notion of |
| 44 | * iterating over the components of an expression that is logically an AND |
| 45 | * or OR structure. There are multiple sorts of expression nodes that can |
| 46 | * be treated as ANDs or ORs, and we don't want to code each one separately. |
| 47 | * Hence, these types and support routines. |
| 48 | */ |
| 49 | typedef enum |
| 50 | { |
| 51 | CLASS_ATOM, /* expression that's not AND or OR */ |
| 52 | CLASS_AND, /* expression with AND semantics */ |
| 53 | CLASS_OR /* expression with OR semantics */ |
| 54 | } PredClass; |
| 55 | |
| 56 | typedef struct PredIterInfoData *PredIterInfo; |
| 57 | |
| 58 | typedef struct PredIterInfoData |
| 59 | { |
| 60 | /* node-type-specific iteration state */ |
| 61 | void *state; |
| 62 | /* initialize to do the iteration */ |
| 63 | void (*startup_fn) (Node *clause, PredIterInfo info); |
| 64 | /* next-component iteration function */ |
| 65 | Node *(*next_fn) (PredIterInfo info); |
| 66 | /* release resources when done with iteration */ |
| 67 | void (*cleanup_fn) (PredIterInfo info); |
| 68 | } PredIterInfoData; |
| 69 | |
| 70 | #define iterate_begin(item, clause, info) \ |
| 71 | do { \ |
| 72 | Node *item; \ |
| 73 | (info).startup_fn((clause), &(info)); \ |
| 74 | while ((item = (info).next_fn(&(info))) != NULL) |
| 75 | |
| 76 | #define iterate_end(info) \ |
| 77 | (info).cleanup_fn(&(info)); \ |
| 78 | } while (0) |
| 79 | |
| 80 | |
| 81 | static bool predicate_implied_by_recurse(Node *clause, Node *predicate, |
| 82 | bool weak); |
| 83 | static bool predicate_refuted_by_recurse(Node *clause, Node *predicate, |
| 84 | bool weak); |
| 85 | static PredClass predicate_classify(Node *clause, PredIterInfo info); |
| 86 | static void list_startup_fn(Node *clause, PredIterInfo info); |
| 87 | static Node *list_next_fn(PredIterInfo info); |
| 88 | static void list_cleanup_fn(PredIterInfo info); |
| 89 | static void boolexpr_startup_fn(Node *clause, PredIterInfo info); |
| 90 | static void arrayconst_startup_fn(Node *clause, PredIterInfo info); |
| 91 | static Node *arrayconst_next_fn(PredIterInfo info); |
| 92 | static void arrayconst_cleanup_fn(PredIterInfo info); |
| 93 | static void arrayexpr_startup_fn(Node *clause, PredIterInfo info); |
| 94 | static Node *arrayexpr_next_fn(PredIterInfo info); |
| 95 | static void arrayexpr_cleanup_fn(PredIterInfo info); |
| 96 | static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause, |
| 97 | bool weak); |
| 98 | static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause, |
| 99 | bool weak); |
| 100 | static Node *extract_not_arg(Node *clause); |
| 101 | static Node *extract_strong_not_arg(Node *clause); |
| 102 | static bool clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false); |
| 103 | static bool operator_predicate_proof(Expr *predicate, Node *clause, |
| 104 | bool refute_it, bool weak); |
| 105 | static bool operator_same_subexprs_proof(Oid pred_op, Oid clause_op, |
| 106 | bool refute_it); |
| 107 | static bool operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, |
| 108 | bool refute_it); |
| 109 | static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it); |
| 110 | static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue); |
| 111 | |
| 112 | |
| 113 | /* |
| 114 | * predicate_implied_by |
| 115 | * Recursively checks whether the clauses in clause_list imply that the |
| 116 | * given predicate is true. |
| 117 | * |
| 118 | * We support two definitions of implication: |
| 119 | * |
| 120 | * "Strong" implication: A implies B means that truth of A implies truth of B. |
| 121 | * We use this to prove that a row satisfying one WHERE clause or index |
| 122 | * predicate must satisfy another one. |
| 123 | * |
| 124 | * "Weak" implication: A implies B means that non-falsity of A implies |
| 125 | * non-falsity of B ("non-false" means "either true or NULL"). We use this to |
| 126 | * prove that a row satisfying one CHECK constraint must satisfy another one. |
| 127 | * |
| 128 | * Strong implication can also be used to prove that a WHERE clause implies a |
| 129 | * CHECK constraint, although it will fail to prove a few cases where we could |
| 130 | * safely conclude that the implication holds. There's no support for proving |
| 131 | * the converse case, since only a few kinds of CHECK constraint would allow |
| 132 | * deducing anything. |
| 133 | * |
| 134 | * The top-level List structure of each list corresponds to an AND list. |
| 135 | * We assume that eval_const_expressions() has been applied and so there |
| 136 | * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, |
| 137 | * including AND just below the top-level List structure). |
| 138 | * If this is not true we might fail to prove an implication that is |
| 139 | * valid, but no worse consequences will ensue. |
| 140 | * |
| 141 | * We assume the predicate has already been checked to contain only |
| 142 | * immutable functions and operators. (In many current uses this is known |
| 143 | * true because the predicate is part of an index predicate that has passed |
| 144 | * CheckPredicate(); otherwise, the caller must check it.) We dare not make |
| 145 | * deductions based on non-immutable functions, because they might change |
| 146 | * answers between the time we make the plan and the time we execute the plan. |
| 147 | * Immutability of functions in the clause_list is checked here, if necessary. |
| 148 | */ |
| 149 | bool |
| 150 | predicate_implied_by(List *predicate_list, List *clause_list, |
| 151 | bool weak) |
| 152 | { |
| 153 | Node *p, |
| 154 | *c; |
| 155 | |
| 156 | if (predicate_list == NIL) |
| 157 | return true; /* no predicate: implication is vacuous */ |
| 158 | if (clause_list == NIL) |
| 159 | return false; /* no restriction: implication must fail */ |
| 160 | |
| 161 | /* |
| 162 | * If either input is a single-element list, replace it with its lone |
| 163 | * member; this avoids one useless level of AND-recursion. We only need |
| 164 | * to worry about this at top level, since eval_const_expressions should |
| 165 | * have gotten rid of any trivial ANDs or ORs below that. |
| 166 | */ |
| 167 | if (list_length(predicate_list) == 1) |
| 168 | p = (Node *) linitial(predicate_list); |
| 169 | else |
| 170 | p = (Node *) predicate_list; |
| 171 | if (list_length(clause_list) == 1) |
| 172 | c = (Node *) linitial(clause_list); |
| 173 | else |
| 174 | c = (Node *) clause_list; |
| 175 | |
| 176 | /* And away we go ... */ |
| 177 | return predicate_implied_by_recurse(c, p, weak); |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * predicate_refuted_by |
| 182 | * Recursively checks whether the clauses in clause_list refute the given |
| 183 | * predicate (that is, prove it false). |
| 184 | * |
| 185 | * This is NOT the same as !(predicate_implied_by), though it is similar |
| 186 | * in the technique and structure of the code. |
| 187 | * |
| 188 | * We support two definitions of refutation: |
| 189 | * |
| 190 | * "Strong" refutation: A refutes B means truth of A implies falsity of B. |
| 191 | * We use this to disprove a CHECK constraint given a WHERE clause, i.e., |
| 192 | * prove that any row satisfying the WHERE clause would violate the CHECK |
| 193 | * constraint. (Observe we must prove B yields false, not just not-true.) |
| 194 | * |
| 195 | * "Weak" refutation: A refutes B means truth of A implies non-truth of B |
| 196 | * (i.e., B must yield false or NULL). We use this to detect mutually |
| 197 | * contradictory WHERE clauses. |
| 198 | * |
| 199 | * Weak refutation can be proven in some cases where strong refutation doesn't |
| 200 | * hold, so it's useful to use it when possible. We don't currently have |
| 201 | * support for disproving one CHECK constraint based on another one, nor for |
| 202 | * disproving WHERE based on CHECK. (As with implication, the last case |
| 203 | * doesn't seem very practical. CHECK-vs-CHECK might be useful, but isn't |
| 204 | * currently needed anywhere.) |
| 205 | * |
| 206 | * The top-level List structure of each list corresponds to an AND list. |
| 207 | * We assume that eval_const_expressions() has been applied and so there |
| 208 | * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, |
| 209 | * including AND just below the top-level List structure). |
| 210 | * If this is not true we might fail to prove an implication that is |
| 211 | * valid, but no worse consequences will ensue. |
| 212 | * |
| 213 | * We assume the predicate has already been checked to contain only |
| 214 | * immutable functions and operators. We dare not make deductions based on |
| 215 | * non-immutable functions, because they might change answers between the |
| 216 | * time we make the plan and the time we execute the plan. |
| 217 | * Immutability of functions in the clause_list is checked here, if necessary. |
| 218 | */ |
| 219 | bool |
| 220 | predicate_refuted_by(List *predicate_list, List *clause_list, |
| 221 | bool weak) |
| 222 | { |
| 223 | Node *p, |
| 224 | *c; |
| 225 | |
| 226 | if (predicate_list == NIL) |
| 227 | return false; /* no predicate: no refutation is possible */ |
| 228 | if (clause_list == NIL) |
| 229 | return false; /* no restriction: refutation must fail */ |
| 230 | |
| 231 | /* |
| 232 | * If either input is a single-element list, replace it with its lone |
| 233 | * member; this avoids one useless level of AND-recursion. We only need |
| 234 | * to worry about this at top level, since eval_const_expressions should |
| 235 | * have gotten rid of any trivial ANDs or ORs below that. |
| 236 | */ |
| 237 | if (list_length(predicate_list) == 1) |
| 238 | p = (Node *) linitial(predicate_list); |
| 239 | else |
| 240 | p = (Node *) predicate_list; |
| 241 | if (list_length(clause_list) == 1) |
| 242 | c = (Node *) linitial(clause_list); |
| 243 | else |
| 244 | c = (Node *) clause_list; |
| 245 | |
| 246 | /* And away we go ... */ |
| 247 | return predicate_refuted_by_recurse(c, p, weak); |
| 248 | } |
| 249 | |
| 250 | /*---------- |
| 251 | * predicate_implied_by_recurse |
| 252 | * Does the predicate implication test for non-NULL restriction and |
| 253 | * predicate clauses. |
| 254 | * |
| 255 | * The logic followed here is ("=>" means "implies"): |
| 256 | * atom A => atom B iff: predicate_implied_by_simple_clause says so |
| 257 | * atom A => AND-expr B iff: A => each of B's components |
| 258 | * atom A => OR-expr B iff: A => any of B's components |
| 259 | * AND-expr A => atom B iff: any of A's components => B |
| 260 | * AND-expr A => AND-expr B iff: A => each of B's components |
| 261 | * AND-expr A => OR-expr B iff: A => any of B's components, |
| 262 | * *or* any of A's components => B |
| 263 | * OR-expr A => atom B iff: each of A's components => B |
| 264 | * OR-expr A => AND-expr B iff: A => each of B's components |
| 265 | * OR-expr A => OR-expr B iff: each of A's components => any of B's |
| 266 | * |
| 267 | * An "atom" is anything other than an AND or OR node. Notice that we don't |
| 268 | * have any special logic to handle NOT nodes; these should have been pushed |
| 269 | * down or eliminated where feasible during eval_const_expressions(). |
| 270 | * |
| 271 | * All of these rules apply equally to strong or weak implication. |
| 272 | * |
| 273 | * We can't recursively expand either side first, but have to interleave |
| 274 | * the expansions per the above rules, to be sure we handle all of these |
| 275 | * examples: |
| 276 | * (x OR y) => (x OR y OR z) |
| 277 | * (x AND y AND z) => (x AND y) |
| 278 | * (x AND y) => ((x AND y) OR z) |
| 279 | * ((x OR y) AND z) => (x OR y) |
| 280 | * This is still not an exhaustive test, but it handles most normal cases |
| 281 | * under the assumption that both inputs have been AND/OR flattened. |
| 282 | * |
| 283 | * We have to be prepared to handle RestrictInfo nodes in the restrictinfo |
| 284 | * tree, though not in the predicate tree. |
| 285 | *---------- |
| 286 | */ |
| 287 | static bool |
| 288 | predicate_implied_by_recurse(Node *clause, Node *predicate, |
| 289 | bool weak) |
| 290 | { |
| 291 | PredIterInfoData clause_info; |
| 292 | PredIterInfoData pred_info; |
| 293 | PredClass pclass; |
| 294 | bool result; |
| 295 | |
| 296 | /* skip through RestrictInfo */ |
| 297 | Assert(clause != NULL); |
| 298 | if (IsA(clause, RestrictInfo)) |
| 299 | clause = (Node *) ((RestrictInfo *) clause)->clause; |
| 300 | |
| 301 | pclass = predicate_classify(predicate, &pred_info); |
| 302 | |
| 303 | switch (predicate_classify(clause, &clause_info)) |
| 304 | { |
| 305 | case CLASS_AND: |
| 306 | switch (pclass) |
| 307 | { |
| 308 | case CLASS_AND: |
| 309 | |
| 310 | /* |
| 311 | * AND-clause => AND-clause if A implies each of B's items |
| 312 | */ |
| 313 | result = true; |
| 314 | iterate_begin(pitem, predicate, pred_info) |
| 315 | { |
| 316 | if (!predicate_implied_by_recurse(clause, pitem, |
| 317 | weak)) |
| 318 | { |
| 319 | result = false; |
| 320 | break; |
| 321 | } |
| 322 | } |
| 323 | iterate_end(pred_info); |
| 324 | return result; |
| 325 | |
| 326 | case CLASS_OR: |
| 327 | |
| 328 | /* |
| 329 | * AND-clause => OR-clause if A implies any of B's items |
| 330 | * |
| 331 | * Needed to handle (x AND y) => ((x AND y) OR z) |
| 332 | */ |
| 333 | result = false; |
| 334 | iterate_begin(pitem, predicate, pred_info) |
| 335 | { |
| 336 | if (predicate_implied_by_recurse(clause, pitem, |
| 337 | weak)) |
| 338 | { |
| 339 | result = true; |
| 340 | break; |
| 341 | } |
| 342 | } |
| 343 | iterate_end(pred_info); |
| 344 | if (result) |
| 345 | return result; |
| 346 | |
| 347 | /* |
| 348 | * Also check if any of A's items implies B |
| 349 | * |
| 350 | * Needed to handle ((x OR y) AND z) => (x OR y) |
| 351 | */ |
| 352 | iterate_begin(citem, clause, clause_info) |
| 353 | { |
| 354 | if (predicate_implied_by_recurse(citem, predicate, |
| 355 | weak)) |
| 356 | { |
| 357 | result = true; |
| 358 | break; |
| 359 | } |
| 360 | } |
| 361 | iterate_end(clause_info); |
| 362 | return result; |
| 363 | |
| 364 | case CLASS_ATOM: |
| 365 | |
| 366 | /* |
| 367 | * AND-clause => atom if any of A's items implies B |
| 368 | */ |
| 369 | result = false; |
| 370 | iterate_begin(citem, clause, clause_info) |
| 371 | { |
| 372 | if (predicate_implied_by_recurse(citem, predicate, |
| 373 | weak)) |
| 374 | { |
| 375 | result = true; |
| 376 | break; |
| 377 | } |
| 378 | } |
| 379 | iterate_end(clause_info); |
| 380 | return result; |
| 381 | } |
| 382 | break; |
| 383 | |
| 384 | case CLASS_OR: |
| 385 | switch (pclass) |
| 386 | { |
| 387 | case CLASS_OR: |
| 388 | |
| 389 | /* |
| 390 | * OR-clause => OR-clause if each of A's items implies any |
| 391 | * of B's items. Messy but can't do it any more simply. |
| 392 | */ |
| 393 | result = true; |
| 394 | iterate_begin(citem, clause, clause_info) |
| 395 | { |
| 396 | bool presult = false; |
| 397 | |
| 398 | iterate_begin(pitem, predicate, pred_info) |
| 399 | { |
| 400 | if (predicate_implied_by_recurse(citem, pitem, |
| 401 | weak)) |
| 402 | { |
| 403 | presult = true; |
| 404 | break; |
| 405 | } |
| 406 | } |
| 407 | iterate_end(pred_info); |
| 408 | if (!presult) |
| 409 | { |
| 410 | result = false; /* doesn't imply any of B's */ |
| 411 | break; |
| 412 | } |
| 413 | } |
| 414 | iterate_end(clause_info); |
| 415 | return result; |
| 416 | |
| 417 | case CLASS_AND: |
| 418 | case CLASS_ATOM: |
| 419 | |
| 420 | /* |
| 421 | * OR-clause => AND-clause if each of A's items implies B |
| 422 | * |
| 423 | * OR-clause => atom if each of A's items implies B |
| 424 | */ |
| 425 | result = true; |
| 426 | iterate_begin(citem, clause, clause_info) |
| 427 | { |
| 428 | if (!predicate_implied_by_recurse(citem, predicate, |
| 429 | weak)) |
| 430 | { |
| 431 | result = false; |
| 432 | break; |
| 433 | } |
| 434 | } |
| 435 | iterate_end(clause_info); |
| 436 | return result; |
| 437 | } |
| 438 | break; |
| 439 | |
| 440 | case CLASS_ATOM: |
| 441 | switch (pclass) |
| 442 | { |
| 443 | case CLASS_AND: |
| 444 | |
| 445 | /* |
| 446 | * atom => AND-clause if A implies each of B's items |
| 447 | */ |
| 448 | result = true; |
| 449 | iterate_begin(pitem, predicate, pred_info) |
| 450 | { |
| 451 | if (!predicate_implied_by_recurse(clause, pitem, |
| 452 | weak)) |
| 453 | { |
| 454 | result = false; |
| 455 | break; |
| 456 | } |
| 457 | } |
| 458 | iterate_end(pred_info); |
| 459 | return result; |
| 460 | |
| 461 | case CLASS_OR: |
| 462 | |
| 463 | /* |
| 464 | * atom => OR-clause if A implies any of B's items |
| 465 | */ |
| 466 | result = false; |
| 467 | iterate_begin(pitem, predicate, pred_info) |
| 468 | { |
| 469 | if (predicate_implied_by_recurse(clause, pitem, |
| 470 | weak)) |
| 471 | { |
| 472 | result = true; |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | iterate_end(pred_info); |
| 477 | return result; |
| 478 | |
| 479 | case CLASS_ATOM: |
| 480 | |
| 481 | /* |
| 482 | * atom => atom is the base case |
| 483 | */ |
| 484 | return |
| 485 | predicate_implied_by_simple_clause((Expr *) predicate, |
| 486 | clause, |
| 487 | weak); |
| 488 | } |
| 489 | break; |
| 490 | } |
| 491 | |
| 492 | /* can't get here */ |
| 493 | elog(ERROR, "predicate_classify returned a bogus value" ); |
| 494 | return false; |
| 495 | } |
| 496 | |
| 497 | /*---------- |
| 498 | * predicate_refuted_by_recurse |
| 499 | * Does the predicate refutation test for non-NULL restriction and |
| 500 | * predicate clauses. |
| 501 | * |
| 502 | * The logic followed here is ("R=>" means "refutes"): |
| 503 | * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so |
| 504 | * atom A R=> AND-expr B iff: A R=> any of B's components |
| 505 | * atom A R=> OR-expr B iff: A R=> each of B's components |
| 506 | * AND-expr A R=> atom B iff: any of A's components R=> B |
| 507 | * AND-expr A R=> AND-expr B iff: A R=> any of B's components, |
| 508 | * *or* any of A's components R=> B |
| 509 | * AND-expr A R=> OR-expr B iff: A R=> each of B's components |
| 510 | * OR-expr A R=> atom B iff: each of A's components R=> B |
| 511 | * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's |
| 512 | * OR-expr A R=> OR-expr B iff: A R=> each of B's components |
| 513 | * |
| 514 | * All of the above rules apply equally to strong or weak refutation. |
| 515 | * |
| 516 | * In addition, if the predicate is a NOT-clause then we can use |
| 517 | * A R=> NOT B if: A => B |
| 518 | * This works for several different SQL constructs that assert the non-truth |
| 519 | * of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN, although some |
| 520 | * of them require that we prove strong implication. Likewise, we can use |
| 521 | * NOT A R=> B if: B => A |
| 522 | * but here we must be careful about strong vs. weak refutation and make |
| 523 | * the appropriate type of implication proof (weak or strong respectively). |
| 524 | * |
| 525 | * Other comments are as for predicate_implied_by_recurse(). |
| 526 | *---------- |
| 527 | */ |
| 528 | static bool |
| 529 | predicate_refuted_by_recurse(Node *clause, Node *predicate, |
| 530 | bool weak) |
| 531 | { |
| 532 | PredIterInfoData clause_info; |
| 533 | PredIterInfoData pred_info; |
| 534 | PredClass pclass; |
| 535 | Node *not_arg; |
| 536 | bool result; |
| 537 | |
| 538 | /* skip through RestrictInfo */ |
| 539 | Assert(clause != NULL); |
| 540 | if (IsA(clause, RestrictInfo)) |
| 541 | clause = (Node *) ((RestrictInfo *) clause)->clause; |
| 542 | |
| 543 | pclass = predicate_classify(predicate, &pred_info); |
| 544 | |
| 545 | switch (predicate_classify(clause, &clause_info)) |
| 546 | { |
| 547 | case CLASS_AND: |
| 548 | switch (pclass) |
| 549 | { |
| 550 | case CLASS_AND: |
| 551 | |
| 552 | /* |
| 553 | * AND-clause R=> AND-clause if A refutes any of B's items |
| 554 | * |
| 555 | * Needed to handle (x AND y) R=> ((!x OR !y) AND z) |
| 556 | */ |
| 557 | result = false; |
| 558 | iterate_begin(pitem, predicate, pred_info) |
| 559 | { |
| 560 | if (predicate_refuted_by_recurse(clause, pitem, |
| 561 | weak)) |
| 562 | { |
| 563 | result = true; |
| 564 | break; |
| 565 | } |
| 566 | } |
| 567 | iterate_end(pred_info); |
| 568 | if (result) |
| 569 | return result; |
| 570 | |
| 571 | /* |
| 572 | * Also check if any of A's items refutes B |
| 573 | * |
| 574 | * Needed to handle ((x OR y) AND z) R=> (!x AND !y) |
| 575 | */ |
| 576 | iterate_begin(citem, clause, clause_info) |
| 577 | { |
| 578 | if (predicate_refuted_by_recurse(citem, predicate, |
| 579 | weak)) |
| 580 | { |
| 581 | result = true; |
| 582 | break; |
| 583 | } |
| 584 | } |
| 585 | iterate_end(clause_info); |
| 586 | return result; |
| 587 | |
| 588 | case CLASS_OR: |
| 589 | |
| 590 | /* |
| 591 | * AND-clause R=> OR-clause if A refutes each of B's items |
| 592 | */ |
| 593 | result = true; |
| 594 | iterate_begin(pitem, predicate, pred_info) |
| 595 | { |
| 596 | if (!predicate_refuted_by_recurse(clause, pitem, |
| 597 | weak)) |
| 598 | { |
| 599 | result = false; |
| 600 | break; |
| 601 | } |
| 602 | } |
| 603 | iterate_end(pred_info); |
| 604 | return result; |
| 605 | |
| 606 | case CLASS_ATOM: |
| 607 | |
| 608 | /* |
| 609 | * If B is a NOT-type clause, A R=> B if A => B's arg |
| 610 | * |
| 611 | * Since, for either type of refutation, we are starting |
| 612 | * with the premise that A is true, we can use a strong |
| 613 | * implication test in all cases. That proves B's arg is |
| 614 | * true, which is more than we need for weak refutation if |
| 615 | * B is a simple NOT, but it allows not worrying about |
| 616 | * exactly which kind of negation clause we have. |
| 617 | */ |
| 618 | not_arg = extract_not_arg(predicate); |
| 619 | if (not_arg && |
| 620 | predicate_implied_by_recurse(clause, not_arg, |
| 621 | false)) |
| 622 | return true; |
| 623 | |
| 624 | /* |
| 625 | * AND-clause R=> atom if any of A's items refutes B |
| 626 | */ |
| 627 | result = false; |
| 628 | iterate_begin(citem, clause, clause_info) |
| 629 | { |
| 630 | if (predicate_refuted_by_recurse(citem, predicate, |
| 631 | weak)) |
| 632 | { |
| 633 | result = true; |
| 634 | break; |
| 635 | } |
| 636 | } |
| 637 | iterate_end(clause_info); |
| 638 | return result; |
| 639 | } |
| 640 | break; |
| 641 | |
| 642 | case CLASS_OR: |
| 643 | switch (pclass) |
| 644 | { |
| 645 | case CLASS_OR: |
| 646 | |
| 647 | /* |
| 648 | * OR-clause R=> OR-clause if A refutes each of B's items |
| 649 | */ |
| 650 | result = true; |
| 651 | iterate_begin(pitem, predicate, pred_info) |
| 652 | { |
| 653 | if (!predicate_refuted_by_recurse(clause, pitem, |
| 654 | weak)) |
| 655 | { |
| 656 | result = false; |
| 657 | break; |
| 658 | } |
| 659 | } |
| 660 | iterate_end(pred_info); |
| 661 | return result; |
| 662 | |
| 663 | case CLASS_AND: |
| 664 | |
| 665 | /* |
| 666 | * OR-clause R=> AND-clause if each of A's items refutes |
| 667 | * any of B's items. |
| 668 | */ |
| 669 | result = true; |
| 670 | iterate_begin(citem, clause, clause_info) |
| 671 | { |
| 672 | bool presult = false; |
| 673 | |
| 674 | iterate_begin(pitem, predicate, pred_info) |
| 675 | { |
| 676 | if (predicate_refuted_by_recurse(citem, pitem, |
| 677 | weak)) |
| 678 | { |
| 679 | presult = true; |
| 680 | break; |
| 681 | } |
| 682 | } |
| 683 | iterate_end(pred_info); |
| 684 | if (!presult) |
| 685 | { |
| 686 | result = false; /* citem refutes nothing */ |
| 687 | break; |
| 688 | } |
| 689 | } |
| 690 | iterate_end(clause_info); |
| 691 | return result; |
| 692 | |
| 693 | case CLASS_ATOM: |
| 694 | |
| 695 | /* |
| 696 | * If B is a NOT-type clause, A R=> B if A => B's arg |
| 697 | * |
| 698 | * Same logic as for the AND-clause case above. |
| 699 | */ |
| 700 | not_arg = extract_not_arg(predicate); |
| 701 | if (not_arg && |
| 702 | predicate_implied_by_recurse(clause, not_arg, |
| 703 | false)) |
| 704 | return true; |
| 705 | |
| 706 | /* |
| 707 | * OR-clause R=> atom if each of A's items refutes B |
| 708 | */ |
| 709 | result = true; |
| 710 | iterate_begin(citem, clause, clause_info) |
| 711 | { |
| 712 | if (!predicate_refuted_by_recurse(citem, predicate, |
| 713 | weak)) |
| 714 | { |
| 715 | result = false; |
| 716 | break; |
| 717 | } |
| 718 | } |
| 719 | iterate_end(clause_info); |
| 720 | return result; |
| 721 | } |
| 722 | break; |
| 723 | |
| 724 | case CLASS_ATOM: |
| 725 | |
| 726 | /* |
| 727 | * If A is a strong NOT-clause, A R=> B if B => A's arg |
| 728 | * |
| 729 | * Since A is strong, we may assume A's arg is false (not just |
| 730 | * not-true). If B weakly implies A's arg, then B can be neither |
| 731 | * true nor null, so that strong refutation is proven. If B |
| 732 | * strongly implies A's arg, then B cannot be true, so that weak |
| 733 | * refutation is proven. |
| 734 | */ |
| 735 | not_arg = extract_strong_not_arg(clause); |
| 736 | if (not_arg && |
| 737 | predicate_implied_by_recurse(predicate, not_arg, |
| 738 | !weak)) |
| 739 | return true; |
| 740 | |
| 741 | switch (pclass) |
| 742 | { |
| 743 | case CLASS_AND: |
| 744 | |
| 745 | /* |
| 746 | * atom R=> AND-clause if A refutes any of B's items |
| 747 | */ |
| 748 | result = false; |
| 749 | iterate_begin(pitem, predicate, pred_info) |
| 750 | { |
| 751 | if (predicate_refuted_by_recurse(clause, pitem, |
| 752 | weak)) |
| 753 | { |
| 754 | result = true; |
| 755 | break; |
| 756 | } |
| 757 | } |
| 758 | iterate_end(pred_info); |
| 759 | return result; |
| 760 | |
| 761 | case CLASS_OR: |
| 762 | |
| 763 | /* |
| 764 | * atom R=> OR-clause if A refutes each of B's items |
| 765 | */ |
| 766 | result = true; |
| 767 | iterate_begin(pitem, predicate, pred_info) |
| 768 | { |
| 769 | if (!predicate_refuted_by_recurse(clause, pitem, |
| 770 | weak)) |
| 771 | { |
| 772 | result = false; |
| 773 | break; |
| 774 | } |
| 775 | } |
| 776 | iterate_end(pred_info); |
| 777 | return result; |
| 778 | |
| 779 | case CLASS_ATOM: |
| 780 | |
| 781 | /* |
| 782 | * If B is a NOT-type clause, A R=> B if A => B's arg |
| 783 | * |
| 784 | * Same logic as for the AND-clause case above. |
| 785 | */ |
| 786 | not_arg = extract_not_arg(predicate); |
| 787 | if (not_arg && |
| 788 | predicate_implied_by_recurse(clause, not_arg, |
| 789 | false)) |
| 790 | return true; |
| 791 | |
| 792 | /* |
| 793 | * atom R=> atom is the base case |
| 794 | */ |
| 795 | return |
| 796 | predicate_refuted_by_simple_clause((Expr *) predicate, |
| 797 | clause, |
| 798 | weak); |
| 799 | } |
| 800 | break; |
| 801 | } |
| 802 | |
| 803 | /* can't get here */ |
| 804 | elog(ERROR, "predicate_classify returned a bogus value" ); |
| 805 | return false; |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* |
| 810 | * predicate_classify |
| 811 | * Classify an expression node as AND-type, OR-type, or neither (an atom). |
| 812 | * |
| 813 | * If the expression is classified as AND- or OR-type, then *info is filled |
| 814 | * in with the functions needed to iterate over its components. |
| 815 | * |
| 816 | * This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a |
| 817 | * ScalarArrayOpExpr's array has too many elements, we just classify it as an |
| 818 | * atom. (This will result in its being passed as-is to the simple_clause |
| 819 | * functions, many of which will fail to prove anything about it.) Note that we |
| 820 | * cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general |
| 821 | * that would result in wrong proofs, rather than failing to prove anything. |
| 822 | */ |
| 823 | static PredClass |
| 824 | predicate_classify(Node *clause, PredIterInfo info) |
| 825 | { |
| 826 | /* Caller should not pass us NULL, nor a RestrictInfo clause */ |
| 827 | Assert(clause != NULL); |
| 828 | Assert(!IsA(clause, RestrictInfo)); |
| 829 | |
| 830 | /* |
| 831 | * If we see a List, assume it's an implicit-AND list; this is the correct |
| 832 | * semantics for lists of RestrictInfo nodes. |
| 833 | */ |
| 834 | if (IsA(clause, List)) |
| 835 | { |
| 836 | info->startup_fn = list_startup_fn; |
| 837 | info->next_fn = list_next_fn; |
| 838 | info->cleanup_fn = list_cleanup_fn; |
| 839 | return CLASS_AND; |
| 840 | } |
| 841 | |
| 842 | /* Handle normal AND and OR boolean clauses */ |
| 843 | if (is_andclause(clause)) |
| 844 | { |
| 845 | info->startup_fn = boolexpr_startup_fn; |
| 846 | info->next_fn = list_next_fn; |
| 847 | info->cleanup_fn = list_cleanup_fn; |
| 848 | return CLASS_AND; |
| 849 | } |
| 850 | if (is_orclause(clause)) |
| 851 | { |
| 852 | info->startup_fn = boolexpr_startup_fn; |
| 853 | info->next_fn = list_next_fn; |
| 854 | info->cleanup_fn = list_cleanup_fn; |
| 855 | return CLASS_OR; |
| 856 | } |
| 857 | |
| 858 | /* Handle ScalarArrayOpExpr */ |
| 859 | if (IsA(clause, ScalarArrayOpExpr)) |
| 860 | { |
| 861 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 862 | Node *arraynode = (Node *) lsecond(saop->args); |
| 863 | |
| 864 | /* |
| 865 | * We can break this down into an AND or OR structure, but only if we |
| 866 | * know how to iterate through expressions for the array's elements. |
| 867 | * We can do that if the array operand is a non-null constant or a |
| 868 | * simple ArrayExpr. |
| 869 | */ |
| 870 | if (arraynode && IsA(arraynode, Const) && |
| 871 | !((Const *) arraynode)->constisnull) |
| 872 | { |
| 873 | ArrayType *arrayval; |
| 874 | int nelems; |
| 875 | |
| 876 | arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue); |
| 877 | nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval)); |
| 878 | if (nelems <= MAX_SAOP_ARRAY_SIZE) |
| 879 | { |
| 880 | info->startup_fn = arrayconst_startup_fn; |
| 881 | info->next_fn = arrayconst_next_fn; |
| 882 | info->cleanup_fn = arrayconst_cleanup_fn; |
| 883 | return saop->useOr ? CLASS_OR : CLASS_AND; |
| 884 | } |
| 885 | } |
| 886 | else if (arraynode && IsA(arraynode, ArrayExpr) && |
| 887 | !((ArrayExpr *) arraynode)->multidims && |
| 888 | list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE) |
| 889 | { |
| 890 | info->startup_fn = arrayexpr_startup_fn; |
| 891 | info->next_fn = arrayexpr_next_fn; |
| 892 | info->cleanup_fn = arrayexpr_cleanup_fn; |
| 893 | return saop->useOr ? CLASS_OR : CLASS_AND; |
| 894 | } |
| 895 | } |
| 896 | |
| 897 | /* None of the above, so it's an atom */ |
| 898 | return CLASS_ATOM; |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * PredIterInfo routines for iterating over regular Lists. The iteration |
| 903 | * state variable is the next ListCell to visit. |
| 904 | */ |
| 905 | static void |
| 906 | list_startup_fn(Node *clause, PredIterInfo info) |
| 907 | { |
| 908 | info->state = (void *) list_head((List *) clause); |
| 909 | } |
| 910 | |
| 911 | static Node * |
| 912 | list_next_fn(PredIterInfo info) |
| 913 | { |
| 914 | ListCell *l = (ListCell *) info->state; |
| 915 | Node *n; |
| 916 | |
| 917 | if (l == NULL) |
| 918 | return NULL; |
| 919 | n = lfirst(l); |
| 920 | info->state = (void *) lnext(l); |
| 921 | return n; |
| 922 | } |
| 923 | |
| 924 | static void |
| 925 | list_cleanup_fn(PredIterInfo info) |
| 926 | { |
| 927 | /* Nothing to clean up */ |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * BoolExpr needs its own startup function, but can use list_next_fn and |
| 932 | * list_cleanup_fn. |
| 933 | */ |
| 934 | static void |
| 935 | boolexpr_startup_fn(Node *clause, PredIterInfo info) |
| 936 | { |
| 937 | info->state = (void *) list_head(((BoolExpr *) clause)->args); |
| 938 | } |
| 939 | |
| 940 | /* |
| 941 | * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a |
| 942 | * constant array operand. |
| 943 | */ |
| 944 | typedef struct |
| 945 | { |
| 946 | OpExpr opexpr; |
| 947 | Const constexpr; |
| 948 | int next_elem; |
| 949 | int num_elems; |
| 950 | Datum *elem_values; |
| 951 | bool *elem_nulls; |
| 952 | } ArrayConstIterState; |
| 953 | |
| 954 | static void |
| 955 | arrayconst_startup_fn(Node *clause, PredIterInfo info) |
| 956 | { |
| 957 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 958 | ArrayConstIterState *state; |
| 959 | Const *arrayconst; |
| 960 | ArrayType *arrayval; |
| 961 | int16 elmlen; |
| 962 | bool elmbyval; |
| 963 | char elmalign; |
| 964 | |
| 965 | /* Create working state struct */ |
| 966 | state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState)); |
| 967 | info->state = (void *) state; |
| 968 | |
| 969 | /* Deconstruct the array literal */ |
| 970 | arrayconst = (Const *) lsecond(saop->args); |
| 971 | arrayval = DatumGetArrayTypeP(arrayconst->constvalue); |
| 972 | get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| 973 | &elmlen, &elmbyval, &elmalign); |
| 974 | deconstruct_array(arrayval, |
| 975 | ARR_ELEMTYPE(arrayval), |
| 976 | elmlen, elmbyval, elmalign, |
| 977 | &state->elem_values, &state->elem_nulls, |
| 978 | &state->num_elems); |
| 979 | |
| 980 | /* Set up a dummy OpExpr to return as the per-item node */ |
| 981 | state->opexpr.xpr.type = T_OpExpr; |
| 982 | state->opexpr.opno = saop->opno; |
| 983 | state->opexpr.opfuncid = saop->opfuncid; |
| 984 | state->opexpr.opresulttype = BOOLOID; |
| 985 | state->opexpr.opretset = false; |
| 986 | state->opexpr.opcollid = InvalidOid; |
| 987 | state->opexpr.inputcollid = saop->inputcollid; |
| 988 | state->opexpr.args = list_copy(saop->args); |
| 989 | |
| 990 | /* Set up a dummy Const node to hold the per-element values */ |
| 991 | state->constexpr.xpr.type = T_Const; |
| 992 | state->constexpr.consttype = ARR_ELEMTYPE(arrayval); |
| 993 | state->constexpr.consttypmod = -1; |
| 994 | state->constexpr.constcollid = arrayconst->constcollid; |
| 995 | state->constexpr.constlen = elmlen; |
| 996 | state->constexpr.constbyval = elmbyval; |
| 997 | lsecond(state->opexpr.args) = &state->constexpr; |
| 998 | |
| 999 | /* Initialize iteration state */ |
| 1000 | state->next_elem = 0; |
| 1001 | } |
| 1002 | |
| 1003 | static Node * |
| 1004 | arrayconst_next_fn(PredIterInfo info) |
| 1005 | { |
| 1006 | ArrayConstIterState *state = (ArrayConstIterState *) info->state; |
| 1007 | |
| 1008 | if (state->next_elem >= state->num_elems) |
| 1009 | return NULL; |
| 1010 | state->constexpr.constvalue = state->elem_values[state->next_elem]; |
| 1011 | state->constexpr.constisnull = state->elem_nulls[state->next_elem]; |
| 1012 | state->next_elem++; |
| 1013 | return (Node *) &(state->opexpr); |
| 1014 | } |
| 1015 | |
| 1016 | static void |
| 1017 | arrayconst_cleanup_fn(PredIterInfo info) |
| 1018 | { |
| 1019 | ArrayConstIterState *state = (ArrayConstIterState *) info->state; |
| 1020 | |
| 1021 | pfree(state->elem_values); |
| 1022 | pfree(state->elem_nulls); |
| 1023 | list_free(state->opexpr.args); |
| 1024 | pfree(state); |
| 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a |
| 1029 | * one-dimensional ArrayExpr array operand. |
| 1030 | */ |
| 1031 | typedef struct |
| 1032 | { |
| 1033 | OpExpr opexpr; |
| 1034 | ListCell *next; |
| 1035 | } ArrayExprIterState; |
| 1036 | |
| 1037 | static void |
| 1038 | arrayexpr_startup_fn(Node *clause, PredIterInfo info) |
| 1039 | { |
| 1040 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 1041 | ArrayExprIterState *state; |
| 1042 | ArrayExpr *arrayexpr; |
| 1043 | |
| 1044 | /* Create working state struct */ |
| 1045 | state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState)); |
| 1046 | info->state = (void *) state; |
| 1047 | |
| 1048 | /* Set up a dummy OpExpr to return as the per-item node */ |
| 1049 | state->opexpr.xpr.type = T_OpExpr; |
| 1050 | state->opexpr.opno = saop->opno; |
| 1051 | state->opexpr.opfuncid = saop->opfuncid; |
| 1052 | state->opexpr.opresulttype = BOOLOID; |
| 1053 | state->opexpr.opretset = false; |
| 1054 | state->opexpr.opcollid = InvalidOid; |
| 1055 | state->opexpr.inputcollid = saop->inputcollid; |
| 1056 | state->opexpr.args = list_copy(saop->args); |
| 1057 | |
| 1058 | /* Initialize iteration variable to first member of ArrayExpr */ |
| 1059 | arrayexpr = (ArrayExpr *) lsecond(saop->args); |
| 1060 | state->next = list_head(arrayexpr->elements); |
| 1061 | } |
| 1062 | |
| 1063 | static Node * |
| 1064 | arrayexpr_next_fn(PredIterInfo info) |
| 1065 | { |
| 1066 | ArrayExprIterState *state = (ArrayExprIterState *) info->state; |
| 1067 | |
| 1068 | if (state->next == NULL) |
| 1069 | return NULL; |
| 1070 | lsecond(state->opexpr.args) = lfirst(state->next); |
| 1071 | state->next = lnext(state->next); |
| 1072 | return (Node *) &(state->opexpr); |
| 1073 | } |
| 1074 | |
| 1075 | static void |
| 1076 | arrayexpr_cleanup_fn(PredIterInfo info) |
| 1077 | { |
| 1078 | ArrayExprIterState *state = (ArrayExprIterState *) info->state; |
| 1079 | |
| 1080 | list_free(state->opexpr.args); |
| 1081 | pfree(state); |
| 1082 | } |
| 1083 | |
| 1084 | |
| 1085 | /*---------- |
| 1086 | * predicate_implied_by_simple_clause |
| 1087 | * Does the predicate implication test for a "simple clause" predicate |
| 1088 | * and a "simple clause" restriction. |
| 1089 | * |
| 1090 | * We return true if able to prove the implication, false if not. |
| 1091 | * |
| 1092 | * We have three strategies for determining whether one simple clause |
| 1093 | * implies another: |
| 1094 | * |
| 1095 | * A simple and general way is to see if they are equal(); this works for any |
| 1096 | * kind of expression, and for either implication definition. (Actually, |
| 1097 | * there is an implied assumption that the functions in the expression are |
| 1098 | * immutable --- but this was checked for the predicate by the caller.) |
| 1099 | * |
| 1100 | * If the predicate is of the form "foo IS NOT NULL", and we are considering |
| 1101 | * strong implication, we can conclude that the predicate is implied if the |
| 1102 | * clause is strict for "foo", i.e., it must yield false or NULL when "foo" |
| 1103 | * is NULL. In that case truth of the clause ensures that "foo" isn't NULL. |
| 1104 | * (Again, this is a safe conclusion because "foo" must be immutable.) |
| 1105 | * This doesn't work for weak implication, though. |
| 1106 | * |
| 1107 | * Finally, if both clauses are binary operator expressions, we may be able |
| 1108 | * to prove something using the system's knowledge about operators; those |
| 1109 | * proof rules are encapsulated in operator_predicate_proof(). |
| 1110 | *---------- |
| 1111 | */ |
| 1112 | static bool |
| 1113 | predicate_implied_by_simple_clause(Expr *predicate, Node *clause, |
| 1114 | bool weak) |
| 1115 | { |
| 1116 | /* Allow interrupting long proof attempts */ |
| 1117 | CHECK_FOR_INTERRUPTS(); |
| 1118 | |
| 1119 | /* First try the equal() test */ |
| 1120 | if (equal((Node *) predicate, clause)) |
| 1121 | return true; |
| 1122 | |
| 1123 | /* Next try the IS NOT NULL case */ |
| 1124 | if (!weak && |
| 1125 | predicate && IsA(predicate, NullTest)) |
| 1126 | { |
| 1127 | NullTest *ntest = (NullTest *) predicate; |
| 1128 | |
| 1129 | /* row IS NOT NULL does not act in the simple way we have in mind */ |
| 1130 | if (ntest->nulltesttype == IS_NOT_NULL && |
| 1131 | !ntest->argisrow) |
| 1132 | { |
| 1133 | /* strictness of clause for foo implies foo IS NOT NULL */ |
| 1134 | if (clause_is_strict_for(clause, (Node *) ntest->arg, true)) |
| 1135 | return true; |
| 1136 | } |
| 1137 | return false; /* we can't succeed below... */ |
| 1138 | } |
| 1139 | |
| 1140 | /* Else try operator-related knowledge */ |
| 1141 | return operator_predicate_proof(predicate, clause, false, weak); |
| 1142 | } |
| 1143 | |
| 1144 | /*---------- |
| 1145 | * predicate_refuted_by_simple_clause |
| 1146 | * Does the predicate refutation test for a "simple clause" predicate |
| 1147 | * and a "simple clause" restriction. |
| 1148 | * |
| 1149 | * We return true if able to prove the refutation, false if not. |
| 1150 | * |
| 1151 | * Unlike the implication case, checking for equal() clauses isn't helpful. |
| 1152 | * But relation_excluded_by_constraints() checks for self-contradictions in a |
| 1153 | * list of clauses, so that we may get here with predicate and clause being |
| 1154 | * actually pointer-equal, and that is worth eliminating quickly. |
| 1155 | * |
| 1156 | * When the predicate is of the form "foo IS NULL", we can conclude that |
| 1157 | * the predicate is refuted if the clause is strict for "foo" (see notes for |
| 1158 | * implication case), or is "foo IS NOT NULL". That works for either strong |
| 1159 | * or weak refutation. |
| 1160 | * |
| 1161 | * A clause "foo IS NULL" refutes a predicate "foo IS NOT NULL" in all cases. |
| 1162 | * If we are considering weak refutation, it also refutes a predicate that |
| 1163 | * is strict for "foo", since then the predicate must yield false or NULL |
| 1164 | * (and since "foo" appears in the predicate, it's known immutable). |
| 1165 | * |
| 1166 | * (The main motivation for covering these IS [NOT] NULL cases is to support |
| 1167 | * using IS NULL/IS NOT NULL as partition-defining constraints.) |
| 1168 | * |
| 1169 | * Finally, if both clauses are binary operator expressions, we may be able |
| 1170 | * to prove something using the system's knowledge about operators; those |
| 1171 | * proof rules are encapsulated in operator_predicate_proof(). |
| 1172 | *---------- |
| 1173 | */ |
| 1174 | static bool |
| 1175 | predicate_refuted_by_simple_clause(Expr *predicate, Node *clause, |
| 1176 | bool weak) |
| 1177 | { |
| 1178 | /* Allow interrupting long proof attempts */ |
| 1179 | CHECK_FOR_INTERRUPTS(); |
| 1180 | |
| 1181 | /* A simple clause can't refute itself */ |
| 1182 | /* Worth checking because of relation_excluded_by_constraints() */ |
| 1183 | if ((Node *) predicate == clause) |
| 1184 | return false; |
| 1185 | |
| 1186 | /* Try the predicate-IS-NULL case */ |
| 1187 | if (predicate && IsA(predicate, NullTest) && |
| 1188 | ((NullTest *) predicate)->nulltesttype == IS_NULL) |
| 1189 | { |
| 1190 | Expr *isnullarg = ((NullTest *) predicate)->arg; |
| 1191 | |
| 1192 | /* row IS NULL does not act in the simple way we have in mind */ |
| 1193 | if (((NullTest *) predicate)->argisrow) |
| 1194 | return false; |
| 1195 | |
| 1196 | /* strictness of clause for foo refutes foo IS NULL */ |
| 1197 | if (clause_is_strict_for(clause, (Node *) isnullarg, true)) |
| 1198 | return true; |
| 1199 | |
| 1200 | /* foo IS NOT NULL refutes foo IS NULL */ |
| 1201 | if (clause && IsA(clause, NullTest) && |
| 1202 | ((NullTest *) clause)->nulltesttype == IS_NOT_NULL && |
| 1203 | !((NullTest *) clause)->argisrow && |
| 1204 | equal(((NullTest *) clause)->arg, isnullarg)) |
| 1205 | return true; |
| 1206 | |
| 1207 | return false; /* we can't succeed below... */ |
| 1208 | } |
| 1209 | |
| 1210 | /* Try the clause-IS-NULL case */ |
| 1211 | if (clause && IsA(clause, NullTest) && |
| 1212 | ((NullTest *) clause)->nulltesttype == IS_NULL) |
| 1213 | { |
| 1214 | Expr *isnullarg = ((NullTest *) clause)->arg; |
| 1215 | |
| 1216 | /* row IS NULL does not act in the simple way we have in mind */ |
| 1217 | if (((NullTest *) clause)->argisrow) |
| 1218 | return false; |
| 1219 | |
| 1220 | /* foo IS NULL refutes foo IS NOT NULL */ |
| 1221 | if (predicate && IsA(predicate, NullTest) && |
| 1222 | ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL && |
| 1223 | !((NullTest *) predicate)->argisrow && |
| 1224 | equal(((NullTest *) predicate)->arg, isnullarg)) |
| 1225 | return true; |
| 1226 | |
| 1227 | /* foo IS NULL weakly refutes any predicate that is strict for foo */ |
| 1228 | if (weak && |
| 1229 | clause_is_strict_for((Node *) predicate, (Node *) isnullarg, true)) |
| 1230 | return true; |
| 1231 | |
| 1232 | return false; /* we can't succeed below... */ |
| 1233 | } |
| 1234 | |
| 1235 | /* Else try operator-related knowledge */ |
| 1236 | return operator_predicate_proof(predicate, clause, true, weak); |
| 1237 | } |
| 1238 | |
| 1239 | |
| 1240 | /* |
| 1241 | * If clause asserts the non-truth of a subclause, return that subclause; |
| 1242 | * otherwise return NULL. |
| 1243 | */ |
| 1244 | static Node * |
| 1245 | (Node *clause) |
| 1246 | { |
| 1247 | if (clause == NULL) |
| 1248 | return NULL; |
| 1249 | if (IsA(clause, BoolExpr)) |
| 1250 | { |
| 1251 | BoolExpr *bexpr = (BoolExpr *) clause; |
| 1252 | |
| 1253 | if (bexpr->boolop == NOT_EXPR) |
| 1254 | return (Node *) linitial(bexpr->args); |
| 1255 | } |
| 1256 | else if (IsA(clause, BooleanTest)) |
| 1257 | { |
| 1258 | BooleanTest *btest = (BooleanTest *) clause; |
| 1259 | |
| 1260 | if (btest->booltesttype == IS_NOT_TRUE || |
| 1261 | btest->booltesttype == IS_FALSE || |
| 1262 | btest->booltesttype == IS_UNKNOWN) |
| 1263 | return (Node *) btest->arg; |
| 1264 | } |
| 1265 | return NULL; |
| 1266 | } |
| 1267 | |
| 1268 | /* |
| 1269 | * If clause asserts the falsity of a subclause, return that subclause; |
| 1270 | * otherwise return NULL. |
| 1271 | */ |
| 1272 | static Node * |
| 1273 | (Node *clause) |
| 1274 | { |
| 1275 | if (clause == NULL) |
| 1276 | return NULL; |
| 1277 | if (IsA(clause, BoolExpr)) |
| 1278 | { |
| 1279 | BoolExpr *bexpr = (BoolExpr *) clause; |
| 1280 | |
| 1281 | if (bexpr->boolop == NOT_EXPR) |
| 1282 | return (Node *) linitial(bexpr->args); |
| 1283 | } |
| 1284 | else if (IsA(clause, BooleanTest)) |
| 1285 | { |
| 1286 | BooleanTest *btest = (BooleanTest *) clause; |
| 1287 | |
| 1288 | if (btest->booltesttype == IS_FALSE) |
| 1289 | return (Node *) btest->arg; |
| 1290 | } |
| 1291 | return NULL; |
| 1292 | } |
| 1293 | |
| 1294 | |
| 1295 | /* |
| 1296 | * Can we prove that "clause" returns NULL (or FALSE) if "subexpr" is |
| 1297 | * assumed to yield NULL? |
| 1298 | * |
| 1299 | * In most places in the planner, "strictness" refers to a guarantee that |
| 1300 | * an expression yields NULL output for a NULL input, and that's mostly what |
| 1301 | * we're looking for here. However, at top level where the clause is known |
| 1302 | * to yield boolean, it may be sufficient to prove that it cannot return TRUE |
| 1303 | * when "subexpr" is NULL. The caller should pass allow_false = true when |
| 1304 | * this weaker property is acceptable. (When this function recurses |
| 1305 | * internally, we pass down allow_false = false since we need to prove actual |
| 1306 | * nullness of the subexpression.) |
| 1307 | * |
| 1308 | * We assume that the caller checked that least one of the input expressions |
| 1309 | * is immutable. All of the proof rules here involve matching "subexpr" to |
| 1310 | * some portion of "clause", so that this allows assuming that "subexpr" is |
| 1311 | * immutable without a separate check. |
| 1312 | * |
| 1313 | * The base case is that clause and subexpr are equal(). |
| 1314 | * |
| 1315 | * We can also report success if the subexpr appears as a subexpression |
| 1316 | * of "clause" in a place where it'd force nullness of the overall result. |
| 1317 | */ |
| 1318 | static bool |
| 1319 | clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false) |
| 1320 | { |
| 1321 | ListCell *lc; |
| 1322 | |
| 1323 | /* safety checks */ |
| 1324 | if (clause == NULL || subexpr == NULL) |
| 1325 | return false; |
| 1326 | |
| 1327 | /* |
| 1328 | * Look through any RelabelType nodes, so that we can match, say, |
| 1329 | * varcharcol with lower(varcharcol::text). (In general we could recurse |
| 1330 | * through any nullness-preserving, immutable operation.) We should not |
| 1331 | * see stacked RelabelTypes here. |
| 1332 | */ |
| 1333 | if (IsA(clause, RelabelType)) |
| 1334 | clause = (Node *) ((RelabelType *) clause)->arg; |
| 1335 | if (IsA(subexpr, RelabelType)) |
| 1336 | subexpr = (Node *) ((RelabelType *) subexpr)->arg; |
| 1337 | |
| 1338 | /* Base case */ |
| 1339 | if (equal(clause, subexpr)) |
| 1340 | return true; |
| 1341 | |
| 1342 | /* |
| 1343 | * If we have a strict operator or function, a NULL result is guaranteed |
| 1344 | * if any input is forced NULL by subexpr. This is OK even if the op or |
| 1345 | * func isn't immutable, since it won't even be called on NULL input. |
| 1346 | */ |
| 1347 | if (is_opclause(clause) && |
| 1348 | op_strict(((OpExpr *) clause)->opno)) |
| 1349 | { |
| 1350 | foreach(lc, ((OpExpr *) clause)->args) |
| 1351 | { |
| 1352 | if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false)) |
| 1353 | return true; |
| 1354 | } |
| 1355 | return false; |
| 1356 | } |
| 1357 | if (is_funcclause(clause) && |
| 1358 | func_strict(((FuncExpr *) clause)->funcid)) |
| 1359 | { |
| 1360 | foreach(lc, ((FuncExpr *) clause)->args) |
| 1361 | { |
| 1362 | if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false)) |
| 1363 | return true; |
| 1364 | } |
| 1365 | return false; |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * CoerceViaIO is strict (whether or not the I/O functions it calls are). |
| 1370 | * Likewise, ArrayCoerceExpr is strict for its array argument (regardless |
| 1371 | * of what the per-element expression is), ConvertRowtypeExpr is strict at |
| 1372 | * the row level, and CoerceToDomain is strict too. These are worth |
| 1373 | * checking mainly because it saves us having to explain to users why some |
| 1374 | * type coercions are known strict and others aren't. |
| 1375 | */ |
| 1376 | if (IsA(clause, CoerceViaIO)) |
| 1377 | return clause_is_strict_for((Node *) ((CoerceViaIO *) clause)->arg, |
| 1378 | subexpr, false); |
| 1379 | if (IsA(clause, ArrayCoerceExpr)) |
| 1380 | return clause_is_strict_for((Node *) ((ArrayCoerceExpr *) clause)->arg, |
| 1381 | subexpr, false); |
| 1382 | if (IsA(clause, ConvertRowtypeExpr)) |
| 1383 | return clause_is_strict_for((Node *) ((ConvertRowtypeExpr *) clause)->arg, |
| 1384 | subexpr, false); |
| 1385 | if (IsA(clause, CoerceToDomain)) |
| 1386 | return clause_is_strict_for((Node *) ((CoerceToDomain *) clause)->arg, |
| 1387 | subexpr, false); |
| 1388 | |
| 1389 | /* |
| 1390 | * ScalarArrayOpExpr is a special case. Note that we'd only reach here |
| 1391 | * with a ScalarArrayOpExpr clause if we failed to deconstruct it into an |
| 1392 | * AND or OR tree, as for example if it has too many array elements. |
| 1393 | */ |
| 1394 | if (IsA(clause, ScalarArrayOpExpr)) |
| 1395 | { |
| 1396 | ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| 1397 | Node *scalarnode = (Node *) linitial(saop->args); |
| 1398 | Node *arraynode = (Node *) lsecond(saop->args); |
| 1399 | |
| 1400 | /* |
| 1401 | * If we can prove the scalar input to be null, and the operator is |
| 1402 | * strict, then the SAOP result has to be null --- unless the array is |
| 1403 | * empty. For an empty array, we'd get either false (for ANY) or true |
| 1404 | * (for ALL). So if allow_false = true then the proof succeeds anyway |
| 1405 | * for the ANY case; otherwise we can only make the proof if we can |
| 1406 | * prove the array non-empty. |
| 1407 | */ |
| 1408 | if (clause_is_strict_for(scalarnode, subexpr, false) && |
| 1409 | op_strict(saop->opno)) |
| 1410 | { |
| 1411 | int nelems = 0; |
| 1412 | |
| 1413 | if (allow_false && saop->useOr) |
| 1414 | return true; /* can succeed even if array is empty */ |
| 1415 | |
| 1416 | if (arraynode && IsA(arraynode, Const)) |
| 1417 | { |
| 1418 | Const *arrayconst = (Const *) arraynode; |
| 1419 | ArrayType *arrval; |
| 1420 | |
| 1421 | /* |
| 1422 | * If array is constant NULL then we can succeed, as in the |
| 1423 | * case below. |
| 1424 | */ |
| 1425 | if (arrayconst->constisnull) |
| 1426 | return true; |
| 1427 | |
| 1428 | /* Otherwise, we can compute the number of elements. */ |
| 1429 | arrval = DatumGetArrayTypeP(arrayconst->constvalue); |
| 1430 | nelems = ArrayGetNItems(ARR_NDIM(arrval), ARR_DIMS(arrval)); |
| 1431 | } |
| 1432 | else if (arraynode && IsA(arraynode, ArrayExpr) && |
| 1433 | !((ArrayExpr *) arraynode)->multidims) |
| 1434 | { |
| 1435 | /* |
| 1436 | * We can also reliably count the number of array elements if |
| 1437 | * the input is a non-multidim ARRAY[] expression. |
| 1438 | */ |
| 1439 | nelems = list_length(((ArrayExpr *) arraynode)->elements); |
| 1440 | } |
| 1441 | |
| 1442 | /* Proof succeeds if array is definitely non-empty */ |
| 1443 | if (nelems > 0) |
| 1444 | return true; |
| 1445 | } |
| 1446 | |
| 1447 | /* |
| 1448 | * If we can prove the array input to be null, the proof succeeds in |
| 1449 | * all cases, since ScalarArrayOpExpr will always return NULL for a |
| 1450 | * NULL array. Otherwise, we're done here. |
| 1451 | */ |
| 1452 | return clause_is_strict_for(arraynode, subexpr, false); |
| 1453 | } |
| 1454 | |
| 1455 | /* |
| 1456 | * When recursing into an expression, we might find a NULL constant. |
| 1457 | * That's certainly NULL, whether it matches subexpr or not. |
| 1458 | */ |
| 1459 | if (IsA(clause, Const)) |
| 1460 | return ((Const *) clause)->constisnull; |
| 1461 | |
| 1462 | return false; |
| 1463 | } |
| 1464 | |
| 1465 | |
| 1466 | /* |
| 1467 | * Define "operator implication tables" for btree operators ("strategies"), |
| 1468 | * and similar tables for refutation. |
| 1469 | * |
| 1470 | * The strategy numbers defined by btree indexes (see access/stratnum.h) are: |
| 1471 | * 1 < 2 <= 3 = 4 >= 5 > |
| 1472 | * and in addition we use 6 to represent <>. <> is not a btree-indexable |
| 1473 | * operator, but we assume here that if an equality operator of a btree |
| 1474 | * opfamily has a negator operator, the negator behaves as <> for the opfamily. |
| 1475 | * (This convention is also known to get_op_btree_interpretation().) |
| 1476 | * |
| 1477 | * BT_implies_table[] and BT_refutes_table[] are used for cases where we have |
| 1478 | * two identical subexpressions and we want to know whether one operator |
| 1479 | * expression implies or refutes the other. That is, if the "clause" is |
| 1480 | * EXPR1 clause_op EXPR2 and the "predicate" is EXPR1 pred_op EXPR2 for the |
| 1481 | * same two (immutable) subexpressions: |
| 1482 | * BT_implies_table[clause_op-1][pred_op-1] |
| 1483 | * is true if the clause implies the predicate |
| 1484 | * BT_refutes_table[clause_op-1][pred_op-1] |
| 1485 | * is true if the clause refutes the predicate |
| 1486 | * where clause_op and pred_op are strategy numbers (from 1 to 6) in the |
| 1487 | * same btree opfamily. For example, "x < y" implies "x <= y" and refutes |
| 1488 | * "x > y". |
| 1489 | * |
| 1490 | * BT_implic_table[] and BT_refute_table[] are used where we have two |
| 1491 | * constants that we need to compare. The interpretation of: |
| 1492 | * |
| 1493 | * test_op = BT_implic_table[clause_op-1][pred_op-1] |
| 1494 | * |
| 1495 | * where test_op, clause_op and pred_op are strategy numbers (from 1 to 6) |
| 1496 | * of btree operators, is as follows: |
| 1497 | * |
| 1498 | * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you |
| 1499 | * want to determine whether "EXPR pred_op CONST2" must also be true, then |
| 1500 | * you can use "CONST2 test_op CONST1" as a test. If this test returns true, |
| 1501 | * then the predicate expression must be true; if the test returns false, |
| 1502 | * then the predicate expression may be false. |
| 1503 | * |
| 1504 | * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" |
| 1505 | * then we test "5 <= 10" which evals to true, so clause implies pred. |
| 1506 | * |
| 1507 | * Similarly, the interpretation of a BT_refute_table entry is: |
| 1508 | * |
| 1509 | * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you |
| 1510 | * want to determine whether "EXPR pred_op CONST2" must be false, then |
| 1511 | * you can use "CONST2 test_op CONST1" as a test. If this test returns true, |
| 1512 | * then the predicate expression must be false; if the test returns false, |
| 1513 | * then the predicate expression may be true. |
| 1514 | * |
| 1515 | * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" |
| 1516 | * then we test "5 <= 10" which evals to true, so clause refutes pred. |
| 1517 | * |
| 1518 | * An entry where test_op == 0 means the implication cannot be determined. |
| 1519 | */ |
| 1520 | |
| 1521 | #define BTLT BTLessStrategyNumber |
| 1522 | #define BTLE BTLessEqualStrategyNumber |
| 1523 | #define BTEQ BTEqualStrategyNumber |
| 1524 | #define BTGE BTGreaterEqualStrategyNumber |
| 1525 | #define BTGT BTGreaterStrategyNumber |
| 1526 | #define BTNE ROWCOMPARE_NE |
| 1527 | |
| 1528 | /* We use "none" for 0/false to make the tables align nicely */ |
| 1529 | #define none 0 |
| 1530 | |
| 1531 | static const bool BT_implies_table[6][6] = { |
| 1532 | /* |
| 1533 | * The predicate operator: |
| 1534 | * LT LE EQ GE GT NE |
| 1535 | */ |
| 1536 | {true, true, none, none, none, true}, /* LT */ |
| 1537 | {none, true, none, none, none, none}, /* LE */ |
| 1538 | {none, true, true, true, none, none}, /* EQ */ |
| 1539 | {none, none, none, true, none, none}, /* GE */ |
| 1540 | {none, none, none, true, true, true}, /* GT */ |
| 1541 | {none, none, none, none, none, true} /* NE */ |
| 1542 | }; |
| 1543 | |
| 1544 | static const bool BT_refutes_table[6][6] = { |
| 1545 | /* |
| 1546 | * The predicate operator: |
| 1547 | * LT LE EQ GE GT NE |
| 1548 | */ |
| 1549 | {none, none, true, true, true, none}, /* LT */ |
| 1550 | {none, none, none, none, true, none}, /* LE */ |
| 1551 | {true, none, none, none, true, true}, /* EQ */ |
| 1552 | {true, none, none, none, none, none}, /* GE */ |
| 1553 | {true, true, true, none, none, none}, /* GT */ |
| 1554 | {none, none, true, none, none, none} /* NE */ |
| 1555 | }; |
| 1556 | |
| 1557 | static const StrategyNumber BT_implic_table[6][6] = { |
| 1558 | /* |
| 1559 | * The predicate operator: |
| 1560 | * LT LE EQ GE GT NE |
| 1561 | */ |
| 1562 | {BTGE, BTGE, none, none, none, BTGE}, /* LT */ |
| 1563 | {BTGT, BTGE, none, none, none, BTGT}, /* LE */ |
| 1564 | {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ |
| 1565 | {none, none, none, BTLE, BTLT, BTLT}, /* GE */ |
| 1566 | {none, none, none, BTLE, BTLE, BTLE}, /* GT */ |
| 1567 | {none, none, none, none, none, BTEQ} /* NE */ |
| 1568 | }; |
| 1569 | |
| 1570 | static const StrategyNumber BT_refute_table[6][6] = { |
| 1571 | /* |
| 1572 | * The predicate operator: |
| 1573 | * LT LE EQ GE GT NE |
| 1574 | */ |
| 1575 | {none, none, BTGE, BTGE, BTGE, none}, /* LT */ |
| 1576 | {none, none, BTGT, BTGT, BTGE, none}, /* LE */ |
| 1577 | {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ |
| 1578 | {BTLE, BTLT, BTLT, none, none, none}, /* GE */ |
| 1579 | {BTLE, BTLE, BTLE, none, none, none}, /* GT */ |
| 1580 | {none, none, BTEQ, none, none, none} /* NE */ |
| 1581 | }; |
| 1582 | |
| 1583 | |
| 1584 | /* |
| 1585 | * operator_predicate_proof |
| 1586 | * Does the predicate implication or refutation test for a "simple clause" |
| 1587 | * predicate and a "simple clause" restriction, when both are operator |
| 1588 | * clauses using related operators and identical input expressions. |
| 1589 | * |
| 1590 | * When refute_it == false, we want to prove the predicate true; |
| 1591 | * when refute_it == true, we want to prove the predicate false. |
| 1592 | * (There is enough common code to justify handling these two cases |
| 1593 | * in one routine.) We return true if able to make the proof, false |
| 1594 | * if not able to prove it. |
| 1595 | * |
| 1596 | * We mostly need not distinguish strong vs. weak implication/refutation here. |
| 1597 | * This depends on the assumption that a pair of related operators (i.e., |
| 1598 | * commutators, negators, or btree opfamily siblings) will not return one NULL |
| 1599 | * and one non-NULL result for the same inputs. Then, for the proof types |
| 1600 | * where we start with an assumption of truth of the clause, the predicate |
| 1601 | * operator could not return NULL either, so it doesn't matter whether we are |
| 1602 | * trying to make a strong or weak proof. For weak implication, it could be |
| 1603 | * that the clause operator returned NULL, but then the predicate operator |
| 1604 | * would as well, so that the weak implication still holds. This argument |
| 1605 | * doesn't apply in the case where we are considering two different constant |
| 1606 | * values, since then the operators aren't being given identical inputs. But |
| 1607 | * we only support that for btree operators, for which we can assume that all |
| 1608 | * non-null inputs result in non-null outputs, so that it doesn't matter which |
| 1609 | * two non-null constants we consider. If either constant is NULL, we have |
| 1610 | * to think harder, but sometimes the proof still works, as explained below. |
| 1611 | * |
| 1612 | * We can make proofs involving several expression forms (here "foo" and "bar" |
| 1613 | * represent subexpressions that are identical according to equal()): |
| 1614 | * "foo op1 bar" refutes "foo op2 bar" if op1 is op2's negator |
| 1615 | * "foo op1 bar" implies "bar op2 foo" if op1 is op2's commutator |
| 1616 | * "foo op1 bar" refutes "bar op2 foo" if op1 is negator of op2's commutator |
| 1617 | * "foo op1 bar" can imply/refute "foo op2 bar" based on btree semantics |
| 1618 | * "foo op1 bar" can imply/refute "bar op2 foo" based on btree semantics |
| 1619 | * "foo op1 const1" can imply/refute "foo op2 const2" based on btree semantics |
| 1620 | * |
| 1621 | * For the last three cases, op1 and op2 have to be members of the same btree |
| 1622 | * operator family. When both subexpressions are identical, the idea is that, |
| 1623 | * for instance, x < y implies x <= y, independently of exactly what x and y |
| 1624 | * are. If we have two different constants compared to the same expression |
| 1625 | * foo, we have to execute a comparison between the two constant values |
| 1626 | * in order to determine the result; for instance, foo < c1 implies foo < c2 |
| 1627 | * if c1 <= c2. We assume it's safe to compare the constants at plan time |
| 1628 | * if the comparison operator is immutable. |
| 1629 | * |
| 1630 | * Note: all the operators and subexpressions have to be immutable for the |
| 1631 | * proof to be safe. We assume the predicate expression is entirely immutable, |
| 1632 | * so no explicit check on the subexpressions is needed here, but in some |
| 1633 | * cases we need an extra check of operator immutability. In particular, |
| 1634 | * btree opfamilies can contain cross-type operators that are merely stable, |
| 1635 | * and we dare not make deductions with those. |
| 1636 | */ |
| 1637 | static bool |
| 1638 | operator_predicate_proof(Expr *predicate, Node *clause, |
| 1639 | bool refute_it, bool weak) |
| 1640 | { |
| 1641 | OpExpr *pred_opexpr, |
| 1642 | *clause_opexpr; |
| 1643 | Oid pred_collation, |
| 1644 | clause_collation; |
| 1645 | Oid pred_op, |
| 1646 | clause_op, |
| 1647 | test_op; |
| 1648 | Node *pred_leftop, |
| 1649 | *pred_rightop, |
| 1650 | *clause_leftop, |
| 1651 | *clause_rightop; |
| 1652 | Const *pred_const, |
| 1653 | *clause_const; |
| 1654 | Expr *test_expr; |
| 1655 | ExprState *test_exprstate; |
| 1656 | Datum test_result; |
| 1657 | bool isNull; |
| 1658 | EState *estate; |
| 1659 | MemoryContext oldcontext; |
| 1660 | |
| 1661 | /* |
| 1662 | * Both expressions must be binary opclauses, else we can't do anything. |
| 1663 | * |
| 1664 | * Note: in future we might extend this logic to other operator-based |
| 1665 | * constructs such as DistinctExpr. But the planner isn't very smart |
| 1666 | * about DistinctExpr in general, and this probably isn't the first place |
| 1667 | * to fix if you want to improve that. |
| 1668 | */ |
| 1669 | if (!is_opclause(predicate)) |
| 1670 | return false; |
| 1671 | pred_opexpr = (OpExpr *) predicate; |
| 1672 | if (list_length(pred_opexpr->args) != 2) |
| 1673 | return false; |
| 1674 | if (!is_opclause(clause)) |
| 1675 | return false; |
| 1676 | clause_opexpr = (OpExpr *) clause; |
| 1677 | if (list_length(clause_opexpr->args) != 2) |
| 1678 | return false; |
| 1679 | |
| 1680 | /* |
| 1681 | * If they're marked with different collations then we can't do anything. |
| 1682 | * This is a cheap test so let's get it out of the way early. |
| 1683 | */ |
| 1684 | pred_collation = pred_opexpr->inputcollid; |
| 1685 | clause_collation = clause_opexpr->inputcollid; |
| 1686 | if (pred_collation != clause_collation) |
| 1687 | return false; |
| 1688 | |
| 1689 | /* Grab the operator OIDs now too. We may commute these below. */ |
| 1690 | pred_op = pred_opexpr->opno; |
| 1691 | clause_op = clause_opexpr->opno; |
| 1692 | |
| 1693 | /* |
| 1694 | * We have to match up at least one pair of input expressions. |
| 1695 | */ |
| 1696 | pred_leftop = (Node *) linitial(pred_opexpr->args); |
| 1697 | pred_rightop = (Node *) lsecond(pred_opexpr->args); |
| 1698 | clause_leftop = (Node *) linitial(clause_opexpr->args); |
| 1699 | clause_rightop = (Node *) lsecond(clause_opexpr->args); |
| 1700 | |
| 1701 | if (equal(pred_leftop, clause_leftop)) |
| 1702 | { |
| 1703 | if (equal(pred_rightop, clause_rightop)) |
| 1704 | { |
| 1705 | /* We have x op1 y and x op2 y */ |
| 1706 | return operator_same_subexprs_proof(pred_op, clause_op, refute_it); |
| 1707 | } |
| 1708 | else |
| 1709 | { |
| 1710 | /* Fail unless rightops are both Consts */ |
| 1711 | if (pred_rightop == NULL || !IsA(pred_rightop, Const)) |
| 1712 | return false; |
| 1713 | pred_const = (Const *) pred_rightop; |
| 1714 | if (clause_rightop == NULL || !IsA(clause_rightop, Const)) |
| 1715 | return false; |
| 1716 | clause_const = (Const *) clause_rightop; |
| 1717 | } |
| 1718 | } |
| 1719 | else if (equal(pred_rightop, clause_rightop)) |
| 1720 | { |
| 1721 | /* Fail unless leftops are both Consts */ |
| 1722 | if (pred_leftop == NULL || !IsA(pred_leftop, Const)) |
| 1723 | return false; |
| 1724 | pred_const = (Const *) pred_leftop; |
| 1725 | if (clause_leftop == NULL || !IsA(clause_leftop, Const)) |
| 1726 | return false; |
| 1727 | clause_const = (Const *) clause_leftop; |
| 1728 | /* Commute both operators so we can assume Consts are on the right */ |
| 1729 | pred_op = get_commutator(pred_op); |
| 1730 | if (!OidIsValid(pred_op)) |
| 1731 | return false; |
| 1732 | clause_op = get_commutator(clause_op); |
| 1733 | if (!OidIsValid(clause_op)) |
| 1734 | return false; |
| 1735 | } |
| 1736 | else if (equal(pred_leftop, clause_rightop)) |
| 1737 | { |
| 1738 | if (equal(pred_rightop, clause_leftop)) |
| 1739 | { |
| 1740 | /* We have x op1 y and y op2 x */ |
| 1741 | /* Commute pred_op that we can treat this like a straight match */ |
| 1742 | pred_op = get_commutator(pred_op); |
| 1743 | if (!OidIsValid(pred_op)) |
| 1744 | return false; |
| 1745 | return operator_same_subexprs_proof(pred_op, clause_op, refute_it); |
| 1746 | } |
| 1747 | else |
| 1748 | { |
| 1749 | /* Fail unless pred_rightop/clause_leftop are both Consts */ |
| 1750 | if (pred_rightop == NULL || !IsA(pred_rightop, Const)) |
| 1751 | return false; |
| 1752 | pred_const = (Const *) pred_rightop; |
| 1753 | if (clause_leftop == NULL || !IsA(clause_leftop, Const)) |
| 1754 | return false; |
| 1755 | clause_const = (Const *) clause_leftop; |
| 1756 | /* Commute clause_op so we can assume Consts are on the right */ |
| 1757 | clause_op = get_commutator(clause_op); |
| 1758 | if (!OidIsValid(clause_op)) |
| 1759 | return false; |
| 1760 | } |
| 1761 | } |
| 1762 | else if (equal(pred_rightop, clause_leftop)) |
| 1763 | { |
| 1764 | /* Fail unless pred_leftop/clause_rightop are both Consts */ |
| 1765 | if (pred_leftop == NULL || !IsA(pred_leftop, Const)) |
| 1766 | return false; |
| 1767 | pred_const = (Const *) pred_leftop; |
| 1768 | if (clause_rightop == NULL || !IsA(clause_rightop, Const)) |
| 1769 | return false; |
| 1770 | clause_const = (Const *) clause_rightop; |
| 1771 | /* Commute pred_op so we can assume Consts are on the right */ |
| 1772 | pred_op = get_commutator(pred_op); |
| 1773 | if (!OidIsValid(pred_op)) |
| 1774 | return false; |
| 1775 | } |
| 1776 | else |
| 1777 | { |
| 1778 | /* Failed to match up any of the subexpressions, so we lose */ |
| 1779 | return false; |
| 1780 | } |
| 1781 | |
| 1782 | /* |
| 1783 | * We have two identical subexpressions, and two other subexpressions that |
| 1784 | * are not identical but are both Consts; and we have commuted the |
| 1785 | * operators if necessary so that the Consts are on the right. We'll need |
| 1786 | * to compare the Consts' values. If either is NULL, we can't do that, so |
| 1787 | * usually the proof fails ... but in some cases we can claim success. |
| 1788 | */ |
| 1789 | if (clause_const->constisnull) |
| 1790 | { |
| 1791 | /* If clause_op isn't strict, we can't prove anything */ |
| 1792 | if (!op_strict(clause_op)) |
| 1793 | return false; |
| 1794 | |
| 1795 | /* |
| 1796 | * At this point we know that the clause returns NULL. For proof |
| 1797 | * types that assume truth of the clause, this means the proof is |
| 1798 | * vacuously true (a/k/a "false implies anything"). That's all proof |
| 1799 | * types except weak implication. |
| 1800 | */ |
| 1801 | if (!(weak && !refute_it)) |
| 1802 | return true; |
| 1803 | |
| 1804 | /* |
| 1805 | * For weak implication, it's still possible for the proof to succeed, |
| 1806 | * if the predicate can also be proven NULL. In that case we've got |
| 1807 | * NULL => NULL which is valid for this proof type. |
| 1808 | */ |
| 1809 | if (pred_const->constisnull && op_strict(pred_op)) |
| 1810 | return true; |
| 1811 | /* Else the proof fails */ |
| 1812 | return false; |
| 1813 | } |
| 1814 | if (pred_const->constisnull) |
| 1815 | { |
| 1816 | /* |
| 1817 | * If the pred_op is strict, we know the predicate yields NULL, which |
| 1818 | * means the proof succeeds for either weak implication or weak |
| 1819 | * refutation. |
| 1820 | */ |
| 1821 | if (weak && op_strict(pred_op)) |
| 1822 | return true; |
| 1823 | /* Else the proof fails */ |
| 1824 | return false; |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * Lookup the constant-comparison operator using the system catalogs and |
| 1829 | * the operator implication tables. |
| 1830 | */ |
| 1831 | test_op = get_btree_test_op(pred_op, clause_op, refute_it); |
| 1832 | |
| 1833 | if (!OidIsValid(test_op)) |
| 1834 | { |
| 1835 | /* couldn't find a suitable comparison operator */ |
| 1836 | return false; |
| 1837 | } |
| 1838 | |
| 1839 | /* |
| 1840 | * Evaluate the test. For this we need an EState. |
| 1841 | */ |
| 1842 | estate = CreateExecutorState(); |
| 1843 | |
| 1844 | /* We can use the estate's working context to avoid memory leaks. */ |
| 1845 | oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| 1846 | |
| 1847 | /* Build expression tree */ |
| 1848 | test_expr = make_opclause(test_op, |
| 1849 | BOOLOID, |
| 1850 | false, |
| 1851 | (Expr *) pred_const, |
| 1852 | (Expr *) clause_const, |
| 1853 | InvalidOid, |
| 1854 | pred_collation); |
| 1855 | |
| 1856 | /* Fill in opfuncids */ |
| 1857 | fix_opfuncids((Node *) test_expr); |
| 1858 | |
| 1859 | /* Prepare it for execution */ |
| 1860 | test_exprstate = ExecInitExpr(test_expr, NULL); |
| 1861 | |
| 1862 | /* And execute it. */ |
| 1863 | test_result = ExecEvalExprSwitchContext(test_exprstate, |
| 1864 | GetPerTupleExprContext(estate), |
| 1865 | &isNull); |
| 1866 | |
| 1867 | /* Get back to outer memory context */ |
| 1868 | MemoryContextSwitchTo(oldcontext); |
| 1869 | |
| 1870 | /* Release all the junk we just created */ |
| 1871 | FreeExecutorState(estate); |
| 1872 | |
| 1873 | if (isNull) |
| 1874 | { |
| 1875 | /* Treat a null result as non-proof ... but it's a tad fishy ... */ |
| 1876 | elog(DEBUG2, "null predicate test result" ); |
| 1877 | return false; |
| 1878 | } |
| 1879 | return DatumGetBool(test_result); |
| 1880 | } |
| 1881 | |
| 1882 | |
| 1883 | /* |
| 1884 | * operator_same_subexprs_proof |
| 1885 | * Assuming that EXPR1 clause_op EXPR2 is true, try to prove or refute |
| 1886 | * EXPR1 pred_op EXPR2. |
| 1887 | * |
| 1888 | * Return true if able to make the proof, false if not able to prove it. |
| 1889 | */ |
| 1890 | static bool |
| 1891 | operator_same_subexprs_proof(Oid pred_op, Oid clause_op, bool refute_it) |
| 1892 | { |
| 1893 | /* |
| 1894 | * A simple and general rule is that the predicate is proven if clause_op |
| 1895 | * and pred_op are the same, or refuted if they are each other's negators. |
| 1896 | * We need not check immutability since the pred_op is already known |
| 1897 | * immutable. (Actually, by this point we may have the commutator of a |
| 1898 | * known-immutable pred_op, but that should certainly be immutable too. |
| 1899 | * Likewise we don't worry whether the pred_op's negator is immutable.) |
| 1900 | * |
| 1901 | * Note: the "same" case won't get here if we actually had EXPR1 clause_op |
| 1902 | * EXPR2 and EXPR1 pred_op EXPR2, because the overall-expression-equality |
| 1903 | * test in predicate_implied_by_simple_clause would have caught it. But |
| 1904 | * we can see the same operator after having commuted the pred_op. |
| 1905 | */ |
| 1906 | if (refute_it) |
| 1907 | { |
| 1908 | if (get_negator(pred_op) == clause_op) |
| 1909 | return true; |
| 1910 | } |
| 1911 | else |
| 1912 | { |
| 1913 | if (pred_op == clause_op) |
| 1914 | return true; |
| 1915 | } |
| 1916 | |
| 1917 | /* |
| 1918 | * Otherwise, see if we can determine the implication by finding the |
| 1919 | * operators' relationship via some btree opfamily. |
| 1920 | */ |
| 1921 | return operator_same_subexprs_lookup(pred_op, clause_op, refute_it); |
| 1922 | } |
| 1923 | |
| 1924 | |
| 1925 | /* |
| 1926 | * We use a lookaside table to cache the result of btree proof operator |
| 1927 | * lookups, since the actual lookup is pretty expensive and doesn't change |
| 1928 | * for any given pair of operators (at least as long as pg_amop doesn't |
| 1929 | * change). A single hash entry stores both implication and refutation |
| 1930 | * results for a given pair of operators; but note we may have determined |
| 1931 | * only one of those sets of results as yet. |
| 1932 | */ |
| 1933 | typedef struct OprProofCacheKey |
| 1934 | { |
| 1935 | Oid pred_op; /* predicate operator */ |
| 1936 | Oid clause_op; /* clause operator */ |
| 1937 | } OprProofCacheKey; |
| 1938 | |
| 1939 | typedef struct OprProofCacheEntry |
| 1940 | { |
| 1941 | /* the hash lookup key MUST BE FIRST */ |
| 1942 | OprProofCacheKey key; |
| 1943 | |
| 1944 | bool have_implic; /* do we know the implication result? */ |
| 1945 | bool have_refute; /* do we know the refutation result? */ |
| 1946 | bool same_subexprs_implies; /* X clause_op Y implies X pred_op Y? */ |
| 1947 | bool same_subexprs_refutes; /* X clause_op Y refutes X pred_op Y? */ |
| 1948 | Oid implic_test_op; /* OID of the test operator, or 0 if none */ |
| 1949 | Oid refute_test_op; /* OID of the test operator, or 0 if none */ |
| 1950 | } OprProofCacheEntry; |
| 1951 | |
| 1952 | static HTAB *OprProofCacheHash = NULL; |
| 1953 | |
| 1954 | |
| 1955 | /* |
| 1956 | * lookup_proof_cache |
| 1957 | * Get, and fill in if necessary, the appropriate cache entry. |
| 1958 | */ |
| 1959 | static OprProofCacheEntry * |
| 1960 | lookup_proof_cache(Oid pred_op, Oid clause_op, bool refute_it) |
| 1961 | { |
| 1962 | OprProofCacheKey key; |
| 1963 | OprProofCacheEntry *cache_entry; |
| 1964 | bool cfound; |
| 1965 | bool same_subexprs = false; |
| 1966 | Oid test_op = InvalidOid; |
| 1967 | bool found = false; |
| 1968 | List *pred_op_infos, |
| 1969 | *clause_op_infos; |
| 1970 | ListCell *lcp, |
| 1971 | *lcc; |
| 1972 | |
| 1973 | /* |
| 1974 | * Find or make a cache entry for this pair of operators. |
| 1975 | */ |
| 1976 | if (OprProofCacheHash == NULL) |
| 1977 | { |
| 1978 | /* First time through: initialize the hash table */ |
| 1979 | HASHCTL ctl; |
| 1980 | |
| 1981 | MemSet(&ctl, 0, sizeof(ctl)); |
| 1982 | ctl.keysize = sizeof(OprProofCacheKey); |
| 1983 | ctl.entrysize = sizeof(OprProofCacheEntry); |
| 1984 | OprProofCacheHash = hash_create("Btree proof lookup cache" , 256, |
| 1985 | &ctl, HASH_ELEM | HASH_BLOBS); |
| 1986 | |
| 1987 | /* Arrange to flush cache on pg_amop changes */ |
| 1988 | CacheRegisterSyscacheCallback(AMOPOPID, |
| 1989 | InvalidateOprProofCacheCallBack, |
| 1990 | (Datum) 0); |
| 1991 | } |
| 1992 | |
| 1993 | key.pred_op = pred_op; |
| 1994 | key.clause_op = clause_op; |
| 1995 | cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash, |
| 1996 | (void *) &key, |
| 1997 | HASH_ENTER, &cfound); |
| 1998 | if (!cfound) |
| 1999 | { |
| 2000 | /* new cache entry, set it invalid */ |
| 2001 | cache_entry->have_implic = false; |
| 2002 | cache_entry->have_refute = false; |
| 2003 | } |
| 2004 | else |
| 2005 | { |
| 2006 | /* pre-existing cache entry, see if we know the answer yet */ |
| 2007 | if (refute_it ? cache_entry->have_refute : cache_entry->have_implic) |
| 2008 | return cache_entry; |
| 2009 | } |
| 2010 | |
| 2011 | /* |
| 2012 | * Try to find a btree opfamily containing the given operators. |
| 2013 | * |
| 2014 | * We must find a btree opfamily that contains both operators, else the |
| 2015 | * implication can't be determined. Also, the opfamily must contain a |
| 2016 | * suitable test operator taking the operators' righthand datatypes. |
| 2017 | * |
| 2018 | * If there are multiple matching opfamilies, assume we can use any one to |
| 2019 | * determine the logical relationship of the two operators and the correct |
| 2020 | * corresponding test operator. This should work for any logically |
| 2021 | * consistent opfamilies. |
| 2022 | * |
| 2023 | * Note that we can determine the operators' relationship for |
| 2024 | * same-subexprs cases even from an opfamily that lacks a usable test |
| 2025 | * operator. This can happen in cases with incomplete sets of cross-type |
| 2026 | * comparison operators. |
| 2027 | */ |
| 2028 | clause_op_infos = get_op_btree_interpretation(clause_op); |
| 2029 | if (clause_op_infos) |
| 2030 | pred_op_infos = get_op_btree_interpretation(pred_op); |
| 2031 | else /* no point in looking */ |
| 2032 | pred_op_infos = NIL; |
| 2033 | |
| 2034 | foreach(lcp, pred_op_infos) |
| 2035 | { |
| 2036 | OpBtreeInterpretation *pred_op_info = lfirst(lcp); |
| 2037 | Oid opfamily_id = pred_op_info->opfamily_id; |
| 2038 | |
| 2039 | foreach(lcc, clause_op_infos) |
| 2040 | { |
| 2041 | OpBtreeInterpretation *clause_op_info = lfirst(lcc); |
| 2042 | StrategyNumber pred_strategy, |
| 2043 | clause_strategy, |
| 2044 | test_strategy; |
| 2045 | |
| 2046 | /* Must find them in same opfamily */ |
| 2047 | if (opfamily_id != clause_op_info->opfamily_id) |
| 2048 | continue; |
| 2049 | /* Lefttypes should match */ |
| 2050 | Assert(clause_op_info->oplefttype == pred_op_info->oplefttype); |
| 2051 | |
| 2052 | pred_strategy = pred_op_info->strategy; |
| 2053 | clause_strategy = clause_op_info->strategy; |
| 2054 | |
| 2055 | /* |
| 2056 | * Check to see if we can make a proof for same-subexpressions |
| 2057 | * cases based on the operators' relationship in this opfamily. |
| 2058 | */ |
| 2059 | if (refute_it) |
| 2060 | same_subexprs |= BT_refutes_table[clause_strategy - 1][pred_strategy - 1]; |
| 2061 | else |
| 2062 | same_subexprs |= BT_implies_table[clause_strategy - 1][pred_strategy - 1]; |
| 2063 | |
| 2064 | /* |
| 2065 | * Look up the "test" strategy number in the implication table |
| 2066 | */ |
| 2067 | if (refute_it) |
| 2068 | test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; |
| 2069 | else |
| 2070 | test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; |
| 2071 | |
| 2072 | if (test_strategy == 0) |
| 2073 | { |
| 2074 | /* Can't determine implication using this interpretation */ |
| 2075 | continue; |
| 2076 | } |
| 2077 | |
| 2078 | /* |
| 2079 | * See if opfamily has an operator for the test strategy and the |
| 2080 | * datatypes. |
| 2081 | */ |
| 2082 | if (test_strategy == BTNE) |
| 2083 | { |
| 2084 | test_op = get_opfamily_member(opfamily_id, |
| 2085 | pred_op_info->oprighttype, |
| 2086 | clause_op_info->oprighttype, |
| 2087 | BTEqualStrategyNumber); |
| 2088 | if (OidIsValid(test_op)) |
| 2089 | test_op = get_negator(test_op); |
| 2090 | } |
| 2091 | else |
| 2092 | { |
| 2093 | test_op = get_opfamily_member(opfamily_id, |
| 2094 | pred_op_info->oprighttype, |
| 2095 | clause_op_info->oprighttype, |
| 2096 | test_strategy); |
| 2097 | } |
| 2098 | |
| 2099 | if (!OidIsValid(test_op)) |
| 2100 | continue; |
| 2101 | |
| 2102 | /* |
| 2103 | * Last check: test_op must be immutable. |
| 2104 | * |
| 2105 | * Note that we require only the test_op to be immutable, not the |
| 2106 | * original clause_op. (pred_op is assumed to have been checked |
| 2107 | * immutable by the caller.) Essentially we are assuming that the |
| 2108 | * opfamily is consistent even if it contains operators that are |
| 2109 | * merely stable. |
| 2110 | */ |
| 2111 | if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE) |
| 2112 | { |
| 2113 | found = true; |
| 2114 | break; |
| 2115 | } |
| 2116 | } |
| 2117 | |
| 2118 | if (found) |
| 2119 | break; |
| 2120 | } |
| 2121 | |
| 2122 | list_free_deep(pred_op_infos); |
| 2123 | list_free_deep(clause_op_infos); |
| 2124 | |
| 2125 | if (!found) |
| 2126 | { |
| 2127 | /* couldn't find a suitable comparison operator */ |
| 2128 | test_op = InvalidOid; |
| 2129 | } |
| 2130 | |
| 2131 | /* |
| 2132 | * If we think we were able to prove something about same-subexpressions |
| 2133 | * cases, check to make sure the clause_op is immutable before believing |
| 2134 | * it completely. (Usually, the clause_op would be immutable if the |
| 2135 | * pred_op is, but it's not entirely clear that this must be true in all |
| 2136 | * cases, so let's check.) |
| 2137 | */ |
| 2138 | if (same_subexprs && |
| 2139 | op_volatile(clause_op) != PROVOLATILE_IMMUTABLE) |
| 2140 | same_subexprs = false; |
| 2141 | |
| 2142 | /* Cache the results, whether positive or negative */ |
| 2143 | if (refute_it) |
| 2144 | { |
| 2145 | cache_entry->refute_test_op = test_op; |
| 2146 | cache_entry->same_subexprs_refutes = same_subexprs; |
| 2147 | cache_entry->have_refute = true; |
| 2148 | } |
| 2149 | else |
| 2150 | { |
| 2151 | cache_entry->implic_test_op = test_op; |
| 2152 | cache_entry->same_subexprs_implies = same_subexprs; |
| 2153 | cache_entry->have_implic = true; |
| 2154 | } |
| 2155 | |
| 2156 | return cache_entry; |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | * operator_same_subexprs_lookup |
| 2161 | * Convenience subroutine to look up the cached answer for |
| 2162 | * same-subexpressions cases. |
| 2163 | */ |
| 2164 | static bool |
| 2165 | operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, bool refute_it) |
| 2166 | { |
| 2167 | OprProofCacheEntry *cache_entry; |
| 2168 | |
| 2169 | cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it); |
| 2170 | if (refute_it) |
| 2171 | return cache_entry->same_subexprs_refutes; |
| 2172 | else |
| 2173 | return cache_entry->same_subexprs_implies; |
| 2174 | } |
| 2175 | |
| 2176 | /* |
| 2177 | * get_btree_test_op |
| 2178 | * Identify the comparison operator needed for a btree-operator |
| 2179 | * proof or refutation involving comparison of constants. |
| 2180 | * |
| 2181 | * Given the truth of a clause "var clause_op const1", we are attempting to |
| 2182 | * prove or refute a predicate "var pred_op const2". The identities of the |
| 2183 | * two operators are sufficient to determine the operator (if any) to compare |
| 2184 | * const2 to const1 with. |
| 2185 | * |
| 2186 | * Returns the OID of the operator to use, or InvalidOid if no proof is |
| 2187 | * possible. |
| 2188 | */ |
| 2189 | static Oid |
| 2190 | get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it) |
| 2191 | { |
| 2192 | OprProofCacheEntry *cache_entry; |
| 2193 | |
| 2194 | cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it); |
| 2195 | if (refute_it) |
| 2196 | return cache_entry->refute_test_op; |
| 2197 | else |
| 2198 | return cache_entry->implic_test_op; |
| 2199 | } |
| 2200 | |
| 2201 | |
| 2202 | /* |
| 2203 | * Callback for pg_amop inval events |
| 2204 | */ |
| 2205 | static void |
| 2206 | InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue) |
| 2207 | { |
| 2208 | HASH_SEQ_STATUS status; |
| 2209 | OprProofCacheEntry *hentry; |
| 2210 | |
| 2211 | Assert(OprProofCacheHash != NULL); |
| 2212 | |
| 2213 | /* Currently we just reset all entries; hard to be smarter ... */ |
| 2214 | hash_seq_init(&status, OprProofCacheHash); |
| 2215 | |
| 2216 | while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL) |
| 2217 | { |
| 2218 | hentry->have_implic = false; |
| 2219 | hentry->have_refute = false; |
| 2220 | } |
| 2221 | } |
| 2222 | |