| 1 | /*------------------------------------------------------------------------- |
| 2 | * |
| 3 | * relnode.c |
| 4 | * Relation-node lookup/construction routines |
| 5 | * |
| 6 | * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group |
| 7 | * Portions Copyright (c) 1994, Regents of the University of California |
| 8 | * |
| 9 | * |
| 10 | * IDENTIFICATION |
| 11 | * src/backend/optimizer/util/relnode.c |
| 12 | * |
| 13 | *------------------------------------------------------------------------- |
| 14 | */ |
| 15 | #include "postgres.h" |
| 16 | |
| 17 | #include <limits.h> |
| 18 | |
| 19 | #include "miscadmin.h" |
| 20 | #include "optimizer/appendinfo.h" |
| 21 | #include "optimizer/clauses.h" |
| 22 | #include "optimizer/cost.h" |
| 23 | #include "optimizer/inherit.h" |
| 24 | #include "optimizer/pathnode.h" |
| 25 | #include "optimizer/paths.h" |
| 26 | #include "optimizer/placeholder.h" |
| 27 | #include "optimizer/plancat.h" |
| 28 | #include "optimizer/restrictinfo.h" |
| 29 | #include "optimizer/tlist.h" |
| 30 | #include "partitioning/partbounds.h" |
| 31 | #include "utils/hsearch.h" |
| 32 | |
| 33 | |
| 34 | typedef struct JoinHashEntry |
| 35 | { |
| 36 | Relids join_relids; /* hash key --- MUST BE FIRST */ |
| 37 | RelOptInfo *join_rel; |
| 38 | } JoinHashEntry; |
| 39 | |
| 40 | static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, |
| 41 | RelOptInfo *input_rel); |
| 42 | static List *build_joinrel_restrictlist(PlannerInfo *root, |
| 43 | RelOptInfo *joinrel, |
| 44 | RelOptInfo *outer_rel, |
| 45 | RelOptInfo *inner_rel); |
| 46 | static void build_joinrel_joinlist(RelOptInfo *joinrel, |
| 47 | RelOptInfo *outer_rel, |
| 48 | RelOptInfo *inner_rel); |
| 49 | static List *subbuild_joinrel_restrictlist(RelOptInfo *joinrel, |
| 50 | List *joininfo_list, |
| 51 | List *new_restrictlist); |
| 52 | static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel, |
| 53 | List *joininfo_list, |
| 54 | List *new_joininfo); |
| 55 | static void set_foreign_rel_properties(RelOptInfo *joinrel, |
| 56 | RelOptInfo *outer_rel, RelOptInfo *inner_rel); |
| 57 | static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel); |
| 58 | static void build_joinrel_partition_info(RelOptInfo *joinrel, |
| 59 | RelOptInfo *outer_rel, RelOptInfo *inner_rel, |
| 60 | List *restrictlist, JoinType jointype); |
| 61 | static void build_child_join_reltarget(PlannerInfo *root, |
| 62 | RelOptInfo *parentrel, |
| 63 | RelOptInfo *childrel, |
| 64 | int nappinfos, |
| 65 | AppendRelInfo **appinfos); |
| 66 | |
| 67 | |
| 68 | /* |
| 69 | * setup_simple_rel_arrays |
| 70 | * Prepare the arrays we use for quickly accessing base relations. |
| 71 | */ |
| 72 | void |
| 73 | setup_simple_rel_arrays(PlannerInfo *root) |
| 74 | { |
| 75 | Index rti; |
| 76 | ListCell *lc; |
| 77 | |
| 78 | /* Arrays are accessed using RT indexes (1..N) */ |
| 79 | root->simple_rel_array_size = list_length(root->parse->rtable) + 1; |
| 80 | |
| 81 | /* simple_rel_array is initialized to all NULLs */ |
| 82 | root->simple_rel_array = (RelOptInfo **) |
| 83 | palloc0(root->simple_rel_array_size * sizeof(RelOptInfo *)); |
| 84 | |
| 85 | /* simple_rte_array is an array equivalent of the rtable list */ |
| 86 | root->simple_rte_array = (RangeTblEntry **) |
| 87 | palloc0(root->simple_rel_array_size * sizeof(RangeTblEntry *)); |
| 88 | rti = 1; |
| 89 | foreach(lc, root->parse->rtable) |
| 90 | { |
| 91 | RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc); |
| 92 | |
| 93 | root->simple_rte_array[rti++] = rte; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * setup_append_rel_array |
| 99 | * Populate the append_rel_array to allow direct lookups of |
| 100 | * AppendRelInfos by child relid. |
| 101 | * |
| 102 | * The array remains unallocated if there are no AppendRelInfos. |
| 103 | */ |
| 104 | void |
| 105 | setup_append_rel_array(PlannerInfo *root) |
| 106 | { |
| 107 | ListCell *lc; |
| 108 | int size = list_length(root->parse->rtable) + 1; |
| 109 | |
| 110 | if (root->append_rel_list == NIL) |
| 111 | { |
| 112 | root->append_rel_array = NULL; |
| 113 | return; |
| 114 | } |
| 115 | |
| 116 | root->append_rel_array = (AppendRelInfo **) |
| 117 | palloc0(size * sizeof(AppendRelInfo *)); |
| 118 | |
| 119 | foreach(lc, root->append_rel_list) |
| 120 | { |
| 121 | AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc); |
| 122 | int child_relid = appinfo->child_relid; |
| 123 | |
| 124 | /* Sanity check */ |
| 125 | Assert(child_relid < size); |
| 126 | |
| 127 | if (root->append_rel_array[child_relid]) |
| 128 | elog(ERROR, "child relation already exists" ); |
| 129 | |
| 130 | root->append_rel_array[child_relid] = appinfo; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * expand_planner_arrays |
| 136 | * Expand the PlannerInfo's per-RTE arrays by add_size members |
| 137 | * and initialize the newly added entries to NULLs |
| 138 | */ |
| 139 | void |
| 140 | expand_planner_arrays(PlannerInfo *root, int add_size) |
| 141 | { |
| 142 | int new_size; |
| 143 | |
| 144 | Assert(add_size > 0); |
| 145 | |
| 146 | new_size = root->simple_rel_array_size + add_size; |
| 147 | |
| 148 | root->simple_rte_array = (RangeTblEntry **) |
| 149 | repalloc(root->simple_rte_array, |
| 150 | sizeof(RangeTblEntry *) * new_size); |
| 151 | MemSet(root->simple_rte_array + root->simple_rel_array_size, |
| 152 | 0, sizeof(RangeTblEntry *) * add_size); |
| 153 | |
| 154 | root->simple_rel_array = (RelOptInfo **) |
| 155 | repalloc(root->simple_rel_array, |
| 156 | sizeof(RelOptInfo *) * new_size); |
| 157 | MemSet(root->simple_rel_array + root->simple_rel_array_size, |
| 158 | 0, sizeof(RelOptInfo *) * add_size); |
| 159 | |
| 160 | if (root->append_rel_array) |
| 161 | { |
| 162 | root->append_rel_array = (AppendRelInfo **) |
| 163 | repalloc(root->append_rel_array, |
| 164 | sizeof(AppendRelInfo *) * new_size); |
| 165 | MemSet(root->append_rel_array + root->simple_rel_array_size, |
| 166 | 0, sizeof(AppendRelInfo *) * add_size); |
| 167 | } |
| 168 | else |
| 169 | { |
| 170 | root->append_rel_array = (AppendRelInfo **) |
| 171 | palloc0(sizeof(AppendRelInfo *) * new_size); |
| 172 | } |
| 173 | |
| 174 | root->simple_rel_array_size = new_size; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * build_simple_rel |
| 179 | * Construct a new RelOptInfo for a base relation or 'other' relation. |
| 180 | */ |
| 181 | RelOptInfo * |
| 182 | build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent) |
| 183 | { |
| 184 | RelOptInfo *rel; |
| 185 | RangeTblEntry *rte; |
| 186 | |
| 187 | /* Rel should not exist already */ |
| 188 | Assert(relid > 0 && relid < root->simple_rel_array_size); |
| 189 | if (root->simple_rel_array[relid] != NULL) |
| 190 | elog(ERROR, "rel %d already exists" , relid); |
| 191 | |
| 192 | /* Fetch RTE for relation */ |
| 193 | rte = root->simple_rte_array[relid]; |
| 194 | Assert(rte != NULL); |
| 195 | |
| 196 | rel = makeNode(RelOptInfo); |
| 197 | rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL; |
| 198 | rel->relids = bms_make_singleton(relid); |
| 199 | rel->rows = 0; |
| 200 | /* cheap startup cost is interesting iff not all tuples to be retrieved */ |
| 201 | rel->consider_startup = (root->tuple_fraction > 0); |
| 202 | rel->consider_param_startup = false; /* might get changed later */ |
| 203 | rel->consider_parallel = false; /* might get changed later */ |
| 204 | rel->reltarget = create_empty_pathtarget(); |
| 205 | rel->pathlist = NIL; |
| 206 | rel->ppilist = NIL; |
| 207 | rel->partial_pathlist = NIL; |
| 208 | rel->cheapest_startup_path = NULL; |
| 209 | rel->cheapest_total_path = NULL; |
| 210 | rel->cheapest_unique_path = NULL; |
| 211 | rel->cheapest_parameterized_paths = NIL; |
| 212 | rel->relid = relid; |
| 213 | rel->rtekind = rte->rtekind; |
| 214 | /* min_attr, max_attr, attr_needed, attr_widths are set below */ |
| 215 | rel->lateral_vars = NIL; |
| 216 | rel->indexlist = NIL; |
| 217 | rel->statlist = NIL; |
| 218 | rel->pages = 0; |
| 219 | rel->tuples = 0; |
| 220 | rel->allvisfrac = 0; |
| 221 | rel->subroot = NULL; |
| 222 | rel->subplan_params = NIL; |
| 223 | rel->rel_parallel_workers = -1; /* set up in get_relation_info */ |
| 224 | rel->serverid = InvalidOid; |
| 225 | rel->userid = rte->checkAsUser; |
| 226 | rel->useridiscurrent = false; |
| 227 | rel->fdwroutine = NULL; |
| 228 | rel->fdw_private = NULL; |
| 229 | rel->unique_for_rels = NIL; |
| 230 | rel->non_unique_for_rels = NIL; |
| 231 | rel->baserestrictinfo = NIL; |
| 232 | rel->baserestrictcost.startup = 0; |
| 233 | rel->baserestrictcost.per_tuple = 0; |
| 234 | rel->baserestrict_min_security = UINT_MAX; |
| 235 | rel->joininfo = NIL; |
| 236 | rel->has_eclass_joins = false; |
| 237 | rel->consider_partitionwise_join = false; /* might get changed later */ |
| 238 | rel->part_scheme = NULL; |
| 239 | rel->nparts = 0; |
| 240 | rel->boundinfo = NULL; |
| 241 | rel->partition_qual = NIL; |
| 242 | rel->part_rels = NULL; |
| 243 | rel->partexprs = NULL; |
| 244 | rel->nullable_partexprs = NULL; |
| 245 | rel->partitioned_child_rels = NIL; |
| 246 | |
| 247 | /* |
| 248 | * Pass assorted information down the inheritance hierarchy. |
| 249 | */ |
| 250 | if (parent) |
| 251 | { |
| 252 | /* |
| 253 | * Each direct or indirect child wants to know the relids of its |
| 254 | * topmost parent. |
| 255 | */ |
| 256 | if (parent->top_parent_relids) |
| 257 | rel->top_parent_relids = parent->top_parent_relids; |
| 258 | else |
| 259 | rel->top_parent_relids = bms_copy(parent->relids); |
| 260 | |
| 261 | /* |
| 262 | * Also propagate lateral-reference information from appendrel parent |
| 263 | * rels to their child rels. We intentionally give each child rel the |
| 264 | * same minimum parameterization, even though it's quite possible that |
| 265 | * some don't reference all the lateral rels. This is because any |
| 266 | * append path for the parent will have to have the same |
| 267 | * parameterization for every child anyway, and there's no value in |
| 268 | * forcing extra reparameterize_path() calls. Similarly, a lateral |
| 269 | * reference to the parent prevents use of otherwise-movable join rels |
| 270 | * for each child. |
| 271 | * |
| 272 | * It's possible for child rels to have their own children, in which |
| 273 | * case the topmost parent's lateral info propagates all the way down. |
| 274 | */ |
| 275 | rel->direct_lateral_relids = parent->direct_lateral_relids; |
| 276 | rel->lateral_relids = parent->lateral_relids; |
| 277 | rel->lateral_referencers = parent->lateral_referencers; |
| 278 | } |
| 279 | else |
| 280 | { |
| 281 | rel->top_parent_relids = NULL; |
| 282 | rel->direct_lateral_relids = NULL; |
| 283 | rel->lateral_relids = NULL; |
| 284 | rel->lateral_referencers = NULL; |
| 285 | } |
| 286 | |
| 287 | /* Check type of rtable entry */ |
| 288 | switch (rte->rtekind) |
| 289 | { |
| 290 | case RTE_RELATION: |
| 291 | /* Table --- retrieve statistics from the system catalogs */ |
| 292 | get_relation_info(root, rte->relid, rte->inh, rel); |
| 293 | break; |
| 294 | case RTE_SUBQUERY: |
| 295 | case RTE_FUNCTION: |
| 296 | case RTE_TABLEFUNC: |
| 297 | case RTE_VALUES: |
| 298 | case RTE_CTE: |
| 299 | case RTE_NAMEDTUPLESTORE: |
| 300 | |
| 301 | /* |
| 302 | * Subquery, function, tablefunc, values list, CTE, or ENR --- set |
| 303 | * up attr range and arrays |
| 304 | * |
| 305 | * Note: 0 is included in range to support whole-row Vars |
| 306 | */ |
| 307 | rel->min_attr = 0; |
| 308 | rel->max_attr = list_length(rte->eref->colnames); |
| 309 | rel->attr_needed = (Relids *) |
| 310 | palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids)); |
| 311 | rel->attr_widths = (int32 *) |
| 312 | palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32)); |
| 313 | break; |
| 314 | case RTE_RESULT: |
| 315 | /* RTE_RESULT has no columns, nor could it have whole-row Var */ |
| 316 | rel->min_attr = 0; |
| 317 | rel->max_attr = -1; |
| 318 | rel->attr_needed = NULL; |
| 319 | rel->attr_widths = NULL; |
| 320 | break; |
| 321 | default: |
| 322 | elog(ERROR, "unrecognized RTE kind: %d" , |
| 323 | (int) rte->rtekind); |
| 324 | break; |
| 325 | } |
| 326 | |
| 327 | /* |
| 328 | * Copy the parent's quals to the child, with appropriate substitution of |
| 329 | * variables. If any constant false or NULL clauses turn up, we can mark |
| 330 | * the child as dummy right away. (We must do this immediately so that |
| 331 | * pruning works correctly when recursing in expand_partitioned_rtentry.) |
| 332 | */ |
| 333 | if (parent) |
| 334 | { |
| 335 | AppendRelInfo *appinfo = root->append_rel_array[relid]; |
| 336 | |
| 337 | Assert(appinfo != NULL); |
| 338 | if (!apply_child_basequals(root, parent, rel, rte, appinfo)) |
| 339 | { |
| 340 | /* |
| 341 | * Some restriction clause reduced to constant FALSE or NULL after |
| 342 | * substitution, so this child need not be scanned. |
| 343 | */ |
| 344 | mark_dummy_rel(rel); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /* Save the finished struct in the query's simple_rel_array */ |
| 349 | root->simple_rel_array[relid] = rel; |
| 350 | |
| 351 | return rel; |
| 352 | } |
| 353 | |
| 354 | /* |
| 355 | * find_base_rel |
| 356 | * Find a base or other relation entry, which must already exist. |
| 357 | */ |
| 358 | RelOptInfo * |
| 359 | find_base_rel(PlannerInfo *root, int relid) |
| 360 | { |
| 361 | RelOptInfo *rel; |
| 362 | |
| 363 | Assert(relid > 0); |
| 364 | |
| 365 | if (relid < root->simple_rel_array_size) |
| 366 | { |
| 367 | rel = root->simple_rel_array[relid]; |
| 368 | if (rel) |
| 369 | return rel; |
| 370 | } |
| 371 | |
| 372 | elog(ERROR, "no relation entry for relid %d" , relid); |
| 373 | |
| 374 | return NULL; /* keep compiler quiet */ |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * build_join_rel_hash |
| 379 | * Construct the auxiliary hash table for join relations. |
| 380 | */ |
| 381 | static void |
| 382 | build_join_rel_hash(PlannerInfo *root) |
| 383 | { |
| 384 | HTAB *hashtab; |
| 385 | HASHCTL hash_ctl; |
| 386 | ListCell *l; |
| 387 | |
| 388 | /* Create the hash table */ |
| 389 | MemSet(&hash_ctl, 0, sizeof(hash_ctl)); |
| 390 | hash_ctl.keysize = sizeof(Relids); |
| 391 | hash_ctl.entrysize = sizeof(JoinHashEntry); |
| 392 | hash_ctl.hash = bitmap_hash; |
| 393 | hash_ctl.match = bitmap_match; |
| 394 | hash_ctl.hcxt = CurrentMemoryContext; |
| 395 | hashtab = hash_create("JoinRelHashTable" , |
| 396 | 256L, |
| 397 | &hash_ctl, |
| 398 | HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT); |
| 399 | |
| 400 | /* Insert all the already-existing joinrels */ |
| 401 | foreach(l, root->join_rel_list) |
| 402 | { |
| 403 | RelOptInfo *rel = (RelOptInfo *) lfirst(l); |
| 404 | JoinHashEntry *hentry; |
| 405 | bool found; |
| 406 | |
| 407 | hentry = (JoinHashEntry *) hash_search(hashtab, |
| 408 | &(rel->relids), |
| 409 | HASH_ENTER, |
| 410 | &found); |
| 411 | Assert(!found); |
| 412 | hentry->join_rel = rel; |
| 413 | } |
| 414 | |
| 415 | root->join_rel_hash = hashtab; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * find_join_rel |
| 420 | * Returns relation entry corresponding to 'relids' (a set of RT indexes), |
| 421 | * or NULL if none exists. This is for join relations. |
| 422 | */ |
| 423 | RelOptInfo * |
| 424 | find_join_rel(PlannerInfo *root, Relids relids) |
| 425 | { |
| 426 | /* |
| 427 | * Switch to using hash lookup when list grows "too long". The threshold |
| 428 | * is arbitrary and is known only here. |
| 429 | */ |
| 430 | if (!root->join_rel_hash && list_length(root->join_rel_list) > 32) |
| 431 | build_join_rel_hash(root); |
| 432 | |
| 433 | /* |
| 434 | * Use either hashtable lookup or linear search, as appropriate. |
| 435 | * |
| 436 | * Note: the seemingly redundant hashkey variable is used to avoid taking |
| 437 | * the address of relids; unless the compiler is exceedingly smart, doing |
| 438 | * so would force relids out of a register and thus probably slow down the |
| 439 | * list-search case. |
| 440 | */ |
| 441 | if (root->join_rel_hash) |
| 442 | { |
| 443 | Relids hashkey = relids; |
| 444 | JoinHashEntry *hentry; |
| 445 | |
| 446 | hentry = (JoinHashEntry *) hash_search(root->join_rel_hash, |
| 447 | &hashkey, |
| 448 | HASH_FIND, |
| 449 | NULL); |
| 450 | if (hentry) |
| 451 | return hentry->join_rel; |
| 452 | } |
| 453 | else |
| 454 | { |
| 455 | ListCell *l; |
| 456 | |
| 457 | foreach(l, root->join_rel_list) |
| 458 | { |
| 459 | RelOptInfo *rel = (RelOptInfo *) lfirst(l); |
| 460 | |
| 461 | if (bms_equal(rel->relids, relids)) |
| 462 | return rel; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | return NULL; |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * set_foreign_rel_properties |
| 471 | * Set up foreign-join fields if outer and inner relation are foreign |
| 472 | * tables (or joins) belonging to the same server and assigned to the same |
| 473 | * user to check access permissions as. |
| 474 | * |
| 475 | * In addition to an exact match of userid, we allow the case where one side |
| 476 | * has zero userid (implying current user) and the other side has explicit |
| 477 | * userid that happens to equal the current user; but in that case, pushdown of |
| 478 | * the join is only valid for the current user. The useridiscurrent field |
| 479 | * records whether we had to make such an assumption for this join or any |
| 480 | * sub-join. |
| 481 | * |
| 482 | * Otherwise these fields are left invalid, so GetForeignJoinPaths will not be |
| 483 | * called for the join relation. |
| 484 | * |
| 485 | */ |
| 486 | static void |
| 487 | set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel, |
| 488 | RelOptInfo *inner_rel) |
| 489 | { |
| 490 | if (OidIsValid(outer_rel->serverid) && |
| 491 | inner_rel->serverid == outer_rel->serverid) |
| 492 | { |
| 493 | if (inner_rel->userid == outer_rel->userid) |
| 494 | { |
| 495 | joinrel->serverid = outer_rel->serverid; |
| 496 | joinrel->userid = outer_rel->userid; |
| 497 | joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent; |
| 498 | joinrel->fdwroutine = outer_rel->fdwroutine; |
| 499 | } |
| 500 | else if (!OidIsValid(inner_rel->userid) && |
| 501 | outer_rel->userid == GetUserId()) |
| 502 | { |
| 503 | joinrel->serverid = outer_rel->serverid; |
| 504 | joinrel->userid = outer_rel->userid; |
| 505 | joinrel->useridiscurrent = true; |
| 506 | joinrel->fdwroutine = outer_rel->fdwroutine; |
| 507 | } |
| 508 | else if (!OidIsValid(outer_rel->userid) && |
| 509 | inner_rel->userid == GetUserId()) |
| 510 | { |
| 511 | joinrel->serverid = outer_rel->serverid; |
| 512 | joinrel->userid = inner_rel->userid; |
| 513 | joinrel->useridiscurrent = true; |
| 514 | joinrel->fdwroutine = outer_rel->fdwroutine; |
| 515 | } |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * add_join_rel |
| 521 | * Add given join relation to the list of join relations in the given |
| 522 | * PlannerInfo. Also add it to the auxiliary hashtable if there is one. |
| 523 | */ |
| 524 | static void |
| 525 | add_join_rel(PlannerInfo *root, RelOptInfo *joinrel) |
| 526 | { |
| 527 | /* GEQO requires us to append the new joinrel to the end of the list! */ |
| 528 | root->join_rel_list = lappend(root->join_rel_list, joinrel); |
| 529 | |
| 530 | /* store it into the auxiliary hashtable if there is one. */ |
| 531 | if (root->join_rel_hash) |
| 532 | { |
| 533 | JoinHashEntry *hentry; |
| 534 | bool found; |
| 535 | |
| 536 | hentry = (JoinHashEntry *) hash_search(root->join_rel_hash, |
| 537 | &(joinrel->relids), |
| 538 | HASH_ENTER, |
| 539 | &found); |
| 540 | Assert(!found); |
| 541 | hentry->join_rel = joinrel; |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * build_join_rel |
| 547 | * Returns relation entry corresponding to the union of two given rels, |
| 548 | * creating a new relation entry if none already exists. |
| 549 | * |
| 550 | * 'joinrelids' is the Relids set that uniquely identifies the join |
| 551 | * 'outer_rel' and 'inner_rel' are relation nodes for the relations to be |
| 552 | * joined |
| 553 | * 'sjinfo': join context info |
| 554 | * 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr |
| 555 | * receives the list of RestrictInfo nodes that apply to this |
| 556 | * particular pair of joinable relations. |
| 557 | * |
| 558 | * restrictlist_ptr makes the routine's API a little grotty, but it saves |
| 559 | * duplicated calculation of the restrictlist... |
| 560 | */ |
| 561 | RelOptInfo * |
| 562 | build_join_rel(PlannerInfo *root, |
| 563 | Relids joinrelids, |
| 564 | RelOptInfo *outer_rel, |
| 565 | RelOptInfo *inner_rel, |
| 566 | SpecialJoinInfo *sjinfo, |
| 567 | List **restrictlist_ptr) |
| 568 | { |
| 569 | RelOptInfo *joinrel; |
| 570 | List *restrictlist; |
| 571 | |
| 572 | /* This function should be used only for join between parents. */ |
| 573 | Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel)); |
| 574 | |
| 575 | /* |
| 576 | * See if we already have a joinrel for this set of base rels. |
| 577 | */ |
| 578 | joinrel = find_join_rel(root, joinrelids); |
| 579 | |
| 580 | if (joinrel) |
| 581 | { |
| 582 | /* |
| 583 | * Yes, so we only need to figure the restrictlist for this particular |
| 584 | * pair of component relations. |
| 585 | */ |
| 586 | if (restrictlist_ptr) |
| 587 | *restrictlist_ptr = build_joinrel_restrictlist(root, |
| 588 | joinrel, |
| 589 | outer_rel, |
| 590 | inner_rel); |
| 591 | return joinrel; |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | * Nope, so make one. |
| 596 | */ |
| 597 | joinrel = makeNode(RelOptInfo); |
| 598 | joinrel->reloptkind = RELOPT_JOINREL; |
| 599 | joinrel->relids = bms_copy(joinrelids); |
| 600 | joinrel->rows = 0; |
| 601 | /* cheap startup cost is interesting iff not all tuples to be retrieved */ |
| 602 | joinrel->consider_startup = (root->tuple_fraction > 0); |
| 603 | joinrel->consider_param_startup = false; |
| 604 | joinrel->consider_parallel = false; |
| 605 | joinrel->reltarget = create_empty_pathtarget(); |
| 606 | joinrel->pathlist = NIL; |
| 607 | joinrel->ppilist = NIL; |
| 608 | joinrel->partial_pathlist = NIL; |
| 609 | joinrel->cheapest_startup_path = NULL; |
| 610 | joinrel->cheapest_total_path = NULL; |
| 611 | joinrel->cheapest_unique_path = NULL; |
| 612 | joinrel->cheapest_parameterized_paths = NIL; |
| 613 | /* init direct_lateral_relids from children; we'll finish it up below */ |
| 614 | joinrel->direct_lateral_relids = |
| 615 | bms_union(outer_rel->direct_lateral_relids, |
| 616 | inner_rel->direct_lateral_relids); |
| 617 | joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids, |
| 618 | outer_rel, inner_rel); |
| 619 | joinrel->relid = 0; /* indicates not a baserel */ |
| 620 | joinrel->rtekind = RTE_JOIN; |
| 621 | joinrel->min_attr = 0; |
| 622 | joinrel->max_attr = 0; |
| 623 | joinrel->attr_needed = NULL; |
| 624 | joinrel->attr_widths = NULL; |
| 625 | joinrel->lateral_vars = NIL; |
| 626 | joinrel->lateral_referencers = NULL; |
| 627 | joinrel->indexlist = NIL; |
| 628 | joinrel->statlist = NIL; |
| 629 | joinrel->pages = 0; |
| 630 | joinrel->tuples = 0; |
| 631 | joinrel->allvisfrac = 0; |
| 632 | joinrel->subroot = NULL; |
| 633 | joinrel->subplan_params = NIL; |
| 634 | joinrel->rel_parallel_workers = -1; |
| 635 | joinrel->serverid = InvalidOid; |
| 636 | joinrel->userid = InvalidOid; |
| 637 | joinrel->useridiscurrent = false; |
| 638 | joinrel->fdwroutine = NULL; |
| 639 | joinrel->fdw_private = NULL; |
| 640 | joinrel->unique_for_rels = NIL; |
| 641 | joinrel->non_unique_for_rels = NIL; |
| 642 | joinrel->baserestrictinfo = NIL; |
| 643 | joinrel->baserestrictcost.startup = 0; |
| 644 | joinrel->baserestrictcost.per_tuple = 0; |
| 645 | joinrel->baserestrict_min_security = UINT_MAX; |
| 646 | joinrel->joininfo = NIL; |
| 647 | joinrel->has_eclass_joins = false; |
| 648 | joinrel->consider_partitionwise_join = false; /* might get changed later */ |
| 649 | joinrel->top_parent_relids = NULL; |
| 650 | joinrel->part_scheme = NULL; |
| 651 | joinrel->nparts = 0; |
| 652 | joinrel->boundinfo = NULL; |
| 653 | joinrel->partition_qual = NIL; |
| 654 | joinrel->part_rels = NULL; |
| 655 | joinrel->partexprs = NULL; |
| 656 | joinrel->nullable_partexprs = NULL; |
| 657 | joinrel->partitioned_child_rels = NIL; |
| 658 | |
| 659 | /* Compute information relevant to the foreign relations. */ |
| 660 | set_foreign_rel_properties(joinrel, outer_rel, inner_rel); |
| 661 | |
| 662 | /* |
| 663 | * Create a new tlist containing just the vars that need to be output from |
| 664 | * this join (ie, are needed for higher joinclauses or final output). |
| 665 | * |
| 666 | * NOTE: the tlist order for a join rel will depend on which pair of outer |
| 667 | * and inner rels we first try to build it from. But the contents should |
| 668 | * be the same regardless. |
| 669 | */ |
| 670 | build_joinrel_tlist(root, joinrel, outer_rel); |
| 671 | build_joinrel_tlist(root, joinrel, inner_rel); |
| 672 | add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel); |
| 673 | |
| 674 | /* |
| 675 | * add_placeholders_to_joinrel also took care of adding the ph_lateral |
| 676 | * sets of any PlaceHolderVars computed here to direct_lateral_relids, so |
| 677 | * now we can finish computing that. This is much like the computation of |
| 678 | * the transitively-closed lateral_relids in min_join_parameterization, |
| 679 | * except that here we *do* have to consider the added PHVs. |
| 680 | */ |
| 681 | joinrel->direct_lateral_relids = |
| 682 | bms_del_members(joinrel->direct_lateral_relids, joinrel->relids); |
| 683 | if (bms_is_empty(joinrel->direct_lateral_relids)) |
| 684 | joinrel->direct_lateral_relids = NULL; |
| 685 | |
| 686 | /* |
| 687 | * Construct restrict and join clause lists for the new joinrel. (The |
| 688 | * caller might or might not need the restrictlist, but I need it anyway |
| 689 | * for set_joinrel_size_estimates().) |
| 690 | */ |
| 691 | restrictlist = build_joinrel_restrictlist(root, joinrel, |
| 692 | outer_rel, inner_rel); |
| 693 | if (restrictlist_ptr) |
| 694 | *restrictlist_ptr = restrictlist; |
| 695 | build_joinrel_joinlist(joinrel, outer_rel, inner_rel); |
| 696 | |
| 697 | /* |
| 698 | * This is also the right place to check whether the joinrel has any |
| 699 | * pending EquivalenceClass joins. |
| 700 | */ |
| 701 | joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel); |
| 702 | |
| 703 | /* Store the partition information. */ |
| 704 | build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist, |
| 705 | sjinfo->jointype); |
| 706 | |
| 707 | /* |
| 708 | * Set estimates of the joinrel's size. |
| 709 | */ |
| 710 | set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel, |
| 711 | sjinfo, restrictlist); |
| 712 | |
| 713 | /* |
| 714 | * Set the consider_parallel flag if this joinrel could potentially be |
| 715 | * scanned within a parallel worker. If this flag is false for either |
| 716 | * inner_rel or outer_rel, then it must be false for the joinrel also. |
| 717 | * Even if both are true, there might be parallel-restricted expressions |
| 718 | * in the targetlist or quals. |
| 719 | * |
| 720 | * Note that if there are more than two rels in this relation, they could |
| 721 | * be divided between inner_rel and outer_rel in any arbitrary way. We |
| 722 | * assume this doesn't matter, because we should hit all the same baserels |
| 723 | * and joinclauses while building up to this joinrel no matter which we |
| 724 | * take; therefore, we should make the same decision here however we get |
| 725 | * here. |
| 726 | */ |
| 727 | if (inner_rel->consider_parallel && outer_rel->consider_parallel && |
| 728 | is_parallel_safe(root, (Node *) restrictlist) && |
| 729 | is_parallel_safe(root, (Node *) joinrel->reltarget->exprs)) |
| 730 | joinrel->consider_parallel = true; |
| 731 | |
| 732 | /* Add the joinrel to the PlannerInfo. */ |
| 733 | add_join_rel(root, joinrel); |
| 734 | |
| 735 | /* |
| 736 | * Also, if dynamic-programming join search is active, add the new joinrel |
| 737 | * to the appropriate sublist. Note: you might think the Assert on number |
| 738 | * of members should be for equality, but some of the level 1 rels might |
| 739 | * have been joinrels already, so we can only assert <=. |
| 740 | */ |
| 741 | if (root->join_rel_level) |
| 742 | { |
| 743 | Assert(root->join_cur_level > 0); |
| 744 | Assert(root->join_cur_level <= bms_num_members(joinrel->relids)); |
| 745 | root->join_rel_level[root->join_cur_level] = |
| 746 | lappend(root->join_rel_level[root->join_cur_level], joinrel); |
| 747 | } |
| 748 | |
| 749 | return joinrel; |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * build_child_join_rel |
| 754 | * Builds RelOptInfo representing join between given two child relations. |
| 755 | * |
| 756 | * 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being |
| 757 | * joined |
| 758 | * 'parent_joinrel' is the RelOptInfo representing the join between parent |
| 759 | * relations. Some of the members of new RelOptInfo are produced by |
| 760 | * translating corresponding members of this RelOptInfo |
| 761 | * 'sjinfo': child-join context info |
| 762 | * 'restrictlist': list of RestrictInfo nodes that apply to this particular |
| 763 | * pair of joinable relations |
| 764 | * 'jointype' is the join type (inner, left, full, etc) |
| 765 | */ |
| 766 | RelOptInfo * |
| 767 | build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, |
| 768 | RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, |
| 769 | List *restrictlist, SpecialJoinInfo *sjinfo, |
| 770 | JoinType jointype) |
| 771 | { |
| 772 | RelOptInfo *joinrel = makeNode(RelOptInfo); |
| 773 | AppendRelInfo **appinfos; |
| 774 | int nappinfos; |
| 775 | |
| 776 | /* Only joins between "other" relations land here. */ |
| 777 | Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel)); |
| 778 | |
| 779 | /* The parent joinrel should have consider_partitionwise_join set. */ |
| 780 | Assert(parent_joinrel->consider_partitionwise_join); |
| 781 | |
| 782 | joinrel->reloptkind = RELOPT_OTHER_JOINREL; |
| 783 | joinrel->relids = bms_union(outer_rel->relids, inner_rel->relids); |
| 784 | joinrel->rows = 0; |
| 785 | /* cheap startup cost is interesting iff not all tuples to be retrieved */ |
| 786 | joinrel->consider_startup = (root->tuple_fraction > 0); |
| 787 | joinrel->consider_param_startup = false; |
| 788 | joinrel->consider_parallel = false; |
| 789 | joinrel->reltarget = create_empty_pathtarget(); |
| 790 | joinrel->pathlist = NIL; |
| 791 | joinrel->ppilist = NIL; |
| 792 | joinrel->partial_pathlist = NIL; |
| 793 | joinrel->cheapest_startup_path = NULL; |
| 794 | joinrel->cheapest_total_path = NULL; |
| 795 | joinrel->cheapest_unique_path = NULL; |
| 796 | joinrel->cheapest_parameterized_paths = NIL; |
| 797 | joinrel->direct_lateral_relids = NULL; |
| 798 | joinrel->lateral_relids = NULL; |
| 799 | joinrel->relid = 0; /* indicates not a baserel */ |
| 800 | joinrel->rtekind = RTE_JOIN; |
| 801 | joinrel->min_attr = 0; |
| 802 | joinrel->max_attr = 0; |
| 803 | joinrel->attr_needed = NULL; |
| 804 | joinrel->attr_widths = NULL; |
| 805 | joinrel->lateral_vars = NIL; |
| 806 | joinrel->lateral_referencers = NULL; |
| 807 | joinrel->indexlist = NIL; |
| 808 | joinrel->pages = 0; |
| 809 | joinrel->tuples = 0; |
| 810 | joinrel->allvisfrac = 0; |
| 811 | joinrel->subroot = NULL; |
| 812 | joinrel->subplan_params = NIL; |
| 813 | joinrel->serverid = InvalidOid; |
| 814 | joinrel->userid = InvalidOid; |
| 815 | joinrel->useridiscurrent = false; |
| 816 | joinrel->fdwroutine = NULL; |
| 817 | joinrel->fdw_private = NULL; |
| 818 | joinrel->baserestrictinfo = NIL; |
| 819 | joinrel->baserestrictcost.startup = 0; |
| 820 | joinrel->baserestrictcost.per_tuple = 0; |
| 821 | joinrel->joininfo = NIL; |
| 822 | joinrel->has_eclass_joins = false; |
| 823 | joinrel->consider_partitionwise_join = false; /* might get changed later */ |
| 824 | joinrel->top_parent_relids = NULL; |
| 825 | joinrel->part_scheme = NULL; |
| 826 | joinrel->nparts = 0; |
| 827 | joinrel->boundinfo = NULL; |
| 828 | joinrel->partition_qual = NIL; |
| 829 | joinrel->part_rels = NULL; |
| 830 | joinrel->partexprs = NULL; |
| 831 | joinrel->nullable_partexprs = NULL; |
| 832 | joinrel->partitioned_child_rels = NIL; |
| 833 | |
| 834 | joinrel->top_parent_relids = bms_union(outer_rel->top_parent_relids, |
| 835 | inner_rel->top_parent_relids); |
| 836 | |
| 837 | /* Compute information relevant to foreign relations. */ |
| 838 | set_foreign_rel_properties(joinrel, outer_rel, inner_rel); |
| 839 | |
| 840 | appinfos = find_appinfos_by_relids(root, joinrel->relids, &nappinfos); |
| 841 | |
| 842 | /* Set up reltarget struct */ |
| 843 | build_child_join_reltarget(root, parent_joinrel, joinrel, |
| 844 | nappinfos, appinfos); |
| 845 | |
| 846 | /* Construct joininfo list. */ |
| 847 | joinrel->joininfo = (List *) adjust_appendrel_attrs(root, |
| 848 | (Node *) parent_joinrel->joininfo, |
| 849 | nappinfos, |
| 850 | appinfos); |
| 851 | pfree(appinfos); |
| 852 | |
| 853 | /* |
| 854 | * Lateral relids referred in child join will be same as that referred in |
| 855 | * the parent relation. Throw any partial result computed while building |
| 856 | * the targetlist. |
| 857 | */ |
| 858 | bms_free(joinrel->direct_lateral_relids); |
| 859 | bms_free(joinrel->lateral_relids); |
| 860 | joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids); |
| 861 | joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids); |
| 862 | |
| 863 | /* |
| 864 | * If the parent joinrel has pending equivalence classes, so does the |
| 865 | * child. |
| 866 | */ |
| 867 | joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins; |
| 868 | |
| 869 | /* Is the join between partitions itself partitioned? */ |
| 870 | build_joinrel_partition_info(joinrel, outer_rel, inner_rel, restrictlist, |
| 871 | jointype); |
| 872 | |
| 873 | /* Child joinrel is parallel safe if parent is parallel safe. */ |
| 874 | joinrel->consider_parallel = parent_joinrel->consider_parallel; |
| 875 | |
| 876 | /* Set estimates of the child-joinrel's size. */ |
| 877 | set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel, |
| 878 | sjinfo, restrictlist); |
| 879 | |
| 880 | /* We build the join only once. */ |
| 881 | Assert(!find_join_rel(root, joinrel->relids)); |
| 882 | |
| 883 | /* Add the relation to the PlannerInfo. */ |
| 884 | add_join_rel(root, joinrel); |
| 885 | |
| 886 | return joinrel; |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * min_join_parameterization |
| 891 | * |
| 892 | * Determine the minimum possible parameterization of a joinrel, that is, the |
| 893 | * set of other rels it contains LATERAL references to. We save this value in |
| 894 | * the join's RelOptInfo. This function is split out of build_join_rel() |
| 895 | * because join_is_legal() needs the value to check a prospective join. |
| 896 | */ |
| 897 | Relids |
| 898 | min_join_parameterization(PlannerInfo *root, |
| 899 | Relids joinrelids, |
| 900 | RelOptInfo *outer_rel, |
| 901 | RelOptInfo *inner_rel) |
| 902 | { |
| 903 | Relids result; |
| 904 | |
| 905 | /* |
| 906 | * Basically we just need the union of the inputs' lateral_relids, less |
| 907 | * whatever is already in the join. |
| 908 | * |
| 909 | * It's not immediately obvious that this is a valid way to compute the |
| 910 | * result, because it might seem that we're ignoring possible lateral refs |
| 911 | * of PlaceHolderVars that are due to be computed at the join but not in |
| 912 | * either input. However, because create_lateral_join_info() already |
| 913 | * charged all such PHV refs to each member baserel of the join, they'll |
| 914 | * be accounted for already in the inputs' lateral_relids. Likewise, we |
| 915 | * do not need to worry about doing transitive closure here, because that |
| 916 | * was already accounted for in the original baserel lateral_relids. |
| 917 | */ |
| 918 | result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids); |
| 919 | result = bms_del_members(result, joinrelids); |
| 920 | |
| 921 | /* Maintain invariant that result is exactly NULL if empty */ |
| 922 | if (bms_is_empty(result)) |
| 923 | result = NULL; |
| 924 | |
| 925 | return result; |
| 926 | } |
| 927 | |
| 928 | /* |
| 929 | * build_joinrel_tlist |
| 930 | * Builds a join relation's target list from an input relation. |
| 931 | * (This is invoked twice to handle the two input relations.) |
| 932 | * |
| 933 | * The join's targetlist includes all Vars of its member relations that |
| 934 | * will still be needed above the join. This subroutine adds all such |
| 935 | * Vars from the specified input rel's tlist to the join rel's tlist. |
| 936 | * |
| 937 | * We also compute the expected width of the join's output, making use |
| 938 | * of data that was cached at the baserel level by set_rel_width(). |
| 939 | */ |
| 940 | static void |
| 941 | build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel, |
| 942 | RelOptInfo *input_rel) |
| 943 | { |
| 944 | Relids relids = joinrel->relids; |
| 945 | ListCell *vars; |
| 946 | |
| 947 | foreach(vars, input_rel->reltarget->exprs) |
| 948 | { |
| 949 | Var *var = (Var *) lfirst(vars); |
| 950 | RelOptInfo *baserel; |
| 951 | int ndx; |
| 952 | |
| 953 | /* |
| 954 | * Ignore PlaceHolderVars in the input tlists; we'll make our own |
| 955 | * decisions about whether to copy them. |
| 956 | */ |
| 957 | if (IsA(var, PlaceHolderVar)) |
| 958 | continue; |
| 959 | |
| 960 | /* |
| 961 | * Otherwise, anything in a baserel or joinrel targetlist ought to be |
| 962 | * a Var. (More general cases can only appear in appendrel child |
| 963 | * rels, which will never be seen here.) |
| 964 | */ |
| 965 | if (!IsA(var, Var)) |
| 966 | elog(ERROR, "unexpected node type in rel targetlist: %d" , |
| 967 | (int) nodeTag(var)); |
| 968 | |
| 969 | /* Get the Var's original base rel */ |
| 970 | baserel = find_base_rel(root, var->varno); |
| 971 | |
| 972 | /* Is it still needed above this joinrel? */ |
| 973 | ndx = var->varattno - baserel->min_attr; |
| 974 | if (bms_nonempty_difference(baserel->attr_needed[ndx], relids)) |
| 975 | { |
| 976 | /* Yup, add it to the output */ |
| 977 | joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs, var); |
| 978 | /* Vars have cost zero, so no need to adjust reltarget->cost */ |
| 979 | joinrel->reltarget->width += baserel->attr_widths[ndx]; |
| 980 | } |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | /* |
| 985 | * build_joinrel_restrictlist |
| 986 | * build_joinrel_joinlist |
| 987 | * These routines build lists of restriction and join clauses for a |
| 988 | * join relation from the joininfo lists of the relations it joins. |
| 989 | * |
| 990 | * These routines are separate because the restriction list must be |
| 991 | * built afresh for each pair of input sub-relations we consider, whereas |
| 992 | * the join list need only be computed once for any join RelOptInfo. |
| 993 | * The join list is fully determined by the set of rels making up the |
| 994 | * joinrel, so we should get the same results (up to ordering) from any |
| 995 | * candidate pair of sub-relations. But the restriction list is whatever |
| 996 | * is not handled in the sub-relations, so it depends on which |
| 997 | * sub-relations are considered. |
| 998 | * |
| 999 | * If a join clause from an input relation refers to base rels still not |
| 1000 | * present in the joinrel, then it is still a join clause for the joinrel; |
| 1001 | * we put it into the joininfo list for the joinrel. Otherwise, |
| 1002 | * the clause is now a restrict clause for the joined relation, and we |
| 1003 | * return it to the caller of build_joinrel_restrictlist() to be stored in |
| 1004 | * join paths made from this pair of sub-relations. (It will not need to |
| 1005 | * be considered further up the join tree.) |
| 1006 | * |
| 1007 | * In many case we will find the same RestrictInfos in both input |
| 1008 | * relations' joinlists, so be careful to eliminate duplicates. |
| 1009 | * Pointer equality should be a sufficient test for dups, since all |
| 1010 | * the various joinlist entries ultimately refer to RestrictInfos |
| 1011 | * pushed into them by distribute_restrictinfo_to_rels(). |
| 1012 | * |
| 1013 | * 'joinrel' is a join relation node |
| 1014 | * 'outer_rel' and 'inner_rel' are a pair of relations that can be joined |
| 1015 | * to form joinrel. |
| 1016 | * |
| 1017 | * build_joinrel_restrictlist() returns a list of relevant restrictinfos, |
| 1018 | * whereas build_joinrel_joinlist() stores its results in the joinrel's |
| 1019 | * joininfo list. One or the other must accept each given clause! |
| 1020 | * |
| 1021 | * NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass |
| 1022 | * up to the join relation. I believe this is no longer necessary, because |
| 1023 | * RestrictInfo nodes are no longer context-dependent. Instead, just include |
| 1024 | * the original nodes in the lists made for the join relation. |
| 1025 | */ |
| 1026 | static List * |
| 1027 | build_joinrel_restrictlist(PlannerInfo *root, |
| 1028 | RelOptInfo *joinrel, |
| 1029 | RelOptInfo *outer_rel, |
| 1030 | RelOptInfo *inner_rel) |
| 1031 | { |
| 1032 | List *result; |
| 1033 | |
| 1034 | /* |
| 1035 | * Collect all the clauses that syntactically belong at this level, |
| 1036 | * eliminating any duplicates (important since we will see many of the |
| 1037 | * same clauses arriving from both input relations). |
| 1038 | */ |
| 1039 | result = subbuild_joinrel_restrictlist(joinrel, outer_rel->joininfo, NIL); |
| 1040 | result = subbuild_joinrel_restrictlist(joinrel, inner_rel->joininfo, result); |
| 1041 | |
| 1042 | /* |
| 1043 | * Add on any clauses derived from EquivalenceClasses. These cannot be |
| 1044 | * redundant with the clauses in the joininfo lists, so don't bother |
| 1045 | * checking. |
| 1046 | */ |
| 1047 | result = list_concat(result, |
| 1048 | generate_join_implied_equalities(root, |
| 1049 | joinrel->relids, |
| 1050 | outer_rel->relids, |
| 1051 | inner_rel)); |
| 1052 | |
| 1053 | return result; |
| 1054 | } |
| 1055 | |
| 1056 | static void |
| 1057 | build_joinrel_joinlist(RelOptInfo *joinrel, |
| 1058 | RelOptInfo *outer_rel, |
| 1059 | RelOptInfo *inner_rel) |
| 1060 | { |
| 1061 | List *result; |
| 1062 | |
| 1063 | /* |
| 1064 | * Collect all the clauses that syntactically belong above this level, |
| 1065 | * eliminating any duplicates (important since we will see many of the |
| 1066 | * same clauses arriving from both input relations). |
| 1067 | */ |
| 1068 | result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL); |
| 1069 | result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result); |
| 1070 | |
| 1071 | joinrel->joininfo = result; |
| 1072 | } |
| 1073 | |
| 1074 | static List * |
| 1075 | subbuild_joinrel_restrictlist(RelOptInfo *joinrel, |
| 1076 | List *joininfo_list, |
| 1077 | List *new_restrictlist) |
| 1078 | { |
| 1079 | ListCell *l; |
| 1080 | |
| 1081 | foreach(l, joininfo_list) |
| 1082 | { |
| 1083 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); |
| 1084 | |
| 1085 | if (bms_is_subset(rinfo->required_relids, joinrel->relids)) |
| 1086 | { |
| 1087 | /* |
| 1088 | * This clause becomes a restriction clause for the joinrel, since |
| 1089 | * it refers to no outside rels. Add it to the list, being |
| 1090 | * careful to eliminate duplicates. (Since RestrictInfo nodes in |
| 1091 | * different joinlists will have been multiply-linked rather than |
| 1092 | * copied, pointer equality should be a sufficient test.) |
| 1093 | */ |
| 1094 | new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo); |
| 1095 | } |
| 1096 | else |
| 1097 | { |
| 1098 | /* |
| 1099 | * This clause is still a join clause at this level, so we ignore |
| 1100 | * it in this routine. |
| 1101 | */ |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | return new_restrictlist; |
| 1106 | } |
| 1107 | |
| 1108 | static List * |
| 1109 | subbuild_joinrel_joinlist(RelOptInfo *joinrel, |
| 1110 | List *joininfo_list, |
| 1111 | List *new_joininfo) |
| 1112 | { |
| 1113 | ListCell *l; |
| 1114 | |
| 1115 | /* Expected to be called only for join between parent relations. */ |
| 1116 | Assert(joinrel->reloptkind == RELOPT_JOINREL); |
| 1117 | |
| 1118 | foreach(l, joininfo_list) |
| 1119 | { |
| 1120 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); |
| 1121 | |
| 1122 | if (bms_is_subset(rinfo->required_relids, joinrel->relids)) |
| 1123 | { |
| 1124 | /* |
| 1125 | * This clause becomes a restriction clause for the joinrel, since |
| 1126 | * it refers to no outside rels. So we can ignore it in this |
| 1127 | * routine. |
| 1128 | */ |
| 1129 | } |
| 1130 | else |
| 1131 | { |
| 1132 | /* |
| 1133 | * This clause is still a join clause at this level, so add it to |
| 1134 | * the new joininfo list, being careful to eliminate duplicates. |
| 1135 | * (Since RestrictInfo nodes in different joinlists will have been |
| 1136 | * multiply-linked rather than copied, pointer equality should be |
| 1137 | * a sufficient test.) |
| 1138 | */ |
| 1139 | new_joininfo = list_append_unique_ptr(new_joininfo, rinfo); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | return new_joininfo; |
| 1144 | } |
| 1145 | |
| 1146 | |
| 1147 | /* |
| 1148 | * fetch_upper_rel |
| 1149 | * Build a RelOptInfo describing some post-scan/join query processing, |
| 1150 | * or return a pre-existing one if somebody already built it. |
| 1151 | * |
| 1152 | * An "upper" relation is identified by an UpperRelationKind and a Relids set. |
| 1153 | * The meaning of the Relids set is not specified here, and very likely will |
| 1154 | * vary for different relation kinds. |
| 1155 | * |
| 1156 | * Most of the fields in an upper-level RelOptInfo are not used and are not |
| 1157 | * set here (though makeNode should ensure they're zeroes). We basically only |
| 1158 | * care about fields that are of interest to add_path() and set_cheapest(). |
| 1159 | */ |
| 1160 | RelOptInfo * |
| 1161 | fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids) |
| 1162 | { |
| 1163 | RelOptInfo *upperrel; |
| 1164 | ListCell *lc; |
| 1165 | |
| 1166 | /* |
| 1167 | * For the moment, our indexing data structure is just a List for each |
| 1168 | * relation kind. If we ever get so many of one kind that this stops |
| 1169 | * working well, we can improve it. No code outside this function should |
| 1170 | * assume anything about how to find a particular upperrel. |
| 1171 | */ |
| 1172 | |
| 1173 | /* If we already made this upperrel for the query, return it */ |
| 1174 | foreach(lc, root->upper_rels[kind]) |
| 1175 | { |
| 1176 | upperrel = (RelOptInfo *) lfirst(lc); |
| 1177 | |
| 1178 | if (bms_equal(upperrel->relids, relids)) |
| 1179 | return upperrel; |
| 1180 | } |
| 1181 | |
| 1182 | upperrel = makeNode(RelOptInfo); |
| 1183 | upperrel->reloptkind = RELOPT_UPPER_REL; |
| 1184 | upperrel->relids = bms_copy(relids); |
| 1185 | |
| 1186 | /* cheap startup cost is interesting iff not all tuples to be retrieved */ |
| 1187 | upperrel->consider_startup = (root->tuple_fraction > 0); |
| 1188 | upperrel->consider_param_startup = false; |
| 1189 | upperrel->consider_parallel = false; /* might get changed later */ |
| 1190 | upperrel->reltarget = create_empty_pathtarget(); |
| 1191 | upperrel->pathlist = NIL; |
| 1192 | upperrel->cheapest_startup_path = NULL; |
| 1193 | upperrel->cheapest_total_path = NULL; |
| 1194 | upperrel->cheapest_unique_path = NULL; |
| 1195 | upperrel->cheapest_parameterized_paths = NIL; |
| 1196 | |
| 1197 | root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel); |
| 1198 | |
| 1199 | return upperrel; |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | /* |
| 1204 | * find_childrel_parents |
| 1205 | * Compute the set of parent relids of an appendrel child rel. |
| 1206 | * |
| 1207 | * Since appendrels can be nested, a child could have multiple levels of |
| 1208 | * appendrel ancestors. This function computes a Relids set of all the |
| 1209 | * parent relation IDs. |
| 1210 | */ |
| 1211 | Relids |
| 1212 | find_childrel_parents(PlannerInfo *root, RelOptInfo *rel) |
| 1213 | { |
| 1214 | Relids result = NULL; |
| 1215 | |
| 1216 | Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL); |
| 1217 | Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size); |
| 1218 | |
| 1219 | do |
| 1220 | { |
| 1221 | AppendRelInfo *appinfo = root->append_rel_array[rel->relid]; |
| 1222 | Index prelid = appinfo->parent_relid; |
| 1223 | |
| 1224 | result = bms_add_member(result, prelid); |
| 1225 | |
| 1226 | /* traverse up to the parent rel, loop if it's also a child rel */ |
| 1227 | rel = find_base_rel(root, prelid); |
| 1228 | } while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL); |
| 1229 | |
| 1230 | Assert(rel->reloptkind == RELOPT_BASEREL); |
| 1231 | |
| 1232 | return result; |
| 1233 | } |
| 1234 | |
| 1235 | |
| 1236 | /* |
| 1237 | * get_baserel_parampathinfo |
| 1238 | * Get the ParamPathInfo for a parameterized path for a base relation, |
| 1239 | * constructing one if we don't have one already. |
| 1240 | * |
| 1241 | * This centralizes estimating the rowcounts for parameterized paths. |
| 1242 | * We need to cache those to be sure we use the same rowcount for all paths |
| 1243 | * of the same parameterization for a given rel. This is also a convenient |
| 1244 | * place to determine which movable join clauses the parameterized path will |
| 1245 | * be responsible for evaluating. |
| 1246 | */ |
| 1247 | ParamPathInfo * |
| 1248 | get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, |
| 1249 | Relids required_outer) |
| 1250 | { |
| 1251 | ParamPathInfo *ppi; |
| 1252 | Relids joinrelids; |
| 1253 | List *pclauses; |
| 1254 | double rows; |
| 1255 | ListCell *lc; |
| 1256 | |
| 1257 | /* If rel has LATERAL refs, every path for it should account for them */ |
| 1258 | Assert(bms_is_subset(baserel->lateral_relids, required_outer)); |
| 1259 | |
| 1260 | /* Unparameterized paths have no ParamPathInfo */ |
| 1261 | if (bms_is_empty(required_outer)) |
| 1262 | return NULL; |
| 1263 | |
| 1264 | Assert(!bms_overlap(baserel->relids, required_outer)); |
| 1265 | |
| 1266 | /* If we already have a PPI for this parameterization, just return it */ |
| 1267 | if ((ppi = find_param_path_info(baserel, required_outer))) |
| 1268 | return ppi; |
| 1269 | |
| 1270 | /* |
| 1271 | * Identify all joinclauses that are movable to this base rel given this |
| 1272 | * parameterization. |
| 1273 | */ |
| 1274 | joinrelids = bms_union(baserel->relids, required_outer); |
| 1275 | pclauses = NIL; |
| 1276 | foreach(lc, baserel->joininfo) |
| 1277 | { |
| 1278 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 1279 | |
| 1280 | if (join_clause_is_movable_into(rinfo, |
| 1281 | baserel->relids, |
| 1282 | joinrelids)) |
| 1283 | pclauses = lappend(pclauses, rinfo); |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | * Add in joinclauses generated by EquivalenceClasses, too. (These |
| 1288 | * necessarily satisfy join_clause_is_movable_into.) |
| 1289 | */ |
| 1290 | pclauses = list_concat(pclauses, |
| 1291 | generate_join_implied_equalities(root, |
| 1292 | joinrelids, |
| 1293 | required_outer, |
| 1294 | baserel)); |
| 1295 | |
| 1296 | /* Estimate the number of rows returned by the parameterized scan */ |
| 1297 | rows = get_parameterized_baserel_size(root, baserel, pclauses); |
| 1298 | |
| 1299 | /* And now we can build the ParamPathInfo */ |
| 1300 | ppi = makeNode(ParamPathInfo); |
| 1301 | ppi->ppi_req_outer = required_outer; |
| 1302 | ppi->ppi_rows = rows; |
| 1303 | ppi->ppi_clauses = pclauses; |
| 1304 | baserel->ppilist = lappend(baserel->ppilist, ppi); |
| 1305 | |
| 1306 | return ppi; |
| 1307 | } |
| 1308 | |
| 1309 | /* |
| 1310 | * get_joinrel_parampathinfo |
| 1311 | * Get the ParamPathInfo for a parameterized path for a join relation, |
| 1312 | * constructing one if we don't have one already. |
| 1313 | * |
| 1314 | * This centralizes estimating the rowcounts for parameterized paths. |
| 1315 | * We need to cache those to be sure we use the same rowcount for all paths |
| 1316 | * of the same parameterization for a given rel. This is also a convenient |
| 1317 | * place to determine which movable join clauses the parameterized path will |
| 1318 | * be responsible for evaluating. |
| 1319 | * |
| 1320 | * outer_path and inner_path are a pair of input paths that can be used to |
| 1321 | * construct the join, and restrict_clauses is the list of regular join |
| 1322 | * clauses (including clauses derived from EquivalenceClasses) that must be |
| 1323 | * applied at the join node when using these inputs. |
| 1324 | * |
| 1325 | * Unlike the situation for base rels, the set of movable join clauses to be |
| 1326 | * enforced at a join varies with the selected pair of input paths, so we |
| 1327 | * must calculate that and pass it back, even if we already have a matching |
| 1328 | * ParamPathInfo. We handle this by adding any clauses moved down to this |
| 1329 | * join to *restrict_clauses, which is an in/out parameter. (The addition |
| 1330 | * is done in such a way as to not modify the passed-in List structure.) |
| 1331 | * |
| 1332 | * Note: when considering a nestloop join, the caller must have removed from |
| 1333 | * restrict_clauses any movable clauses that are themselves scheduled to be |
| 1334 | * pushed into the right-hand path. We do not do that here since it's |
| 1335 | * unnecessary for other join types. |
| 1336 | */ |
| 1337 | ParamPathInfo * |
| 1338 | get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, |
| 1339 | Path *outer_path, |
| 1340 | Path *inner_path, |
| 1341 | SpecialJoinInfo *sjinfo, |
| 1342 | Relids required_outer, |
| 1343 | List **restrict_clauses) |
| 1344 | { |
| 1345 | ParamPathInfo *ppi; |
| 1346 | Relids join_and_req; |
| 1347 | Relids outer_and_req; |
| 1348 | Relids inner_and_req; |
| 1349 | List *pclauses; |
| 1350 | List *eclauses; |
| 1351 | List *dropped_ecs; |
| 1352 | double rows; |
| 1353 | ListCell *lc; |
| 1354 | |
| 1355 | /* If rel has LATERAL refs, every path for it should account for them */ |
| 1356 | Assert(bms_is_subset(joinrel->lateral_relids, required_outer)); |
| 1357 | |
| 1358 | /* Unparameterized paths have no ParamPathInfo or extra join clauses */ |
| 1359 | if (bms_is_empty(required_outer)) |
| 1360 | return NULL; |
| 1361 | |
| 1362 | Assert(!bms_overlap(joinrel->relids, required_outer)); |
| 1363 | |
| 1364 | /* |
| 1365 | * Identify all joinclauses that are movable to this join rel given this |
| 1366 | * parameterization. These are the clauses that are movable into this |
| 1367 | * join, but not movable into either input path. Treat an unparameterized |
| 1368 | * input path as not accepting parameterized clauses (because it won't, |
| 1369 | * per the shortcut exit above), even though the joinclause movement rules |
| 1370 | * might allow the same clauses to be moved into a parameterized path for |
| 1371 | * that rel. |
| 1372 | */ |
| 1373 | join_and_req = bms_union(joinrel->relids, required_outer); |
| 1374 | if (outer_path->param_info) |
| 1375 | outer_and_req = bms_union(outer_path->parent->relids, |
| 1376 | PATH_REQ_OUTER(outer_path)); |
| 1377 | else |
| 1378 | outer_and_req = NULL; /* outer path does not accept parameters */ |
| 1379 | if (inner_path->param_info) |
| 1380 | inner_and_req = bms_union(inner_path->parent->relids, |
| 1381 | PATH_REQ_OUTER(inner_path)); |
| 1382 | else |
| 1383 | inner_and_req = NULL; /* inner path does not accept parameters */ |
| 1384 | |
| 1385 | pclauses = NIL; |
| 1386 | foreach(lc, joinrel->joininfo) |
| 1387 | { |
| 1388 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 1389 | |
| 1390 | if (join_clause_is_movable_into(rinfo, |
| 1391 | joinrel->relids, |
| 1392 | join_and_req) && |
| 1393 | !join_clause_is_movable_into(rinfo, |
| 1394 | outer_path->parent->relids, |
| 1395 | outer_and_req) && |
| 1396 | !join_clause_is_movable_into(rinfo, |
| 1397 | inner_path->parent->relids, |
| 1398 | inner_and_req)) |
| 1399 | pclauses = lappend(pclauses, rinfo); |
| 1400 | } |
| 1401 | |
| 1402 | /* Consider joinclauses generated by EquivalenceClasses, too */ |
| 1403 | eclauses = generate_join_implied_equalities(root, |
| 1404 | join_and_req, |
| 1405 | required_outer, |
| 1406 | joinrel); |
| 1407 | /* We only want ones that aren't movable to lower levels */ |
| 1408 | dropped_ecs = NIL; |
| 1409 | foreach(lc, eclauses) |
| 1410 | { |
| 1411 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 1412 | |
| 1413 | /* |
| 1414 | * In principle, join_clause_is_movable_into() should accept anything |
| 1415 | * returned by generate_join_implied_equalities(); but because its |
| 1416 | * analysis is only approximate, sometimes it doesn't. So we |
| 1417 | * currently cannot use this Assert; instead just assume it's okay to |
| 1418 | * apply the joinclause at this level. |
| 1419 | */ |
| 1420 | #ifdef NOT_USED |
| 1421 | Assert(join_clause_is_movable_into(rinfo, |
| 1422 | joinrel->relids, |
| 1423 | join_and_req)); |
| 1424 | #endif |
| 1425 | if (join_clause_is_movable_into(rinfo, |
| 1426 | outer_path->parent->relids, |
| 1427 | outer_and_req)) |
| 1428 | continue; /* drop if movable into LHS */ |
| 1429 | if (join_clause_is_movable_into(rinfo, |
| 1430 | inner_path->parent->relids, |
| 1431 | inner_and_req)) |
| 1432 | { |
| 1433 | /* drop if movable into RHS, but remember EC for use below */ |
| 1434 | Assert(rinfo->left_ec == rinfo->right_ec); |
| 1435 | dropped_ecs = lappend(dropped_ecs, rinfo->left_ec); |
| 1436 | continue; |
| 1437 | } |
| 1438 | pclauses = lappend(pclauses, rinfo); |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * EquivalenceClasses are harder to deal with than we could wish, because |
| 1443 | * of the fact that a given EC can generate different clauses depending on |
| 1444 | * context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the |
| 1445 | * LHS and RHS of the current join and Z is in required_outer, and further |
| 1446 | * suppose that the inner_path is parameterized by both X and Z. The code |
| 1447 | * above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC, |
| 1448 | * and in the latter case will have discarded it as being movable into the |
| 1449 | * RHS. However, the EC machinery might have produced either Y.Y = X.X or |
| 1450 | * Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will |
| 1451 | * not have produced both, and we can't readily tell from here which one |
| 1452 | * it did pick. If we add no clause to this join, we'll end up with |
| 1453 | * insufficient enforcement of the EC; either Z.Z or X.X will fail to be |
| 1454 | * constrained to be equal to the other members of the EC. (When we come |
| 1455 | * to join Z to this X/Y path, we will certainly drop whichever EC clause |
| 1456 | * is generated at that join, so this omission won't get fixed later.) |
| 1457 | * |
| 1458 | * To handle this, for each EC we discarded such a clause from, try to |
| 1459 | * generate a clause connecting the required_outer rels to the join's LHS |
| 1460 | * ("Z.Z = X.X" in the terms of the above example). If successful, and if |
| 1461 | * the clause can't be moved to the LHS, add it to the current join's |
| 1462 | * restriction clauses. (If an EC cannot generate such a clause then it |
| 1463 | * has nothing that needs to be enforced here, while if the clause can be |
| 1464 | * moved into the LHS then it should have been enforced within that path.) |
| 1465 | * |
| 1466 | * Note that we don't need similar processing for ECs whose clause was |
| 1467 | * considered to be movable into the LHS, because the LHS can't refer to |
| 1468 | * the RHS so there is no comparable ambiguity about what it might |
| 1469 | * actually be enforcing internally. |
| 1470 | */ |
| 1471 | if (dropped_ecs) |
| 1472 | { |
| 1473 | Relids real_outer_and_req; |
| 1474 | |
| 1475 | real_outer_and_req = bms_union(outer_path->parent->relids, |
| 1476 | required_outer); |
| 1477 | eclauses = |
| 1478 | generate_join_implied_equalities_for_ecs(root, |
| 1479 | dropped_ecs, |
| 1480 | real_outer_and_req, |
| 1481 | required_outer, |
| 1482 | outer_path->parent); |
| 1483 | foreach(lc, eclauses) |
| 1484 | { |
| 1485 | RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc); |
| 1486 | |
| 1487 | /* As above, can't quite assert this here */ |
| 1488 | #ifdef NOT_USED |
| 1489 | Assert(join_clause_is_movable_into(rinfo, |
| 1490 | outer_path->parent->relids, |
| 1491 | real_outer_and_req)); |
| 1492 | #endif |
| 1493 | if (!join_clause_is_movable_into(rinfo, |
| 1494 | outer_path->parent->relids, |
| 1495 | outer_and_req)) |
| 1496 | pclauses = lappend(pclauses, rinfo); |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | /* |
| 1501 | * Now, attach the identified moved-down clauses to the caller's |
| 1502 | * restrict_clauses list. By using list_concat in this order, we leave |
| 1503 | * the original list structure of restrict_clauses undamaged. |
| 1504 | */ |
| 1505 | *restrict_clauses = list_concat(pclauses, *restrict_clauses); |
| 1506 | |
| 1507 | /* If we already have a PPI for this parameterization, just return it */ |
| 1508 | if ((ppi = find_param_path_info(joinrel, required_outer))) |
| 1509 | return ppi; |
| 1510 | |
| 1511 | /* Estimate the number of rows returned by the parameterized join */ |
| 1512 | rows = get_parameterized_joinrel_size(root, joinrel, |
| 1513 | outer_path, |
| 1514 | inner_path, |
| 1515 | sjinfo, |
| 1516 | *restrict_clauses); |
| 1517 | |
| 1518 | /* |
| 1519 | * And now we can build the ParamPathInfo. No point in saving the |
| 1520 | * input-pair-dependent clause list, though. |
| 1521 | * |
| 1522 | * Note: in GEQO mode, we'll be called in a temporary memory context, but |
| 1523 | * the joinrel structure is there too, so no problem. |
| 1524 | */ |
| 1525 | ppi = makeNode(ParamPathInfo); |
| 1526 | ppi->ppi_req_outer = required_outer; |
| 1527 | ppi->ppi_rows = rows; |
| 1528 | ppi->ppi_clauses = NIL; |
| 1529 | joinrel->ppilist = lappend(joinrel->ppilist, ppi); |
| 1530 | |
| 1531 | return ppi; |
| 1532 | } |
| 1533 | |
| 1534 | /* |
| 1535 | * get_appendrel_parampathinfo |
| 1536 | * Get the ParamPathInfo for a parameterized path for an append relation. |
| 1537 | * |
| 1538 | * For an append relation, the rowcount estimate will just be the sum of |
| 1539 | * the estimates for its children. However, we still need a ParamPathInfo |
| 1540 | * to flag the fact that the path requires parameters. So this just creates |
| 1541 | * a suitable struct with zero ppi_rows (and no ppi_clauses either, since |
| 1542 | * the Append node isn't responsible for checking quals). |
| 1543 | */ |
| 1544 | ParamPathInfo * |
| 1545 | get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer) |
| 1546 | { |
| 1547 | ParamPathInfo *ppi; |
| 1548 | |
| 1549 | /* If rel has LATERAL refs, every path for it should account for them */ |
| 1550 | Assert(bms_is_subset(appendrel->lateral_relids, required_outer)); |
| 1551 | |
| 1552 | /* Unparameterized paths have no ParamPathInfo */ |
| 1553 | if (bms_is_empty(required_outer)) |
| 1554 | return NULL; |
| 1555 | |
| 1556 | Assert(!bms_overlap(appendrel->relids, required_outer)); |
| 1557 | |
| 1558 | /* If we already have a PPI for this parameterization, just return it */ |
| 1559 | if ((ppi = find_param_path_info(appendrel, required_outer))) |
| 1560 | return ppi; |
| 1561 | |
| 1562 | /* Else build the ParamPathInfo */ |
| 1563 | ppi = makeNode(ParamPathInfo); |
| 1564 | ppi->ppi_req_outer = required_outer; |
| 1565 | ppi->ppi_rows = 0; |
| 1566 | ppi->ppi_clauses = NIL; |
| 1567 | appendrel->ppilist = lappend(appendrel->ppilist, ppi); |
| 1568 | |
| 1569 | return ppi; |
| 1570 | } |
| 1571 | |
| 1572 | /* |
| 1573 | * Returns a ParamPathInfo for the parameterization given by required_outer, if |
| 1574 | * already available in the given rel. Returns NULL otherwise. |
| 1575 | */ |
| 1576 | ParamPathInfo * |
| 1577 | find_param_path_info(RelOptInfo *rel, Relids required_outer) |
| 1578 | { |
| 1579 | ListCell *lc; |
| 1580 | |
| 1581 | foreach(lc, rel->ppilist) |
| 1582 | { |
| 1583 | ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc); |
| 1584 | |
| 1585 | if (bms_equal(ppi->ppi_req_outer, required_outer)) |
| 1586 | return ppi; |
| 1587 | } |
| 1588 | |
| 1589 | return NULL; |
| 1590 | } |
| 1591 | |
| 1592 | /* |
| 1593 | * build_joinrel_partition_info |
| 1594 | * If the two relations have same partitioning scheme, their join may be |
| 1595 | * partitioned and will follow the same partitioning scheme as the joining |
| 1596 | * relations. Set the partition scheme and partition key expressions in |
| 1597 | * the join relation. |
| 1598 | */ |
| 1599 | static void |
| 1600 | build_joinrel_partition_info(RelOptInfo *joinrel, RelOptInfo *outer_rel, |
| 1601 | RelOptInfo *inner_rel, List *restrictlist, |
| 1602 | JoinType jointype) |
| 1603 | { |
| 1604 | int partnatts; |
| 1605 | int cnt; |
| 1606 | PartitionScheme part_scheme; |
| 1607 | |
| 1608 | /* Nothing to do if partitionwise join technique is disabled. */ |
| 1609 | if (!enable_partitionwise_join) |
| 1610 | { |
| 1611 | Assert(!IS_PARTITIONED_REL(joinrel)); |
| 1612 | return; |
| 1613 | } |
| 1614 | |
| 1615 | /* |
| 1616 | * We can only consider this join as an input to further partitionwise |
| 1617 | * joins if (a) the input relations are partitioned and have |
| 1618 | * consider_partitionwise_join=true, (b) the partition schemes match, and |
| 1619 | * (c) we can identify an equi-join between the partition keys. Note that |
| 1620 | * if it were possible for have_partkey_equi_join to return different |
| 1621 | * answers for the same joinrel depending on which join ordering we try |
| 1622 | * first, this logic would break. That shouldn't happen, though, because |
| 1623 | * of the way the query planner deduces implied equalities and reorders |
| 1624 | * the joins. Please see optimizer/README for details. |
| 1625 | */ |
| 1626 | if (!IS_PARTITIONED_REL(outer_rel) || !IS_PARTITIONED_REL(inner_rel) || |
| 1627 | !outer_rel->consider_partitionwise_join || |
| 1628 | !inner_rel->consider_partitionwise_join || |
| 1629 | outer_rel->part_scheme != inner_rel->part_scheme || |
| 1630 | !have_partkey_equi_join(joinrel, outer_rel, inner_rel, |
| 1631 | jointype, restrictlist)) |
| 1632 | { |
| 1633 | Assert(!IS_PARTITIONED_REL(joinrel)); |
| 1634 | return; |
| 1635 | } |
| 1636 | |
| 1637 | part_scheme = outer_rel->part_scheme; |
| 1638 | |
| 1639 | Assert(REL_HAS_ALL_PART_PROPS(outer_rel) && |
| 1640 | REL_HAS_ALL_PART_PROPS(inner_rel)); |
| 1641 | |
| 1642 | /* |
| 1643 | * For now, our partition matching algorithm can match partitions only |
| 1644 | * when the partition bounds of the joining relations are exactly same. |
| 1645 | * So, bail out otherwise. |
| 1646 | */ |
| 1647 | if (outer_rel->nparts != inner_rel->nparts || |
| 1648 | !partition_bounds_equal(part_scheme->partnatts, |
| 1649 | part_scheme->parttyplen, |
| 1650 | part_scheme->parttypbyval, |
| 1651 | outer_rel->boundinfo, inner_rel->boundinfo)) |
| 1652 | { |
| 1653 | Assert(!IS_PARTITIONED_REL(joinrel)); |
| 1654 | return; |
| 1655 | } |
| 1656 | |
| 1657 | /* |
| 1658 | * This function will be called only once for each joinrel, hence it |
| 1659 | * should not have partition scheme, partition bounds, partition key |
| 1660 | * expressions and array for storing child relations set. |
| 1661 | */ |
| 1662 | Assert(!joinrel->part_scheme && !joinrel->partexprs && |
| 1663 | !joinrel->nullable_partexprs && !joinrel->part_rels && |
| 1664 | !joinrel->boundinfo); |
| 1665 | |
| 1666 | /* |
| 1667 | * Join relation is partitioned using the same partitioning scheme as the |
| 1668 | * joining relations and has same bounds. |
| 1669 | */ |
| 1670 | joinrel->part_scheme = part_scheme; |
| 1671 | joinrel->boundinfo = outer_rel->boundinfo; |
| 1672 | partnatts = joinrel->part_scheme->partnatts; |
| 1673 | joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts); |
| 1674 | joinrel->nullable_partexprs = |
| 1675 | (List **) palloc0(sizeof(List *) * partnatts); |
| 1676 | joinrel->nparts = outer_rel->nparts; |
| 1677 | joinrel->part_rels = |
| 1678 | (RelOptInfo **) palloc0(sizeof(RelOptInfo *) * joinrel->nparts); |
| 1679 | |
| 1680 | /* |
| 1681 | * Set the consider_partitionwise_join flag. |
| 1682 | */ |
| 1683 | Assert(outer_rel->consider_partitionwise_join); |
| 1684 | Assert(inner_rel->consider_partitionwise_join); |
| 1685 | joinrel->consider_partitionwise_join = true; |
| 1686 | |
| 1687 | /* |
| 1688 | * Construct partition keys for the join. |
| 1689 | * |
| 1690 | * An INNER join between two partitioned relations can be regarded as |
| 1691 | * partitioned by either key expression. For example, A INNER JOIN B ON |
| 1692 | * A.a = B.b can be regarded as partitioned on A.a or on B.b; they are |
| 1693 | * equivalent. |
| 1694 | * |
| 1695 | * For a SEMI or ANTI join, the result can only be regarded as being |
| 1696 | * partitioned in the same manner as the outer side, since the inner |
| 1697 | * columns are not retained. |
| 1698 | * |
| 1699 | * An OUTER join like (A LEFT JOIN B ON A.a = B.b) may produce rows with |
| 1700 | * B.b NULL. These rows may not fit the partitioning conditions imposed on |
| 1701 | * B.b. Hence, strictly speaking, the join is not partitioned by B.b and |
| 1702 | * thus partition keys of an OUTER join should include partition key |
| 1703 | * expressions from the OUTER side only. However, because all |
| 1704 | * commonly-used comparison operators are strict, the presence of nulls on |
| 1705 | * the outer side doesn't cause any problem; they can't match anything at |
| 1706 | * future join levels anyway. Therefore, we track two sets of |
| 1707 | * expressions: those that authentically partition the relation |
| 1708 | * (partexprs) and those that partition the relation with the exception |
| 1709 | * that extra nulls may be present (nullable_partexprs). When the |
| 1710 | * comparison operator is strict, the latter is just as good as the |
| 1711 | * former. |
| 1712 | */ |
| 1713 | for (cnt = 0; cnt < partnatts; cnt++) |
| 1714 | { |
| 1715 | List *outer_expr; |
| 1716 | List *outer_null_expr; |
| 1717 | List *inner_expr; |
| 1718 | List *inner_null_expr; |
| 1719 | List *partexpr = NIL; |
| 1720 | List *nullable_partexpr = NIL; |
| 1721 | |
| 1722 | outer_expr = list_copy(outer_rel->partexprs[cnt]); |
| 1723 | outer_null_expr = list_copy(outer_rel->nullable_partexprs[cnt]); |
| 1724 | inner_expr = list_copy(inner_rel->partexprs[cnt]); |
| 1725 | inner_null_expr = list_copy(inner_rel->nullable_partexprs[cnt]); |
| 1726 | |
| 1727 | switch (jointype) |
| 1728 | { |
| 1729 | case JOIN_INNER: |
| 1730 | partexpr = list_concat(outer_expr, inner_expr); |
| 1731 | nullable_partexpr = list_concat(outer_null_expr, |
| 1732 | inner_null_expr); |
| 1733 | break; |
| 1734 | |
| 1735 | case JOIN_SEMI: |
| 1736 | case JOIN_ANTI: |
| 1737 | partexpr = outer_expr; |
| 1738 | nullable_partexpr = outer_null_expr; |
| 1739 | break; |
| 1740 | |
| 1741 | case JOIN_LEFT: |
| 1742 | partexpr = outer_expr; |
| 1743 | nullable_partexpr = list_concat(inner_expr, |
| 1744 | outer_null_expr); |
| 1745 | nullable_partexpr = list_concat(nullable_partexpr, |
| 1746 | inner_null_expr); |
| 1747 | break; |
| 1748 | |
| 1749 | case JOIN_FULL: |
| 1750 | nullable_partexpr = list_concat(outer_expr, |
| 1751 | inner_expr); |
| 1752 | nullable_partexpr = list_concat(nullable_partexpr, |
| 1753 | outer_null_expr); |
| 1754 | nullable_partexpr = list_concat(nullable_partexpr, |
| 1755 | inner_null_expr); |
| 1756 | break; |
| 1757 | |
| 1758 | default: |
| 1759 | elog(ERROR, "unrecognized join type: %d" , (int) jointype); |
| 1760 | |
| 1761 | } |
| 1762 | |
| 1763 | joinrel->partexprs[cnt] = partexpr; |
| 1764 | joinrel->nullable_partexprs[cnt] = nullable_partexpr; |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | /* |
| 1769 | * build_child_join_reltarget |
| 1770 | * Set up a child-join relation's reltarget from a parent-join relation. |
| 1771 | */ |
| 1772 | static void |
| 1773 | build_child_join_reltarget(PlannerInfo *root, |
| 1774 | RelOptInfo *parentrel, |
| 1775 | RelOptInfo *childrel, |
| 1776 | int nappinfos, |
| 1777 | AppendRelInfo **appinfos) |
| 1778 | { |
| 1779 | /* Build the targetlist */ |
| 1780 | childrel->reltarget->exprs = (List *) |
| 1781 | adjust_appendrel_attrs(root, |
| 1782 | (Node *) parentrel->reltarget->exprs, |
| 1783 | nappinfos, appinfos); |
| 1784 | |
| 1785 | /* Set the cost and width fields */ |
| 1786 | childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup; |
| 1787 | childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple; |
| 1788 | childrel->reltarget->width = parentrel->reltarget->width; |
| 1789 | } |
| 1790 | |